[image: image1.wmf]

TD <>
Draft ETSI TS 101 861 V0.0.1 (2000-09)
Technical Specification

Time Stamping Profile

Reference

DTS/SEC-004004

Keywords

<keyword[, keyword]>

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.

© European Telecommunications Standards Institute 2000.

All rights reserved.

Contents

4Intellectual Property Rights

Foreword
4
Background
4
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
5
3.3
Abbreviations
5
4
Requirements for a TSP client
6
4.2
Profile for the format of the request
6
4.2.1
Parameters to be supported
6
4.2.2
Algorithms to be used
6
4.3
Profile for the format of the response
6
4.3.1
Parameters to be supported
6
4.3.2
Algorithms to be supported
6
4.3.3
Key lengths to be supported
6
5
Requirements for a TSP server
6
5.1
Profile for the format of the request
6
5.1.1
Parameters to be supported
6
5.1.2
Algorithms to be supported
7
5.2
Profile for the format of the response
7
5.2.1
Parameters to be supported
7
5.2.2
Algorithms to be supported
7
5.2.3
Key lengths be supported
7
6
Profiles for the transport protocols to be supported
7
7
Object identifiers of the cryptographic algorithms
8
7.1
Hash algorithms
8
7.1.1
SHA-1
8
7.1.2
MD5
8
7.1.3
RIPEMD-160
8
7.2
Signature algorithms
9
7.2.1
DSA
9
7.2.2
RSA
9
History
32

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Security (SEC).

Background

Time Stamping is critical for electronic signatures in order to know whether the digital signature was affixed during the validity period of the certificate. To this respect, electronic signatures must be time stamped during the life time of the corresponding certificate.

A Time Stamp Protocol has been defined by the IETF. The present document provides limit the number of options by placing some additional constrains.

1
Scope

This profile is based on the Time Stamp Protocol (TSP) from the IETF [TSP].

It defines what a Time Stamping client must support and what a Time Stamping Server must support.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

· A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

[Directive]
Directive 1999/93/EC of the European Parliament and of the Council of 13 December 1999 on a Community framework for electronic signatures

[PKIX1]
RFC 2459: "Internet X.509 Public Key Infrastructure Certificate and CRL Profile".

[TSP]
RFC XXX: "Time Stamp Protocol".

[CMS]
RFC 2630: "Cryptographic Message Syntax"

[DSS]
FIPS Pub 186.

3
Definitions, symbols and abbreviations

3.1
Definitions

No specific definition is made in this document.

3.2
Symbols

No specific symbol is used in this document.

3.3
Abbreviations

For the purposes of the present document, the following abbreviations apply:

<DSA>
Digital Signature Algorithm. A signature algorithm used in conjunction with SHA-1.

<HTTP>
HyperText Transfer Protocol.

<MD 5>
Message Digest 5. A one way hash function that provides an 128 bits output.

<PKCS>
Public Key Cryptographic Standards. Standards published by RSA, Labs.

<RIPEMD-160>
Race Integrity Primitives Evaluation Message Digest 160. A one way hash function that provides a 160 bits output.

<RSA>
Rivest Shamir Adleman . An algorithm usuable either for signature or encryption.

<SHA-1>
Secure Hash Function 1. A one way hash function that provides a 160 bits output.

4
Requirements for a TSP client

4.2
Profile for the format of the request

4.2.1
Parameters to be supported

The following requirement apply: no extension field shall be present.

4.2.2
Algorithms to be used

The following hash algorithms may be used to hash the information to be time-stamped : SHA-1, MD5, RIPEMD-160. It is recommended to use either SHA-1 or RIPEMD-160.

4.3
Profile for the format of the response

4.3.1
Parameters to be supported

The following requirements apply:

· the accuracy field must be supported and understood,

· the ordering parameter either missing or set to FALSE must be supported,

· the nonce parameter must be supported.

· no extension is required to be supported.

4.3.2
Algorithms to be supported

The following hash algorithms must be supported: SHA-1, MD5.

The following signature algorithms must be supported:

· SHA-1 with DSA.

· SHA-1 with RSA.

4.3.3
Key lengths to be supported

For the RSA algorithm, key lengths of 1024 bits must be supported. Key lengths of 2048 bits should be supported.

For the DSA algorithm, the larger of the two primes, p and q, shall be at least 1024 bits.

5
Requirements for a TSP server

5.1
Profile for the format of the request

5.1.1
Parameters to be supported

The following requirements apply:

· the nonce must be supported,

· certReq must be supported,

· no extension is required to be supported.

5.1.2
Algorithms to be supported

The following hash algorithms must be supported: SHA-1, MD5, RIPEMD-160.

5.2
Profile for the format of the response

5.2.1
Parameters to be supported

The following requirements apply:

· a genTime parameter limited to represent time with one second is required,

· a minimum accuracy of one second is required,

· an ordering parameter missing or set to false is required,

· no extension is required to be generated,

· no extension shall be critical.

5.2.2
Algorithms to be supported

The following hash algorithms must be supported: SHA-1, MD5, RIPEMD-160.

The following signature algorithms must be supported:

· SHA1 with DSA,

· SHA1 with RSA.

DSA is described in FIPS 186 [FIPS 186].

The signature algorithm with SHA-1 and the RSA encryption algorithm is implemented using the padding and encoding conventions described in PKCS #1 [RFC 2313].

5.2.3
Key lengths be supported

For the RSA algorithm, key lengths of 1024 bits must be supported. Key lengths of 2048 bits may be supported.

6
Profiles for the transport protocols to be supported

One on-line protocol and one store and forward protocol must be supported for every Time Stamping Authority.

Among the four protocols that are defined in the RFC, the two following protocols shall be supported:

· the time Stamp Protocol using E-mail (section 3.1 from the RFC),

· the Time Stamp Protocol via HTTP (section 3.4 from the RFC).

7
Object identifiers of the cryptographic algorithms

7.1
Hash algorithms

7.1.1
SHA-1

The SHA-1 digest algorithm is defined in FIPS Pub 180-1. The algorithm identifier for SHA-1 is:

 sha-1 OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26 }

The AlgorithmIdentifier parameters field is optional. If present, the parameters field shall contain an ASN.1 NULL.

Implementations should accept SHA-1 AlgorithmIdentifiers with absent parameters as well as NULL parameters. Implementations should generate SHA-1 AlgorithmIdentifiers with NULL parameters.

7.1.2
MD5

The MD5 digest algorithm is defined in RFC 1321. The algorithm identifier for MD5 is:

 md5 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) 5 }

The AlgorithmIdentifier parameters field shall be present, and the parameters field shall contain NULL.

Implementations may accept the MD5 AlgorithmIdentifiers with absent parameters as well as NULL parameters.

7.1.3
RIPEMD-160

The RIPEMD-160 digest algorithm is defined in ISO/IEC 10118-3:1998, ``Information technology - Security techniques - Hash-functions - Part 3: Dedicated hash-functions,'' International Organization for Standardization, Geneva, Switzerland, 1998.

Information about RIPEMD-160 can also be found in the following publications:

· H. Dobbertin, A. Bosselaers, B. Preneel, "RIPEMD-160, a strengthened version of RIPEMD". Fast Software Encryption, LNCS 1039, D.Gollmann, Ed., Springer-Verlag, 1996, pp. 71-82.

· A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC press.

· A. Bosselaers, H. Dobbertin, B. Preneel, "The RIPEMD-160 cryptographic hash function", Dr. Dobb's Journal, Vol. 22, No. 1, January 1997, pp. 24-28.

· B. Preneel, A. Bosselaers, H. Dobbertin, "The cryptographic hash function RIPEMD-160", CryptoBytes, Vol. 3, No. 2, 1997, pp. 9-14.

At the time of publication of the present document, this information was available at the following address:

http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html#Outline
The algorithm identifier for RIPEMD-160 is:

{iso(1) identified-organization(3) teletrust(36) algorithm(3) hashAlgorithm(2) ripemd160(1)}

7.2
Signature algorithms

7.2.1
DSA

The DSA signature algorithm is defined in FIPS Pub 186 [DSS]. DSA is always used with the SHA-1 message digest algorithm. The algorithm identifier for DSA is:

 id-dsa-with-sha1 OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) x9-57 (10040) x9cm(4) 3 }

The AlgorithmIdentifier parameters field must not be present.

7.2.2
RSA

The RSA signature algorithm is defined in RFC 2347 [NEWPKCS#1]. RFC 2437 specifies the use of the RSA signature algorithm with the SHA-1 and MD5 message digest algorithms.

If the hash function to be used is MD5, then the OID should be:

 md5WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840) rsadsi(113549)
pkcs(1) pkcs-1(1) 4 }

If the hash function to be used is SHA-1, then the OID should be:

 sha1WithRSAEncryption OBJECT IDENTIFIER ::= { iso(1) member-body(2) US(840) rsadsi(113549)
pkcs(1) pkcs-1(1) 5}

NOTE:
This annex is temporary and will be removed when the document is published.

The reason for providing the temporary annex is to allow an easy check with the referenced document. At the time of publication, it is known that there some comments raised during the IESG last call period that will affect the document.

So it is know that this version is not definitive.

Internet Draft C. Adams (Entrust Technologies)

PKIX Working Group P. Cain (BBN)

expires in six months D. Pinkas (Bull)

 R. Zuccherato (Entrust Technologies)

 June 2000

 Internet X.509 Public Key Infrastructure

 Time Stamp Protocol (TSP)

 <draft-ietf-pkix-time-stamp-09.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with

 all provisions of Section 10 of RFC 2026.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF), its areas, and its working groups. Note that other

 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at

 http://www.ietf.org/shadow.html.

 Copyright (C) The Internet Society (1999). All Rights Reserved.

Abstract

A time stamping service allows to prove that a datum existed before

a particular time and can be used by a Trusted Third Party (TTP) as

one component in building reliable non-repudiation services (see

[ISONR]). This document describes the format of a request sent to a

Time Stamping Authority (TSA) and of the response that is returned.

An example of how to prove that a digital signature was generated

during the validity period of a public key certificate is given

in an annex.

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",

"RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase,

as shown) are to be interpreted as described in [RFC2119].

1. Introduction

In order to associate a datum with a particular point in time, a

Time Stamp Authority (TSA) may need to be used. This Trusted Third

Party provides a "proof-of-existence" for this particular datum at an

instant in time.

Adams, Cain, Pinkas, Zuccherato [Page 1]

Time Stamp Protocol Document Expiration : December 2000

The TSA's role is to time stamp a datum to establish evidence

indicating the time at which the datum existed. This can then be

used, for example, to verify that a digital signature was applied to

a message before the corresponding certificate was revoked thus

allowing a revoked public key certificate to be used for verifying

signatures created prior to the time of revocation. This is an

important public key infrastructure operation. The TSA can also be

used to indicate the time of submission when a deadline is critical,

or to indicate the time of transaction for entries in a log. An

exhaustive list of possible uses of a TSA is beyond the scope of

this document.

2. The TSA

The TSA is a TTP that creates time stamp tokens in order to indicate

that a datum existed at a particular point in time.

For the remainder of this document a "valid request" shall mean one

that can be decoded correctly, is of the form specified in Section 2.4,

and is from a supported TSA subscriber.

2.1. Requirements of the TSA

The TSA is REQUIRED:

 1. to use a trustworthy source of time.

 2. to include a trustworthy time value for each time stamp token.

 3. to include a unique integer for each newly generated time

 stamp token.

 4. to produce a time stamp token upon receiving a valid request

 from the requester, when it is possible.

 5. to include within each time stamp token an identifier to

 uniquely indicate the security policy under which the token

 was created.

 6. to only time stamp a hash representation of the datum, i.e.

 a data imprint associated with a one-way collision resistant

 hash-function OID.

 7. to examine the OID of the one-way collision resistant hash-

 function and to verify that the hash value length is

 consistent with the hash algorithm.

 8. not to examine the imprint being time stamped in any way

 (other than to check its length, as specified in the previous

 bullet).

 9. not to include any identification of the requesting entity in

 the time stamp tokens.

Adams, Cain, Pinkas, Zuccherato [Page 2]

Time Stamp Protocol Document Expiration : December 2000

 10. to sign each time stamp token using a key generated

 exclusively for this purpose and have this property of the

 key indicated on the corresponding certificate.

 11. to include additional information in the time stamp token,

 if asked by the requester using the extensions field, only

 for the extensions that are supported by the TSA. If this is

 not possible, the TSA SHALL respond with an error message.

2.2. TSA Transactions

As the first message of this mechanism, the requesting entity requests

a time stamp token by sending a request (which is or includes a

TimeStampReq, as defined below) to the Time Stamping Authority. As

the second message, the Time Stamping Authority responds by sending a

response (which is or includes a TimeStampResp, as defined below) to

the requesting entity.

Upon receiving the response (which is or includes a TimeStampResp,

as defined below), the requesting entity SHALL verify the status error

returned in the response and if no error is present it SHALL verify the

various fields contained in the TimeStampToken and the validity of the

digital signature of the TimeStampToken. In particular, it SHALL verify

that what was time stamped corresponds to what was requested to be

time stamped. The requester SHALL verify that the TimeStampToken

contains the correct certificate identifier of the TSA, the correct

data imprint and the correct hash algorithm OID. It SHALL then verify

the timeliness of the response by verifying either the time included

in the response against a local trusted time reference, if one is

available, or the value of the nonce (large random number with a

high probability that it is generated by the client only once)

included in the response against the value included in the request.

For more details, about replay attack detection see the security

considerations section (item 6). If any of the verifications above

fails, the TimeStampToken SHALL be rejected.

Then, since the TSA's certificate may have been revoked, the status of

the certificate SHOULD be checked (e.g. by checking the appropriate

CRL) to verify that the certificate is still valid.

Then, the client application SHOULD check the policy field to determine

whether or not the policy under which the token was issued is

acceptable for the application. The client MAY ignore this field

if that is acceptable for the intended application.

2.3. Identification of the TSA

The TSA MUST sign all time stamp messages with one or more keys

reserved specifically for that purpose. A TSA MAY have distinct

private keys, e.g. to accommodate different policies, different

algorithms, different private key sizes or to increase the

performance. The corresponding certificate MUST contain only one

instance of the extended key usage field extension as defined in

[RFC2459] Section 4.2.1.13 with KeyPurposeID having value

Adams, Cain, Pinkas, Zuccherato [Page 3]

Time Stamp Protocol Document Expiration : December 2000

id-kp-timeStamping. This extension MUST be critical.

The following object identifier identifies the KeyPurposeID

having value id-kp-timeStamping.

id-kp-timeStamping OBJECT IDENTIFIER ::= {iso(1)

 identified-organization(3) dod(6)

 internet(1) security(5) mechanisms(5) pkix(7)

 kp (3) timestamping (8)}

A TSA's certificate MAY contain a Subject Information Access (SIA)

extension [son of RFC2459] in order to convey the method of contacting

the TSA. The accessMethod field in this extension MUST contain the

OID id-ad-timestamping:

The following object identifier identifies the access descriptors

for timeStamping.

id-ad-timeStamping OBJECT IDENTIFIER ::= {iso(1)

 identified-organization(3) dod(6)

 internet(1) security(5) mechanisms(5) pkix(7)

 ad (48) timestamping (3)}

The value of the accessLocation field defines the transport (e.g. HTTP)

used to access the TSA and may contain other transport dependent

information (e.g. a URL).

2.4. Request and Response Formats

2.4.1. Request Format

A time stamping request is as follows:

TimeStampReq ::= SEQUENCE {

 version INTEGER { v1(1) },

 messageImprint MessageImprint,

 --a hash algorithm OID and the hash value of the data to be

 --time stamped

 reqPolicy PolicyInformation OPTIONAL,

 nonce INTEGER OPTIONAL,

 certReq BOOLEAN DEFAULT FALSE,

 extensions [0] IMPLICIT Extensions OPTIONAL

}

The version field (currently v1) describes the version of the

TimeStamp request.

The messageImprint field SHALL contain the hash of the datum to be

time stamped. The hash is represented as an OCTET STRING. Its length

MUST match the length of the hash value for that algorithm (e.g.

20 bytes for SHA-1 or 16 bytes for MD5).

Adams, Cain, Pinkas, Zuccherato [Page 4]

Time Stamp Protocol Document Expiration : December 2000

MessageImprint ::= SEQUENCE {

 hashAlgorithm AlgorithmIdentifier,

 hashedMessage OCTET STRING }

The hash algorithm indicated in the hashAlgorithm field MUST be a known

hash algorithm (one-way and collision resistant).

The reqPolicy field, if included, indicates the policy under which the

TimeStampToken SHOULD be provided. PolicyInformation is defined in

Section 4.2.1.5 of [RFC2459].

The nonce, if included, allows to verify the timeliness of the

response when no local clock is available. The nonce is a large random

number with a high probability that the client generates it only

once (e.g. a 64 bit integer). In such a case the same nonce value

shall be included in the response, otherwise the response shall be

rejected.

If the certReq field is present and set to true, the TSA's public

key certificate that is referenced by the ESSCertID attribute in the

response MUST be provided by the TSA in the certificates field from

the SignedData structure in that response. That field may also contain

other certificates.

If the certReq field is missing, or if the certReq field is present

and set to false then the certificates field from the SignedData

structure MUST not be present in the response.

The extensions field is a generic way to add additional information to

the request in the future. Extensions is defined in [RFC 2459]. If an

extension, whether it is marked critical or not critical, is used

by a requester but is not recognized by a time stamping server, the

server SHALL not issue a token and SHALL return a failure

(unacceptedExtension).

The time stamp request does not identify the requester, as this

information is not validated by the TSA (See Section 2.1).

In situations where the TSA requires the identity of the requesting

entity, alternate identification /authentication means have to be used

(e.g. CMS encapsulation [CMS] or TLS authentication [RFC2246]).

2.4.2. Response Format

A time stamping response is as follows:

TimeStampResp ::= SEQUENCE {

 status PKIStatusInfo,

 timeStampToken TimeStampToken OPTIONAL

}

The status is based on the definition of status in section 3.2.3

of [RFC2510] as follows:

Adams, Cain, Pinkas, Zuccherato [Page 5]

Time Stamp Protocol Document Expiration : December 2000

PKIStatusInfo ::= SEQUENCE {

 status PKIStatus,

 statusString PKIFreeText OPTIONAL,

 failInfo PKIFailureInfo OPTIONAL

}

When the status contains the value zero a Time Stamp Token is

present. Otherwise the status MUST contain one of the following values.

PKIStatus ::= INTEGER {

 granted (0),

 -- when the PKIStatus contains the value zero a Time Stamp

 Token, as requested, is present.

 grantedWithMods (1),

 -- when the PKIStatus contains the value one a Time Stamp

 Token, with modifications, is present.

 rejection (2),

 waiting (3),

 revocationWarning (4),

 -- this message contains a warning that a revocation is

 -- imminent

 revocationNotification (5),

 -- notification that a revocation has occurred

}

Compliant servers MUST NOT produce any other values. Compliant clients

MAY ignore any other values.

When the Time Stamp Token is not present, the failInfo indicates

the reason why the time stamp request was rejected and may be one of

the following values.

PKIFailureInfo ::= BIT STRING {

 badAlg (0),

 -- unrecognized or unsupported Algorithm Identifier

 badRequest (2),

 -- transaction not permitted or supported

 badDataFormat (5),

 -- the data submitted has the wrong format

 timeNotAvailable (14),

 -- the TSA's time source is not available

 unacceptedPolicy (15),

 -- the requested TSA policy is not supported by the TSA

 unacceptedExtension (16),

 -- the requested extension is not supported by the TSA

 addInfoNotAvailable (17)

 -- the additional information requested could not be understood

 -- or is not available

 }

These are the only values of PKIFailureInfo that are supported.

Compliant servers MUST NOT produce any other values.

Compliant clients MAY ignore any other values.

Adams, Cain, Pinkas, Zuccherato [Page 6]

Time Stamp Protocol Document Expiration : December 2000

The statusString field of PKIStatusInfo MAY be used to include reason

text such as "messageImprint field is not correctly formatted".

If the status returned is different from zero or one, then the

TimeStampToken is not returned.

A TimeStampToken is as follows. It is defined as a ContentInfo ([CMS])

and SHALL encapsulate a signed data content type.

TimeStampToken ::= ContentInfo

 -- contentType is id-signedData ([CMS])

 -- content is SignedData ([CMS])

The fields of type EncapsulatedContentInfo of the SignedData construct

have the following meanings:

eContentType is an object identifier that uniquely specifies the content

type. For a time stamping token it is defined as:

id-smime-ct-TSTInfo OBJECT IDENTIFIER ::= {id-smime-ct 4}

with:

id-smime-ct OBJECT IDENTIFIER ::= { id-smime 1 }

id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

eContent is the content itself, carried as an octet string.

The eContent SHALL be the DER-encoded value of TSTInfo.

The time stamp token MUST NOT contain any signatures other than the

signature of the TSA. The certificate identifier (ESSCertID) of the

TSA certificate shall be included as a signerInfo attribute.

TSTInfo ::= SEQUENCE {

 version INTEGER { v1(1) },

 policy PolicyInformation,

 messageImprint MessageImprint,

 -- MUST have the same value as the similar field in

 -- TimeStampReq

 serialNumber INTEGER,

 -- Time Stamps users MUST be ready to accommodate integers

 -- up to 160 bits.

 genTime GeneralizedTime,

 accuracy Accuracy OPTIONAL,

 ordering BOOLEAN DEFAULT FALSE,

 nonce INTEGER OPTIONAL,

 -- MUST be present if the similar field was present

 -- in TimeStampReq. In that case it MUST have the same value.

 tsa [0] GeneralName OPTIONAL,

 extensions [1] Extensions OPTIONAL

}

Adams, Cain, Pinkas, Zuccherato [Page 7]

Time Stamp Protocol Document Expiration : December 2000

The version field (currently v1) describes the version of the

Timestamp token.

 Conforming timestamping servers MUST be able to provide version 1

 Timestamp tokens. Among the optional fields, only the nonce field

 MUST be supported.

 Conforming timestamping requesters MUST be able to recognize

 version 1 Timestamp tokens with all the optional fields present,

 but are not mandated to understand the semantics of any extension,

 if present.

The policy field MUST indicate the TSA's policy under which the response

was produced. If a similar field was present in the TimeStampReq, then

it MUST have the same value, otherwise an error (unacceptedPolicy)

MUST be returned. This policy MAY include the following types of

information (although this list is certainly not exhaustive):

* The conditions under which the time stamp may be used.

* The availability of a time-stamp log, to allow later verification

 that a time-stamp token is authentic.

The messageImprint MUST have the same value as the similar field in

TimeStampReq, provided that the size of the hash value matches the

expected size of the hash algorithm identified in hashAlgorithm.

The serialNumber field is an integer assigned by the TSA to each

TimeStampToken. It MUST be unique for each TimeStampToken issued by

a given TSA (i.e., the TSA name and serial number identify a unique

TimeStampToken). It should be noticed that the property must remain

valid even after a possible interruption (e.g. crash) of the service.

genTime is the time at which the timestamp has been created by the

TSA. The ASN.1 GeneralizedTime syntax can include fraction-of-second

details. Such syntax, without the restrictions from [RFC 2459]

Section 4.1.2.5.2, where GeneralizedTime is limited to represent time

with one second, may to be used here. However, when there is no need

to have a precision better than the second, then GeneralizedTime with

a precision limited to one second SHOULD be used (as in [RFC 2459]).

The syntax is: YYYYMMDDhhmmss[.s...]Z

Example: 19990609001326.34352Z

X.690 | ISO/IEC 8825-1 provides the restrictions for a DER-encoding.

The encoding shall terminate with a "Z". The decimal point element,

if present, shall be the point option ".". The fractional-seconds

elements, if present, shall omit all trailing 0's; if the elements

correspond to 0, they shall be wholly omitted, and the decimal point

element also shall be omitted.

Midnight (GMT) shall be represented in the form: "YYYYMMDD000000Z"

where "YYYYMMDD" represents the day following the midnight in question.

Adams, Cain, Pinkas, Zuccherato [Page 8]

Time Stamp Protocol Document Expiration : December 2000

Here are a few examples of valid representations:

 "19920521000000Z"

 "19920622123421Z"

 "19920722132100.3Z"

accuracy represents the time deviation around the UTC time contained in

GeneralizedTime.

Accuracy ::= SEQUENCE {

 seconds INTEGER OPTIONAL,

 millis [0] INTEGER (1..999) OPTIONAL,

 micros [1] INTEGER (1..999) OPTIONAL

}

By adding the accuracy value to the GeneralizedTime, an upper limit

of the time at which the timestamp has been created by the TSA can

be obtained. In the same way, by subtracting the accuracy to the

GeneralizedTime, a lower limit of the time at which the timestamp

has been created by the TSA can be obtained.

accuracy can be decomposed in seconds, milliseconds (between 1-999)

and microseconds (1-999), all expressed as integer.

When the accuracy optional field is not present, then the accuracy

may be available through other means, e.g. the PolicyInformation.

If the ordering field is missing, or if the ordering field is present

and set to false, then the genTime field only indicates the time at

which the timestamp has been created by the TSA. In such a case, the

ordering of Time Stamps tokens issued by the same TSA or different

TSAs is only possible when the difference between the genTime of the

first Time Stamp token and the genTime of the second Time Stamp token

is greater than the sum of the accuracies of the genTime for each Time

Stamp token.

If the ordering field is present and set to true, every Time Stamps token

from the same TSA can always be ordered by only looking at the genTime

parameter, whatever the accuracy of the genTime is.

The nonce field MUST be present if it was present in the TimeStampReq.

In such a case it MUST equal the value provided in the TimeStampReq

structure.

The purpose of the tsa field is to give an hint in identifying the

name of the TSA. If present, it MUST correspond to one of the subject

names included in the certificate that is to be used to verify the

token. However, the actual identification of the entity that signed

the response will always occur through the use of the certificate

identifier (ESSCertID Attribute) which is part of the signerInfo

(See Section 5 of [ESS]).

extensions is a generic way to add additional information in the

future. Extensions is defined in [RFC 2459].

Adams, Cain, Pinkas, Zuccherato [Page 9]

Time Stamp Protocol Document Expiration : December 2000

Particular extension field types may be specified in standards or

may be defined and registered by any organization or community.

3. Transports

There is no mandatory transport mechanism for TSA messages in this

document. The mechanisms described below are optional; additional

optional mechanisms may be defined in the future.

3.1. Time Stamp Protocol Using E-mail

This section specifies a means for conveying ASN.1-encoded messages

for the protocol exchanges described in Section 2 and Appendix D via

Internet mail.

A simple MIME object is specified as follows:

 Content-Type: application/timestamp

 Content-Transfer-Encoding: base64

 <<the ASN.1 DER-encoded Time Stamp message, base64-encoded>>

This MIME object can be sent and received using common MIME processing

engines and provides a simple Internet mail transport for Time Stamp

messages.

3.2. File Based Protocol

A file containing a time stamp message MUST contain only the DER

encoding of one TSA message, i.e. there MUST be no extraneous header or

trailer information in the file. Such files can be used to transport

time stamp messages using for example, FTP.

3.3. Socket Based Protocol

The following simple TCP-based protocol is to be used for transport

of TSA messages. This protocol is suitable for cases where an

entity initiates a transaction and can poll to pick up the results.

The protocol basically assumes a listener process on a TSA that

can accept TSA messages on a well-defined port (IP port number 318).

Typically an initiator binds to this port and submits the initial

TSA message. The responder replies with a TSA message and/or with

a reference number to be used later when polling for the actual TSA

message response.

If a number of TSA response messages are to be produced for a given

request (say if a receipt must be sent before the actual token can be

produced) then a new polling reference is also returned.

When the final TSA response message has been picked up by the

initiator then no new polling reference is supplied.

Adams, Cain, Pinkas, Zuccherato [Page 10]

Time Stamp Protocol Document Expiration : December 2000

The initiator of a transaction sends a "direct TCP-based TSA message"

to the recipient. The recipient responds with a similar message.

A "direct TCP-based TSA message" consists of:

 length (32-bits), flag (8-bits), value (defined below)

The length field contains the number of octets of the remainder of

the message (i.e., number of octets of "value" plus one). All 32-bit

values in this protocol are specified to be in network byte order.

 Message name flag value

 tsaMsg '00'H DER-encoded TSA message

 -- TSA message

 pollRep '01'H polling reference (32 bits),

 time-to-check-back (32 bits)

 -- poll response where no TSA message response ready; use polling

 -- reference value (and estimated time value) for later polling

 pollReq '02'H polling reference (32 bits)

 -- request for a TSA message response to initial message

 negPollRep '03'H '00'H

 -- no further polling responses (i.e., transaction complete)

 partialMsgRep '04'H next polling reference (32 bits),

 time-to-check-back (32 bits),

 DER-encoded TSA message

 -- partial response (receipt) to initial message plus new polling

 -- reference (and estimated time value) to use to get next part of

 -- response

 finalMsgRep '05'H DER-encoded TSA message

 -- final (and possibly sole) response to initial message

 errorMsgRep '06'H human readable error message

 -- produced when an error is detected (e.g., a polling reference

 -- is received which doesn't exist or is finished with)

The sequence of messages that can occur is:

 a) entity sends tsaMsg and receives one of pollRep, negPollRep,

 partialMsgRep or finalMsgRep in response.

 b) end entity sends pollReq message and receives one of negPollRep,

 partialMsgRep,finalMsgRep or errorMsgRep in response.

The "time-to-check-back" parameter is a 32-bit integer, defined to be

the number of seconds that have elapsed since midnight, January 1,

1970, coordinated universal time.

It provides an estimate of the time that the end entity should send

its next pollReq.

3.4. Time Stamp Protocol via HTTP

This subsection specifies a means for conveying ASN.1-encoded messages

for the protocol exchanges described in Section 2 and Appendix D via the

HyperText Transfer Protocol.

Adams, Cain, Pinkas, Zuccherato [Page 11]

Time Stamp Protocol Document Expiration : December 2000

A simple MIME object is specified as follows.

Content-Type: application/timestamp

 <<the ASN.1 DER-encoded Time Stamp message>>

This MIME object can be sent and received using common HTTP processing

engines over WWW links and provides a simple browser-server transport

for Time Stamp messages.

Upon receiving a valid request, the server MUST respond with either a

valid response with content type application/timestamp or with an HTTP

error.

4. Security Considerations

This entire document concerns security considerations.

When designing a TSA service, the following considerations have been

identified that have an impact upon the validity or "trust" in the time

stamp token.

 1. When there is a reason to believe that the TSA can no

 longer be trusted but the TSA private key has not been

 compromised, the authority's certificate SHALL be revoked.

 Thus, at any future time, the tokens signed with the

 corresponding key will not considered as valid.

 2. When the TSA private key has been compromised, then the

 corresponding certificate SHALL be revoked. In this case,

 any token signed by the TSA using that private key cannot

 be trusted anymore. For this reason, it is imperative that

 the TSA's private key be guarded with proper security and

 controls in order to minimize the possibility of compromise.

 In case the private key does become compromised, an audit

 trail of all tokens generated by the TSA MAY provide a means

 to discriminate between genuine and false backdated tokens.

 A double time stamp from two different TSAs is another way to

 address this issue.

 3. The TSA signing key MUST be of a sufficient length to allow

 for a sufficiently long lifetime. Even if this is done, the key

 will have a finite lifetime. Thus, any token signed by the

 TSA SHOULD be time stamped again (if authentic copies of old

 CRLs are available) or notarized (if they aren't) at a later

 date to renew the trust that exists in the TSA's signature.

 Time stamp tokens could also be kept with an Evidence Recording

 Authority to maintain this trust.

 4. An application using the TSA service SHOULD be concerned

 about the amount of time it is willing to wait for a response.

 A `man-in-the-middle' attack can introduce delays. Thus, any

 TimeStampResp that takes more than an acceptable period of time

 SHOULD be considered suspect.

Adams, Cain, Pinkas, Zuccherato [Page 12]

Time Stamp Protocol Document Expiration : December 2000

 5. If different entities obtain timestamps on the same data object

 using the same hash algorithm, or a single entity obtains

 multiple timestamps on the same object, the generated timestamp

 tokens will include identical message imprints; as a result, an

 observer with access to those timestamp tokens could infer that

 the timestamps may refer to the same underlying data.

 6. Inadvertent or deliberate replays for requests incorporating

 the same hash (algorithm and) value may happen. Inadvertent

 replays occur when more than one copy of the same request

 message gets sent to the TSA because of problems in the

 intervening network elements. Deliberate replays occur when

 a middleman is replaying legitimate TS responses. In order to

 detect these situations, several techniques may be used. Using

 a nonce always allows to detect replays, and hence its use is

 RECOMMENDED. Another possibility is to use both a local clock

 and a moving time window during which the requester remembers

 all the hashes sent during that time window. When receiving a

 response, the requester ensures both that the time of the

 response is within the time window and that there is only one

 occurrence of the hash value in that time window. If the same

 hash value is present more than once within a time window,

 the requester may either use a nonce, or wait until the time

 window has moved to come back to the case where the same hash

 value appears only once during that time window.

5. Intellectual Property Rights

The IETF takes no position regarding the validity or scope of any

intellectual property or other rights that might be claimed to per-

tain to the implementation or use of the technology described in this

document or the extent to which any license under such rights might

or might not be available; neither does it represent that it has made

any effort to identify any such rights. Information on the IETF's

procedures with respect to rights in standards-track and standards-

related documentation can be found in BCP-11. Copies of claims of

rights made available for publication and any assurances of licenses

to be made available, or the result of an attempt made to obtain a

general license or permission for the use of such proprietary rights

by implementors or users of this specification can be obtained from

the IETF Secretariat.

The IETF invites any interested party to bring to its attention any

copyrights, patents or patent applications, or other proprietary

rights which may cover technology that may be required to practice

this standard. Please address the information to the IETF Executive

Director.

The following eight (8) United States Patents related to time

stamping, listed in chronological order, are known by the authors

to exist at this time. This may not be an exhaustive list. Other

patents MAY exist or be issued at any time.

Adams, Cain, Pinkas, Zuccherato [Page 13]

Time Stamp Protocol Document Expiration : December 2000

Implementers of this protocol SHOULD perform their own patent search

and determine whether or not any encumbrances exist on their

implementation.

Users of this protocol SHOULD perform their own patent search

and determine whether or not any encumbrances exist on the use of

this standard.

5,001,752 Public/Key Date-Time Notary Facility

Filing date: October 13, 1989

Issued: March 19, 1991

Inventor: Addison M. Fischer

5,022,080 Electronic Notary

Filing date: April 16, 1989

Issued: June 4, 1991

Inventors: Robert T. Durst, Kevin D. Hunter

5,136,643 Public/Key Date-Time Notary Facility

Filing date: December 20, 1990

Issued: August 4, 1992

Inventor: Addison M. Fischer

Note: This is a continuation of patent # 5,001,752.)

5,136,646 Digital Document Time-Stamping with Catenate Certificate

Filing date: August 2, 1990

Issued: August 4, 1992

Inventors: Stuart A. Haber, Wakefield S. Stornetta Jr.

(assignee) Bell Communications Research, Inc.,

5,136,647 Method for Secure Time-Stamping of Digital Documents

Filing date: August 2, 1990

Issued: August 4, 1992

Inventors: Stuart A. Haber, Wakefield S. Stornetta Jr.

(assignee) Bell Communications Research, Inc.,

5,373,561 Method of Extending the Validity of a Cryptographic

Certificate

Filing date: December 21, 1992

Issued: December 13, 1994

Inventors: Stuart A. Haber, Wakefield S. Stornetta Jr.

(assignee) Bell Communications Research, Inc.,

5,422,953 Personal Date/Time Notary Device

Filing date: May 5, 1993

Issued: June 6, 1995

Inventor: Addison M. Fischer

5,781,629 Digital Document Authentication System

Filing date: February 21, 1997

Issued: July 14, 1998

Inventor: Stuart A. Haber, Wakefield S. Stornetta Jr.

(assignee) Surety Technologies, Inc.,

Adams, Cain, Pinkas, Zuccherato [Page 14]

Time Stamp Protocol Document Expiration : December 2000

6. References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2246] T. Dierks, C. Allen, "The TLS Protocol, Version 1.0,"

 RFC 2246, January 1999.

[RFC2510] C. Adams, S. Farrell, "Internet X.509 Public Key

 Infrastructure, Certificate Management Protocols,"

 RFC 2510,March 1999.

[RFC2459] R. Housley, W. Ford, W. Polk, D. Solo, "Internet X.509

 Public Key Infrastructure, Certificate and CRL Profile,"

 RFC 2459, January 1999.

[CMS] R. Housley, "Cryptographic Message Syntax", RFC 2630,

 June 1999.

[DSS] Digital Signature Standard. FIPS Pub 186. National

 Institute of Standards and Technology. 19 May 1994.

[ESS] P. Hoffman, "Enhanced Security Services for S/MIME",

 RFC 2634, June 1999.

[ISONR] ISO/IEC 10181-5: Security Frameworks in Open Systems.

 Non-Repudiation Framework. April 1997.

[MD5] "The MD5 Message-Digest Algorithm", RFC 1321, Rivest, R.,

 April 1992.

[SHA1] Secure Hash Standard. FIPS Pub 180-1. National Institute

 of Standards and Technology. 17 April 1995.

[son of RFC2459] To be produced as a successor of RFC 2459.

7. Authors' Addresses

Carlisle Adams Pat Cain

Entrust Technologies BBN

750 Heron Road 70 Fawcett Street

Ottawa, Ontario Cambridge, MA 02138

K1V 1A7 U.S.A.

CANADA pcain@bbn.com

cadams@entrust.com

Denis Pinkas Robert Zuccherato

Bull S.A. Entrust Technologies

12 rue de Paris 750 Heron Road

B.P. 59 Ottawa, Ontario

78231 Le Pecq K1V 1A7

FRANCE CANADA

Denis.Pinkas@bull.net robert.zuccherato@entrust.com

Adams, Cain, Pinkas, Zuccherato [Page 15]

Time Stamp Protocol Document Expiration : December 2000

APPENDIX A - Signature Timestamp attribute using CMS

One of the major use of time stamping is to time stamp a digital

signature to prove that the digital signature was created before

a given time. Should the corresponding public key certificate be

revoked this allows to know whether the signature was created before

or after the revocation date.

A sensible place to store a time stamp is in a [CMS] structure

as an unsigned attribute.

This appendix defines a Signature Timestamp attribute that may be used

to timestamp a digital signature.

The following object identifier identifies the Signature Timestamp

attribute:

id-signatureTimeStampToken OBJECT IDENTIFIER ::= { iso(1)

member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16)

id-aa (2) id-aa-timeStampToken (14)}

The Signature timestamp attribute value has ASN.1 type

SignatureTimeStampToken:

SignatureTimeStampToken ::= TimeStampToken

The value of messageImprint field within TimeStampToken shall be a hash

of the value of signature field within SignerInfo for the signedData

being timestamped.

Adams, Cain, Pinkas, Zuccherato [Page 16]

Time Stamp Protocol Document Expiration : December 2000

APPENDIX B - Placing a Signature At a Particular Point in Time

We present an example of a possible use of this general time stamping

service. It places a signature at a particular point in time, from

which the appropriate certificate status information (e.g. CRLs) MUST

be checked. This application is intended to be used in conjunction

with evidence generated using a digital signature mechanism.

Signatures can only be verified according to a non-repudiation policy.

This policy MAY be implicit or explicit (i.e., indicated in the

evidence provided by the signer). The non-repudiation policy can

specify, among other things, the time period allowed by a signer to

declare the compromise of a signature key used for the generation of

digital signatures. Thus a signature may not be guaranteed to be valid

until the termination of this time period.

To verify a digital signature, the following basic technique may be

used:

A) Time stamping information needs to be obtained soon after the

 signature has been produced (e.g. within a few minutes or hours).

 1) The signature is presented to the Time Stamping Authority (TSA).

 The TSA then returns a TimeStampToken (TST) upon that signature.

 2) The invoker of the service MUST then verify that the

 TimeStampToken is correct.

B) The validity of the digital signature may then be verified in the

 following way:

 1) the Time stamp itself MUST be verified and it MUST be verified

 that it applies to the signature of the signer.

 2) The date/time indicated by the TSA in the Time Stamping Token

 MUST be retrieved.

 3) The certificate used by the signer MUST be identified

 and retrieved.

 4) The date/time indicated by the TSA MUST be inside the validity

 period of the signer's certificate.

 5) The revocation information about that certificate, at the

 date/time of the Time Stamping operation, MUST be retrieved.

 6) Should the certificate be revoked, then the date/time of

 revocation shall be later than the date/time indicated by

 the TSA

If all these conditions are successful, then the digital signature

shall be declared as valid.

Adams, Cain, Pinkas, Zuccherato [Page 17]

Time Stamp Protocol Document Expiration : December 2000

APPENDIX C MIME Registration

To: ietf-types@iana.org

Subject: Registration of MIME media type application/timestamp

MIME media type name: application

MIME subtype name: timestamp

Required parameters: None

Optional parameters: None

Encoding considerations: binary or Base64

Security considerations: Carries a request for a timestamp and the

response. The response will be cryptographically signed.

Interoperability considerations: None

Published specification: IETF PKIX Working Group Draft on Time Stamp

Protocols

Applications which use this media type: Time Stamp clients

Additional information:

 Magic number(s): None

 File extension(s): .TSA

 Macintosh File Type Code(s): none

Person & email address to contact for further information:

Robert Zuccherato <robert.zuccherato@entrust.com>

Intended usage: COMMON

Author/Change controller:

Robert Zuccherato <robert.zuccherato@entrust.com>

Adams, Cain, Pinkas, Zuccherato [Page 18]

Time Stamp Protocol Document Expiration : December 2000

Appendix D: ASN.1 Module using 1988 Syntax

 PKIXTSP {iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-tsp(13)}

 DEFINITIONS IMPLICIT TAGS ::=

 BEGIN

 -- EXPORTS ALL --

 IMPORTS

 Extensions, AlgorithmIdentifier

 FROM PKIX1Explicit88 {iso(1) identified-organization(3)

 dod(6) internet(1) security(5) mechanisms(5) pkix(7)

 id-mod(0) id-pkix1-explicit-88(1)}

 GeneralName, PolicyInformation

 FROM PKIX1Implicit88 {iso(1) identified-organization(3)

 dod(6) internet(1) security(5) mechanisms(5) pkix(7)

 id-mod(0) id-pkix1-implicit-88(2)}

 ContentInfo FROM CryptographicMessageSyntax {iso(1)

 member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)

 smime(16) modules(0) cms(1)} ;

 -- Locally defined OIDs --

-- Authority Information Access for TSA

id-pkix-ad-timestamping OBJECT IDENTIFIER ::= {id-pkix-ad 3}

id-pkix-ad OBJECT IDENTIFIER ::= {id-pkix 48}

id-pkix OBJECT IDENTIFIER ::= {iso(1)

 identified-organization(3) dod(6)

 internet(1) security(5) mechanisms(5) pkix(7)}

-- eContentType for a time stamping token

id-smime-ct-TSTInfo OBJECT IDENTIFIER ::= { id-smime-ct 4 }

id-smime-ct OBJECT IDENTIFIER ::= { id-smime 1 }

id-smime OBJECT IDENTIFIER ::= { iso(1) member-body(2)

 us(840) rsadsi(113549) pkcs(1) pkcs-9(9) 16 }

-- 2.4.1

TimeStampReq ::= SEQUENCE {

 version INTEGER { v1(1) },

 messageImprint MessageImprint,

 --a hash algorithm OID and the hash value of the data to be

 --time stamped

 reqPolicy PolicyInformation OPTIONAL,

 nonce INTEGER OPTIONAL,

 certReq BOOLEAN DEFAULT FALSE,

Adams, Cain, Pinkas, Zuccherato [Page 19]

Time Stamp Protocol Document Expiration : December 2000

 extensions [0] IMPLICIT Extensions OPTIONAL

}

MessageImprint ::= SEQUENCE {

 hashAlgorithm AlgorithmIdentifier,

 hashedMessage OCTET STRING }

-- 2.4.2

TimeStampResp ::= SEQUENCE {

 status PKIStatusInfo,

 timeStampToken TimeStampToken OPTIONAL

}

 -- The status is based on the definition of status

 -- in section 3.2.3 of [RFC2510]

PKIStatusInfo ::= SEQUENCE {

 status PKIStatus,

 statusString PKIFreeText OPTIONAL,

 failInfo PKIFailureInfo OPTIONAL

}

PKIStatus ::= INTEGER {

 granted (0),

 -- when the PKIStatus contains the value zero a Time Stamp

 Token, as requested, is present.

 grantedWithMods (1),

 -- when the PKIStatus contains the value one a Time Stamp

 Token, with modifications, is present.

 rejection (2),

 waiting (3),

 revocationWarning (4),

 -- this message contains a warning that a revocation is

 -- imminent

 revocationNotification (5),

 -- notification that a revocation has occurred

}

 -- When the Time Stamp Token is not present

 -- failInfo indicates the reason why the

 -- time stamp request was rejected and

 -- may be one of the following values.

PKIFailureInfo ::= BIT STRING {

 badAlg (0),

 -- unrecognized or unsupported Algorithm Identifier

 badRequest (2),

 -- transaction not permitted or supported

 badDataFormat (5),

 -- the data submitted has the wrong format

 timeNotAvailable (14),

 -- the TSA's time source is not available

Adams, Cain, Pinkas, Zuccherato [Page 20]

Time Stamp Protocol Document Expiration : December 2000

 unacceptedPolicy (15),

 -- the requested TSA policy is not supported by the TSA.

 unacceptedExtension (16),

 -- the requested extension is not supported by the TSA.

 addInfoNotAvailable (17)

 -- the additional information requested could not be understood

 -- or is not available

 }

TimeStampToken ::= ContentInfo

 -- contentType is id-signedData as defined in [CMS]

 -- content is SignedData as defined in([CMS])

 -- eContentType within SignedData is id-ct-TSTInfo

 -- eContent within SignedData is TSTInfo

TSTInfo ::= SEQUENCE {

 version INTEGER { v1(1) },

 policy PolicyInformation,

 messageImprint MessageImprint,

 -- MUST have the same value as the similar field in

 -- TimeStampReq

 serialNumber INTEGER,

 -- Time Stamps users MUST be ready to accommodate integers

 -- up to 160 bits.

 genTime GeneralizedTime,

 accuracy Accuracy OPTIONAL,

 ordering BOOLEAN DEFAULT FALSE,

 nonce INTEGER OPTIONAL,

 -- MUST be present if the similar field was present

 -- in TimeStampReq. In that case it MUST have the same value.

 tsa [0] GeneralName OPTIONAL,

 extensions [1] IMPLICIT Extensions OPTIONAL

}

Accuracy ::= SEQUENCE {

 seconds INTEGER OPTIONAL,

 millis [0] INTEGER (1..999) OPTIONAL,

 micros [1] INTEGER (1..999) OPTIONAL

}

END

Adams, Cain, Pinkas, Zuccherato [Page 21]

Time Stamp Protocol Document Expiration : December 2000

APPENDIX E - Full Copyright Statement

 Copyright (C) The Internet Society 1999. All Rights Reserved.

 This document and translations of it may be copied and furnished to

 others, and derivative works that comment on or otherwise explain it

 or assist in its implementation may be prepared, copied, published

 and distributed, in whole or in part, without restriction of any

 kind, provided that the above copyright notice and this paragraph are

 included on all such copies and derivative works. However, this

 document itself may not be modified in any way, such as by removing

 the copyright notice or references to the Internet Society or other

 Internet organizations, except as needed for the purpose of develop-

 ing Internet standards in which case the procedures for copyrights

 defined in the Internet Standards process shall be followed, or as

 required to translate it into languages other than English.

 The limited permissions granted above are perpetual and will not be

 revoked by the Internet Society or its successors or assigns. This

 document and the information contained herein is provided on an "AS

 IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK

 FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT

 LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL

 NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY

 OR FITNESS FOR A PARTICULAR PURPOSE.

Adams, Cain, Pinkas, Zuccherato [Page 22]

History

	Document history

	V0.0.1
	September 21, 2000
	Conversion to Technical Specification by the ETSI Secretariat.

Editing Assistance: editHelp! - mailto:edithelp@etsi.fr
Updated by STF 155.

	
	
	

	
	
	

	
	
	

	
	
	

[image: image1.wmf]_1001833466.doc
������

