Verilator 3.908 README File

http://www.veripool.org

2017-08-28

Verilator 3.908 README File CONTENTS

Contents

1 NAME] 2
2_DISTRIBUTION] 2
2

4 SUPPORTED SYSTEMS 2

5 INSTALLATION] 3

6 USAGE DOCUMENTATION] 4

7 DIRFCTORY STRUCTURE 5

8 LIMITATIONS] 5

Verilator 3.908 README File 4 SUPPORTED SYSTEMS

1 NAME

This is the Verilator package README file.

2 DISTRIBUTION

http://www.veripool.org/verilator
This package is Copyright 2003-2017 by Wilson Snyder. (Report bugs to http://www.veripool.org/.)

Verilator is free software; you can redistribute it and/or modify it under the terms of
either the GNU Lesser General Public License Version 3 or the Perl Artistic License
Version 2.0. (See the documentation for more details.)

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-
NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.

3 DESCRIPTION

Verilator converts synthesizable (generally not behavioral) Verilog code into C++ or
SystemC code. It is not a complete simulator, just a translator.

Verilator is invoked with parameters similar to GCC or Synopsys’s VCS. It reads the
specified Verilog code, lints it, and optionally adds coverage code. For C++ format,
it outputs .cpp and .h files. For SystemC format, it outputs .cpp and .h files using
the standard SystemC headers.

The resulting files are then compiled with C+-. The user writes a little C++ wrapper
file, which instantiates the top level module. This is compiled in C++, and linked
with the Verilated files.

The resulting executable will perform the actual simulation.

4 SUPPORTED SYSTEMS

Verilator is developed and has primary testing on Ubuntu. Versions have also built
on Redhat Linux, Macs OS-X, HPUX and Solaris. It should run with minor porting
on any Linix-ish platform. Verilator also works on Windows under Cygwin, and
Windows under MinGW (gcc -mno-cygwin). Verilated output (not Verilator itself)
compiles under MSVC++ 2008 and newer.

Verilator 3.908 README File 5 INSTALLATION

5 INSTALLATION

For more details see http://www.veripool.org/projects/verilator /wiki/Installing.

If you will be modifying Verilator, you should use the "git" method as it will let you
track changes.

The latest version is available at http://www.veripool.org/verilator.

Download the latest package from that site, and decompress.

tar xvzf verilator_version.tgz

If you will be using SystemC (vs straight C++ output), download SystemC from
http://www.systemc.org. Follow their installation instructions. You will need
to set SYSTEMC INCLUDE to point to the include directory with systemc.h
in it, and SYSTEMC _LIBDIR to points to the directory with libsystemc.a in
it. (Older installations may set SYSTEMC and SYSTEMC _ARCH instead.)

You will need the flex and bison packages installed.

cd to the Verilator directory containing this README.

You now have to decide how you’re going to eventually install the kit.

Note Verilator builds the current value of VERILATOR ROOT, SYSTEMC INCLUDE,
and SYSTEMC LIBDIR as defaults into the executable, so try to have them
correct before configuring.

1. Our personal favorite is to always run Verilator from the kit directory.
This allows the easiest experimentation and upgrading. It’s also how most
EDA tools operate; to run you point to the tarball, no install is needed.

export VERILATOR_RO0T=‘pwd‘ # if your shell is bash
setenv VERILATOR_ROOT ‘pwd¢ # if your shell is csh
./configure

2. To install globally onto a "cad" disk with multiple versions of every tool,
and add it to path using Modules/modulecmd:

unset VERILATOR_ROOT # if your shell is bash

unsetenv VERILATOR_ROOT # if your shell is csh

For the tarball, use the version number instead of git describe

./configure --prefix /CAD_DISK/verilator/‘git describe | sed "s/verilator_//"¢

After installing you’ll want a module file like the following:

Verilator 3.908 README File 6 USAGE DOCUMENTATION

6

set install_root /CAD_DISK/verilator/{version-number-used-above}

unsetenv VERILATOR_ROOT

prepend-path PATH $install_root/bin

prepend-path MANPATH $install_root/man

prepend-path PKG_CONFIG_PATH $install_root/share/pkgconfig

3. The next option is to install it globally, using the normal system paths:

unset VERILATOR_ROOT # if your shell is bash
unsetenv VERILATOR_ROOT # if your shell is csh
./configure

4. Alternatively you can configure a prefix that install will populate, as most
GNU tools support:

unset VERILATOR_ROOT # if your shell is bash
unsetenv VERILATOR_ROOT # if your shell is csh
./configure --prefix /opt/verilator-VERSION

Then after installing you will need to add /opt/verilator-VERSION /bin
to PATH.

Type make to compile Verilator.
Type make test to check the compilation.

Configure with --enable-longtests for more complete developer tests. Addi-
tional packages may be required for these tests.

You may get a error about a typedef conflict for uint32 t. Edit verilated.h
to change the typedef to work, probably to @samp{typedef unsigned long
uint32_t;}.

If you used the VERILATOR ROOT scheme you’re done. Programs should set
the environment variable VERILATOR_ROOT to point to this distribution,
then execute $VERILATOR _ROOT /bin/verilator, which will find the path to
all needed files.

If you used the prefix scheme, now do a make install. To run verilator, have
the verilator binary directory in your PATH (this should already be true if using
the default configure), and make sure VERILATOR_ROOT is not set.

USAGE DOCUMENTATION

Detailed documentation and the man page can be seen by running:

bin/verilator --help

or reading verilator.txt in the same directory as this README.

Verilator 3.908 README File 8 LIMITATIONS

7 DIRECTORY STRUCTURE

The directories in the kit after de-taring are as follows:

bin/verilator =>
include/ =>
include/verilated*.cpp =>

include/verilated*.h
include/verilated.v
include/verilated.mk

src/ =>
test_v =>
test_c =>
test_sc =>
test_verilated =>

test_regress

8 LIMITATIONS

Compiler Wrapper invoked to Verilate code
Files that should be in your -I compiler path
Global routines to link into your simulator
Global headers

Stub defines for linting

Common makefile

Translator source code

Example Verilog code for other test dirs
Example Verilog->C++ conversion

Example Verilog->SystemC conversion
Internal tests

Internal tests

See verilator.txt (or execute bin/verilator --help) for limitations.

	1 NAME
	2 DISTRIBUTION
	3 DESCRIPTION
	4 SUPPORTED SYSTEMS
	5 INSTALLATION
	6 USAGE DOCUMENTATION
	7 DIRECTORY STRUCTURE
	8 LIMITATIONS

