
Gura Language Manual

Yutaka Saito

June 17th, 2017

Contents

1 Introduction 9

2 Launch Program 11

2.1 Program Files . 11

2.2 Interactive Mode . 11

2.3 Run Script File . 12

2.4 Composite File . 13

2.5 Command Line Options . 14

2.6 System Directory . 14

2.7 Working Directory . 15

3 Syntax 16

3.1 Overview . 16

3.2 Token . 16

3.2.1 Symbol . 16

3.2.2 Number Literal . 17

3.2.3 String Literal . 18

3.2.4 Operator . 20

3.2.5 Bracket . 20

3.2.6 Back Quote . 21

3.2.7 Comment . 21

3.3 Expression . 22

3.3.1 Class Diagram of Expression . 22

3.3.2 Value . 22

3.3.3 EmbedString . 23

3.3.4 Identifier . 23

3.3.5 Suffixed . 24

3.3.6 Member . 24

3.3.7 UnaryOp . 25

3.3.8 Quote . 25

3.3.9 BinaryOp . 26

1

3.3.10 Assign . 26

3.3.11 Lister . 27

3.3.12 Iterer . 27

3.3.13 Block . 27

3.3.14 Root . 28

3.3.15 Indexer . 28

3.3.16 Caller . 29

4 Data Type 31

4.1 Overview . 31

4.2 Primitive Data Types . 31

4.3 Object Data Types Frequently Used . 32

4.3.1 List . 32

4.3.2 Iterator . 33

4.3.3 Dictionary . 33

4.3.4 Expression . 34

4.3.5 Binary . 34

5 Operator 35

5.1 Overview . 35

5.2 Precedence . 35

5.3 Calculation Operators . 36

5.3.1 Prefixed Unary Operators . 36

5.3.2 Suffixed Unary Operators . 36

5.3.3 Binary Operators . 37

5.4 Other Operators . 42

5.5 Operator Overload . 42

6 Environment 44

6.1 Overview . 44

6.2 Frame . 44

7 Interpreter 46

7.1 How Interpreter Works . 46

7.2 Evaluation Stage . 46

7.2.1 Overview . 46

7.2.2 Evaluation of Value . 46

7.2.3 Evaluation of Identifier . 47

7.2.4 Evaluation of Suffixed . 47

7.2.5 Evaluation of UnaryOp . 47

7.2.6 Evaluation of Quote . 47

2

7.2.7 Evaluation of BinaryOp . 48

7.2.8 Evaluation of Assign . 48

7.2.9 Evaluation of Member . 48

7.2.10 Evaluation of Lister . 48

7.2.11 Evaluation of Iterer . 48

7.2.12 Evaluation of Block . 48

7.2.13 Evaluation of Root . 49

7.2.14 Evaluation of Indexer . 49

7.2.15 Evaluation of Caller . 49

7.3 Assignment Stage . 50

7.3.1 Overview . 50

7.3.2 Assignment for Identifier . 50

7.3.3 Assignment for Lister . 50

7.3.4 Assignment for Member . 51

7.3.5 Assignment for Indexer . 51

7.3.6 Assignment for Caller . 51

7.3.7 Operator before Assignment . 51

8 Function 53

8.1 Definition and Evaluation . 53

8.2 Returned Value . 54

8.3 Arguments . 55

8.3.1 Type Name Declaration . 55

8.3.2 Data Type Casting . 55

8.3.3 Optional Argument . 57

8.3.4 Argument with Default Value . 58

8.3.5 Variable-length Argument . 58

8.3.6 Named Argument . 59

8.3.7 Argument Expansion . 60

8.3.8 Quoted Argument . 60

8.4 Block . 61

8.5 Attribute . 63

8.5.1 User-defined Attribute . 63

8.5.2 Predefined Attributes . 64

8.6 Help Block . 64

8.7 Anonymous Function . 65

8.8 Closure . 66

8.9 Leader-trailer Relationship . 67

9 Flow Control 69

3

9.1 Branch . 69

9.2 Repeat . 70

9.2.1 Repeating Functions . 70

9.2.2 Block Parameter . 72

9.2.3 Result Value of Repeat . 72

9.2.4 Flow Control in Repeat Sequence . 73

9.2.5 Generate Iterator . 74

9.2.6 Repeat Process with Function that Creates Iterator 76

9.3 Error Handling . 77

10 Object Oriented Programming 79

10.1 Class and Instance . 79

10.2 User-defined Class . 80

10.3 Inheritance . 81

10.3.1 Basic . 81

10.3.2 Constructor in Derived Class . 82

10.3.3 Method Override . 82

10.4 Encapsulation . 83

10.5 Structure . 84

10.6 Creation of Multiple Instances . 85

10.7 Forward Declaration . 85

11 Mapping Process 87

11.1 About This Chapter . 87

11.2 Implicit Mapping . 87

11.2.1 Overview . 87

11.2.2 Mapping Rule with Operator . 89

11.2.3 Mapping Rule with Function . 90

11.2.4 Result Control on List . 92

11.2.5 Result Control on Iterator . 95

11.2.6 Suspend Implicit Mapping . 98

11.3 Member Mapping . 98

11.3.1 Overview . 98

11.3.2 Mapping Rule . 98

12 Module 100

12.1 Module as Environment . 100

12.2 Importing Module File . 100

12.3 Creating Module File . 102

12.4 Extensions by Module . 103

4

12.5 List of Bundled Modules . 104

12.6 Creating Binary Module File . 106

13 String and Binary 108

13.1 Overview . 108

13.2 Operation on String . 108

13.2.1 Character Manipulation . 108

13.2.2 Iteration . 109

13.2.3 Modification and Conversion . 110

13.2.4 Extraction . 111

13.2.5 Search, Replace and Inspection . 112

13.3 Formatter . 113

13.4 Functions Equipped with Formatter . 113

13.5 Syntax of Format Specifier . 113

13.6 Regular Expression . 114

13.7 Operation on Binary . 116

13.7.1 Creation of Instance . 116

13.7.2 Byte Manipulation . 116

13.7.3 Pack and Unpack . 117

13.7.4 Pointer . 119

13.7.5 Binary as Stream . 119

14 Iterator/List Operation 120

14.1 Overview . 120

14.2 Iteration on Iterators and Lists . 120

14.3 Iterator-specific Manipulation . 122

14.3.1 About This Section . 122

14.3.2 Finite Iterator vs. Infinite Iterator . 122

14.3.3 Conversion into List . 123

14.3.4 Operation on Elements . 123

14.4 List-specific Manipulation . 123

14.4.1 About This Section . 123

14.4.2 Indexing Read from List . 123

14.4.3 Indexing Modification on List . 124

14.4.4 Conversion into Iterator . 125

14.4.5 Operation on Elements . 126

14.5 Common Manipulation for Iterator and List . 127

14.5.1 About This Section . 127

14.5.2 Inspection and Reduce . 127

14.5.3 Mapping Method . 128

5

14.5.4 Element Manipulation . 129

14.6 Iterator Generation . 132

15 File Operation 134

15.1 Overview . 134

15.2 Pathname . 134

15.2.1 Acceptable Format of Pathname . 134

15.2.2 Utility Functions to Parse Pathname . 134

15.3 Stream . 136

15.3.1 Stream Instance . 136

15.3.2 Cast from String to Stream Instance . 137

15.3.3 Stream Instance to Access Memory . 137

15.3.4 Stream Instance for Standard Input/Output 137

15.3.5 Stream with Text Data . 138

15.3.6 Character Codecs . 140

15.3.7 Stream with Binary Data . 141

15.3.8 Filter Stream . 142

15.3.9 Stream with Archive File and Network . 144

15.4 Directory . 145

15.4.1 Operations . 145

15.4.2 Status Object . 146

15.4.3 Directory in Archive File . 146

15.5 OS-specific Operations . 147

15.5.1 Operation on File System . 147

15.5.2 Execute Other Process . 148

16 Network Operation 149

16.1 Overview . 149

16.2 Client-side Operation . 149

16.3 Server-side Operation . 149

17 Image Operation 152

17.1 Overview . 152

17.2 Image Instance . 152

17.3 Format-specific Operations . 152

17.4 JPEG . 152

17.5 GIF . 153

17.6 Cairo . 153

17.6.1 Simple Example . 153

17.6.2 Render in Exisiting Image . 154

6

17.6.3 Output Animation GIF File Combining Multiple Image Files 154

17.6.4 More Sample Scripts . 154

17.7 OpenGL . 155

17.7.1 Sample Script . 155

17.7.2 More Sample Scripts . 156

18 Graphical User Interface 157

18.1 Overview . 157

18.2 wxWidgets . 157

18.2.1 About wxWidgets . 157

18.2.2 Simple Example . 157

18.2.3 Event Handling . 158

18.2.4 Layout Management . 159

18.2.5 More Sample Scripts . 159

18.3 Tk . 160

18.3.1 About Tk . 160

18.3.2 Simple Example . 160

18.3.3 Sample Script . 160

18.3.4 More Sample Scripts . 161

18.4 SDL . 161

18.4.1 About SDL . 161

18.4.2 Simple Example . 161

18.4.3 More Sample Scripts . 161

19 Mathematic Functions 162

19.1 Complex Number . 162

19.2 Rational Number . 162

19.3 Big Number . 162

19.4 Differentiation Formula . 162

20 Template Engine 165

20.1 Overview . 165

20.2 How to Invoke Template Engine . 165

20.2.1 Invoke from Command Line . 165

20.2.2 Invoke from Script . 166

20.3 Embedded Script . 166

20.4 Indentation . 168

20.5 Rendering nil Value . 169

20.6 Calling Function with Block . 171

20.7 Template Directive . 173

7

20.7.1 Macro Definition and Call . 173

20.7.2 Inheritance . 173

20.7.3 Rendering Other Templates . 175

20.7.4 How Does Directive Work? . 176

20.8 Comment . 176

20.9 Scope Issues . 176

8

Chapter 1

Introduction

We often see a process that applies some operation or transformation on multiple data stored
in lists and then put the results into another list. Among them are includes plotting results of a
mathematical function fed with sequence of numbers as its parameter and tansforming multiple
records extracted from some database into a specific format.

For such a process, many programming language provides sequence control syntax for repeating,
with which you can pick up elements from a list subsequently and then create another list that
contains result values. Or, if you’re a programmer of a functional language, it might be a
familiar approach that you prepare a higher-order function with which you apply a certain
function on elements in a list.

Either way, you’ve had to explicitly program ”repeat” operation with existing languages. How-
ever, when you provide n number of values to a function taking one argument and returning
one result, it’s obvious that you want n number of answers from it. If a programming language
itself has a feature to repeat a function automatically when it’s given with a list or an iterator
as its arguments, there’s no need to explicitly describe repeating syntax any more.

I calls this feature Implicit Mapping since it implicitly does mapping process.

This may look similar with a feature called ”vectorization” that has already been adopted
by languages and libraries such as MATLAB and NumPy. A different point is that Implicit
Mapping is not limited to mathematic operations with number values, but it can work with
various types of value like string, image and even user-defined one. And I’ve found out Implicit
Mapping would be much efficient when it cooperates with more sophisticated iterator operations
such as Member Mapping that can access members of objects coming from an iterator or a
list, and repeat functions capable of generating iterators. These ideas have motivated me to
create a brand-new language.

Before the creation of a new language, I made guidelines described below:

• Inherit Familiar Syntax

I don’t think it’s a good idea to bother creating an original syntax if it has same effects
as that of existing languages. I decided to follow other popular languages as much as
possible when I need to make syntax and name variables and functions. In fact, as the
new language uses a pair of curly brackets to embrace a block, an overwhole appearance
of the code may look like one in C or Java.

• Be Practical

Any programming languages are expected to solve problems that actually exist around us.
For such purposes, capabilities of reading/writing files and processing text data are still
important. However, these days, having such functions is far from enough because various
technologies like Internet, graphic image files, database and GUI become so common that
most users of computer expect any programs to be capable of handling them. To be
practical, the new language should be shipped with these capabilities as standard.

9

Following these guidelines, I’ve developed a script language Gura that comes with functions and
methods that are aware of Implicit Mapping policy, and published its first version on March
15, 2011.

I found it amazing to develop a new programming language since creating a language doesn’t
instantly mean that the creater is an expert programmer of it. This may be similar to a situation
that you try to come up with an idea of a new game: even if you make its rule, you have to
actually play it to know tricks and tactics so that you get a victory on the rule. I also had to
create and try a lot of scripts for myself to know how to make programs of Gura. Throughout
the process, I’ve learned that Gura’s various features including Implicit Mapping are really
practical in actual programming fields.

As one user, I can recommend this script language for you.

Yutaka Saito
March 6th, 2014

10

Chapter 2

Launch Program

2.1 Program Files

For Windows, there are two types of program files to launch Gura interpreter: gura.exe and
guraw.exe. guraw.exe doesn’t show command prompt window and you can use it to run a
script with graphical user interface.

For Linux, an executable binary gura is the interpreter program.

2.2 Interactive Mode

When you run gura.exe or gura with no script file specified in the argument, it will enter an
interactive mode that waits for user inputs.

Gura x.x.x [xxxxxxxxxx, xxx xx xxxx] Copyright (C) 2011-2015 ypsitau

>>>

When you input a script followed by an enter key after a prompt >>>, it will evaluate the script
and show its result.

>>> 3 + 4

7

>>> println(’Hello world’)

Hello world

To quit the interpreter, enter Ctrl+C from keyboard or execute a script sys.exit().

If you want to get a help of a function, put ” ” before the function name and hit the enter key
in the prompt. Below is an example to show a help of function println():

>>> ~println

println(values*):map:void

Prints out values and a line-break to the standard output.

When an expression has some valid value as its result after being evaluated, you will see the
value before the next prompt line.

11

>>> a = 3

3

>>>

To suppress this, you can append a semicolon character at the end of line like below:

>>> a = 3;

>>>

2.3 Run Script File

You can run a script file by specifying it as an argument for Gura interpreter program.

$ gura hello.gura

A Gura script file should have a suffix .gura or .guraw, where .gura is for command-line
scripts and .guraw for ones with GUI. In Windows environment, the suffix .gura is associated
with the program gura.exe and .guraw with guraw.exe.

As a Gura script is a plain text file, you can use any of your favorite editor to create it. The
code below shows the content of hello.gura script.

println(’Hello World’)

If you want to make a script executable on UNIX-like OS such as Linux, it might be a good
idea to add shebang at the top of the script file. Below is a Hello World script with a shebang.

#!/usr/bin/env gura

println(’Hello World’)

If you want to use shebang, be careful to save the script file with each line ended with LF code.
This is to avoid an error caused by specifications of shell programs, not of Gura.

If a script file contains non-ASCII characters like Japanese and Chinese, you should save it in
UTF-8 character code, which is a default code set for the interpreter.

When you need to save the file in other character codes, there are two ways to parse it properly.
One is to specify -d option in command line as following.

$ gura -d shift_jis foo.gura

Another one is to describe a magic comment that specifies a character encoding at top of the
script but after shebang if exists.

#!/usr/bin/env gura

coding: shift_jis

println(’... string that may contain characters in Shift-JIS ...’)

12

A magic comment has a format like ”coding: XXXXXX” where ”XXXXXX” indicates what en-
coding the parser is to use. It can be detected when it appears at the first or second line of a
script and is described as a line comment that begins with ”#” or ”//”.

The following format is acceptable too.

#!/usr/bin/env gura

-*- coding: shift_jis -*-

This is good to make Emacs determine what character encoding it should choose for editing.

Available encoding names are summarized below:

us-ascii, utf-8, utf-16

iso8859-1, iso8859-2, iso8859-3, iso8859-4, iso8859-5, iso8859-6

iso8859-7, iso8859-8, iso8859-9, iso8859-10, iso8859-11, iso8859-13

iso8859-14, iso8859-15, iso8859-16

big5, cp936, cp950, gb2312

cp932, euc-jp, iso-2022-jp, jis, ms_kanji, shift_jis

cp949, euc-kr

2.4 Composite File

It often happens that an application consists of multiple script files and other resources such as
image files. Consider an application that has following files:

foo.gura

utils.gura

message.txt

image.png

Assume that foo.gura is a main script that imports utils.gura and reads files message.txt
and image.png.

It could be bothersome to treat these files separately especially when you try to distribute them.

For such a case, Gura has a feature that can run a ZIP archive file containing scripts and
any other files. Such a file is called Composite File and can be created by ordinary archiving
commands like following:

$ zip foo.zip foo.gura utils.gura message.txt image.png

$ mv foo.zip foo.gurc

Then you can run it as following:

$ gura foo.gurc

A Composite File must have a suffix .gurc or .gurcw where .gurc is for command-line scripts
and .gurcw for ones with GUI. These suffixes are also associated with gura.exe and guraw.exe

respectively in Windows environment. A script file that has the same name with that of the
Composite File except for their suffix part is recognized as a main script. The interpreter reads
that file at first when given with the Composite File.

13

You can also use a Gura module to create a Composite File. Below is a script to create a
Composite File foo.gurc.

import(gurcbuild)

gurcbuild.build([’foo.gura’, ’utils.gura’, ’message.txt’, ’image.png’])

This script is more useful than using other archiving tools to create a Composite File because
the script will embed shebang comment at top of the file and put executable attribute to it so
that the created one can run independently under Linux environment.

2.5 Command Line Options

Available command line options are listed below:

Option Explanation
-h Prints a help message.
-t Runs a script file specified and then enters interactive mode.
-i

module[,

...]

Imports modules in the same way as calling import function in a script. You
can specify more than one module names for this option by separating them
with comma. Or, you can also specify the option in multiple times to import
several modules.

-I dir Specifies a directory in which modules are searched. You can specify the option
in multiple times to add several directories for module search. The specified
path would be converted to an absolute path unless it starts with "./".

-c cmd Runs a Gura script described in cmd.
-T

template

Runs template engine to evaluate the specified template file.

-C dir Changes the current directory before running scripts.
-d

encoding

Specifies character encoding that the parser uses to read scripts.

-v Prints a version number.

2.6 System Directory

The distribution package contains the interpreter executable as well as other various files such
as Gura modules and dynamic-loaded libraries. When installed, they are stored in directories
that are relative to where the interpreter executable is located.

For Windows, they are stored in the following directories:

[install directory] -+- bin

+- module

+- include

+- lib

For Linux, they are as below:

[install directory] -+- bin

+- include

14

+- gura

+- lib

+- gura

+- share

+- gura

As the interpreter searches these files in directories that are relative to its own location, they
are relocatable. This feature makes it easier to install different versions of Gura in a certain
system.

2.7 Working Directory

When the interpret is launched, it creates a working directory if it’s not exist, which Gura
applications can use to store working files.

The directory name comes like below where GURA VERSION is the Gura’s version.

For Windows:

%LOCALAPPDATA%\Gura\GURA_VERSION

For Linux:

$HOME/.gura/GURA_VERSION

A variable sys.localdir points to the directory.

15

Chapter 3

Syntax

3.1 Overview

Gura’s parser consits of two parts: token parser and syntax parser.

The token parser is responsible of splitting a text into tokens that represent atomic factors in
a program. Section ”Token” explains about how the tokens should be described in a code and
about their traits.

The syntax parser will build up expressions from tokens following Gura’s syntax rule. While
a program is running, the interpreter reads the expressions and executes them along with
Environment status. Section ”Expression” explains about what tokens compose each expression
and about relationship between expressions using class diagrams.

3.2 Token

3.2.1 Symbol

A symbol is used as a name of variable, function, symbol, type name, attribute and suffix.

A symbol starts with a UTF-8 leading byte or one of following characters:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

_ $ @

and is followed by UTF-8 leading or trailing byte or characters shown below:

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

_ $ @

0 1 2 3 4 5 6 7 8 9

Here are some valid symbols:

foo

test_result

$foo

16

@bar@

test_1_var

Special symbols:

%

+ * ? -

3.2.2 Number Literal

A decimal number is the most common number literal.

0 1234 999999

A floating-point number that sometimes comes with an exponential expression is also accept-
able.

3.14 10. .001 1e100 3.14e-10 0e0

A sequence of characters that starts with 0b or 0B and contains 0 or 1 represents a binary
number.

0b01010101

A sequence of characters that starts with 0 and contains digit characters between 0 and 7

represents an octal number.

01234567

A sequence of characters that starts with 0x or 0X and contains digit characters and alphabet
characters between a and f or between A and F represents a hexadecimal number.

0x7feaa00

0x7FEAA00

A suffix symbol can be appended after a number literal to convert it into other types rather
than number. Two suffix symbols are available as standard.

Suffix
Symbol

Function

j Converts into complex type. An expression 3j is equivalent with
complex(0, 3).

r Converts into rational type. An expression 3r is equivalent with
rational(3, 0).

17

Importing modules may add other suffix symbols. For instance, importing a module named gmp,
which calculates numbers in arbitrary precision, would add a suffix L that represents numbers
that may consist of many digits.

You can also add your own suffix symbols by using Suffix Manager that is responsible for
managing suffix symbols and their associated functions.

3.2.3 String Literal

A string literal is a sequence of characters surrounded by a pair of single or double quotations.
A string surrounded by single quotations can contain double quotation characters in its body
while a string with double quotations can have single quotation characters inside.

’Hello "World"’

"Hello ’World’"

Although you can choose one of them case by case, single quotation is more preferable in general.

Within a string literal, you can use following escape characters.

Escape Character Note
\\ back slash
\’ single quotation
\" double quotation
\a bell
\b back space
\f page feed
\r carriage return
\n line feed
\t tab
\v vertical tab
\0 null character
\xhh any byte of character code hh in hexadecimal
\uhhhh Unicode character at codepoint hhhh in hexadecimal
\Uhhhhhhhh Unicode character at codepoint hhhhhhhh in hexadecimal

If a string is prefixed by r, a back slash is treated as a normal character, not one for escaping.
This feature is convenient to describe a path name in Windows style and a regular expression
that often uses back slash as a metacharacter.

r’C:\users\foo\bar.txt’

r’(\w+) (\d+):(\d+):(\d)’

You can describe a string containing multiple lines by surrounding it with a triple sequence of
single or double quotations.

’’’

ABCD

EFGH

IJKL

’’’

"""

18

ABCD

EFGH

IJKL

"""

These codes are equivalent to an expression ’\nABCD\nEFGH\nIJKL\n’, which contains a line-
feed character at the beginning. If you want to eliminate the first line-feed, you need to begin
the string body right after the starting quotations or put a back slash at that position followed
by a line feed since a back slash placed at end of a line results in an elimination of the tailing
line feed.

’’’ABCD

EFGH

IJKL

’’’

’’’\

ABCD

EFGH

IJKL

’’’

Both of the examples above have the same result ’ABCD\nEFGH\nIJKL\n’.

You can also specify r prefix for the multi-lined string so that it can contain back slash characters
without escaping. In this case, you cannot use the second example shown above because a back
slash doesn’t work to eliminate a line feed. For such a case, a prefix R is useful, which eliminates
a line feed that appears right after the starting quotation.

R’’’

ABCD

EFGH

IJKL

’’’

This is parsed as ’ABCD\nEFGH\nIJKL\n’.

The prefix R also removes indentation characters that appear at each line.

if (flag) {

print(R’’’

ABCD

EFGH

IJKL

’’’)

}

Assuming that there are four spaces before the expression print(R’’’, the parser would remove
four spaces at top of each line within the multi-lined string. This feature helps you describe
multi-lined strings in indented blocks without disarranging the appearance.

A string literal prefixed by b would be treated as a sequence of binary data instead of character
code.

A string literal prefixed by e would be treated as a string that may contain embedded scripts
written in a manner for the template engine.

A string literal can also be appended by a suffix symbol that has been registered in Suffix
Manager. There’s no built-in suffix for string literals.

19

3.2.4 Operator

An Operator takes one or two values as its inputs and returns a calculation result. It’s catego-
rized in the following types:

• Prefixed Unary Operator takes an input value specified after it.

+ - ~ !

An example code of a Prefixed Unary Operator comes like ”+x”.

• Suffixed Unary Operator takes an input value specified before it.

? ..

An example code of a Suffixed Unary Operator comes like ”x?”.

• Binary Operator takes two input values specified on both sides of them.

+ - * / % ** == != > < >= <= <=>

in & | ^ << >> || && .. =>

An example code of a Binary Operator comes like ”x + y”.

See section Operator for more detail.

3.2.5 Bracket

Multiple expressions can be grouped by surronding them with a pair of brackets. There are
three types of brackets as listed below.

• Square bracket: [A, B, C]

When it appears right after an expression that has a value as a result of evaluation, it
works as an indexer that allows indexing access in the preceding value.

x[3] foo[’key’]

Otherwise, it forms a list of expressions that is set to create a list instance after evalu-
ation.

[1, 2, 3, 4]

• Parenthesis: (A, B, C)

When it appears right after an expression that has a value as a result of evaluation, it’s
used as an argument list to evaluate the preceding value as a callable.

f(1, 2, 3)

Otherwise, it forms a list of expressions that is set to create an iterator instance after
evaluation.

(1, 2, 3, 4)

20

• Curly bracket: {A, B, C}
It forms a list of expressions called Block. In general, a Block is used as a body for
function assignment or provides a procedual part in calling a function.

f() = { println(’hello’) }

• Vertical Bar: |A, B, C|

This only appears right after opening bracket of Block and is called Block Parameter.

repeat (3) {|i| println(i)}

If an element contains an operator ”|” in it, it must be embraced by parentheses to avoid
the parser from mistaking the operator as Block Parameter’s terminater.

|(a | b), c, d|

Expressions within brackets can be separated by a comma character or a line feed. The following
two codes have the same result.

[1, 2, 3, 4]

[1

2

3

4

]

3.2.6 Back Quote

A symbol preceded by a back quote creates an instance of symbol data type.

‘foo ‘bar

Each values of symbol data type has a unique number that is assigned at parsing phase, which
enables quick identification between them.

Any other expressions that have a back quote appended ahead create an instance of expr data
type.

‘(a + b) ‘func()

As an expr instance can hold any code without any evaluation, it can be used to pass a
procedure itself to a function as one of the arguments.

3.2.7 Comment

There are two types of comments: line comment and block comment.

A line comment begins with a marker # or // and lasts until end of the line.

21

this is a comment

// and this is too

x = 10 // comment after code

A block comment begins with a marker /∗ and ends with ∗/. It can contain multiple lines and
even other block comments nested as long as pairs of the comment markers are matched.

Following are valid examples of block comment.

/* block comment */

/*

block comment

*/

/* /* /* nested comment */ */ */

3.3 Expression

3.3.1 Class Diagram of Expression

The following figure shows a hierarchy of expressions.

Expr <-+- Value

+- EmbedString

+- Identifier

+- Suffixed

+- Member

+- Unary <-----+- UnaryOp

| ‘- Quote

+- Binary <----+- BinaryOp

| ‘- Assign

+- Collector <-+- Lister

| +- Iterer

| +- Block

| ‘- Root

‘- Compound <--+- Indexer

‘- Caller

All the expressions are derived from Expr that is an abstract expression.

Other abstract expressions, Unary, Binary, Collector and Compound, don’t appear in the actual
code either, but just provide common functions for their derivations.

3.3.2 Value

A Value expression holds a value of number, string, binary type.

The class diagram is:

+----------------------------------+

| Value |

22

|----------------------------------|

|- value: number, string or binary |

+----------------------------------+

Those types of value are described with string literal, number literal and b-prefixed string literal
in a script respectively.

Consider the following expressions:

• 3.141

It has a value of number type.

• ’hello’

It has a value of string type.

• b’\x00\x01\x02\0x03’
It has a value of binary type.

3.3.3 EmbedString

A EmbedString expression is created when a string literal is prefixed by a character e and
contains a template instance as a result of parsing the string.

The class diagram is:

+---------------------+

| EmbedString |

|---------------------|

|- template: template |

|- str: string |

+---------------------+

When this expression is evaluated, the template is invoked with the current environment to
comes up with a string result.

3.3.4 Identifier

An Identifier expression consists of a symbol and zero or more attributes trailing after it.

An Identifer expression can also contain attributes, where an attribute is a symbol preceded
by a colon character. One or more attributes can be described after a symbol of the Identifier.

The class diagram is:

+----------------------------+

| Identifier |

|----------------------------|

|- symbol: symbol |

|- attrs: set of symbol |

|- attrFront: list of symbol |

|- attrsOpt: set of symbol |

+----------------------------+

Consider the following expressions:

23

• foo

It has a symbol foo. Other elements are all blank.

• foo:attr1:attr2

It has a symbol foo and has symbols attr1 and attr2 as its attrs element.

3.3.5 Suffixed

A Suffixed expression has a suffix symbol and a preceding literal of string or number.

The class diagram is:

+---------------------+

| Suffixed |

|---------------------|

|- body: string |

|- suffix: symbol |

+---------------------+

Even with a number literal, the body element is stored as a string.

Consider the following expressions:

• 123.45foo

It has a string ’123.45’ as its body and a symbol foo as its suffix.

• ’hello world’bar

It has a string ’hello world’ as its body and a symbol bar as its suffix.

3.3.6 Member

A Member expression is responsible for accessing variables in a property owner like instance,
class and module. Below are available Member accessors.

The class diagram is:

+----------------+

left | Expr |

+--------+----------------|

+---------------------+ | | |

| Member *----+ +----------------+

|---------------------|

|- mode: mode *----+ +----------------+

+---------------------+ | right | Expr |

+--------+----------------|

| |

+----------------+

Consider the following expression:

• x.y

It has a normal mode and owns an Identifer expression x as its left and also an Identifier
expression y as its right.

24

A Member expression may take one of the following modes.

Expression Mode
x.y normal

x::y map-to-list

x:∗y map-to-iterator

x:&y map-along

Mode normal takes a reference to a property owner as its left’s result value.

Others are for what is called Member Mapping and take a list or an iterator as its left’s result
value, each of which expressions is a reference to a property owner.

3.3.7 UnaryOp

A UnaryOp expression consists of a unary operator and a child expression on which the operator
is applied.

The class diagram is:

+---------------------+ +----------------+

| UnaryOp | child | Expr |

|---------------------*---------+----------------|

|- operator: operator | | |

+---------------------+ +----------------+

Consider the following expression:

• -foo

It has an operator ”-” and owns an Identifer expression as its child.

3.3.8 Quote

A Quote expression consists of a back quotation and a child expression that is to be quoted by
it.

The class diagram is:

+---------------------+ +----------------+

| Quote | child | Expr |

|---------------------*---------+----------------|

| | | |

+---------------------+ +----------------+

Consider the following expression:

• ‘12345

It owns an Value expression with a number value as its child.

25

3.3.9 BinaryOp

A BinaryOp expression consists of a binary operator and two child expressions on which the
operator is applied.

The class diagram is:

+----------------+

left | Expr |

+--------+----------------|

+---------------------+ | | |

| BinaryOp *----+ +----------------+

|---------------------|

|- operator: operator *----+ +----------------+

+---------------------+ | right | Expr |

+--------+----------------|

| |

+----------------+

Consider the following expression:

• x + y

It has an operator ”+” and owns an Identifer expression x as its left and also an Identifier
expression y as its right.

3.3.10 Assign

An Assign expression consists of an equal symbol, an expression on the left side that is a
target of the assignment and an expression on the right side that is an assignment source. An
expresion that can be specified on the left is one of Identifer, Lister, Indexer, Caller and
Member.

The class diagram is:

+----------------+

left | Expr |

+--------+----------------|

+---------------------+ | | |

| Assign *----+ +----------------+

|---------------------|

|- operator: operator *----+ +----------------+

+---------------------+ | right | Expr |

+--------+----------------|

| |

+----------------+

The Assign expression also has an operator that is to be applied before assignment. For a
normal assignment, that is set to invalid operator.

Consider the following expressions:

• x = y

It owns an Identifer expression x as its left and also an Identifier expression y as its right.
The operator is set to invalid.

• x += y

It owns an Identifer expression x as its left and also an Identifier expression y as its right.
It also has an operator ”+”.

26

3.3.11 Lister

A Lister expression is a series of element expressions embraced by a pair of square brackets.

The class diagram is:

+---------------------+ +----------------+

| Lister | elements | Expr |

|---------------------*-----------+----------------|

| | * | |

+---------------------+ +----------------+

Consider the following expression:

• [x, y, z]

It contains three Identifier expressions x, y and z as its elements.

3.3.12 Iterer

An Iterer expression is a series of element expressions embraced by a pair of parentheses.

The class diagram is:

+---------------------+ +----------------+

| Iterer | elements | Expr |

|---------------------*-----------+----------------|

| | * | |

+---------------------+ +----------------+

Consider the following expression:

• (x, y, z)

It contains three Identifier expressions x, y and z as its elements.

3.3.13 Block

A Block expression is a series of element expressions embraced by a pair of curly brackets.

The class diagram is:

+---------------------+ +----------------+

| Block | elements | Expr |

|---------------------*------------+----------------|

| | * | |

+---------------*-----+ +----------------+

|

| +----------------+

| block-parameters | Expr |

+------------------+----------------|

* | |

+----------------+

The Block expression also has a list of block-parameters that appear in a code embraced by a
pair of vertical bars right after block’s opening curly bracket.

Consider the following expression:

27

• {x, y, z}
It contains three Identifier expressions x, y and z as its elements.

• {|a, b, c| x, y, z}
It contains three Identifier expressions x, y and z as its elements. It also owns Identifier
expressions a, b and c as its block-parameters.

If a opening curly bracket appears at the top of a line, the preceding line break would be
omitted. This means that the following two examples are identical:

foo {

}

foo

{

}

3.3.14 Root

A Root expression represents a series of element expressions that appear in the top sequence.

The class diagram is:

+---------------------+ +----------------+

| Root | elements | Expr |

|---------------------*-----------+----------------|

| | * | |

+---------------------+ +----------------+

Consider the following expression:

• x, y, z

It contains three Identifier expressions x, y and z as its elements.

3.3.15 Indexer

An Indexer expression consists of a car element and a series of expressions that represent
indices.

The class diagram is:

+----------------+

car | Expr |

+-----------+----------------|

+---------------------+ | | |

| Indexer *----+ +----------------+

|---------------------|

| *----+ +----------------+

+---------------------+ | indices | Expr |

+-----------+----------------|

* | |

+----------------+

Consider the following expression:

28

• a[x, y, z]

It owns an Identifier expression a as its car element and three Identifier expressions x, y
and z as its indices.

3.3.16 Caller

A Caller expression consists of a car element and a series of expressions that represent argu-
ments. It may optionally own a Block expression if a block is specified and may own a Caller
expression as its trailer if that is described in a leader-trailer syntax.

As with an Identifier expression, a Caller expression can also have attributes. They can be
described just after a closing parenthesis of an argument list.

The class diagram is:

+----------------+

+----------------------------+ car | Expr |

| Caller | +-----------+----------------|

|----------------------------| | | |

|- symbol: symbol *----+ +----------------+

|- attrs: set of symbol |

|- attrFront: list of symbol *----+ +----------------+

|- attrsOpt: set of symbol | | arguments | Expr |

+--------*--------------*----+ +-----------+----------------|

| | * | |

| +----+ +----------------+

block | 0..1 trailer | 0..1

+--------+-------+ +--------+-------+

| Block | | Caller |

+----------------| +----------------|

| | | |

+----------------+ +----------------+

Consider the following expressions:

• a(x, y, z)

It owns an Identifier expression a as its car element and three Identifier expressions x, y
and z as its arguments. Its block and trailer elements are both invalid.

• a()

It owns an Identifier expression a as its car element. Its arguments is blank.

• a(x, y, z) {xx, yy, zz}
It owns an Identifier expression a as its car element and three Identifier expressions x, y
and z as its arguments. It also owns a Block expression as its block element.

If two or more Callers are described in the same line and the preceding one has a block, they
have a leader-trailer relationship each other, in which the preceding Caller is dubbed a leader
and following one a trailer. A Caller that acts as a leader is the owner of its trailing Caller.

Consider the following expressions:

• a() {} b()

The Caller expression a() owns a Caller expression of b() as its trailer.

• a() {} b() {} c()

The Caller expression a() owns a Caller expression of b() as its trailer, and the Caller
expression b() owns the Caller expression c() as well.

29

You only have to put the closing curly bracket at the same line of the trailer, which means that
the example below is a valid leader-trailer form.

a() {

} b()

If a trailing caller is associated with a trailer function such as elsif, else, catch and finally,
it doesn’t need to be at the same line of a closing curly bracket to be treated as a trailer. This
feature enables you to write if-elsif-else sequence in the following style:

if (cond)

{

// ...

}

elsif (cond)

{

// ...

}

elsif (cond)

{

// ...

}

else

{

// ...

}

Also, you can write try-catch-else-finally sequence like followed:

try

{

// ...

}

catch (error1)

{

// ...

}

catch (error2)

{

// ...

}

catch

{

// ...

}

else

{

// ...

}

finally

{

// ...

}

30

Chapter 4

Data Type

4.1 Overview

A value has a corresponding Data Type that defines its behavior and properties.

Each Data Type is bound with a type name, which usually appears in argument list of function
call.

Name spaces for Data Type are completely isolated from those for variable and function names.

As each Data Type has a one-to-one relationship with a corresponding Class, those terms have
almost the same meaning within documents in many cases.

Data types are categorized into two types: Primitive Data Type and Object Data Type.

A value of Primitive Data Type holds its content in as small memory as possible. It doesn’t
include any Environment in it and doesn’t have any methods with side effects. Among them
are nil, boolean, complex, number, rational, string and symbol types.

A value of Object Data Type owns Object data that is a sort of Environment, which allows
operations with side effects. Most Data Types except for what are picked up as Primitive Data
Types above belong to this.

4.2 Primitive Data Types

Below is a list of Primitve Data Types, which also shows one of the typical ways to instantiate
values of each type.

• nil

A value of nil type is used to indicate an invalid result or status. It is often used as a
returned value of a function when it fails its expected work. A variable nil has a value
of nil type.

nil

Since nil is the only instance of nil type, the term nil can both mean the name of the
value and its type.

• boolean

Values of boolean type are used to determine whether something is in a true or a false
state. Variables named true and false are assigned with a true value and a false value
respectively.

31

true false

In a function like if having arguments to check true/false condition and in a logical
calculation, false and nil only are determined as a false state while other values are
treated as a true state. Note that a zero value of number type is recognized as a true, not
a false.

• complex

A number literal suffixed by j instantiates a value of complex type that represents a
complex number.

3.14j 1000j 1e3j

See chapter Mathematic Functions for more detail.

• number

A number literal without any suffix instantiates a value of number type.

3.14 1000 1e3 0xaabb

• rational

A number literal suffixed by r instantiates a value of rational type that represents a
rational number.

3r 123r

See chapter Mathematic Functions for more detail.

• string

A string literal without any suffix instantiates a value of string type.

’hello world’

R’’’

message text

’’’

• symbol

An identifier preceded by a back quote instantiates a value of symbol type.

‘foo ‘bar

4.3 Object Data Types Frequently Used

4.3.1 List

If one or more elements are surrounced by a pair of square brackets, it would instantiate a value
of list type. Any type of value can be an element of lists.

[3, 1, 4, 1, 5, 9]

[’hello’, ’world’, 3, 4, 5]

32

4.3.2 Iterator

If one or more elements are surrounced by a pair of parentheses, it would instantiate a value of
iterator type. Any type of value can be an element of iterators.

(3, 1, 4, 1, 5, 9)

(’hello’, ’world’, 3, 4, 5)

To create an iterator that contains only one element, be sure to put a comma afther the element
like following:

(3,)

An expression (3) is recognized as an ordinary value of number 3.

Operator .. creates an iterator that generates a sequence of numbers. An expression x..y

creates an iterator that generates a sequence starting from x and being increased by one until
y.

1..10

An expression x.. creates an iterator that generates a sequence starting from x and being
increased by one indefinitely.

1..

Lists and iterators are convertible to each other. For instance, a list can be converted to an
iterator by using list#each method like following.

[3, 1, 4, 1, 5, 9].each()

An iterator can be converted to an list by surrounding it with square brackets.

[1..10]

In many cases, an iterator is generated as a value returned from a function, which represents a
series of multiple results. The most commonly used function may be readlines, which creates
an iterator that reads a stream and returns strings splitted by line.

4.3.3 Dictionary

dict is a dictionary that contains key-value pairs as its elements where a key is one of number,
string or symbol and a value is of any type.

You can create a dictionary by surrounding key-value pairs by %{ and }.

There are several ways to describe the pairs. The most recommended way is to use => operator
between each key and value like following.

33

%{

‘symbol1 => ’value 1’

‘symbol2 => ’value 2’

‘symbol3 => ’value 3’

}

A pair can also be described as a list containing a key and a value.

%{

[‘symbol1, ’value 1’]

[‘symbol2, ’value 2’]

[‘symbol3, ’value 3’]

}

You can also describe keys and values alternately in one-dimentional format.

%{

‘symbol1, ’value 1’

‘symbol2, ’value 2’

‘symbol3, ’value 3’

}

4.3.4 Expression

Any expression preceded by a back quote instantiates a value of expr type.

‘(x + y) ‘func(x) ‘{ println(’hello’), x += 1 }

4.3.5 Binary

A string literal preceded by b instantiates a value of binary type.

b’\x00\x01\0x02\0x03’

34

Chapter 5

Operator

5.1 Overview

There are three types of Operators.

• Prefixed Unary Operator takes an input value specified after it.

• Suffixed Unary Operator takes an input value specified before it.

• Binary Operator takes two input values specified on both sides of them.

An Operator has a table of procedures that are indexed by Data Types of given values, one
Data Type indexing for Unary Operators and two Data Types for Binary Operators. For
instance, operator + has a procedure to calculate between values of number and number and
also a procecure beween values of string and string. These procedures are isolated each other
as long as combination of the given Data Types is different.

Users can overload operators’ procedures through operator instance. If combination of Data
Types of the overloading procedure is the same as that of existing one, it would override the
registered procedure. Otherwise, it would add a new procedure to the operator.

5.2 Precedence

The following table shows operators’ precedence order from the lowest to the highest.

Precedence Operators
Lower =>

||

&&

!

in

< > <= >= <=> == !=

..

|

∧
&

<< >>

+ -

∗ / % ?

Higher ∗∗

35

5.3 Calculation Operators

Basically, Operators are used for mathematical and logical calculation. This subsection explains
such functions of operators.

5.3.1 Prefixed Unary Operators

Operation +x returns the value of x itself.

Operation Result Data Type
+number number

+complex complex

+rational rational

+array array

+timedelta timedelta

Operation -x returns a negaive value of x.

Operation Result Data Type
-number number

-complex complex

-rational rational

-array array

-timedelta timedelta

Operation x returns a bit-inverted value of x.

Operation Result Data Type
number number

Operation !x returns a logically inverted value of x after evaluating it as a boolean value.

Operation Result Data Type
!any boolean

5.3.2 Suffixed Unary Operators

Operation x.. returns an infinite iterator that starts from x and is increased by one.

Operation Result Data Type
number.. iterator

Operation x? returns false if x is false or nil, and true otherwise. This operator is not
affected by Implicit Mapping and returns true if x is of list or iterator type.

Operation Result Data Type
any? boolean

36

5.3.3 Binary Operators

Operation x + y returns an added result of x and y.

Operation Result Data Type
number + number number

number + complex complex

number + rational rational

complex + number complex

complex + complex complex

complex + rational (error)
rational + number rational

rational + complex (error)
rational + rational rational

array + array array

datetime + timedelta datetime

timedelta + datetime datetime

timedelta + timedelta timedelta

If x and y are of string or binary type, Operation x + y returns concatenated result of x and
y.

Operation Result Data Type
string + string string

binary + binary binary

string + binary binary

binary + string binary

string + any string (‘any‘ will be converted to ‘string‘ before concatenation)
any + string string (‘any‘ will be converted to ‘string‘ before concatenation)

Operation x - y returns a subtracted result of x and y.

Operation Result Data Type
number - number number

number - complex complex

number - rational rational

complex - number complex

complex - complex complex

complex - rational (error)
rational - number rational

rational - complex (error)
rational - rational rational

array - array array

datetime - timedelta datetime

datetime - datetime timedelta

timedelta - timedelta timedelta

Operation x ∗ y returns a multiplied result of x and y.

37

Operation Result Data Type
number ∗ number number

number ∗ complex complex

number ∗ rational rational

complex ∗ number complex

complex ∗ complex complex

complex ∗ rational (error)
rational ∗ number rational

rational ∗ complex (error)
rational ∗ rational rational

array ∗ array array

timedelta ∗ number timedelta

number ∗ timedelta timedelta

Applying ∗ operator between string/binary and number will join the string/binary for
number times.

Operation Result Data Type
string ∗ number string

number ∗ string string

binary ∗ number binary

number ∗ binary binary

Operation x / y returns a divided result of x and y.

Operation Result Data Type
number / number number

number / complex complex

number / rational rational

complex / number complex

complex / complex complex

complex / rational (error)
rational / number rational

rational / complex (error)
rational / rational rational

array / array array

Operation x % y returns a remainder after dividing x by y.

Operation Result Data Type
number % number number

Operation x ∗∗ y returns a powered result of x and y.

Operation Result Data Type
number ∗∗ number number

number ∗∗ complex complex

complex ∗∗ number complex

complex ∗∗ complex complex

38

Operation x == y returns true when x equals to y, and false otherwise.

Operation Result Data Type
any == any boolean

Operation x < y returns true when x is less than y, and false otherwise.

Operation Result Data Type
any any boolean

Operation x > y returns true when x is greater than y, and false otherwise.

Operation Result Data Type
any > any boolean

Operation x <= y returns true when x is less than or equal to y, and false otherwise.

Operation Result Data Type
any = any boolean

Operation x >= y returns true when x is greater than or equal to y, and false otherwise.

Operation Result Data Type
any >= any boolean

Operation x <=> y returns 0 when x is equal to y, -1 when x is less than y and 1 when x is
greater than y.

Operation Result Data Type
any <=> any number

Operation x in y checks if x is contained in y.

When Operator in takes a value of any type other than list and iterator at its left, it will
check if the value is contained in the container specified at its right. If the right value is not of
list or iterator, it would act in the same way as Operator ==.

Operation Result Data Type
any in list boolean

any in iterator boolean

any in any boolean

When Operator in takes a value of list or iterator type at its left, it will check if each value
of the container’s element is contained in the container specified at its right, and return a list
of boolean indicating the result of each containing check.

39

Operation Result Data Type
list in list list

list in iterator list

list in any list

iterator in list list

iterator in iterator list

iterator in any list

When Operator in is used in an argument of for() and cross() function, it would work as an
iterable assignment. See Chapter.8. Flow Control for detail.

Operation x & y returns an AND calculation result of x and y.

• If x and y are of number type, it calculates bitwise AND between them.

• If x and y are of boolean type, it calculates logical AND between them.

• If either x or y is nil, it returnsnil.

Operation Result Data Type
number number number

boolean boolean boolean

nil any nil

any nil nil

Operation x | y returns an OR calculation result of x and y.

• If x and y are of number type, it calculates bitwise OR between them.

• If x and y are of boolean type, it calculates logical OR between them.

• If either x or y is nil, it returns one of their values that is notnil.

Operation Result Data Type
number | number number

boolean | boolean boolean

nil | any nil

any | nil nil

Operation x ∧ y returns a XOR calculation result of x and y.

• If x and y are of number type, it calculates bitwise XOR between them.

• If x and y are of boolean type, it calculates logical XOR between them.

Operation Result Data Type
number ∧ number number

boolean ∧ boolean boolean

Operation x << y returns a value of x shifted left by y bits.

40

Operation Result Data Type
number number number

Operation x >> y returns a value of x shifted right by y bits.

Operation Result Data Type
number >> number number

Operation x && y returns a conditional AND result of x and y as described below:

• If x is not of list nor iterator type, it would return the value of x when x is determined
as false, and return the value of y otherwise. It won’t evaluate y when x comes out to
be in false state.

• If x is of list type, it applies the above operation on each value of the list’s elements and
returns a list containing the results.

• If x is of iterator type, it returns an iterator that is to apply the above operation on
each value of the iterator’s elements.

Operation Result Data Type
any && any any

list && any list

iterator && any iterator

Operation x || y returns a conditional OR result of x and y as described below:

• If x is not of list nor iterator type, it would return the value of x when x is determined
as true, and return the value of y otherwise. It won’t evaluate y when x comes out to be
in true state.

• If x is of list type, it applies the above operation on each value of the list’s elements and
returns a list containing the results.

• If x is of iterator type, it returns an iterator that is to apply the above operation on
each value of the iterator’s elements.

Operation Result Data Type
any || any any

list || any list

iterator || any iterator

Operation x..y creates an iterator that returns number value that starts from x and is increased
by one until y.

Operation Result Data Type
number..number iterator

Operation x => y returns a list [x, y].

41

Operation Result Data Type
number => any list

string => any list

symbol => any list

When Operator => is used in an argument declaration of any function definition, it would work
as an assignment for a default value. And, when it is used in an argument list of any function
call, it would work as a named argument. See Chapter.7. Function for their detail.

5.4 Other Operators

Operation string % any returns a result formatted by the string containing specifiers of printf
format. The value of any must be a list if more than one argument are necessary.

’Name: %s, Age: %d’ % [name, age]

The code above has the same result as the following.

format(’Name: %s, Age: %d’, name, age)

Operation function ∗ any applies the function on any.

Operation stream << any outputs any to the stream.

sys.stdout << ’Hello World\n’

5.5 Operator Overload

You can assign your own functions to operators through operator instance. The example below
assings string - string operation by using operator#assign() method.

op = operator(‘-)

op.assign(‘string, ‘string) {|x, y|

x.replace(y, ’’)

}

After this assignment, the following code results in ’Hello, world’.

’Hello, 1234world’ - ’1234’

If you want to assign a function of a unary operator, specify one argument in operator#assign()
method like below.

op = operator(‘-)

op.assign(‘string) {|x|

x.each().reverse().join()

}

42

Then, the code below has a result ’987654321’.

-’123456789’

You can also override existing operators.

You can use operator#entries() method to get all of the functions registered in the operator.

op = operator(‘-)

println(op.entries())

The method returns entries registered as binary operators. Specifying a symbol ‘unary as its
argument would return a list of unary operators.

op = operator(‘-)

println(op.entries(‘unary))

43

Chapter 6

Environment

6.1 Overview

Environment is a container to store maps associating symbols and values and maps associating
symbols and value types.

Module, Class, and Object are all inherited from Environment.

scope problems

x = 0

if (true) {

x = 3

}

println(x)

6.2 Frame

Frame contains:

• value map

• value type map

Frame stack

Frame cache

Environment type:

• root

• local

• block

• class

• object

• lister

When the Interpreter starts, it runs with an Environment containing a frame of root type.

44

+-------------------+

| root |

+-------------------+

In a function call, the Interpreter creates a new Environment with cloned frames and pushes a
new frame of local type.

+-------------------+

| local |

+-------------------+

| root |

+-------------------+

When a block is evaluated, the Interpreter creates a new Environment with cloned frames and
pushes a frame of block type.

+-------------------+

| block |

+-------------------+

| root |

+-------------------+

+-------------------+

| block |

+-------------------+

| local |

+-------------------+

| local |

+-------------------+

| root |

+-------------------+

+-------------------+

| class |

+-------------------+

| root |

+-------------------+

+-------------------+

| object |

+-------------------+

| class |

+-------------------+

| root |

+-------------------+

45

Chapter 7

Interpreter

7.1 How Interpreter Works

The Interpreter looks up and modifies content of Environment in accordance with Expressions
that has been generated by parsing source codes.

The execution of the Interpreter consists of two stages evaluation and assignment. In an
evaluation stage, it looks up variables in Environment and do evaluation depending on the
current expression. In an assingment stage, the Interpreter will add new variables or modify
existing variables in Environment.

In the Interpreter, Evaluation stage always occurs on each Expression while Assignment stage
only does when Assign expression is executed.

+---------------+

| Expressions |

+---------------+

| control

V

+----------------------------+ look-up +---------------+

| evaluation <--|-----------------| |

| Interpreter | | assignment | Environment |

| ‘--------|---------------->| |

+----------------------------+ +---------------+

7.2 Evaluation Stage

7.2.1 Overview

This section explains how each Expression acts in the Interpreter’s evaulation stage.

7.2.2 Evaluation of Value

Evaluation result of a Value expression will be the value that it owns in itself.

Consider the following expressions:

• 3.141

Returns an instance of number type.

46

• ’hello’

Returns an instance of string type

• b’\x00\x01\x02\x03’
Returns an instance of binary type.

7.2.3 Evaluation of Identifier

An Identifier expression will look up a variable whose name matches the expression’s symbol
in an Environment and return the result value. If no variable is found, it occurs an error.

Consider the following expression:

• foo

Looks up a symbol foo in the current Environment and returns the associated value if
found. If the symbol does not exist, occurs an error.

7.2.4 Evaluation of Suffixed

A Suffixed expression will look up an entry in Suffix Manager that matches its suffix symbol
and execute the entry with its body string.

Consider the following expressions:

• 123.45foo

1. Looks up a handler associated with a symbol foo in the Suffix Manager.

2. If found, it evaluates the handler by passing it a string ’123.45’ and returns the
result. If no handler is found, occurs an error.

• ’hello world’bar

1. Looks up a handler associated with a symbol bar in the Suffix Manager.

2. If found, evaluates the handler by passing it a string ’hello world’ and returns the
result. If no handler is found, occurs an error.

7.2.5 Evaluation of UnaryOp

A UnaryOp expression evaluates the child expression it owns, and then evaluate the value with
its associated unary operator.

Consider the following expressions:

• -123.45

1. Evaluates the child expression and gets a value 123.45 of number type.

2. Looks up a unary operator function of - that can calculate number type.

3. Evaluates the function by passing it a number 123.45 and returns the result.

7.2.6 Evaluation of Quote

A Quote expression

‘X

47

7.2.7 Evaluation of BinaryOp

A BinaryOp expression evaluates both of the two child expressions it owns, and then evaluate
the value with its associated Binary Operator.

X + Y

Binary Operator && and || are exceptional.

With operator &&, it first evaluates the child expression on the left. If the value is determined
as false, that value is the result. Otherwise, it then evaluates the child expression on the right
and returns the result.

With operator ||, it first evaluates the child expression on the left. If the value is determined
as true, that value is the result. Otherwise, it then evaluates the child expression on the right
and returns the result.

7.2.8 Evaluation of Assign

Execution of an Assign expression triggers Assignment Stage. See the next section.

X = Y

7.2.9 Evaluation of Member

A Member expression

X.Y

Class, Module and Object

7.2.10 Evaluation of Lister

A Lister expression

[A, B, C]

7.2.11 Evaluation of Iterer

An Iterer expression

(A, B, C)

7.2.12 Evaluation of Block

A Block expression

{A, B, C}

48

7.2.13 Evaluation of Root

A Root expression

7.2.14 Evaluation of Indexer

An Indexer expression

X[A, B, C]

x[2]

x[1, 2, 3]

x[’foo’]

How an Indexer expression behaves in Interpreter’s evaluation and assignment stage depends
on what instance the car element returns.

If car’s instance is of list type:

• Evaluation: the expression seeks the list’s content at specified positions by indices.

• Assignment: modifies or adds the list’s content at specified positions by indices.

In these cases, indices values are expected to be of number type.

If car’s instance is of dict type:

• Evaluation: the expression seeks the dictionary’s content using indices as the keys.

• Assignment: modifies or adds the dictionary’s values associated with specified keys by
indices.

In these cases, indices values are expected to be of number, string or symbol type.

7.2.15 Evaluation of Caller

A Caller expression evaluates expressions listed as its arguments.

X(A, B, C)

f(a, b, c, d)

f(a, b):foo:bar

f {}

If the argument is declared as Quoted, it doesn’t evaluates its argument.

How a Caller expression behaves in Interpreter’s evaluation stage depends on what instance
the car element returns.

If car’s instance is of function type the expression calls the function with specified arguments.

If the Caller expression is specified as a target in Interpreter’s assignment stage, it always
creates function instance and assigns it in a specific Environment.

49

7.3 Assignment Stage

7.3.1 Overview

In an operation X = Y, the target expression X may be one of Identifer, Lister, Member,
Indexer and Caller.

If the target expression is Identifier, Lister or Member, the source expression is evaluated
at first before the result is assigned to the target.

If the target expression is Caller, the source expression itself is assigned to the target without
any evaluation.

7.3.2 Assignment for Identifier

An assignment for an Identifier expression

X = Y

If a type name is specified as the Identifier’s attribute, the source value will be casted to the
type before assignment.

a:number = ’3’

This works in the same way as a data type casting in an argument list of function call. See
Chapter.7. Function for more detail.

7.3.3 Assignment for Lister

When the assignment destionation is a Lister expression, assignment operation is applied
to each expression described as its element. Elements in the Lister must be Identifier

expressions.

[A, B, C] = X

If assignment source is a scalar, that value is assigned to each element.

[a, b, c] = 3 // a = 3, b = 3, c = 3

If assignment source is a list, each value in the list is assigned to each element.

[a, b, c] = [1, 2, 3] // a = 1, b = 2, c = 3

It would be the same with an iterator.

[a, b, c] = (1, 2, 3) // a = 1, b = 2, c = 3

50

If the assignment source has more elements than the destination requires, remaining elements
are simply ignored. If the source has insufficient number of elements, it would occur an error.

[a, b, c] = [1, 2, 3, 4, 5] // a = 1, b = 2, c = 3

[a, b, c] = [1, 2] // error!

7.3.4 Assignment for Member

A Member expression

X.Y = Z

Class, Module and Object

obj.var1 = 3

obj.f(x) = { }

7.3.5 Assignment for Indexer

An Indexer expression

X[A] = Y

X[A, B, C] = Y

x[n] = y

x[n] = 3

x[0, 2, 5] = 3

x[0, 2, 5] = [1, 2, 3]

7.3.6 Assignment for Caller

A Caller expression

X(A, B, C) = Y

Assignments for other expressions than what are described above are invalid and occurs an
error.

7.3.7 Operator before Assignment

An Assignment operator can be combined with one of several other operators.

51

Assignment Form Equivalent Code
x += y x = x + y

x -= y x = x - y

x ∗= y x = x ∗ y

x /= y x = x / y

x %= y x = x % y

x ∗∗= y x = x ∗∗ y

x &= y x = x & y

x |= y x = x | y

x ∧= y x = x ∧ y

x = y x = x y

x >>= y x = x >> y

52

Chapter 8

Function

8.1 Definition and Evaluation

The figure below shows an example of function definition with each part’s designation.

+-- declaration

|

f(x, y, z) = printf(’x = %s, y = %s, z = %s\n’, x, y, z)

- ------- ---

| | |

| +-- argument list +-- body

+-- identifier

It composes of a declaration and a body with an assignment operator, and the declaration is
made up with an identifier and an argument list.

The body must be a single expression. If you want to describe more than one expression, you
have to use a Block expression embracing them like following.

f(x, y, z) = {

printf(’x = %s, y = %s, z = %s\n’, x, y, z)

}

After defining a function, a function instance is assigned in the scope environment with the
identifier. If the same identifier already exists in the environment, the existing one is overwritten
no matter whether it’s a function instance or other.

You can see a function’s declaration by simply printing the instance like following.

println(f)

The argument list is a list of Identifier expressions. If no argument is necessary, specify an
empty list.

g() = { /* body */ }

You can evaluate a function instance by passing it values as its arguments. The number of
passed values must be the same as that of declared arguments.

53

f(1, 2, 3) // OK

f(1, 2, 3, 4) // Error; too many arguments

f(1, 2) // Error; insufficient arguments

If the Caller doesn’t pass any argument for evaluation, specify an empty list.

g()

8.2 Returned Value

An evaluation result of the last expression in a function body becomes its returned value.

The function below returns a string ’hello’ as its result:

f() = {

// any process

’hello’

}

The function below returns a returned value of g() as its result:

f() = {

// any process

g()

}

A function can return any types of value including list. This feature enables a function to
return more than one value.

f() = {

// any process

[3, 4, 5]

}

[a, b, c] = f() // a = 3, b = 4, c = 5

You can also use a function return() to explicitly specify the returned value even though its
use is not recommended unless you need to quit a process in the middle.

f() = {

// any process

return(’hello’)

}

An attribute :void indicates that the function always return nil no matter what value is
resulted at last in the process. A call for a function below returns nil, not a string ’hello’.

f():void = {

’hello’

}

54

You should put :reduce attribute if the function is supposed to return a unchanged value.
Attributes :void and :reduce have a significant effect with Implicit Mapping.

8.3 Arguments

8.3.1 Type Name Declaration

You can specify a type name by describing it as an attribute after an Identifier’s symbol.

f(x:number) = {

// any process

}

When calling a function that has arguments with type name, the Interpreter first check the
data type of the given value and try to cast it into specified data type if possible. If the type
doesn’t match and also fails to be casted correctly, it would occur an error.

If you expect an argument to take a list, specify a pair of square brackets that has no content
after an Identifer’s symbol.

f(x[]) = {

// any process

}

A type name can be described after the bracket pair.

f(x[]:number) = {

// any process

}

In this case, the interpreter checks types of all the items in the list and applies casting on them
if possible.

You can also specify how many elements the list should contain by declaring the number in the
square brackets.

f(x[8]) = {

// any process

}

In the example above, only a list that contains eight elements could be accepted and an error
would occur otherwise.

8.3.2 Data Type Casting

If the data type of a value given as an argument doesn’t match with that that is specified in
an argument list, the value will be casted to the expected data type if possible.

For instance, a value of string type can be casted to number if the string contains a valid text
of number.

55

f(n:number) = {

// any process

}

f(’100’) // string will be casted to number

Casting feature can also be applied to other data types. Consider the following function:

f(in:stream) = {

// process to read data from in

}

Since it expects to take a stream instance as its argument, you can call it with the instance
created by open() function like below.

f(open(’foo.txt’))

Now, you can also call it much easily using a casting feature that converts from string to
stream.

f(’foo.txt’)

If a string value is passed to an argument that expects a stream value, the Interpreter opens
a stream with a path name specified by the string and creates a stream instance for it.

In default, casting opens a stream with reading mode. You need to append :w attribute in a
function declaration to get a stream with writing mode.

g(out:stream:w) = {

// process to write data to out

}

An attribute :r is also prepared to explicitly indicate the stream is to be opened for reading.

f(in:stream:r) = {

// process to read data from in

}

Let’s see another case of casting. Consider a function that takes a value of image type, which
also has a casting ability from stream data type.

f(img:image) = {

// process on img

}

A function image() takes a value of stream data type and creates an image instance. With
the most explicit way, the function above can be called as below.

56

f(image(open(’foo.jpg’)))

An image data type can be casted from a value of stream type.

f(open(’foo.jpg’))

Using a feature to convert string to stream, it will be rewritten like following.

f(’foo.jpg’)

This means that, if a function expects image data type, you can call it with a value of either
image, stream or string data type.

You can find information about what data type can be casted from which data type in Gura
Library Reference.

8.3.3 Optional Argument

You can declare an optional argument by putting ? right after an Identifier’s symbol.

f(x?) = { /* body */ }

If you want to declare a type name for an optional argument, specify it like following.

f(x?:number) = { /* body */ }

For such a function, you can call it like following.

f(3)

f()

If the Caller omits a value for an optional argument, a variable for the argument would be in
undefined state. You can use isdefined() function to check if the variable is defined or not.

f(x?) = {

if (isdefined(x)) {

// when x is specified

} else {

// when x is omitted

}

}

You can specify more than one optional argument. Note that it’s inhibited to declare any
non-optional arguments following after optional one.

f(x?, y?, z?) = { /* body */ } // OK

f(x, y?, z?) = { /* body */ } // OK

f(x?, y?, z) = { /* body */ } // Error

57

8.3.4 Argument with Default Value

An argument with a default value can be declared with an operator =>.

f(x => -1) = { /* body */ }

If you want to declare a type name for an argument with a default value, specify it like following.

f(x:number => -1) = { /* body */ }

For such a function, you can call it like following.

f(3)

f()

If the Caller omits a value for an argument with a default value, a variable for the argument
would be set to the specified default value.

You can specify more than one arguments with default value. Note that any arguments that
don’t have a default value can not follow after one with a default value.

f(x => 1, y => 2, z => 3) = { /* body */ } // OK

f(x, y => 2, z => 3) = { /* body */ } // OK

f(x => 1, y => 2, z) = { /* body */ } // Error

Optional arguments and arguments with default value follow the same positioning rule each
other in an argument list.

f(x => 1, y => 2, z?) = { /* body */ } // OK

8.3.5 Variable-length Argument

You can declare a variable-length argument by putting + or ∗ right after an Identifier’s symbol.

f(x+) = { /* body */ }

g(x*) = { /* body */ }

For the first one, the Caller can call it with one or more values. If it doesn’t specify any value
for the argument, it would occur an error.

f(1) // OK

f(1, 2, 3, 4) // OK

f() // Error

For the second one, the Caller can call it with zero or more values. It can even call it without
any argument.

58

g(1) // OK

g(1, 2, 3, 4) // OK

g() // OK

If you want to declare a type name for a variable-length argument, specify it like following.

f(x+:number) = { /* body */ }

The variable-length argument can only be declared once and must be placed at the last.

f(x, y, z+) = { /* body */ } // OK

f(x, y+, z+) = { /* body */ } // Error

f(x, y+, z) = { /* body */ } // Error

In the function body, a variable of variable-length argument takes a list of values.

f(x*) = {

println(’number of arguments: ’, x.len())

for (item in x) {

sum += item

}

}

If there are other arguments before a variable-length one, variables of those arguments are
assigned in order before the rests are stored in a variable-length argument. For instance,
consider the code below:

f(x, y, z+) = { /* body */ }

f(1, 2, 3, 4, 5)

In function f, variables x, y and z are set to 1, 2 and [3, 4, 5] respectively.

8.3.6 Named Argument

Consider the following function:

f(x, y, z) = { /* body */ }

To evaluate it, you can explicitly specify variable names in the argument list like below:

f(x => 1, y => 2, z => 3)

Such arguments are called named arguments, which are useful when you want to specify only
relevant one among many optional arguments.

If a function declaration contains an argument suffixed by %, it can take a all the values of
named arguments that are not assigned to other arguments.

Consider the following function:

59

f(a, b, x%) = { /* body */ }

When you evaluate it like below:

f(a => 1, b => 2, c => 3, d => 4)

Then, variables a, b and x are set to 1, 2 and %{c => 3, d => 4}.

8.3.7 Argument Expansion

f(x*)

f(1, 2, 3, 4)

f(x%)

8.3.8 Quoted Argument

Sometimes, there’s a need to pass a function a procedure, not an evaluated result. For such a
purpose, you can use a Quote operator that creates expr instance from any code,

See an exmple below:

f(x:expr) = {

x.eval()

}

x = ‘println(’hello’)

f(x)

The variable x that holds an expr instance contaning expression of println(’hello’) will be
passed to function f as its argument, which then actually evaluates it.

Of course, you can also specify the quoted value directly in the argument.

f(‘println(’hello’))

There’s another way to pass an expression in a function call, and that is to put a Quoted
operator in an argument list of a function definition like below.

g(‘x) = {

x.eval()

}

For such a function, the Caller doesn’t have to put a Quote operator for the expression that
you want to pass.

g(println(’hello’))

60

8.4 Block

A block can be seen as a special form of an argument. It appears after an argument list and
contains a procedure embraced by a pair of curly braces.

A function definition with a block comes like below:

f() {block} = { /* body */ }

And you can call the function like folowing:

f() { /* block procedure */ }

The function f takes a function instance of a block procedure with a variable named block,
and it can call the procedure just like an ordinary function.

Consider the following function:

three_times() {block} = {

block()

block()

block()

}

Then, you can call it like following:

three_times() {

println(’hello world’)

}

This results in three print-outs of ’hello world’.

As for a function that is declared to take a mandatory block, a call without specifying a block
procedure would occur an error.

three_times() // Error because of lacking block

The block procedure can have a list of block parameters that appears right after the opening
curly brace and is embraced by a pair of vertical bars.

f() {|/* block parameters */| /* block procedure */ }

A declaration of block parameters is almost the same with that of function arguments. In
fact, a function created from a block procedure has an argument list that are specified as block
parameters.

Consider the following function:

three_times() {block} = {

block(0, ’zero’)

block(1, ’one’)

block(2, ’two’)

}

61

The function provides two block parameters, values of number and string type.

The function can be called like below:

three_times() {|idx, str|

println(idx, ’ ’, str)

}

The caller can also specify a value type for each block parameter just like function’s arguments.

three_times() {|idx:number, str:string|

println(idx, ’ ’, str)

}

The caller doesn’t have to declare all the block parameters that are provided by the function
if it doesn’t require them. In the case of calling the above function, declaraing only one block
parameter like below is permitted:

three_times() {|idx|

println(idx)

}

And having no block parameter like below is also allowed:

three_times() {

println(’hello’)

}

You can specify an optional block by putting ? after an identifier for the block procedure.

f() {block?} = { /* body */ }

You can call such a function either with or without a block.

f() {} // OK

f() // OK

If a block is not specified, the variable block takes nil value.

f() {block?} = {

if (block) {

// block is specified

} else {

// block is not specified

}

}

If an Identifer for the block procedure is prefixed by Quote operator, the variable takes the
procedure as an expr instance, not an function one.

62

f() {‘block} = { /* body */ }

You need to use expr#eval() method to evaluate the block.

f() {‘block} = {

block.eval()

}

This feature is useful when you need to delegate a block to other function. If a Caller specifies
a block that only has a block parameter containing a value of expr type, that value would be
passed as a block procedure.

See a sample code below:

repeat_delegate(n) {‘block} = {

println(’begin’)

repeat(n) {|block|}

println(’end’)

}

Function repeat delegate() takes a block procedure in expr type, which is passed to repeat()
function in a delegation manner.

In general, a function call must be accompanied with an argument list even if it’s empty.
Though, if the call doesn’t have any argument but has a block procedure, you can omit the list
like below.

f { /* body */ }

8.5 Attribute

8.5.1 User-defined Attribute

An attribute works as another way to pass information to a function. In a function definition,
acceptable attributes are listed within a pair of square brackets that follow after an argument
list and a colon character.

f():[attr1,attr2,attr3] = { /* body */ }

You can call such a function like below. You can specify any number of attributes in any order.

f():attr1

f():attr2

f():attr1:attr3

In a function body, a variable named args of args type is defined, and you can use
args#isset() method to check if an attribute is set.

63

f():[foo,bar] = {

if (__args__.isset(‘foo)) {

// :foo is specified

}

if (__args__.isset(‘bar)) {

// :bar is specified

}

}

8.5.2 Predefined Attributes

Attribute Note
:map

:nomap

:flat

:noflat

:list

:xlist

:iter

:xiter

:set

:xset

:void

:reduce

:xreduce

:static

:dynamic scope

:symbol func

:leader

:trailer

:finalizer

:end marker

:public

:private

:nonamed

:closure

8.6 Help Block

You can add a help block to a function by appending %% and a block containing help information
to a function declaration.

add(x, y) = {

x + y

} %% {

‘en, ’Takes two numbers and returns an added result.’

}

The content in the block has a format of {lang:symbol, help:string} which contains follow-
ing elements:

64

• lang .. Specifies a symbol of language that describes the help document: en for English
and ja for Japanese, etc.

• help .. Help string written in Markdown format.

You can access the help information by following ways:

• In the interactive mode, evaluating the operator with a function instance would print
its help information on the console.

• Calling function help@function() would return a help instance that provides informa-
tion about the used language, syntax format and help string.

A function may have multiple help blocks that contain explanatory texts written in different
languages. Below is a function example that has helps written in English and Japanese:

add(x, y) = {

x + y

} %% {‘en, R’’’

---- help document in English ----

’’’

} %% {‘ja, R’’’

---- help document in Japanese ----

’’’

} %% {‘de, R’’’

---- help document in German ----

’’’

}

A predefined variable sys.langcode determines which help should be printed by default. If a
function doesn’t have a help in the specified language, what appears at first in the declaration
will be used.

You can also pass a language symbol to help@function function as below.

help@function(add, ‘en)

help@function(add, ‘ja)

help@function(add, ‘de)

8.7 Anonymous Function

A function function() creates an anonymous function instance from an argument list and a
block that contains its function body.

function(x, y, z) { /* body */ }

When the function instance is assigned to a variable, that symbol is bound to the instance.
The following two codes are equivalent each other.

65

f = function(x, y, z) { /* body */ }

f(x, y, z) = { /* body */ }

If you create a function that doesn’t have arguments, you can call function() without an
argument list like below.

function { /* body */ }

When function() creates a function instance, it seeks variable symbols in the function body
that start with $ character, which are used as argument variables. For instance, see the following
code:

function { printf(’x = %s, y = %s, z = %s\n’, $x, $y, $z) }

In this case, the order of arguments is the same with the order in which the variables appear
in the body. So, the example above is equivalent with the function that is created like below:

function($x, $y, $z) { printf(’x = %s, y = %s, z = %s\n’, $x, $y, $z) }

Since a special symbol & is also bound to the function() function, you can create a function
instance as below:

&{ /* body */ }

The example above can be written like this:

&{ printf(’x = %s, y = %s, z = %s\n’, $x, $y, $z) }

Exlicit arguments may be specified as block parameters. The following example creates a
function that takes arguments named x, y and z.

&{|x, y, z| /* body */ }

Of course, like an argument list in an ordinary function declartion, you can declare them with
value types.

&{|x:number, y:string, z:string| /* body */ }

8.8 Closure

You can define a function inside another function body. In that case, the inner function can
access variables in the outer function.

66

f() = {

x = 3

g() = {

println(’x = ’, x)

}

g() // evaluate the function

}

A function can also return a function instance that it creates as its result. The environment
of the outer function will be held in the inner function.

f():closure = {

x = 3

g() = {

println(’x = ’, x)

}

g

}

h = f()

h()

Make sure that a function that returns a function instance must be declared with :closure

attribute.

8.9 Leader-trailer Relationship

When a Caller expression is described at the same line with the end of a preceding one, they
have a leader-trailer relationship with the preceding one as a leader and the following one as a
trailer.

f() g()

--- ---

| |

| +-- trailer

+-- leader

In an ordinary case, these functions are evaluated sequentially in the same way that they’re
described in different lines.

The leader function has a right to control whether the trailer one should be evaluated or not.
A method args#quit trailer() will quit its trailer from being evaluated. Take a look at the
following simple function to see how a trailer is controlled.

do_trailer(flag:boolean) = {

if (!flag) {

__args__.quit_trailer()

}

}

Then the following code will print hello but no good-bye.

67

do_trailer(true) println(’hello’)

do_trailer(false) println(’good-bye’)

Some functions that govern sequence flow like if-elsif-else and try-catch utilizes this
trailer control mechanism.

68

Chapter 9

Flow Control

9.1 Branch

Branch may be the most common flow-control in a program. Just like other programming
language, Gura also provides if - elsif - else sequence. However, they’re realized as functions,
not as statements.

These elements are implemented by the following functions.

Function if():

if (‘cond):leader {block}

Function elsif():

elsif (‘cond):leader:trailer {block}

Function else():

else():trailer {block}

They are concatenated with leader-trailer relationship, which means that a closing curly bracket
of the preceding function must be in the same line as the top of the succceding one.

if (x) { /* branch 1 */ } elsif (y) { /* branch 2 */ } else { /* branch 3 */ }

Of course, content in a block embraced by a pair of curly brackets may contain multiple lines.
This enables you to write a script in a similar syntax as other languages.

if (x) {

/* branch 1 */

} elsif (y) {

/* branch 2 */

69

} else {

/* branch 3 */

}

Function if() and elsif() check the evaluated result of the expression cond. If it’s determined
as true, the block procedure will be evaluated, otherwise, the trailing function will be evaluated.
Function else() always evaluates its block procedure.

Branch sequence has a result value as well. Consider the following code:

result = if (x < 0) {

’less than zero’

} elsif (x > 0) {

’greater than zero’

} else {

’equal to zero’

}

In this case, if x is less than zero, the sequence would have a string ’less than zero’ as its
result. It would have ’greater than zero’ for x with number greater than zero and ’equal

to zero’ otherwise.

If function if() and elsif() have no following else() and their conditions are not evaluated
as true, the result value will be nil.

x = 3

result = if (x < 0) {

’less than zero’

}

// result is nil

9.2 Repeat

9.2.1 Repeating Functions

This subsection explains about some representative functions that evaluate a procedure repeat-
edly while it meets a given condition.

A function repeat() repeats a procedure for a specific number of times.

repeat (n?:number) {block}

If argument n is omitted, it will repeat the procedure indefinitely.

A function while() repeats a procedure while the condition is evaluated as true.

while (‘cond) {block}

As a variable cond is an expression, it will be evaluated each time in the loop. In the following
example, the function is given with an expression n < 10, which is to be evaluated during the
repeating process.

70

n = 0

while (n < 10) {

println(’hello’)

n += 1

}

A function for() takes one or more expressions of iterable assignments, where an iterable means
what can iterate elements including a list and an iterator instance.

for (‘expr+) {block}

An iterator assignment is expressed with an operator in like below.

symbol in iterable [symbol1, symbol2 ..] in iterable

In the first format, it assigns symbol with a value in iterable each time in the loop. Below is
an example.

for (name in [’apple’, ’grape’, ’banana’]) {

// any process

}

In the second format, if each element in the iterable is a list, corresponding values in the list
are assigned to symbol1, symbol2, and so on. An example is shown below.

for ([name, yen] in [[’apple’, 100], [’grape’, 200], [’banana’, 90]]) {

// any process

}

When a function for() takes more than one iterable assignment, it advances all the iterables
one by one at each loop and repeats a procedure until one of the iterables reaches to the end.
This means that the loop count is limited up to the smallest length of the iterables. The
example below repeats the process three times.

for (x in [1, 2, 3, 4], y in [1, 2, 3], z in [1, 2, 3, 4, 5]) {

// any process

}

A function cross() takes one or more expressions of iterable assignment and repeats a proce-
dure with all the conceivable combination of elements from the iterables.

cross (‘expr+) {block}

In cross() function, an iterable on the right advances at each loop and, when it reaches to its
end, it will be rounded up to its first and causes an iterable on its left advance.

See the example below:

cross (x in [’A’, ’B’, ’C’], y in [1, 2, 3, 4]) {

print(x, ’-’, y, ’ ’)

}

71

The result is:

A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4

Using for() function, the above code can be writen like below.

for (x in [’A’, ’B’, ’C’]) {

for (y in [1, 2, 3, 4]) {

print(x, ’-’, y, ’ ’)

}

}

Of course, you can specify any number of iterable assignments.

cross (x in [’A’, ’B’, ’C’], y in [1, 2, 3, 4], z in [’a’, ’b’, ’c’]) {

print(x, ’-’, y, ’-’, z, ’ ’)

}

9.2.2 Block Parameter

When calling for(), while() and for(), you can specify a block parameter in a format of
|i:number| that takes an index number of loop starting from zero. In the following example,
the parameter i takes 0, 1, 2, 3 and 4 at each loop.

repeat (5) {|i|

// any process

}

A block parameter for cross() function has a format of |i:number, i1:number, i2:number,

..| where i indicates an index number of loop, and each of i1, i2 and so on takes an index
number of corresponding iterable.

cross (x in [’A’, ’B’, ’C’], y in [1, 2, 3, 4], z in [’a’, ’b’, ’c’]) {|i, ix, iy, iz|

// any process

}

If you don’t need indices information, you can omit whole the block parameter or part of its
parameters.

9.2.3 Result Value of Repeat

Like a branch sequence, a repeat sequence also has a result value that comes from an evaluation
of the last expression in the block procedure.

In default, among result values that have been generated from each loop, only the last one
becomes the final result.

x = repeat (10) {|i|

// any process

i * 10

}

// x is 90

72

When you call a repeat function with :list attribute, it will return a list that contains result
values in the loop.

x = repeat (10):list {|i|

// any process

i * 10

}

// x is [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]

With an attribute :xlist, you can remove nil value from the created list.

x = repeat (10):xlist {|i|

// any process

if (i % 2 == 0) {

i * 10

}

}

// x is [0, 20, 40, 60, 80]

Using this feature, you can create a list that only contains elements that suit some conditions.

Attributes :set and :xset work in a similar way with :list and :xlist respectively, but they
would create a list that contains unique values by rejecting a value that already exists in the
list.

9.2.4 Flow Control in Repeat Sequence

If you want to quit a repeat sequence, you can use break() function. Aiming for a similar
appearance with C and Java, you can call break() without a pair of parenthesis for an argument
list.

repeat (10) {|i|

// any process

if (i == 5) {

break

}

// not evaluated when break() is called

}

The function break() takes an argument of any type that affects a result value of the repeat.
When break() is called without an argument, the repeat’s result doesn’t contain a value of the
last loop.

x = repeat (10):list {|i|

if (i == 5) {

break

}

i

}

// x is [0, 1, 2, 3, 4]

If you call break() with a valid argument, that will be included in the repeat’s result.

73

x = repeat (10):list {|i|

if (i == 5) {

break(99)

}

i

}

// x is [0, 1, 2, 3, 4, 99]

If you need to go to the next turn of the loop after skipping remaining procedure, you can use
continue() function. As with the function break, you can omit a pair of parentheses for an
argument list when calling it.

repeat (10) {|i|

// any process

if (i % 2 == 0) {

continue

}

// not evaluated when continue() is called

}

When you call continue() with no argument, the repeat’s result doesn’t contain a value of
that loop.

x = repeat (10):list {|i|

if (i % 2 == 0) {

continue

}

i

}

// x is [1, 3, 5, 7, 9]

If you call continue() with a valid argument, that value will be included in the repeat’s result.

x = repeat (10):list {|i|

if (i % 2 == 0) {

continue(99)

}

i

}

// x is [99, 1, 99, 3, 99, 5, 99, 7, 99, 9]

9.2.5 Generate Iterator

As you’ve already seen in the above, appending an attribute :list causes the repeating process
to create a list that contains evaluated result of each loop as its element. In the following
example, x will be a list of [0, 10, 20, 30, 40, 50, 60, 70, 80, 90].

x = repeat (10):list {|i|

// any process

i * 10

}

74

An attribute :iter would have a more interesting result. Take a look at the code below:

x = repeat (10):iter {|i|

// any process

i * 10

}

In this case, repeating process is not executed when the repeat function is evaluated. x is an
iterator that generates values of 0, 10, 20, 30, 40, 50, 60, 70, 80 and 90, and these values are
available only when the iterator is actually evaluated.

The following code shows how to get values from the iterator using Implicit Mapping:

println(x)

Following code evaluates x step by step to confirm that it actually works as an iterator.

println(x.next())

println(x.next())

println(x.next())

println(x.next())

println(x.next())

An attribute :xiter works as :iter except that it will eliminate nil value from its element.

x = repeat (10):xiter {|i|

// any process

if (i % 2 == 0) {

i * 10

}

}

In the above case, x is an iterator that generates values of 0, 20, 40, 60 and 80.

You can also use break() and continue() in an iterator created by a repeating function. Such
an iterator yields elements in the same way as a repeating process that creates a list.

An iterator created by a repeat function and a closure generated within a function are similar in
that they postpone their actual jobs. They also have similarity in a manner to handle variable
environments. Consider the following code.

f() = {

n = 0

while (n < 5):iter {

n += 1

n

}

}

x = f()

The function f returns an iterator created by while, which is expected to generate values of 1,
2, 3, 4 and 5. In this case, the repeat body has a reference to a variable named n that belongs

75

to the scope of function f. Can an iterator refer to a variable that may be destroyed at the end
of a function?

Actually, it’s OK. An iterator created by a repeating function owns an environment in which
that function has been called. In the above example, the variable n is owned by the returned
iterator.

You’ll see more practical usage of this feature in this.

You can also implement a nested loop in an iterator created by a repeat function.

x = for (a in [’A’, ’B’, ’C’]):iter {

// any process

for (b in [0, 1, 2]):iter {

a + b

}

}

// x will generate ’A0’, ’A1’, ’A2’, ’B0’, ’B1’, ’B2’, ’C0’, ’C1’ and ’C2’

A nested loop with an iterator generation must be placed at the last in the repeat procedure.

You can also place any iterators in the repeat function that are to be iterated when the outer
iterator is evaluated. But, there’s one point you have to be careful with. See the following code:

x = repeat (2):iter {

range(3)

}

It’s expected that the iterator x will generate numbers of 0, 1, 2, 0, 1 and 2 after the outer
iterator iterates an iterator created by range(3) for twice. But, in reality, it will just generate
two iterator instances without iterating them.

Iterators created by repeat functions have a ”repeater” flag that enable them to be iter-
ated in a nested block. Since other ordinary interators don’t have this flag, you have to call
iterator#repeater() method to turn it on as shown below.

x = repeat (2):iter {

range(3).repeater()

}

9.2.6 Repeat Process with Function that Creates Iterator

Many of functions that creates an iterator as their result may take an optional block procedure.
For such functions, you can specify a block that is to be evaluated repeatedly while iterating
values in the created iterator.

For instance, consider a function readlines(), which creates an iterator that reads content
of a stream and returns strings of each line. Without a block, it simply returns the created
iterator.

x = readlines(’foo.txt’)

Specifying a block would evaluate the block procedure repeatedly.

76

readlines(’foo.txt’) {

// any process

}

You can get each value from the iterator by specifying a block parameter.

readlines(’foo.txt’) {|line|

print(line)

}

A second argument in the block parameter takes an index number of the loop.

readlines(’foo.txt’) {|line, i|

printf(’%d: %s’, i + 1, line)

}

When you specify a block procedure to an iterator creating function, it behaves in the same
way as repeating functions such as for() and repeat(). This means that you can use flow
control functions break() and continue() in that loop.

readlines(’foo.txt’) {|line|

// any process

if (line.chop() == ’’) {

break

}

// any process

}

You can also specify attributes :list, :xlist, :set and :xset to indicate it to create a list.

x = readlines(’foo.txt’):list {|line|

line.upper()

}

// x is a list containing each line’s string in uppercase.

And attributes :iter and :xiter that create an iterator are also available.

x = readlines(’foo.txt’):iter {|line|

line.upper()

}

// x is an iterator that generates each line’s string in uppercase.

9.3 Error Handling

You can use try-catch sequence to capture errors. Any process that may occur errors is
written in a block of try() function and error handling processes are written in blocks of
catch() function trailing after that.

77

try {

// any process

} catch (error.ValueError) {

// handling ValueError

} catch (error.IndexError, error.IOError) {

// handling IndexError and IOError

} catch {

// handling of other errors

}

A function catch() takes one or more arguments that specify error instances that are to be
handled. If no argument is specified, any type of errors are handled in the function.

Here are some of the error instances that can be specified for catch() argument.

Error Instance Note
error.ValueError Invalid argument is specified.
error.IndexError Invalid value for indexing.
error.IOError Error occurs while accessing I/O devices.

A block in the catch() function has a block parameter in a format of |err:error| where err
takes a value of error type that contains error information such as an error message and a file
name and a line position at which the error occurs.

Property Data Type Note
error#lineno number Line number
error#source string Source of the code that occurs an error
error#text string Error message

An example code is shown below:

try {

// any process

} catch {|err|

printf(’%s at %s:%d\n’, err.text, err.source, err.lineno)

}

78

Chapter 10

Object Oriented Programming

10.1 Class and Instance

A class is a kind of environment that contains properties such as functions and variables, and
has an ability to create instances that share these properties. A class is associated with a data
type one by one, which means that all the values in a script are bound to certain classes. For
example, a value 3.14 is associated with number class, and ’hello world’ with string class.

A class contains functions called method that operate with a class or an instance. A method
that belongs to a class is called class method and is described as below, where Foo and func

are names of the class and the class method respectively.

Foo.func()

A method that works on an instance is called instance method and is described as below,
where Foo and func are names of the class and the instance method respectively.

Foo#func()

The symbol # is not used for an actual instance operation and only appears in documentation
to describe instance methods. You can call an instance method like below, where foo is an
instance of class Foo.

foo.func()

A class also owns variables called class variable, which are shared by instances from the class.
Each instance can contain its own variables that are called instance variable.

A class variable is described as below, where Foo and value are names of the class the class
variable respectively:

Foo.value

An instance variable is described as below, where Foo and value are names of the class the
instance variable respectively:

Foo#value

79

You can use dir() function to see what methods and variables are available with a value.

>>> x = 3.14

3.14

>>> dir(x)

[‘__call__, ‘__iter__, ‘clone, ‘getprop!, ‘is, ‘isinstance, ‘isnil, ‘istype, ‘nomap, ‘roundoff, ‘setprop!, ‘tonumber, ‘tostring]

10.2 User-defined Class

You can use class function to create a user-defined class. The code below creates a class named
A with empty properties.

A = class {}

This assignment would create a class named A and also define a constructor function A() that
generates an instance of the class. You can call the constructor function like below:

a = A()

A block of the class function should contain Assign and Caller expressions. Existance of other
expressions would cause an error. They’re evaluated just one time when the class is created.
Actual jobs in these expressions are summarized below:

• Assign expression

A function assigned in the block becomes a method that belong to the class. If the
function is declared with :static attribute appended right after the argument list, it
would become a class method that you can call along with the class name. Otherwise, it
would become an instance method that works with an instance created from the class.

A variable assigned in the block are registered as a class variable that belong to the class
itself, not to an instance.

The assigned value is actually evaluated at the timing of assignment, which means you
can even call a function to get the value.

• Caller expression

A function or another callable is evaluated within the class as its environment.

Here’s a sample script to see details about factors in the block.

Person = class {

__init__(name:string, age:number, role:string) = {

this.name = name

this.age = age

this.role = role

}

fmt = ’name: %s, age: %d, role:%s\n’ // class variable

Print() = {

// A class variable doesn’t need ’this’ or class name when accessing it

// while an instance variable does.

80

printf(fmt, this.name, this.age, this.role)

}

Test():static = {

println(’test of class method’)

}

}

In an instance method, a variable named this is defined, which contains a reference to the
instance itself. You always need to specify this variable to access instance variables and
instance methods.

As for a class variable, a method can refer to it without specifying this or the class name.

An instance method init () is a special one that defines a constructor function. Its argu-
ments are reflected on that of the constructor. The sample above creates a function named
Person that has a declaration shown below:

Person(name:string, age:number, role:string) {block?}

You can create an instance by calling it like below:

p = Person(’Taro Yamada’, 27, ’engineer’)

If you specify an optional block, the block procedure will be evaluated with a block parameter
that takes the created instance.

Person(’Taro Yamada’, 27, ’engineer’) {|p|

// any process

}

After an instance is created, you can call an instance method with it. Below is an example to
call an instance method Print(), where p is the created instance:

p.Print()

You can call a class method Test() like below:

Person.Test()

You can also call a class method by specifying an instance.

p.Test()

10.3 Inheritance

10.3.1 Basic

You can create an inherited class by specifying a super class in an argument of class().

81

Person2 = class(Person) {

// class variable and methods

}

If you don’t declare init () method in the derived class, it would inherit a constructor of
the super class.

10.3.2 Constructor in Derived Class

When you declare init () method in the derived class, you have to specify block parameters
that satisfies the argument declaration of the super class’s constructor.

Teacher = class(Person) {

__init__(name:string, age:number) = {|name, age, ’teacher’|

}

Work() = {

println(’give lectures to others’)

}

}

Student = class(Person) {

__init__(name:string, age:number) = {|name, age, ’student’|

}

Work() = {

println(’learn about something’)

}

}

As block parameters are just like oridinary arguments in a function call, you can describe any
expressions in them. Though, take notice that you have to surround an expression includ-
ing bitwise OR operation ”|” with parentheses to avoid it from being confused with border
characters around block parameters. See the example below:

A = class {

__init__(name:string, bitflags:number) = {

// any jobs

}

}

B = class(A) {

__init__() = {|’hello’, (1 | 4 | 8)|

// any jobs

}

}

10.3.3 Method Override

Take a look at a behavior of instance methods in an inherited class. Consider the following
script:

A = class {

func() = {

println(’A.func()’)

82

}

}

B = class(A) {

func() = {

println(’B.func()’)

}

test() = {

this.func() // calls B#func()

}

}

b = B()

b.test()

Both class A and B have a method with the same name func(). When the method B#test()

evaluates this.func(), it actually calls B#func().

You can use super() function to call a method that belongs to a super class. Below is a sample
code to show how to use it.

B = class(A) {

func() = {

println(’B.func()’)

}

test() = {

super(this).func() // calls A#func()

}

}

10.4 Encapsulation

By default, instance and class variables are only accessible through this variable. Such variables
are called private variable. You can make them accessible through other instance variables
by specifying :public attribute in their assignment expressions. Those variables are called
public variable.

X = class {

c = 3

d:public = 4

__init__() = {

this.a = 1

this.b:public = 2

}

}

x = X()

println(x.a) // private instance variable .. Error

println(x.b) // public instance variable .. OK

println(x.c) // private class variable .. Error

println(x.d) // public class variable .. OK

You can also call public() function within a block of class() function that indicates which
variables are to be publicized. The public() function takes a block that contains two types of

83

expressions: Identifier and Assign. An Identifer expression only declares a variable symbol for
publication. An Assign expression creates a public class variable with the specified value.

The script below is equivalent with the above but uses public() function.

X = class {

c = 3

public {

b

d = 4

}

__init__() = {

this.a = 1

this.b = 2

}

}

Different from variables, methods are accessible through variables other than this by default.
Such methods are called public method. You can make them only accessible through this

variable by specifying :private attribute in their assignment expressions. Those methods are
called private method.

10.5 Structure

A structure is a kind of a class, but offers a simple way to implement a constructor. Func-
tion struct takes variable declarations as its arguments that are reflected on the generated
constructor. Below is an example:

Point = struct(x:number, y:number)

This generates a constructor shown below:

Point(x:number, y:number)

You can call it like below:

pt = Point(3, 4)

A created instance from this class will have members named x and y.

printf(’%d, %d\n’, pt.x, pt.y)

The code above that uses struct can be written using class like below:

Point = class {

__init__(x:number, y:number) = {

this.x:public = x

this.y:public = y

}

}

84

A structure can also have methods by describing them in a block of struct function.

Point = struct(x:number, y:number) {

Move(xdiff:number, ydiff:number) = {

this.x += xdiff

this.y += ydiff

}

Print() = {

printf(’%d, %d\n’, this.x, this.y)

}

}

10.6 Creation of Multiple Instances

How can we create a list of instances from a certain class? Below is an example to create a list
of Person instances.

people = [

Person(’Kikuo Ochiai’, 24, ’teacher’)

Person(’Seiji Miki’, 33, ’engineer’)

Person(’Haruka Nakao’, 28, ’sales’)

Person(’Takashi Sugimura’, 21, ’student’)

]

Obviously, it’s cumbersome to describe a function name Person() for each item. Using a list
creation function @ enables you to write more simple code.

people = @(Person) {

{ ’Kikuo Ochiai’, 24, ’teacher’ }

{ ’Seiji Miki’, 33, ’engineer’ }

{ ’Haruka Nakao’, 28, ’sales’ }

{ ’Takashi Sugimura’, 21, ’student’ }

}

Function @ takes a function such as a constructor, and its block contains a set of argument lists
fed into that function.

10.7 Forward Declaration

Within a block of the class function, it would be no problem for argument declarations to
refer to its own class being currently declared.

A = class {

func(a:A) = { // This is OK.

// ...

}

}

It’s not allowed to refer to a class which declaration appears afterwards.

85

A = class {

func(b:B) = { // *** error ***

// ...

}

}

B = class {

}

For such a case, you need to prepare a forward declaration of the referenced class before the
referencing point by creating an empty class like below:

B = class() // B’s forward declaration.

A = class {

func(b:B) = { // This is OK.

// ...

}

}

B = class { // B’s actual declaration.

// ...

}

86

Chapter 11

Mapping Process

11.1 About This Chapter

This chapter explains about Gura’s mapping process, Implicit Mapping and Member Mapping.
In the documentation, following terms are used to describe species of values.

• scalar an instance of any type except for list and iterator

• list an instance of list

• iterator an instance of iterator

• iterable list or iterator

11.2 Implicit Mapping

11.2.1 Overview

Implicit Mapping is a feature that evaluates a function or an operator repeatedly when it’s
given with a list or an iterator.

A function that is capable of Implicit Mapping is marked with an attribute :map. Consider a
function f(n:number):map that takes a number value and returns a squared number of it. You
can call it like f(3), which is expected to return a number 9. Here, using Implicit Mapping,
you can call it with a list of numbers like below:

f([2, 3, 4])

This will result in a list [4, 9, 16] after evaluating each number in the list.

Implicit Mapping also works with operators. The example below applies an operation that adds
three to each value in the list using Implicit Mapping:

[2, 3, 4] + 3

This will result in [5, 6, 7]. Of course, you can also apply Implicit Mapping on an operation
between two lists. See the following example:

[2, 3, 4] + [3, 4, 5]

87

As you might expect, it returns a list [5, 7, 9].

The above example may just look like a vector calculation. Actually, this type of operation,
which applies some operations on a set of numbers at once, is known as ”vectorization”, and
has been implemented in languages and libraries that compute vectors and matrices.

Implicit Mapping enhances that idea so that it has the following capabilities:

1. Implicit Mapping can handle any type of objects other than number.

Consider a function g(str:string):map that takes a string and returns a result after
converting alphabet characters in the string to upper case. When you call it with a single
value, it will return one result.

str = ’hello’

x = g(str)

// x is ’HELLO’

You can call it with a list of string to get a list of results by using Implicit Mapping
feature.

strs = [’hello’, ’Gura’, ’world’]

x = g(strs)

// x is [’HELLO’, ’GURA’, ’WORLD’]

2. Implicit Mapping can operate with an iterator as well.

Consider the function g(str:string):map that has been mentioned above. If you call it
with an iterator, it will return an iterator as its result.

strs = (’hello’, ’Gura’, ’world’) // creates an iterator

x = g(strs)

// x is an iterator that equivalent with (’HELLO’, ’GURA’, ’WORLD’)

It means that the actual evaluation of the function g() will be postponed by the time
when the created iterator is evaluated or destroyed. This is important because using an
iterator will enable you to avoid unnecessary calculation and memory consumption.

3. You can use Implicit Mapping to repeat a function call without an explicit repeat proce-
dure.

A built-in function println():map prints a content of the given value before putting out
a line-feed. Consider a case that you need to print each value in the list strs that contains
[’hello’, ’Gura’, ’world’]. With an ordinary idea, you may use for() to process
each item in a list.

for (str in strs) {

println(str)

}

Using Implicit Mapping, you can simply do it like below:

println(strs)

4. Implicit Mapping can work on any number of lists and iterators given in an argument list
of a function call.

Consider that there’s a function f(a:string, b:number, c:string):map, and you give
it lists as its arguments like below:

88

as = [’first’, ’second’, ’third’, ’fourth’]

bs = [1, 2, 3, 4]

cs = [’one’, ’two’, ’three’, ’four’]

f(as, bs, cs)

This has the same effect as below:

f(’first’, 1, ’one’)

f(’second’, 2, ’two’)

f(’third’, 3, ’three’)

f(’fourth’, 4, ’four’)

11.2.2 Mapping Rule with Operator

Implicit Mapping works on most of the operators even though there are several exceptions. In
the description below, a symbol o is used to represent a certain operator.

With a Prefixed Unary Operator, species of the result is the same as that of the given value.
Below is a summary table:

Operation Result
o scalar scalar
o list list
o iterator iterator

Examples are shown below:

Example Result
!true false

![true, true, false, true] [false, false, true, false]

!(true, true, false, true) (false, false, true, false)

With a Suffixed Unary Operator, species of the result is the same as that of the given value.
Below is a summary table:

Operation Result
scalar o scalar
list o list
iterator o iterator

With a Binary Operator, the folloiwing rules are applied.

• If both of left and right values are of scalar species, the result becomes a scalar.

• If either of left or right value is of iterator species, the result becomes an iterator.

• Otherwise, the result becomes a list.

Below is a summary table:

89

Operation Result
scalar o scalar scalar
scalar o list list
scalar o iterator iterator
list o scalar list
list o list list
list o iterator iterator
iterator o scalar iterator
iterator o list iterator
iterator o iterator iterator

If both of left and right values are iterable and they have different length, Implicit Mapping
would be applied on a range of a shorter length.

Some operators expect lists or iterators in their own operations and inhibit Implicit Mapping.
See the table below:

Operation Note
x? It deters Implicit Mapping because it needs to check if x itself can be

determined as true or not.
x∗ It expects x may take an iterator or a list.
x ∗ y where x is
function

It may take a list as a value of y.

x % y where x is
string

It may take a list as a value of y.

x in y It expects x and y may take list values.
x => y It expects y may take a list value.

11.2.3 Mapping Rule with Function

A function with :map attribute in its declaration is capable of Implicit Mapping.

Here are function definitions that return a square value of the given number to see the effect of
:map attribute.

f_nomap(x:number) = x * x

f_map(x:number):map = x * x

The function delcared with :map attribute is capable of Implicit Mapping and can take a list
for an argument that expects a number value.

f_nomap([1, 2, 3]) // Error

f_map([1, 2, 3]) // Implicit Mapping works on each item and returns [1, 4, 9]

As for a function f(x):map that takes one argument, the mapping rule is the same as that of
Unary Operator. See the following summary table:

Operation Result
f(scalar) scalar
f(list) list
f(iterator) iterator

90

A function f(x, y):map that takes two arguments behaves in the same manner with Binary
Operator. Below is a summary table:

Operation Result
f(scalar, scalar) scalar
f(scalar, list) list
f(scalar, iterator) iterator
f(list, scalar) list
f(list, list) list
f(list, iterator) iterator
f(iterator, scalar) iterator
f(iterator, list) iterator
f(iterator, iterator) iterator

In general, if a function takes more than one argument, the following rules are appplied.

• If all of the argument values are of scalar species, the result becomes a scalar.

• If one of the argument values is of iterator species, the result becomes an iterator.

• Otherwise, the result becomes a list.

Here are some example cases with a function f(x, y, z):map:

Operation Result
f(scalar, scalar, sholar) scalar
f(scalar, scalar, list) list
f(scalar, scalar, iterator) iterator
f(scalar, list, iterator) iterator

If an argument list contains iterables that have different length each other, Implicit Mapping
would be applied on a range of the shortest length. For example, the code below repeats the
process three times.

f([1, 2, 3], [’a’, ’b’, ’c’, ’d’], [4, 5, 6])

Implicit Mapping does not work with arguments that match the following case:

• If a function contains an argument that expects list or iterator, Implicit Mapping
would not work with that argument. In the following example, putting a list or an
iterator to argument z, which expects a list or an iterator as its value, is not considered
as a criteria for Implicit Mapping.

f(x, y, z:list):map = { /* body */ }

f(x, y, z:iterator):map = { /* body */ }

f(x, y, z[]):map = { /* body */ }

• Putting an attribute :nomap to an argument declaration would exclude it from Implicit
Mapping criteria. In the example below, specifying a list or an iterator to argument z is
not considered as a criteria for Implicit Mapping.

f(x, y, z:nomap):map = { /* body */ }

91

11.2.4 Result Control on List

Consider a function f(n:number):map that is defined as below:

f(n:number):map = println(’n = ’, n)

It takes a number value and just prints it.

f(3) // prints ’n = 3’

Here, function println() is defined with an attribute :void that is meant to always return
nil as its result. So, the function f() that evaluates println() at last would return nil as
well.

As the function f() is capable of Implicit Mapping, you can call it with a list for repeating
process.

f([1, 2, 3]) // prints ’n = 1’, ’n = 2’ and ’n = 3’

As you’ve already seen above, when a function with :map attribute takes a list, it will evaluate
each value in the list immediately and returns a list containing the results. Considering that
rule, you may think the calling it as above could return [nil, nil, nil].

But, in reality, it returns a single nil.

Implicit Mapping is designed to work as a generic repeating mechanism. If a function is expected
to always return some meaningless value such as nil, creating a list that contains such values
through a repeating process absolutely makes no sense. To avoid that vain process, Implicit
Mapping would only create a list when a valid value appears in the result.

Consider a function below that simply returns the given value as its result.

g(n):map = n

The table below summarizes what result you get from g() when it’s given with a list containing
valid and nil values.

Script Result
g([]) []

g([nil]) nil

g([nil, nil]) nil

g([nil, nil, 3]) [nil, nil, 3]

g([nil, nil, 3, 5]) [nil, nil, 3, 5]

g([nil, nil, 3, 5, 3]) [nil, nil, 3, 5, 3]

g([nil, nil, 3, 5, 3, nil]) [nil, nil, 3, 5, 3, nil]

Note that, when you give an empty list to a function with Implicit Mapping, it would return
an empty list as its result.

There are some attributes that control how Implicit Mapping generates the result even when
it’s expected to generate a list by default.

92

• Attribute :list always creates a list even if it only contains nil values.

Script Result
g([]):list []

g([nil]):list [nil]

g([nil, nil]):list [nil, nil]

g([nil, nil, 3]):list [nil, nil, 3]

g([nil, nil, 3, 5]):list [nil, nil, 3, 5]

g([nil, nil, 3, 5, 3]):list [nil, nil, 3, 5, 3]

g([nil, nil, 3, 5, 3, nil]):list [nil, nil, 3, 5, 3, nil]

• Attribute :xlist always creates a list after excluding nil value from the result.

Script Result
g([]):xlist []

g([nil]):xlist []

g([nil, nil]):xlist []

g([nil, nil, 3]):xlist [3]

g([nil, nil, 3, 5]):xlist [3, 5]

g([nil, nil, 3, 5, 3]):xlist [3, 5, 3]

g([nil, nil, 3, 5, 3, nil]):xlist [3, 5, 3]

• Attribute :set always creates a list after excluding duplicated values.

Script Result
g([]):set []

g([nil]):set [nil]

g([nil, nil]):set [nil]

g([nil, nil, 3]):set [nil, 3]

g([nil, nil, 3, 5]):set [nil, 3, 5]

g([nil, nil, 3, 5, 3]):set [nil, 3, 5]

g([nil, nil, 3, 5, 3, nil]):set [nil, 3, 5]

• Attribute :xset always creates a list after excluding nil and duplicated values.

Script Result
g([]):xset []

g([nil]):xset []

g([nil, nil]):xset []

g([nil, nil, 3]):xset [3]

g([nil, nil, 3, 5]):xset [3, 5]

g([nil, nil, 3, 5, 3]):xset [3, 5]

g([nil, nil, 3, 5, 3, nil]):xset [3, 5]

• Attribute :iter creates an iterator.

93

Script Result
g([]):iter equivalent of [].each()
g([nil]):iter equivalent of (nil,)
g([nil, nil]):iter equivalent of (nil, nil)

g([nil, nil, 3]):iter equivalent of (nil, nil, 3)

g([nil, nil, 3, 5]):iter equivalent of (nil, nil, 3, 5)

g([nil, nil, 3, 5, 3]):iter equivalent of (nil, nil, 3, 5, 3)

g([nil, nil, 3, 5, 3, nil]):iter equivalent of (nil, nil, 3, 5, 3, nil)

• Attribute :xiter creates an iterator that excludes nil value from the result.

Script Result
g([]):xiter equivalent of [].each()
g([nil]):xiter equivalent of [].each()
g([nil, nil]):xiter equivalent of [].each()
g([nil, nil, 3]):xiter equivalent of (3,)
g([nil, nil, 3, 5]):xiter equivalent of (3, 5)

g([nil, nil, 3, 5, 3]):xiter equivalent of (3, 5, 3)

g([nil, nil, 3, 5, 3, nil]):xiter equivalent of (3, 5, 3)

• Attribute :void indicates the function always returns nil regardless of its original result.

Script Result
g([]):void nil

g([nil]):void nil

g([nil, nil]):void nil

g([nil, nil, 3]):void nil

g([nil, nil, 3, 5]):void nil

g([nil, nil, 3, 5, 3]):void nil

g([nil, nil, 3, 5, 3, nil]):void nil

• Attribute :reduce indicates the function returns the last evaluated value and doesn’t
create a list.

Script Result
g([]):reduce nil

g([nil]):reduce nil

g([nil, nil]):reduce nil

g([nil, nil, 3]):reduce 3

g([nil, nil, 3, 5]):reduce 5

g([nil, nil, 3, 5, 3]):reduce 3

g([nil, nil, 3, 5, 3, nil]):reduce nil

• Attribute :xreduce indicates the function returns the last evaluated value and doesn’t
create a list. The returned value is updated only when the result is valid.

Script Result
g([]):xreduce nil

g([nil]):xreduce nil

g([nil, nil]):xreduce nil

g([nil, nil, 3]):xreduce 3

g([nil, nil, 3, 5]):xreduce 5

g([nil, nil, 3, 5, 3]):xreduce 3

g([nil, nil, 3, 5, 3, nil]):xreduce 3

94

11.2.5 Result Control on Iterator

Consider a function below that simply returns the given value as its result.

g(n):map = n

When you give it an iterator, it would return an iterator as well following after Implicit Mapping
rule.

Script Result
g([].each()) equivalent of [].each()
g((nil,)) equivalent of (nil,)
g((nil, nil)) equivalent of (nil, nil)

g((nil, nil, 3)) equivalent of (nil, nil, 3)

g((nil, nil, 3, 5)) equivalent of (nil, nil, 3, 5)

g((nil, nil, 3, 5, 3)) equivalent of (nil, nil, 3, 5, 3)

g((nil, nil, 3, 5, 3, nil)) equivalent of (nil, nil, 3, 5, 3, nil)

There are some attributes that control how Implicit Mapping generates the result even when
it’s expected to generate an iterator by default.

• Attribute :list creates a list.

Script Result
g([].each()):list []

g((nil,)):list [nil]

g((nil, nil)):list [nil, nil]

g((nil, nil, 3)):list [nil, nil, 3]

g((nil, nil, 3, 5)):list [nil, nil, 3, 5]

g((nil, nil, 3, 5, 3)):list [nil, nil, 3, 5, 3]

g((nil, nil, 3, 5, 3, nil)):list [nil, nil, 3, 5, 3, nil]

• Attribute :xlist creates a list after excluding nil value from the result.

Script Result
g([].each()):xlist []

g((nil,)):xlist []

g((nil, nil)):xlist []

g((nil, nil, 3)):xlist [3]

g((nil, nil, 3, 5)):xlist [3, 5]

g((nil, nil, 3, 5, 3)):xlist [3, 5, 3]

g((nil, nil, 3, 5, 3, nil)):xlist [3, 5, 3]

• Attribute :set creates a list after excluding duplicated values.

Script Result
g([].each()):set []

g((nil,)):set [nil]

g((nil, nil)):set [nil]

g((nil, nil, 3)):set [nil, 3]

g((nil, nil, 3, 5)):set [nil, 3, 5]

g((nil, nil, 3, 5, 3)):set [nil, 3, 5]

g((nil, nil, 3, 5, 3, nil)):set [nil, 3, 5]

95

• Attribute :xset creates a list after excluding nil and duplicated values.

Script Result
g([].each()):xset []

g((nil,)):xset []

g((nil, nil)):xset []

g((nil, nil, 3)):xset [3]

g((nil, nil, 3, 5)):xset [3, 5]

g((nil, nil, 3, 5, 3)):xset [3, 5]

g((nil, nil, 3, 5, 3, nil)):xset [3, 5]

• Attribute :iter creates an iterator. This is a default behavior of Implicit Mapping for
an iterator.

• Attribute :xiter creates an iterator that excludes nil value from the result.

Script Result
g([].each()):xiter equivalent of [].each()
g((nil,)):xiter equivalent of [].each()
g((nil, nil)):xiter equivalent of [].each()
g((nil, nil, 3)):xiter equivalent of (3,)
g((nil, nil, 3, 5)):xiter equivalent of (3, 5)

g((nil, nil, 3, 5, 3)):xiter equivalent of (3, 5, 3)

g((nil, nil, 3, 5, 3, nil)):xiter equivalent of (3, 5, 3)

• Attribute :void indicates the function will always return nil regardless of its original
result.

Script Result
g([].each()):void nil

g((nil,)):void nil

g((nil, nil)):void nil

g((nil, nil, 3)):void nil

g((nil, nil, 3, 5)):void nil

g((nil, nil, 3, 5, 3)):void nil

g((nil, nil, 3, 5, 3, nil)):void nil

• Attribute :reduce indicates the function returns the last evaluated value and doesn’t
create an iterator.

Script Result
g([].each()):reduce nil

g((nil)):reduce nil

g((nil, nil)):reduce nil

g((nil, nil, 3)):reduce 3

g((nil, nil, 3, 5)):reduce 5

g((nil, nil, 3, 5, 3)):reduce 3

g((nil, nil, 3, 5, 3, nil)):reduce nil

• Attribute :xreduce indicates the function returns the last evaluated value and doesn’t
create an iterator. The returned value is updated only when the result is valid.

96

Script Result
g([].each()):xreduce nil

g((nil)):xreduce nil

g((nil, nil)):xreduce nil

g((nil, nil, 3)):xreduce 3

g((nil, nil, 3, 5)):xreduce 5

g((nil, nil, 3, 5, 3)):xreduce 3

g((nil, nil, 3, 5, 3, nil)):xreduce 3

An iterator created by Implicit Mapping has a special feature; it will be evaluated automatically
when it’s destroyed. Consider the following function:

f(n:number):map = println(’n = ’, n)

And call it as below:

f((3, 1, 4))

In Implicit Mapping rule, the call above would simply return an iterator and is supposed not
do any process unless the iterator is actually evaluated. But usually, the above case is expected
to print values in the iterator at the timing of the function call.

Actually, the code above works as expected because the returned iterator loses any reference
from others and is evaluated before destroyed. The script below shows what happens in the
above.

x = f((3, 1, 4))

x = nil // iterator is destroyed after printing ’n = 3’, ’n = 1’ and ’n = 4’.

However, the timing to destroy an instance is sometimes unpredictable. It’s recommended that
you specify :void attribute for an instant evaluation.

f((3, 1, 4)):void

Attributes :void, :reduce and :xreduce don’t return an iterator, which cause the actual
process on given values done immediately.

It may be the best that you specify :void, :reduce or :xreduce attribute in the function
definition if you know beforehand that the function always returns nil or other unchanged
value.

f(n:number):map:void = println(’n = ’, n)

Then, you can call the function with an iterator through Implicit Mapping without any worry.

f((3, 1, 4))

97

11.2.6 Suspend Implicit Mapping

A function call with an attribute :nomap would suspend Implicit Mapping.

Consider a case that you need to print a content of x that contains [1, 2, 3, 4] as a list
instance. Simply executing println(x) would just print each value in the list through Implicit
Mapping. To avoid it, put :nomap for the call as below.

println(x):nomap

11.3 Member Mapping

11.3.1 Overview

Member Mapping is a feature to access members of instances that are stored in a list or are
generated from an iterator.

There’s an instance method string#len() that retrieves a length of a string. With a single
instance, you can call it like below:

x = ’first’

n = x.len()

// n is 5

Using a member accessor ::, you can apply the method on multiple instances in a list.

xs = [’first’, ’second’, ’third’, ’fourth’]

ns = xs::len()

// ns is [5, 6, 5, 6]

A member accessor :∗ creates an iterator that gets results of member access.

xs = [’first’, ’second’, ’third’, ’fourth’]

ns = xs:*len()

// ns is an iterator that generates (5, 6, 5, 6)

11.3.2 Mapping Rule

There are three member accessors in Member Mapping as shown below:

Member Accessor Name
:: map-to-list
:∗ map-to-iterator
:& map-along

A map-to-list accessor :: applies a member method or looks up a member variable on instances
in an iterable, a list or an iterator, and creates a list of the results. Below shows examples:

98

xs::variable

xs::func()

A map-to-iterator accessor :∗ creates an iterator that applies a member method or looks up a
member variable on instances in an iterable, a list or an iterator. Below shows examples:

xs:*variable

xs:*func()

A map-along accessor :& only has effect with a member method. It iterates the iterable on
the left along with iterables in its argument list following after Iterator Mapping rule. See the
following example:

xs = [x1, x2, x3]

as = [’first’, ’second’, ’third’]

bs = [3, 1, 4]

xs:&func(as, bs)

This has the same effect with shown below:

[x1.func(’first’, 3), x2.func(’second’, 1), x3.func(’third’, 4)]

The mapping rule with map-along accessor is summarized below:

• If the target iterable or one of the argument values is of iterator species, the result becomes
an iterator.

• Otherwise, the result becomes a list.

99

Chapter 12

Module

12.1 Module as Environment

A module is a kind of environment and capable of containing variables and functions inside it.
You can use module() function that takes a block procedure containing expressions of variable
and function assignments. Below is an example:

foo = module {

var:public = ’hello’

func() = { /* body */ }

}

Then, you can call functions and read/modify variables in the module with a member accessing
operator . specifying the module on its left.

foo.func()

println(foo.var)

By default, functions defined in a module are marked as public and are accessible from outside.
On the other hand, variables in a module are marked as private and would cause an error for an
access from outer scope. You have to put :public attribute in a variable assignment to make
it public.

You can use modules to isolate variables and functions from the current scope by giving them
an independent name space. But its main purpose is to provide a mechanism to load external
files that extend the language’s capability.

12.2 Importing Module File

Gura language has a policy that the interpreter itself should provide functions that are less
dependent on external libraries, operating systems and hardware specifications. So, variety
of functions such as handling regular expressions, image processing and GUI are realized by
dynamically loadable files called module files.

There are two types of module files: script module file and binary module file.

100

Module File Suf-
fix

Content

script module
file

.gura a usual Gura script file

binary module
file

.gurd a dynamic link library that has been compiled from C++
source code

A process of loading a module file and registering its properties to the current environment is
called ”import”. You can use import() function in your script to import a module like below:

import(re)

This loads a module file re.gurd and creates a module re in the current scope. After importing,
functions like re.match() and re.sub() that the module provides become available.

You can import module properties into the current scope by specifying their symbols in a block
of import() function.

import(re) { match, sub }

Then, you can call these functions like match() instead of re.match(). Specifying ∗ in the
block will import all of the module properties into the current scope.

import(re) { * }

Usually, this is not a recommended manner because there’s a risk that symbols in a module
conflict with ones that already exist. However, it may be a practical way to import some
modules like opengl, which guarantees all the properties have distinguishable symbols.

You can also import modules at the timing launching the interpreter by specifying a command
line option -i with module names. Below is an example that imports a module re before
parsing the script file foo.gura.

$ gura -i re foo.gura

You can specify multiple module names by separating them with a comma character.

$ gura -i re,http,png foo.gura

Under Windows, the interpreter searches module files in the following path, where GURA VERSION

and GURA DIR represent the interpreter’s version and the path name in which the program has
been installed respectively.

1. Current directory.

2. Directories specified by -I option in the command line.

3. Directories specified by environment variable GURAPATH.

4. Directory: %LOCALAPPDATA%\Gura\GURA VERSION\module.

101

5. Directory: GURA DIR\module.

6. Directory: GURA DIR\module\site.

Under Linux, the interpreter searces module files in the following path.

1. Current directory.

2. Directories specified by -I option in the command line.

3. Directories specified by environment variable GURAPATH.

4. Directory: $HOME/.gura/GURA VERSION/module.

5. Directory: /usr/lib/gura/GURA VERSION/module.

6. Directory: /usr/lib/gura/GURA VERSION/module/site.

A variable sys.path is assigned with a list that contains path names to search module files.
You can add path names into the list while a script is running.

12.3 Creating Module File

Any script file can be a script module file, which you can import in other scripts. But there
are several points you need to know concerning access controls. Consider the following script
file named foo.gura:

var:public = ’hello’

func() = { /* body */ }

Then, you can import it to make its properties available.

import(foo)

println(foo.var)

foo.func()

As with a module created by module() function, following rules are applied:

• Functions defined in a module file are marked as public and are accessible from outside.
If necessary, you can put :private attribute in a function assignment to encapsulate it
inside the file.

• Variables defined in a module file are marked as private and would cause an error for an
access from outer scope. You have to put :public attribute in a variable assignment to
make it public.

As a script module file is not different to a usual script file, it can contain any expressions as well
other than assignment expressions of function and variable. These expressions are evaluated
once, when import() function is called.

If a script file is imported as a module, a global variable name holds its own module name.
For instance, a script in foo.gura sees the variable with a value ’foo’ when imported. If a
script file is parsed by the interpreter firsthand, the variable is set to ’ main ’. Utilizing this
feature, you can write a script in a module file to test its own functions like below:

102

func() = { /* body */ }

if (__name__ == ’__main__’) {

func() // test func()

}

Since the body of if() function would only be evaluated when the script runs as a main one,
you can write codes inside it that wouldn’t be evaluated when imported as a module.

12.4 Extensions by Module

Modules don’t only provide functions but could enhance various capabilities.

• Extensions of Existing Class

Some modules would provide additional methods to classes that already exists. For ex-
ample, module re would add some methods to string class like string#match().

• Operator

Some modules would enhance operators so that they can handle objects the modules
provide. For example, a module named gmp provides operators on arbitrary precision
numbers.

• Image Format

You can use a function image() to read a image file. Importing modules that handle
image data would expand the function’s capability to support additional image formats.
For example, after importing jpeg module, the function can read a file in JPEG format
like following:

import(jpeg)

img = image(’foo.jpg’)

// .. any jobs

• Path Name for Stream

You can use a stream instance to access a file stored in a certain storage. While a stream
is opened by specifying a path name associated with it, some modules would expand
the path name handler so that it can recognize its specific name format. For example,
importing a module named curl would allow access to a file stored in networks and
enhance the path name handler to be able to recognize names that begin with ’http:’.

import(curl)

print(readlines(’http://example.com/index.html’))

For another example, module zip provides functions to read and write content of ZIP
files. and it would make the path name accessible in a ZIP file. The example below prints
a content of doc/readme.txt that is stored in foo.zip.

import(zip)

print(readlines(’foo.zip/doc/readme.txt’))

• Path Name for Directory

Path names in functions that handle directories could also be enhanced by modules.

A function path.walk() recursively retrieves entries in a storage with a specified path
name. After importing module zip, you can seek entries in a ZIP file using that function.

103

import(zip)

println(path.walk(’foo.zip/src’))

• Suffix Handler

There’s a case that a module will provide additional suffix handlers. For example, module
gmp can handle suffix L that creates an instance of arbitrary precision number from a
number literal.

import(gmp)

x = 3.1415L * 2 * r

• Character Codec

Modules can provide additional handlers for character codec.

12.5 List of Bundled Modules

This section describes a list of modules that are bundled with the interpreter.

Image file format:

Module Note
bmp handles BMP image file
gif handles GIF image file
jpeg handles JPEG image file
msico handles Microsoft Icon file
png handles PNG image file
ppm handles PPM image file
tiff handles TIFF image file
xpm handles XPM image file

Compression/depression/archiving/hash:

Module Note
bzip2 provides compressor/decompressor functions for bzip2 format
gzip provides compressor/decompressor functions for gzip format
tar provides function to read/write tar archive file
zip provides function to read/write ZIP archive file
hash

Image operation:

Module Note
cairo provides APIs of Cairo, a 2D graphic library
freetype provides APIs of FreeType, a library to render fonts
opengl provides APIs of OpenGL, a library to render 2D/3D graphics
glu Utility functions for OpenGL

GUI operation:

104

Mod-
ule

Note

sdl provides APIs of SDL, a library designed to provide low level access to audio, key-
board, mouse, joystick, and graphics hardware via OpenGL and Direct3D

tcl provides APIs of Tcl interpreter
tk provides APIs of Tk using tcl module
wx provides APIs of wxWidgets, a cross-platform GUI library
show provides image#show() method that displays image on a window

Audio operation:

Module Note
midi provides APIs to control MIDI hardware and to create MIDI files

Network operation:

Module Note
curl provides APIs to access to network using CURL library
http provides APIs for HTTP server and client functions

OS specific:

Module Note
conio controls console I/O
mswin provides APIs for OLE interface registry access
msxls provides simple classes that handle MS Excel documents
uuid generates UUID

Text file operation:

Module Note
csv Read/write CSV file
markdown parser of Markdown syntax
re Regular expression
tokenizer provides APIs that tokenize strings
xml XML parser
xhtml XHTML composer
yaml provides APIs to read/write document in YAML format

Mathematical:

Mod-
ule

Note

gmp provides APIs of GMP, a library for arbitrary precision arithmetic, operating on
signed integers, rational numbers, and floating-point numbers.

Database:

105

Module Note
sqlite3 provides APIs to access to database of sqlite3

Helper to build modules:

Module Note
gurcbuild provides APIs to create a composite file
modbuild used in a script to build a binary module
modgen generates template files to build a binary module

Utilities:

Module Note
argopt provides APIs to handle argument options
calendar generates a specified year’s calendar
sed replaces strings using regular expression across multiple files
testutil utilities for tester script
units definition of units
utils utilities

12.6 Creating Binary Module File

Gura has a mechanism to support users who create binary modules. This document shows how
to create an original binary module hoge.

At first, execute the following command.

$ gura -i modgen hoge

This would generate a builder script, build.gura, and a template source file of module, Mod-
ule hoge.cpp. Although the file Module hoge.cpp is just a C++ source file that consists of less
than 40 lines of codes, it already has an implementation for a Gura function named test.

Executing build.gura would create the module by launching a proper C++ compiler. If you try
it in Windows, you need to install Visual Studio 2010 in advance. You may use Express version
that is available for free of charge.

$ gura build.gura --here

If you find a binary module file hoge.gurd has successfully been built in the current directory,
import it into Gura’s script and test it.

$ gura

>>> import(hoge)

>>> dir(hoge)

[‘__name__, ‘test]

>>> hoge.test(3, 5)

8

106

Congratulations! It’s ready to edit Module hoge.cpp for implementations as you like. If you get
what you want, execute the following command to install the module into Gura’s environment.

$ sudo gura build.gura install

By the way, you need to get some information about C++ functions and classes provided by
Gura for actual programming. The best way for it is to see source files of other binary modules.
At first, find out a module from those provided by Gura, which has a function similar to what
you want to create. You can find module source files in a directory gura/src/Module module
in a source package. Each module is so simple that consists of one to two source files. I’m sure
it’s relatively easy to know how to realize your purpose by investigating them, because they
have been developed in the same coding policy.

107

Chapter 13

String and Binary

13.1 Overview

A string is a sequence of character codes in UTF-8 format and is represented by string class.
Class string is a primitive type, which means there’s no operation that could modify the
content of string instances. This leads to the following principles:

• It’s not allowed to edit each character in a string content through index access.

• Modification methods are supposed to return a new string instance with modified result.

The interpreter itself provides fundamental operations for strings. Importing module named re

expand the capability so that it can process string data using regular expressions.

Meanwhile, a binary is a byte sequence of data that has any format and is represented by
binary class. Class binary is an object type, so you can modify the content of the instance.
A binary instance can be used as a plain memory image capable of containing any data.

13.2 Operation on String

13.2.1 Character Manipulation

You can specify an index number starting from zero embraced by a pair of square brackets to
retrieve a character as a sub string at the specified position. Multiple numbers for indexing can
also be specified to get a list of sub strings.

str = ’abcdefghijklmnopqrstuvwxyz’

str[6] // returns ’g’

str[20] // returns ’u’

str[17] // returns ’r’

str[0] // returns ’a’

str[6, 20, 17, 0] // returns [’g’, ’u’, ’r’, ’a’]

You can also specify iterators and lists to get a list of sub strings. Numbers and iterators can
be mixed together as indexing items.

str = ’The quick brown fox jumps over the lazy dog’

str[10..14] // returns [’b’, ’r’, ’o’, ’w’, ’n’]

str[4..8, 35..38] // returns [’q’, ’u’, ’i’, ’c’, ’k’, ’l’, ’a’, ’z’, ’y’]

108

If you specify an infinite iterator as an indexing item, you would get sub strings within an
available range.

str = ’The quick brown fox jumps over the lazy dog’

str[35..] // returns [’l’, ’a’, ’z’, ’y’, ’ ’, ’d’, ’o’, ’g’]

An index with a negative number points the position from the bottom, where -1 is the last
position.

str = ’The quick brown fox jumps over the lazy dog’

str[-3] // returns ’d’

str[-2] // returns ’o’

str[-1] // returns ’g’

Function chr() returns a string that contains a character of the given UTF-8 character code.

chr(65) // returns ’A’

Function ord() takes a string and returns UTF-8 character code of its first character.

ord(’A’) // returns 65

13.2.2 Iteration

Method string#each() creates an iterator that returns each character as a sub string.

str = ’The quick brown fox jumps over the lazy dog’

x = str.each()

// x is an iterator that returns ’T’, ’h’, ’e’ ...

A call of string#each() with attribute :utf8 or :utf32 would create an iterator that returns
character code numbers in UTF-8 or UTF-32 instead of sub strings.

str = ’XXX’ // assumes it contains kanji characters ’ni-hon-go’

x = str.each():utf8

// x is an iterator that returns 0xe697a5, 0xe69cac and 0xe7aa9e

x = str.each():utf32

// x is an iterator that returns 0x65e5, 0x672c and 0x8a9e

Method string#eachline() creates an iterator that splits a string by a newline character and
returns strings of each line.

str = R’’’

1st

2nd

3rd

’’’

lines = str.eachline()

// lines is an iterator that returns ’1st\n’, ’2nd\n’ and ’3rd\n’

109

Method string#chop() is useful when you want to remove a newline character appended at
the bottom.

x = str.eachline()

lines = x:*chop() // an iterator to apply string#chop() to each value in x

// lines is an iterator that returns ’1st’, ’2nd’ and ’3rd’

Method string#eachline() and others that split a multi-lined text into strings of each line
like readlines() are equipped with an attribute :chop that applies the same process as
string#chop().

lines = str.eachline():chop

// lines is an iterator that returns ’1st’, ’2nd’ and ’3rd’

Method string#split() creates an iterator that splits a string by a separator string specified
in the argument.

str = ’The quick brown fox jumps over the lazy dog’

x = str.split(’ ’)

// x is an iterator that returns ’The’, ’quick’, ’brown’, ’fox’ ...

If you want to split a string into segments with the same length, use string#fold() method.

str = ’abcdefghijklmnopqrstuvwxyz’

x = str.fold(5)

// x is an iterator that returns ’abcde’, ’fghij’, ’klmno’, ’pqrst’, ’uvwxy’ and ’z’

13.2.3 Modification and Conversion

Applying an operator + between two string instances would concatenate them together.

str1 = ’abcd’

str2 = ’efgh’

str1 + str2 // returns ’abcdefgh’

An operator ∗ between a string and a number value would concatenate the string the specified
number of times.

str = ’abcd’

str * 3 // returns ’abcdabcdabcd’

Method list#join() joins all the string in the list and returns the result. If it contains elements
other than string, they’re converted to strings before joined.

[’abcd’, ’efgh’, ’ijkl’].join() // returns ’abcdefghijkl’

The method can take a separator string as its argument that is inserted between elements.

110

[’abcd’, ’efgh’, ’ijkl’].join(’, ’) // returns ’abcd, efgh, ijkl’

Method string#capitalize() returns a string with the top alphabet converted to uppper
case.

str = ’hello, WORLD’

str.capitalize() // returns ’Hello, WORLD’

Methods string#upper() and string#lower() return a string after converting all the alphabet
characters to upper and lower case respectively.

str = ’hello, WORLD’

str.upper() // returns ’HELLO, WORLD’

str.lower() // returns ’hello, world’

Method string#binary() returns a binary instance that contains a binary sequence of the
string in UTF-8 format.

str = ’XXX’ // assumes it contains kanji characters ’ni-hon-go’

str..binary() // returns a binary b’\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e’

You can use string#encode() to get a binary sequence in other codec other than UTF-8.

str = ’XXX’ // assumes it contains kanji characters ’ni-hon-go’

str.encode(’shift_jis’) // returns a b’\x93\xfa\x96\x7b\x8c\xea’

Method string#reader() returns a stream instance that reads a binary sequence of the string
in UTF-8 format.

str = ’The quick brown fox jumps over the lazy dog’

x = str.reader()

// x is a stream instance for reading

Method string#encodeuri() converts characters that can not be described in URI by a
percent-encoding rule, while method string#decodeuri() converts such encoded string into
normal characters.

Method string#escapehtml() escapes characters that can not be described in HTML with
character entities prefixed by an ampersand, while method string#unescapehtml()converts
such escaped ones into normal characters.

13.2.4 Extraction

Method string#strip() removes space characters that exist on both sides of the string. At-
tributes :left and :right would specify the side to remove spaces.

str = ’ hello ’

str.strip() // returns ’hello’

str.strip():left // returns ’hello ’

str.strip():right // returns ’ hello’

111

Method string#left() returns a sub string that has extracted specified number of characters
from the left side, while method string#right()extracts from the right side.

str = ’The quick brown fox jumps over the lazy dog’

str.left(3) // returns ’The’

str.right(3) // returns ’dog’

Method string#mid() returns a sub string that has extracted specified number of characters
from the specified position.

str = ’The quick brown fox jumps over the lazy dog’

str.mid(10, 5) // returns ’brown’

13.2.5 Search, Replace and Inspection

To see the length of a string, string#len() is available. Note that string#len() returns the
number of characters, not the size in byte.

str = ’abcdefghijklmnopqrstuvwxyz’

n = str.len()

// n is 26

Method string#find() searches the specified sub string in the target string and returns the
found position starting from zero. If not found, it returns nil.

str = ’The quick brown fox jumps over the lazy dog’

str.find(’fox’) // returns 16

str.find(’cat’) // returns nil

Method string#replace() replaces the sub string with the specified one.

str = ’The quick brown fox jumps over the lazy dog’

str.replace(’fox’, ’cat’) // returns ’The quick brown cat jumps over the lazy dog’

Method string#startswith() returns ture if the string starts with the specified sub string,
and returns false otherwise. Method string#endswith() checks if the string ends with the
specified sub string.

str = ’abcdefghijklmnopqrstuvwxyz’

str.startswith(’abcde’) // returns true

str.startswith(’hoge’) // returns false

str.endswith(’vwxyz’) // returns true

str.endswith(’hoge’) // returns false

Specifying an attribute :rest indicates that these functions return a string excluding the speci-
fied sub string when that matches the head or the bottom part. If the sub string doesn’t match,
they would return nil.

str.startswith(’abcde):rest // returns ’fghijklmnopqrstuvwxyz’

str.startswith(’hoge’):rest // returns nil

str.endswith(’vwxyz’):rest // returns ’abcdefghijklmnopqrstu’

str.endswith(’hoge’):rest // returns nil

112

13.3 Formatter

13.4 Functions Equipped with Formatter

You can use format specifiers in some functions that are similar to what are realized in C
language’s printf to convert objects like numbers into readable strings.

Function printf() takes a string containing format specifiers and values you want to print in
its argument list and put the result out to sys.stdout stream.

printf(’x = %d, y = %d\n’, x, y)

Method stream#printf() has the same argument declaration with printf() and puts the
result to the target stream capable of writing instead of sys.stdout stream.

open(’foo.txt’, ’w’).printf(’x = %d, y = %d\n’, x, y)

Method list#printf() is another form of printf(), which takes values to print in the list of
the target instance, not in the argument list.

[x, y].printf(’x = %d, y = %d\n’)

Function format() takes arguments in the same way as printf() but it returns the result as
a string instance.

str = format(’x = %d, y = %d\n’, x, y)

You can also use % operator to get the same result with format(), which takes a format string
on the left and a list containing values for printing on the right.

str = ’x = %d, y = %d\n’ % [x, y]

If there’s only one value for printing, you can even give the operator the value without a list.

str = ’x = %d\n’ % x

13.5 Syntax of Format Specifier

A format specifier begins with a percent character and has the syntax below, where optional
fields are embraced by square brackets:

%[flags][width][.precision]specifier

You always have to specify one of the following characters for the specifier field.

113

specifier Note
d, i decimal integer number with a sign mark
u decimal integer number wihout a sign mark
b binary integer number without a sign mark
o octal integer number without a sign mark
x hexadecimal integer number in lower character without a sign mark
X hexadecimal integer number in upper character without a sign mark
e floating number in exponential form
E floating number in exponential form (in upper character)
f floating number in decimal form
g better form between e and f
G better form between E and F
s string
c character

You can specify one of the following characters for the optional flags field.

flags Note
+ + precedes for positive numbers
- adjust a string to left
(space) space character precedes for positive numbers
converted results of binary, octdecimal and hexadecimal are preceded by ’0b’, ’0’

and ’0x’ respectively
0 fill lacking columns with ’0’

The optional field width takes a decimal number that specifies a minimum width for the cor-
responding value. If the value’s length is shorter than the specified width, the rest would be
filled with space characters. If you specify ∗ for that field, the formatter would try to get the
minimum width from the argument list.

The optional field precision has different meanings depending on the specifier as below:

specifier Note
d, i, u, b,
o, x, X

It specifies the minimum number of digits. If the value is shorter than this
number, lacking digits are filled with zero.

e, E, f It specifies the number of digits after a decimal point.
g, G It specifies the maximum number of digits for significand part.
s It specifies the maximum number of characters to print.

13.6 Regular Expression

You can import module re to use regular expression for string search and substition, which
supports a syntax based on POSIX Extended Regular Expression.

Importing module re would equip string class with methods that can handle regular expres-
sions. See the sample code below:

import(re)

str = ’12:34:56’

114

m = str.match(r’(\d\d):(\d\d):(\d\d)’)

if (m) {

printf(’hour=%s, min=%s, sec=%s\n’, m[1], m[2], m[3])

} else {

println(’not match’)

}

Method string#match() that is provided by re module takes a regular expression pattern.
It would return re.match instance if the pattern matches, and return nil otherwise. As
regular expressions often contain back slash as a meta character, it would be convenient to
use an expression r’ . . . ’ for a pattern string to avoid recognizing a backslash as an escaping
character.

An instance of re.match contains information about matching result. It supports indexing
access where m[0] has a string that matches the whole pattern and m[1], m[2] . . . returns a
string of each group. You can specify a string instead of a number to index each group when
you use ?<name> specifier for the group in a regular expression pattern.

m = str.match(r’(?<hour>\d\d):(?<min>\d\d):(?<sec>\d\d)’)

if (m) {

printf(’hour=%s, min=%s, sec=%s\n’, m[’hour’], m[’min’], m[’sec’])

} else {

println(’not match’)

}

Although you can pass a string containing a pattern to method string#match(), it actually
takes re.pattern instance in its argument that is capable of accepting a string instance
through casting feature. Above example is equivalent with below:

pat = re.pattern(r’(\d\d):(\d\d):(\d\d)’)

m = str.match(pat)

When you give a string to a function or a method that expects re.pattern, it always compile
the string to create re.pattern instance, which may cause some overhead in a process of huge
amount of data. In such a case, it may be a good idea to call a function with a re.pattern

instance that has explicitly been created by re.pattern() function in advance like shown
above.

Method string#sub() takes a re.pattern instance and replaces the matched part with the
given substitution value.

A subsitution item can be either a string or a function. When you give a string for it, the
method replaces the matched part with the string.

str = ’The quick brown fox jumps over the lazy dog’

str.sub(r’[Tt]he’, ’THE’) // returns ’THE quick brown fox jumps over THE lazy dog’

You can specify a group reference \n in a subsitution string where n indicates the group index.

If you specify a function for the substitution value, which takes a re.match value as its argument
and to return a substitution string, it would be called when the matching succeeds.

str = ’### #### ##### ## #####’

f(m:re.match) = format(’%d’, m[0].len())

str.sub(’#+’, f) // returns ’3 4 5 2 5’

115

An anonymous function would make the code more simple.

str = ’### #### ##### ## #####’

str.sub(’#+’, &{format(’%d’, $m[0].len())}) // returns ’3 4 5 2 5’

13.7 Operation on Binary

13.7.1 Creation of Instance

You can create a binary instance by put a prefix b to a string literal.

b’AB\x01\x00\xff’

The example above is a binary instance that contains a sequence of byte data: 0x41, 0x42,
0x01, 0x00 and 0xff. As an instance created by a string literal prefixed by b can not be modified,
it would occur an error when you try some modification operations on such an instance.

There are several ways to create a binary instance that accepts modification.

• Constructor function binary() creates an empty binary instance.

buff = binary()

• Class method binary.alloc() creates a binary instance of the specified size.

buff = binary.alloc(1000)

// buff has a memory of 1000 bytes

• Class method binary.pack() packs values into a binary sequence according to the packing
specifier.

buff = binary.pack(’Bl’, 0xaa, 0x12345678)

// buff has a byte sequence: 0xaa, 0x78, 0x56, 0x34, 0x12.

You can use method binary#dump() to print out a content of a binary in a hexadecimal dump
format.

13.7.2 Byte Manipulation

An index access on a binary would return a number value at the specified position.

buff = b’\xaa\xbb\xcc\xdd\xee’

buff[0] // returns 0xaa

buff[1] // returns 0xbb

You can also specify an iterator as an indexing item for a binary just like a string.

buff[1..3] // returns [0xbb, 0xcc, 0xdd]

116

Modification through an indexer on a writable binary is also possible.

buff = binary.alloc(8)

buff[0] = 0x12

buff[1] = 0x34

buff[3..] = 0..4

// buff has a byte sequence: 0x12, 0x34, 0x00, 0x00, 0x01, 0x02, 0x03, 0x04.

Method binary#each() creates an iterator that returns each 8-bit number value in the binary.

buff = b’\xaa\xbb\xcc\xdd\xee’

x = buff.each()

// x is an iterator that returns 0xaa, 0xbb, 0xcc, 0xdd and 0xee.

13.7.3 Pack and Unpack

Using an indexer and binary#each() method, you can retrieve and modify the content of a
binary by a unit of 8-bit number. To store and extract values such as number that consits of
multiple octets and string that contains a sequence of character codes, the following methods
are provided.

• Class method binary.pack() to create a binary sequence that contains numbers and
strings.

• Method binary#unpack() to extract numbers and strings from a binary sequence.

Class method binary.pack() takes a formatter string containing specifiers and values to store
as its argument. For example:

rtn = binary.pack(’H’, 0x1234)

The specifier H means an unsigned 16-bit number, so the result rtn is a binary instance that
contains a binary sequence of 0x34 and 0x12.

You can write any number of specifiers in the format.

rtn = binary.pack(’HHH’, 0x1234, 0xaabb, 0x5678)

The result contains a binary sequence of 0x34, 0x12, 0xbb, 0xaa, 0x78 and 0x56.

If there’s a sequence of the same specifier like above, you can brackets them together by speci-
fying the number ahead of that specifier.

rtn = binary.pack(’3H’, 0x1234, 0xaabb, 0x5678)

This has the same result as the previous example.

Meanwhile, method binary#unpack() takes a formatter string and returns a list containing
unpacked result. For example:

buff = b’\x34\x12’

rtn = buff.unpack(’H’)

117

The result rtn is a list [0x1234]. Note that you always get a list as the result even when it
contains only one value.

Below is an example of a format that contains multiple specifiers:

buff = b’\x34\x12\xbb\xaa\x78\x56’

rtn = buff.unpack(’HHH’)

// rtn is [0x1234, 0xaabb, 0x5678]

Just like the packing rule, you can specify the number of succeeding specifiers.

buff = b’\x34\x12\xbb\xaa\x78\x56’

rtn = buff.unpack(’3H’)

Using an assignment to lister expression may often be helpful, since you can assign extracted
values to independent variables.

buff = b’\x34\x12\xbb\xaa\x78\x56’

[x, y, z] = buff.unpack(’3H’)

The table below summarizes specifiers that are used to pack or unpack number values.

Speci-
fier

Unit
Size

Note

b 1 byte Packs or unpacks a signed 8-bit number (-128 to 127).
B 1 byte Packs or unpacks an unsigned 8-bit number (0 to 255)
h 2 bytes Packs or unpacks a signed 16-bit number (-32768 to 32767)
H 2 bytes Packs or unpacks an unsigned 16-bit number (0 to 65535)
i 4 bytes Packs or unpacks a signed 32-bit number (-2147483648 to 2147483648)
I 4 bytes Packs or unpacks an unsigned 32-bit number (0 to 4294967295)
l 4 bytes Packs or unpacks a signed 32-bit number (-2147483648 to 2147483648)
L 4 bytes Packs or unpacks an unsigned 32-bit number (0 to 4294967295)
q 8 bytes Packs or unpacks a signed 64-bit number (-9223372036854775808 to

9223372036854775807)
Q 8 bytes Packs or unpacks an unsigned 64-bit number (0 to

18446744073709551615)
f 4 bytes Packs or unpacks a single precision floating point number.
d 8 bytes Packs or unpacks a double precision floating point number.

By default, byte order of numbers in 16-bit, 32-bit and 64-bit size is a little endian. You can
change the order by using the following specifiers:

Specifier Note
@ Turns to a system-dependent endian.
= Turns to a system-dependent endian.

Turns to a little endian.
Turns to a big endian.

! Turns to a big endian.

118

rtn = binary.pack(’H>H’, 0x1234, 0x1234)

// rtn contains 0x34, 0x12, 0x12, 0x34.

Specifier x only advances pointer ahead for specified size without packing or unpacking of values.
When packing, the skipped area would be filled with zero.

rtn = binary.pack(’H3xH’, 0x1234, 0x1234)

// rtn contains 0x34, 0x12, 0x00, 0x00, 0x00, 0x34, 0x12.

Specifiers c and s are prepared to pack or unpack string data.

Spec-
ifier

Note

c Packs a first character code in a string, or unpack a 8-bit number as a chracter code
and returns a string containing it.

s Packs character codes in a string according to the specified codec, or unpack 8-
bit numbers as character codes according the specified codec and returns a string
containing them.

You can specify a codec for s specifier by surrounding its name with { and }.

13.7.4 Pointer

binary#pointer()

pointer#unpack()

pointer#pack()

13.7.5 Binary as Stream

binary#writer()

binary#reader()

cast from binary to stream

119

Chapter 14

Iterator/List Operation

14.1 Overview

An iterator and a list are quite similar in terms of handling multiple values in a flat structure.
In fact, many of their methods share the same names and functions each other.

The difference is that a list is a container that actually owns its element values while an iterator
only provides a method that retrieves a ”next” value of a sequence and doesn’t necessarily have
to own values. This feature leads to the following principles:

• An iterator can handle a sequence of data that continues indefinitely because it doesn’t
need to keep all the values in it.

• An iterator consumes less memory than a list in many cases.

• A list provides an indexing method that enables random access for its elements.

• A list provides methods to append or remove values.

Note that Gura makes it a rule to implement most functions to return an iterator by default
if they have multiple values as its result. Even with such functions, you can easily get a list as
their result by calling it with :list attribute.

14.2 Iteration on Iterators and Lists

Consider a task that prints elements in the list shown below:

words = [’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’, ’eight’, ’nine’, ’ten’]

There are several ways to iterate elements in an iterator or a list.

• As you’ve already seen a previous chapter, iterators and lists can work with functions,
methods and operators through Implicit Mapping. You can simply call printf() function
with iterators or lists that causes a repetitive evaluation of the function.

printf(’%s\n’, words)

A function with Implicit Mapping is capable of iterating multiple iterables provided as
its arguments. In addition to the list of words, you can specify an iterator that generates
numbers starting from zero to print indexing numbers as shown below.

120

printf(’%d: %s\n’, 0.., words)

• Using for() function, you can iterate a list or an iterator in a way that you may have
been familiar with in other languages.

for (word in words) {

printf(’%s\n’, word)

}

You can get a loop index starting from zero by specifying a block parameter.

for (word in words) {|i|

printf(’%d: %s\n’, i, word)

}

• You can also use method iterator#each() or list#each() to iterate elements on them.
In this case, the block parameter contains an iterated element as its first value.

words.each {|word|

printf(’%s\n’, word)

}

It provides a loop index as the second value in the block parameters as below.

words.each {|word, i|

printf(’%d: %s\n’, i, word)

}

Most functions and methods that return an iterator as their result are designed to iterate
elements when they take a block. Actually, methods iterator#each() and list#each(),
which are mentioned above, simply return an iterator when they’re called without a block.

rtn = words.each()

// rtn is an iterator that iterates each element in words

To see other examples that have the same feature, consider methods iterator#filter() and
list#filter(), which returns an iterator that pick up elements satisfying a criteria specified
in the argument.

rtn = words.filter(&{$word.startswith(’t’)})

// rtn is an iterator that generates ’two’, ’three’ and ’ten’

Specifying a block with the method would repetitively evaluate it while iterating elements of
the result.

words.filter(&{$word.startswith(’t’)}) {|word, i|

printf(’%d: %s\n’, i, word)

}

The result comes as below:

121

0: two

1: three

2: ten

14.3 Iterator-specific Manipulation

14.3.1 About This Section

This section explains about methods and ohter manipulation that are specific to iterators.

14.3.2 Finite Iterator vs. Infinite Iterator

Iterators that generate a limited numer of elements are called Finite Iterator. An iterator 0..5
is a representative one that is definitely expected to generate 6 elements. It’s possible that you
convert a Finite Iterator into a list.

Iterators that generate elements indefinitely or couldn’t predict when elements drain out are
called Infinite Iterator. Among them, there’s an iterator 0.. that generates numbers starting
from 0 and increasing for ever. It would occur an error if you try to convert Infinite Iterator
into a list.

You can use method iterator#isinfinite() to check if an iterator is an infinite one or not.

(0..5).isinfinite() // returns false

(0..).isinfinite() // returns true

Some functions may possibly create either Finite or Infinite Iterator depending on their argu-
ments. The second argument in function rands() specify how many random values it should
generate, and, if omitted, the function would generate values without end.

rands(100) // returns an Infinite Iterator

rands(100, 80) // returns a Finite Iterator that is expected to generate 80 elements

Infinity of the result of function readlines() depends on the attribute of the source stream:
it would be an Infinite Iterator if the stream is infinite while it would be a Finite Iterator for a
finite stream.

An iterator’s infinity may be derived from one to another. This happens with iterators that are
designed to manipulate values after retrieving them from other source iterator. For example,
method iterator#filter() returns an iterator that picks up elements based on the given
criteria. In the following code, y is a Finite Iterator that generates numbers 0, 2, 4, 6, 8 and
10.

tbl = 0..10

rtn = tbl.filter(&{$x % 2 == 0})

// rtn is finite

If the source iterator is infinite, the result iterator will be infinite too. In the code below, y is
an Infinite Iterator that generates even numbers indefinitely.

122

tbl = 0..

rtn = tbl.filter(&{$x % 2 == 0})

// rtn is infinite

14.3.3 Conversion into List

Embracing iterators with a pair of square brackets would make a list from them.

[0..5] // creates [0, 1, 2, 3, 4, 5]

You can specify any numbers of iterators in it as below.

[0..2, 5..7, 8..10] // creates [0, 1, 2, 5, 6, 7, 8, 9, 10]

It would occur an error if you try to create a list from Infinite Iterators.

[0..] // error!

Another way to create a list from an iterator is to use iterator#each() method with :list

attribute.

tbl = 0..5

tbl.each():list // returns [0, 1, 2, 3, 4, 5]

14.3.4 Operation on Elements

You can retrieve elements from an iterator by using method iterator#next().

tbl = 0..5

tbl.next() // returns 0

tbl.next() // returns 1

tbl.next() // returns 2

14.4 List-specific Manipulation

14.4.1 About This Section

This section explains about methods and ohter manipulation that are specific to lists.

14.4.2 Indexing Read from List

You can specify an index number starting from zero embraced by a pair of square brackets
to retrieve an element at the specified position. Multiple numbers for indexing can also be
specified to get a list of elements.

123

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[2] // returns ’two’

tbl[4] // returns ’four’

tbl[1, 3, 5] // returns [’one’, ’three’, ’five’]

You can also specify iterators and lists to get a list of elements. Numbers and iterators can be
mixed together as indexing items.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[2..4] // returns [’two’, ’three’, ’four’]

tbl[1..3, 5..7] // returns [’one’, ’two’, ’three’, ’five’, ’six’, ’seven’]

If you specify an infinite iterator as an indexing item, you would get elements within an available
range.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[5..] // returns [’five’, ’six’, ’seven’]

An index with a negative number points the position from the bottom, where -1 is the last
position.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[-1] // returns ’seven’

tbl[-2] // returns ’six’

Method list#first() returns the first item in the list and method list#last() the last item.
These have the same effect with index accesses by numbers 0 and -1 respectively.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl.first() // returns ’zero’

tbl.last() // returns ’seven’

You can use method list#get() for index access, which would be useful when used with
Member Mapping.

tbl = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

tbl::get(0) // returns [1, 4, 7]

14.4.3 Indexing Modification on List

An assignment to elements in a list through indexing access is also available.

If an indexing item is a single number, the element at the specified position will be modified.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[2] = ’2’

tbl[4] = ’4’

// tbl is [’zero’, ’one’, ’2’, ’three’, ’4’, ’five’, ’six’, ’seven’]

124

Multiple numbers can also be specified for indexing. In this case, if the assigned value is an
iterable, each element in the iterable will be stored at the specified positions in the target list.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[1, 3, 5] = [’1’, ’3’, ’5’]

// tbl is [’zero’, ’1’, ’two’, ’3’, ’four’, ’5’, ’six’, ’seven’]

If the assigned value is a scalar, the same value is stored at the positions.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[1, 3, 5] = ’1’

// tbl is [’zero’, ’1’, ’two’, ’1’, ’four’, ’1’, ’six’, ’seven’]

You can also specify an iterator as indexing item.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[1..3, 5..7] = [’1’, ’2’, ’3’, ’5’, ’6’, ’7’]

// tbl is [’zero’, ’1’, ’2’, ’3’, ’four’, ’5’, ’6’, ’7’]

When you specify an Infinite Iterator for an indexing item, all the elements in the assigned
iterable are stored at the specified position.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[5..] = [’5’, ’6’]

// tbl is [’zero’, ’one’, ’two’, ’three’, ’four’, ’5’, ’6’, ’seven’]

Negative number can also be specified for indexing.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl[-1] = ’7’

tbl[-2] = ’6’

// tbl is [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’6’, ’7’]

You can use method list#put() for index modification, which would be useful when used with
Member Mapping.

tbl = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

tbl::put(2, 99)

// tbl is [[1, 2, 99], [4, 5, 99], [7, 8, 99]]

14.4.4 Conversion into Iterator

Method list#each() returns an iterator that generates values based on the list’s elements.

tbl = [’one’, ’two’, ’three’, ’four’]

rtn = tbl.each()

// rtn is an iterator that generates ’one’, ’two’, ’three’ and ’four’.

125

14.4.5 Operation on Elements

Method list#isempty() will check if a list is empty or not.

tbl = []

tbl.isempty() // returns true

Both of methods list#add() and list#append() will add values to the target list. They have
the same behavior when they try to add a scalar value. Below is a sample of list#add():

tbl = [’one’, ’two’, ’three’]

tbl.add(’four’)

// tbl is [’one’, ’two’, ’three’, ’four’]

And a sample of list#append() is shown below:

tbl = [’one’, ’two’, ’three’]

tbl.append(’four’)

// tbl is [’one’, ’two’, ’three’, ’four’]

They have different results when they’re given with a list as an element to add. Method
list#add() adds the list itself to the target list as one of its elements.

tbl = [’one’, ’two’, ’three’]

tbl.add([’four’, ’five’, ’six’])

// tbl is [’one’, ’two’, ’three’, [’four’, ’five’, ’six’]]

Method list#append() adds each of the list’s element to the target list.

tbl = [’one’, ’two’, ’three’]

tbl.append([’four’, ’five’, ’six’])

// tbl is [’one’, ’two’, ’three’, ’four’, ’five’, ’six’]

Method list#clear() will create all the contet of the target list.

tbl = [’one’, ’two’, ’three’]

tbl.clear()

// tbl is []

Method list#erase() will erase elements at positions specified by its arguments. You can
specify multiple indices at which elements are erased.

tbl = [’zero’, ’one’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’]

tbl.erase(2, 4, 6)

// tbl is [’zero’, ’one’, ’three’, ’five’, ’seven’]

Method list#shift() erase the first element before it returns that value.

126

tbl = [’one’, ’two’, ’three’]

rtn = tbl.shift() // returns ’one’

// tbl is [’two’, ’three’]

list#flat()

list.zip()

14.5 Common Manipulation for Iterator and List

14.5.1 About This Section

This section explains about methods that are prepared for both iterators and lists. To make
descriptions simple, a pseudo class name iterable is used to represent list or iterator class.
For example, iterable#len() is an inclusive term for list#len() and iterator#len().

14.5.2 Inspection and Reduce

Method iterable#len() return the number of elements in the iterable.

Method iterable#count() takes an optional argument criteria with which elements would
be filtered out, and return the number of elements matching it. The method behaves differently
depends on a value given to criteria.

• If no value is specified for criteria, it would return the number of elements that can be
determined as true.

[true, false, true, true}.count() // returns 3

• If it takes a function, which takes one argument and returns a boolean value, it would
call the given function with each element’s value and count the number of true returned
from it.

[3, 1, 4, 1, 5, 9, 2, 6].count(&{$x < 4}) // returns 4

• If it takes a value other than function, it would return the number of elements that
equals to the given value.

[3, 1, 4, 1, 5, 9, 2, 6].count(1) // returns 2

Method iterable#contains() checks if the iterable contains the specified value in it.

tbl = [3, 1, 4, 1, 5, 9, 2, 6]

tbl.contains(1) // return true

tbl.contains(7) // return false

Methods iterable#and() and iterable#or() calculate logical AND and OR on the iterable’s
elements repectively. It regards false and nil as a false state, and other values as a true.

127

[true, true, true].and() // returns true

[true, false, true].and() // returns false

[3, 1, 4, 1, 5].and() // returns true

[true, false, true].or() // returns true

[nil, false, nil].or() // returns false

Classes list and iterator are equipped with some statistical operations described below:

• iterable#sum() calculates summation of elements in the iterable.

• iterable#average() calculates an average of elements in the iterable.

• iterable#stddev() calculates a standard deviation value of elements in the iterable.

• iterable#variance() calculates a variance value of elements in the iterable.

• iterable#max() and iterable#min() returns maximum and minimum value in the it-
erable.

Method iterable#join() would join all the strings in the iterable and returns the result. If
an element is not a string instance, it would be converted to a string before joined. It takes
an optional argument that specifies a string inserted between adjacent elements.

[’abc’, ’def’, ’ghi’].join() // returns ’abcdefhij’

[’abc’, ’def’, ’ghi’].join(’#’) // returns ’abc#def#hij’

Method iterable#reduce() is a generic one to summarize information from elements. It
takes a block procedure that is evaluated for each element with block parameters |x, accum|,
where x takes each element value and accum the result of the previous evaluation of the block.
The initial value of accum is specified by the method’s argument. For example, you can use
iterable#reduce() to implement a function that works similar with iterable#sum() as below.

my_sum(iter) = iter.reduce(0) {|x, accum| x + accum }

iterable#find()

14.5.3 Mapping Method

Method iterable#nilto() returns an iterator that replaces nil existing in the iterable into a
specified value. Note that this method doesn’t modify the target list.

rtn = [nil, 1, 2, nil, 3, 4].nilto(99)

// rtn is an iterator that generates 99, 1, 2, 99, 3, 4.

Method iterable#replace() returns an iterator that replaces elements matching to its first
argument with the value of its second argument. Note that this method doesn’t modify the
target list.

rtn = [3, 1, 4, 1, 5, 9, 2, 6].replace(1, 99)

// rtn is an iterator that generates 3, 99, 4, 99, 5, 9, 2, 6.

128

Method iterable#rank() returns an iterator that generates ranked number for each element
after sorted. The argument directive specifies sorting rule, which is described in a document
of iterable#sort().

rtn = [’apple’, ’grape’, ’orange’, ’banana’].rank()

// rtn is an iterator that generates 0, 2, 3, 1

Method iterable#map() returns an iterator that applies a function on each element. In general,
you can use Implicit Mapping to get the same result with this method.

14.5.4 Element Manipulation

This subsection explains about methods that changes the order of elements and extracts ele-
ments by a certain condition.

Method iterable#align() creates an iterator that picks up the specified number of elements
from the iterable.

rtn = [3, 1. 4, 1, 5, 9].align(3)

// rtn is an iterator that generates 3, 1, 4.

If the specified number is more than the length of the source iterable, the rests are filled with
nil value.

rtn = [3, 1. 4, 1, 5, 9].align(10)

// rtn is an iterator that generates 3, 1, 4, 1, 5, 9, nil, nil, nil, nil.

Method iterable#fold() creates an iterator that segments the iterable into group of lists
containing the specified number of elements.

rtn = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3].fold(3)

// rtn is an iterator that generates [3, 1, 4], [1, 5, 9], [2, 6, 5], [3].

Method iterable#filter() returns an iterator that picks up elements where the given argu-
ment criteria, a function or an iterable, is evaluated as true.

A function for criteria has a single argument that takes each element value and returns true
when it wants the value picked up.

f(x) = x < 4

tbl = [3, 1, 4, 1, 5, 9, 2]

rtn = tbl.filter(f)

// rtn is an iterator that generates 3, 1, 1, 2.

Using an anonymous function would make the code more simple.

tbl = [3, 1, 4, 1, 5, 9, 2]

rtn = tbl.filter(&{$x < 4})

// rtn is an iterator that generates 3, 1, 1, 2.

129

Method iterable#filter() can also take an iterator or a list of boolean elements as the
criteria. Using this feature, you can call the function as below:

tbl = [3, 1, 4, 1, 5, 9, 2]

rtn = tbl.filter(tbl < 4)

// rtn is an iterator that generates 3, 1, 1, 2.

Implicit Mapping works on the expression tbl < 4 that creates a list [true, true, false,

true, false, false, true]. Then, the method picks up elements of which corresponding
boolean value is true.

Method iterable#skipnil() creates an iterator that skips nil value.

rtn = [3, 1, nil, 4, 1, nil, nil, 5].skipnil()

// rtn is an iterator that generates 3, 1, 4, 1, 5.

Method iterable#skip() creates an iterator that skip the specified number between elements.

rtn = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3].skip(2)

// rtn is an iterator that generates 3, 1, 2, 3.

Method iterable#head() creates an iterator that picks up the specified number of elements
from the top.

rtn = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3].head(4)

// rtn is an iterator that generates 3, 1, 4, 1.

Method iterable#tail() creates an iterator that picks up the specified number of elements
from the bottom.

rtn = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3].tail(4)

// rtn is an iterator that generates 2, 6, 5, 3.

Method iterable#offset() creates an iterator that skip the specified number of elements from
the top.

rtn = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3].offset(5)

// rtn is an iterator that generates 9, 2, 6, 5, 3.

Method iterable#pingpong() creates an iterator that seeks elements from the top to the
bottom, then from the bottom to the top, and repeats.

rtn = [1, 2, 3, 4, 5].pingpong()

// rtn is an iterator that generates 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, ...

Method iterable#cycle() creates an iterator that repeatedly seeks elements from the top to
the bottom.

130

rtn = [1, 2, 3, 4, 5].cycle()

// rtn is an iterator that generates 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, ...

Method iterable#reverse() creates an iterator that seeks elements from the bottom to the
top.

rtn = [1, 2, 3, 4, 5].reverse()

// rtn is an iterator that generates 5, 4, 3, 2, 1.

Method iterable#runlength() examines how many times the same values continue. It creates
an iterator that generates a pair containing the number of how many times a value appears and
the value itself.

rtn = [’A’, ’A’, ’B’, ’B’, ’B’, ’C’, ’D’, ’D’].runlength()

// rtn is an iterator that generates [2, ’A’], [3, ’B’], [1, ’C’], [2, ’D’]

Method iterable#sort() sorts iterable’s elements in an ascending order.

rtn = [3, 1, 4, 1, 5, 9, 2, 6].sort()

// rtn is an iterator that generates 1, 1, 2, 3, 4, 5, 6, 9.

Specifying a symbol ‘descend in an argument of the method will sort elements in a descending
order.

rtn = [3, 1, 4, 1, 5, 9, 2, 6].sort(‘descend)

// rtn is an iterator that generates 9, 6, 5, 4, 3, 2, 1, 1.

Methods iterable#after(), iterable#since(), iterable#before(), iterable#until() and
iterable#while() create an iterator that picks up elements within a certain range. They take
an argument criteria that prompts where the range begins and ends. The criteria is the
same as that of iterable#filter() and may take a function or an iterable.

• An iterator by iterable#after() starts extraction of elements right after the criteria
is evaluated as true.

tbl = [3, 1, 4, 1, 5, 9, 2, 6, 5]

rtn = tbl.after(&{$x >= 5})

// rtn is an iterator that generates 9, 2, 6, 5.

• An iterator by iterable#since() starts extraction of elements at the point where the
criteria is evaluated as true.

tbl = [3, 1, 4, 1, 5, 9, 2, 6, 5]

rtn = tbl.since(&{$x >= 5})

// rtn is an iterator that generates 5, 9, 2, 6, 5.

• An iterator by iterable#before() carrys on extraction of elements until right before the
criteria is evaluated as true.

131

tbl = [3, 1, 4, 1, 5, 9, 2, 6, 5]

rtn = tbl.before(&{$x >= 5})

// rtn is an iterator that generates 3, 1, 4, 1.

• An iterator by iterable#until() carrys on extraction of elements until the point where
the criteria is evaluated as true.

tbl = [3, 1, 4, 1, 5, 9, 2, 6, 5]

rtn = tbl.until(&{$x >= 5})

// rtn is an iterator that generates 3, 1, 4, 1, 5.

• An iterator by iterable#while() carrys on extraction of elements while the criteria

is evaluated as true.

tbl = [3, 1, 4, 1, 5, 9, 2, 6, 5]

rtn = tbl.while(&{$x < 5})

// rtn is an iterator that generates 3, 1, 4, 1.

Method list#combination() creates an iterator that returns a group of all combinations of
elements extracted from the target list. It takes an argument that specifies the number of
elements to extarct.

rtn = [1, 2, 3, 4].combination(3)

// rtn is an iterator that generates [1, 2, 3], [1, 2, 4], [1, 3, 4], [2, 3, 4]

Method list#permutation() creates an iterator that returns a group of all permutations of
elements extracted from the target list. It takes an argument that specifies the number of
elements to extarct.

rtn = [1, 2, 3].permutation(2)

// rtn is an iterator that generates [1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]

If it omits the argument, all the elements would be extracted.

rtn = [1, 2, 3].permutation()

// rtn is an iterator that generates [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]

Method list#shuffle() returns a list in which elements are shuffled in a random order.

14.6 Iterator Generation

Function range() returns an iterator that generates numbers within the specified range.

range(10) // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

range(4, 10) // 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

range(0, 10, 2) // 0, 2, 4, 6, 8

132

Function interval() returns an iterator that generates the specified number of number values
between the prescribed range.

interval(1, 3, 5) // 1, 1.5, 2, 2.5, 3

Function consts() returns an iterator that generates the specified number of a constant value
of any type.

consts(’foo’, 3) // ’foo’, ’foo’, ’foo’

Function rands() returns an iterator that generates random number values.

rands(100) // random numbers between 0 and 99

133

Chapter 15

File Operation

15.1 Overview

Gura provides mechanism of Stream and Directory to work on files: Stream is prepared to
read and write content of a file and Directory to retrieve lists of files stored in some containers.
Here, a term ”file” is not limited to what is stored in a file system of an OS. You can also
use Stream and Directory to access files through networks and even ones stored in an archive
files. Gura provides a generic framework to handle these resources so that you can expand the
capabilities by importing Modules.

Each of Streams and Directories is associated with a uniquely identifiable string called path-
name. A framework called Path Manager is responsible of recognizing pathname for Stream
and Directory and dispatching file operations to appropriate processes that have been registered
by built-in and imported Modules.

15.2 Pathname

15.2.1 Acceptable Format of Pathname

A pathname is a string that identifies Stream and Directory, which should be handled by Path
Manager.

By default, built-in module fs has been registered to Path Manager, which tries to recognize a
pathname as what is for ones stored in a file system. Below are some of such examples:

/home/foo/work/example.txt

C:\Users\foo\source\main.cpp

You can use both a slash or a backslash as a directory separator for a file in file systems, which
is to be converted by fs module to what the current OS can accept. You can see variable
path.sep file to check what character is favorable to the OS.

15.2.2 Utility Functions to Parse Pathname

Function path.dirname() extracts a directory part by eliminating a file part from a pathname.

rtn = path.dirname(’/home/foo/work/example.txt’)

// rtn is ’/home/foo/work/’

134

If the pathname ends with a directory separator, the function determines it doesn’t contain a
file part and returns the whole string.

rtn = path.dirname(’/home/foo/work/’)

// rtn is ’/home/foo/work/’

Function path.filename() extracts a file part from a pathname.

rtn = path.fileame(’/home/foo/work/example.txt’)

// rtn is ’example.txt’

When given with a pathname that ends with a directory separator, the function determines it
doesn’t contain a file part and returns a null string.

rtn = path.filename(’/home/foo/work/’)

// rtn is ’’

Function path.split() splits a pathname by a directory separator and returns a list containing
its directory part and file part. This works the same as a combination of path.dirname() and
path.filename().

rtn = path.split(’/home/foo/work/example.txt’)

// rtn is [’/home/foo/work/’, ’example.txt’]

Function path.cutbottom() eliminates the last element in the directory hierarchy. This works
the same as path.dirname() when the pathname ends with a file part.

rtn = path.cutbottom(’/home/foo/work/example.txt’)

// rtn is ’/home/foo/work/’

Note that it would have a different result if the pathname ends with a directory separator.

rtn = path.cutbottom(’/home/foo/work/’)

// rtn is ’/home/foo/’

Function path.bottom() splits a pathname and returns the last element. This works the same
as path.filename() when the pathname ends with a file part.

rtn = path.bottom(’/home/foo/work/example.txt’)

// rtn is ’example.txt’

Note that it would have a different result if the pathname ends with a directory separator.

rtn = path.bottom(’/home/foo/work/’)

// rtn is ’work’

135

Function path.splitext() splits a pathname by a period existing last and returns a list con-
taining its preceding part and suffix part.

rtn = path.splitext(’/home/foo/work/example.txt’)

// rtn is [’/home/foo/work/example’, ’txt’]

Function path.absname() takes a relative path name in a file system and returns an absolute
name based on the current directory.

15.3 Stream

15.3.1 Stream Instance

A Stream is a data object to read and write content of a file and represented by a stream

instance created by a constructor function named stream(). Below shows a declaration of the
constructor function:

stream(pathname:string, mode?:string, codec?:codec):map {block?}

In many platforms and languages, people are accustom to using a term open as a function
name for opening a file, or a stream. So, function open() is provided as a complete synonym
for stream(), which has the same declaration with it.

open(pathname:string, mode?:string, codec?:codec):map {block?}

In many cases, this document uses function open() instead of stream() to create a stream

instance.

Function open() takes a pathname string as its argument and returns a stream instance.

fd = open(’foo.txt’)

// fd is a stream to read data from "foo.txt"

When it is called with its second argument mode set to ’w’, the function would create a new
file and returns a stream instance to write data into it.

fd = open(’foo.txt’, ’w’)

// fd is a stream to write data into "foo.txt"

A stream instance will be closed when method stream#close() is called on it.

fd.close()

When a stream for writing is closed, all the data stored in some buffer would be flushed out
before the instance is invalidated.

Method stream#close() would also be called automatically when the instance is destroyed
after its reference count decreases to zero. At times, it may be ambiguous about when the

136

instance is destroyed, so it may be better to use stream#close() explicitly when you want to
control the closing timing.

Another way to create and utilize a stream instance is to call open() function with a block
procedure that will take a stream instance through its block parameter.

open(’foo.txt’) {|fd|

// any jobs here

}

Using this description, you can access the created instance only within the block, which will be
automatically destroyed at the end of the procedure.

15.3.2 Cast from String to Stream Instance

If a certain function has an argument that expects a stream instance, you can pass it a string of a
pathname, which will automatically be converted to a stream instance by a casting mechanism.
The stream instance would be created as one for reading.

f(fd:stream) = {

// fd is a stream instance for reading

// any jobs here

}

f(’foo.txt’) // same as f(open(’foo.txt’))

If the argument is declared with :w attribute, the stream instance would be created for writing.

f(fd:stream:w) = {

// fd is a stream instance for writing

// any jobs here

}

f(’foo.txt’) // same as f(open(’foo.txt’, ’w’))

Attribute :r is also prepared to explicitly declara that the stream is to be opened for reading.

15.3.3 Stream Instance to Access Memory

Beside string, an instance of class that accesses data stored in memory can also be casted
to stream. These classes are binary, memory and pointer. Using this mechanism, you can
read/write memory content through stream methods.

Below is an example to cast binary to stream.

f(fd:stream) = {

// read/write access to content of buff through fd

}

buff = binary()

f(buff)

15.3.4 Stream Instance for Standard Input/Output

There are three stream instances for the access to standard input and output, which are assigned
to variables in sys module.

137

• sys.stdin . . . Standard input that retrieves data from key board.

• sys.stdout . . . Standard output that outputs texts to console screen.

• sys.stderr . . . Standard error output that outputs texts to console screen without inter-
ference of pipe redirection.

Functions print(), printf() and println() output texts to the stream sys.stdout. This
means that the following two codes would cause the same result.

println(’Hello world’)

sys.stdout.println(’Hello world’)

You can also assign a stream instance you create to these variables. Assignment to sys.stdout
would affect the behavior of functions such as println().

sys.stdout = open(’foo.txt’, ’w’)

println(’Hello world’) // result will be written into ’foo.txt’.

15.3.5 Stream with Text Data

There are fundamental functions that print texts out to standard output stream.

• Function print() takes multiple values that are to be printed out to sys.stdout in a
proper format.

• Function println() works the same as print() but also puts a line feed at the end.

• Function printf() works similar with C language’s printf() function and prints values
to sys.stdout based on format specifiers. See chapter String Operation for more details
about formatter.

Below is a sample code using above functions to get the same result each other.

n = 3, name = ’Tanaka’

print(’No.’, n, ’: ’, name, ’\n’)

println(’No.’, n, ’: ’, name)

printf(’No.%d: %s\n’, n, name)

Class stream is equipped with methods stream#print(), stream#println() and stream#printf()
that correspond to functions print(), println() and printf() respectively, but output result
to the target stream instread of sys.stdout. The code below outputs string to a file foo.txt.

n = 3, name = ’Tanaka’

open(’foo.txt’, ’w’) {|fd|

fd.print(’No.’, n, ’: ’, name, ’\n’)

fd.println(’No.’, n, ’: ’, name)

fd.printf(’No.%d: %s\n’, n, name)

}

Method stream#readline() returns a string containing one line of text from the stream. It
will return nil when it reaches to end of the stream, so you can write a program that prints
content of a file as below:

138

fd = open(’foo.txt’)

while (line = fd.readline()) {

print(line)

}

Regarding that you often need to read multiple lines from a stream, method stream#readlines()
may be more useful. It creates an iterator that returns each line’s string as its element. A pro-
gram to prints contet of a file comes as below:

fd = open(’foo.txt’)

lines = fd.readlines()

print(lines)

Using function readlines() that takes stream instance as its argument, you don’t need to
explicitly open a stream because of casting mechanism from string to stream. This is the
simplest way to read text files.

lines = readlines(’foo.txt’)

print(lines)

If you want to eliminate a line feed character that exists at each line, specify :chop attribute.

lines = readlines(’foo.txt’):chop

println(lines)

An iterator created by method stream#readlines() and function readlines() owns a refer-
ence to the stream instance because they’re designed to read data from it while iteration. This
means that the stream instance won’t be released while such iterator is running.

Consider the following code that is expected to read text from foo.txt and write text back to
the same file after converting alphabet characters to upper case.

lines = readlines(’foo.txt’)

open(’foo.txt’, ’w’).print(lines:*upper())

Unfortunately, this program doesn’t work correctly. The iterator lines owns a stream to read
content from the file foo.txt, which conflicts with the attempt to open foo.txt for writing.
To avoid this, you need to call readlines() function with :list attribute that reads whole
the lines from the stream before storing them to a list instance. The function would release
the stream and then return the list instance as its result.

lines = readlines(’foo.txt’):list

open(’foo.txt’, ’w’).print(lines:*upper())

Method stream#readtext() returns a string containing the whole content of the stream.

txt = fd.readtext()

139

As for the character sequence existing at each end of line in a file, two types of sequence are
acceptable: LF (0x0a) and CR(0x0d)-LF(0x0a). Some systems like Linux that have inherited
from UNIX uses LF code at line end while Windows uses CR-LF sequence. By default, the
following policies are applied so that the string read from a file would only contain LF code.

• When reading, all the CR codes are removed.

• When writing, there’s no modification about the sequence of end of line. This results in
a file containing only LF code.

To change this behavior, use methods stream#delcr() and stream#addcr(). If you want to
keep CR code from the read text, call stream#delcr() method with an argument set to false.

fd.delcr(false)

If you want to append CR code at each end of line in a file to write, call stream#addcr()
method with an argument set to true.

fd.addcr(true)

15.3.6 Character Codecs

While a string instance holds string data in UTF-8 format, there are various character code
sets to describe texts in files. To be capable of handling them, a stream instance may contain
an instance of codec class that is responsible of converting characters between UTF-8 and
those codes. You can specify a codec instance to a stream by passing it as a third argument
of open() function.

fd = open(’foo.txt’, ’r’, codec(’cp932’))

Since there’s a casting feature from string to codec instance, you can simply specify a codec
name to the argument as well.

fd = open(’foo.txt’, ’r’, ’cp932’)

Below is a table that shows what codecs are available and what module provides them.

Module Available Codec Names
codecs.basic base64, us-ascii, utf-8, utf-16
codecs.chinese big5, cp936, cp950, gb2312
codecs.iso8859 iso8859-1, .. iso8859-16
codecs.japanese cp932, euc-jp, iso-2022-jp, jis, ms kanji, shift jis

codecs.korean cp949, euc-kr

Codecs only have effect on methods to read/write text data that are summarized below:

stream#print(), stream#println(), stream#printf()

stream#readline(), stream#readlines(), stream#readtext()

140

The standard output/input streams, sys.stdin, sys.stdout and sys.stderr, must be equipped
with a codec of the character code set that the console device expects. While the detection of
a proper codec is done by a value of environment variable LANG or a result of some system API
functions, it may sometimes happen that you want to change codec in these. In such a case,
you can use stream#setcodec() like below:

sys.stdout.setcodec(’utf-8’)

15.3.7 Stream with Binary Data

In addition to methods to handle text data, class stream is equipped with methods to read/write
binary data as well.

Method stream#read() reads specified size of data into a binary instance and returns it. When
the stream reaches its end, the method returns nil.

open(’foo.bin’) {|fd|

while (buff = fd.read(512)) {

// some jobs with buff

}

}

Method stream#write() writes content of a binary instance to the stream.

open(’foo.bin’, ’w’) {|fd|

fd.write(buff)

}

Method stream#seek() moves the current offset at which read/write operations are applied.

Method stream#tell() returns the current offset.

Methods stream.copy(), stream#copyto() and stream#copyfrom() are responsible of copy-
ing data from a stream to another stream. They have the same result each other but take
stream instances in different ways. Below shows how they are called where src means a source
stream and dst a destination.

stream.copy(src, dst)

src.copyto(dst)

dst.copyfrom(src)

These methods can take a block procedure that takes binary instance containing a data segment
during the copy process. The size of a data segment can be specified by an argument named
bytesunit.

stream.copy(src, dst) {|buff:binary|

// any job during copying process

}

You can use the block procedure with the copying method to realize a indicator that shows how
much process the methods have done.

Method stream#compare() compares contents between two streams and returns true if there’s
no difference and false otherwise.

141

15.3.8 Filter Stream

A Filter Stream is what is attached to other stream instance and applies data modification
while reading or writing operation.

There are two types of Filter Stream: reader and writer.

A Filter Stream of reader type applies operation on methods for reading data including stream#read(),
stream#readline(), stream#readlines() and stream#readtext().

+--------+ +---------------+

| stream |--->| filter stream |---> (reading data)

| | | (reader) |

+--------+ +---------------+

A Filter Stream of writer type applies operation on methods for writing data including stream#write(),
stream#print(), stream#println() and stream#printf().

+--------+ +---------------+

| stream |<---| filter stream |<--- (writing data)

| | | (writer) |

+--------+ +---------------+

Module gzip provides functions to read and write files in gzip format, which usually have a
suffix .gz. Importing the module would add following methods to stream class.

• stream#gzipreader() returns a stream from which you can read data after decompress-
ing a sequence of gzip format from the attached stream.

• stream#gzipwriter() returns a stream to which you can write data that are to be
compressed to a sequence of gzip format into the attached stream.

Module bzip2 provides functions to read and write files in bzip2 format, which usually have a
suffix .bz2. Importing the module would add following methods to stream class.

• stream#bzip2reader() returns a stream from which you can read data after decompress-
ing a sequence of bzip2 format from the attached stream.

• stream#bzip2writer() returns a stream to which you can write data that are to be
compressed to a sequence of bzip2 format into the attached stream.

Module base64 provides functions to encode and decode files in Base64 format, which often
appear in protocols of network. It’s a build-in module that you can utilize without importing
and makes following methods available in stream class.

• stream#base64reader() returns a stream from which you can read data after decoding
a sequence of Base64 format from the attached stream.

• stream#base64writer() returns a stream to which you can write data that are to be
encoded to a sequence of Base64 format into the attached stream.

Following code is an example to read content of a file in gzip format:

import(gzip)

open(’foo.gz’) {|fd_gzip|

142

fd = fd_gzip.gzipreader()

// reading process from fd

fd.close()

}

These methods that generate a Filter Stream can accept a block procedure just like open()

function, in which you can take the instance of Filter Stream as a block parameter.

import(gzip)

open(’foo.gz’) {|fd_gzip|

fd_gzip.gzipreader {|fd|

// reading process from fd

}

}

Or simply, you can write it as below:

import(gzip)

open(’foo.gz’).gzipreader {|fd|

// reading process from fd

}

The same goes with a writing process. In this case, the attached stream must have a writing
attribute.

import(gzip)

open(’foo.gz’, ’w’) {|fd_gzip|

fd = fd.gzipwriter()

// writing process to fd

fd.close()

}

You can also attach a Filter Stream on yet another Filter Stream, which enables you to compose
a chain of stream. Following is a code to decode a sequence in Base64 and then decompress it
with gzip algorithm:

import(gzip)

open(’foo.gz.hex’) {|fd_hex|

fd_hex.base64reader().gzipreader {|fd|

// reading process from fd

}

}

Below shows a diagram of the process:

+--------+ +-----------------+ +---------------+

| stream |--->| filter stream |--->| filter stream |---> (reading data)

| | | (base64 reader) | | (gzip reader) |

+--------+ +-----------------+ +---------------+

You can construct a chain of stream for writing process, too.

143

import(gzip)

open(’foo.gz.hex’, ’w’) {|fd_hex|

fd_hex.base64writer().gzipwriter {|fd|

// writing process to fd

}

}

Below shows a diagram of the process:

+--------+ +-----------------+ +---------------+

| stream |<---| filter stream |<---| filter stream |<--- (writing data)

| | | (base64 writer) | | (gzip writer) |

+--------+ +-----------------+ +---------------+

15.3.9 Stream with Archive File and Network

After importing tarmodule, you can create a stream that reads an item stored in a TAR archive
file. When a pathname contains a filename suffixed with .tar, .tgz, .tar.gz or tar.bz2, it
would decompress the content in accordance with TAR format. The example below opens an
item named src/main.cpp in a TAR file foo/example.tar.gz.

import(tar)

open(’foo/example.tar.gz/src/main.cpp’) {|fd|

// reading process from fd

}

Since all the works necessary to decompress content of archive files are encapsulated in Path
Manager framework, you can access them just like an ordinary file in file systems. Below is an
example to print content of src/main.cpp in foo/example.tar.gz.

import(tar)

print(readlines(’foo/example.tar.gz/src/main.cpp’))

After importing zip module, you can create a stream that reads an item stored in a ZIP archive
file. When a pathname contains a filename suffixed with .zip, it would decompress the content
in accordance with ZIP format. The example below opens an item named src/main.cpp in a
TAR file foo/example.zip.

import(zip)

open(’foo/example.zip/src/main.cpp’) {|fd|

// reading process from fd

}

Importing curl module, which provides features to access network using curl library, or import-
ing http module would make Path Manager able to recognize URIs that begin with protocol
names like ”http” and ”ftp”.

import(curl)

open(’http://www.example.com/doc/index.html’) {|fd|

// reading process from fd

}

144

15.4 Directory

15.4.1 Operations

A Directory is a data object to seek a list of files and sub directories and is represented by
directory class. But currently, there’s few chance to utilize the directory instance explicitly
since it is usually built in other objects like iterators and hidden from users. One thing you have
to note about directory is that you can cast a string containing a pathname to directory

instance, so you can pass a pathname to an argument declared with directory type.

There are three functions that searches items like files and sub directories: path.dir(),
path.glob() and path.glob(). Consider the following directory structure to see how these
functions work.

example

|

+--dir-A

| +--file-4.txt

| ‘--file-5.txt

+--dir-B

| +--dir-C

| | +--file-6.doc

| | ‘--file-7.doc

| ‘--dir-D

+--file-1.txt

+--file-2.doc

‘--file-3.txt

Function path.dir() creates an iterator that returns pathname of items that exists in the
specified directory. For example, a call path.dir(’example’) create an iterator that returns
following strings.

example/dir-A/

example/dir-B/

example/file-1.txt

example/file-2.doc

example/file-3.txt

Function path.glob() creates an iterator that returns pathname of items matching the given
pattern with wild cards. For example, a call path.glob(’example/∗.txt’) create an iterator
that returns following strings.

example/file-1.txt

example/file-3.txt

Function path.walk() creates an iterator that seeks directory structure recursively and returns
pathname of items. For example, a call path.walk(’example’) create an iterator that returns
following strings.

example/dir-A/

example/dir-B/

example/file-1.txt

example/file-2.doc

example/file-3.txt

145

example/dir-A/file-4.txt

example/dir-A/file-5.txt

example/dir-B/dir-C/

example/dir-B/dir-D/

example/dir-B/dir-C/file-6.doc

example/dir-B/dir-C/file-7.doc

15.4.2 Status Object

By default, functions path.dir(), path.glob() and path.glob() create an iterator that re-
turns a string of pathname. Specifying :stat attribute would create an iterator generating an
object called stat that contains more detail information about items.

There are several different stat instances depending on the container in which an item exists,
which provide various properties for additional information as well as the item’s name.

An item in file system returns fs.stat instance that has following properties.

Property Name Data Type Content
pathname string

dirname string

filename string

size number

uid number

gid number

atime datatime

mtime datatime

ctime datatime

isdir boolean

ischr boolean

isblk boolean

isreg boolean

isfifo boolean

islnk boolean

issock boolean

The code below shows an example that prints each filename and size of items under a directory
example.

stats = path.dir(’example’):stat

printf(’%-16s %d\n’, stats:*filename, stats:*size)

15.4.3 Directory in Archive File

After importing tar module, you can get a list of items stored in a TAR archive file. The code
below prints all the items stored in example.tar.gz by path.walk().

println(path.walk(’example.tar.gz/’))

Note that you have to append a directory separator after the archive filename so that Path
Manager recognize it as a container, not an ordinary file.

An item in TAR archive file returns tar.stat instance that has following properties.

146

Property Name Data Type Content
name string

filename string

linkname string

uname string

gname string

mode number

uid number

gid number

size number

mtime datetime

atime datetime

ctime datetime

chksum number

typeflag number

devmajor number

devminor number

After importing zip module, you can get a list of items stored in a ZIP archive file. The code
below prints all the items stored in example.tar.gz by path.walk().

println(path.walk(’example.zip/’))

An item in ZIP archive file returns zip.stat instance that has following properties.

Property Name Data Type Content
filename string

comment string

mtime datetime

crc32 number

compression method number

size number
compressed size number

attributes number

15.5 OS-specific Operations

15.5.1 Operation on File System

Module fs provides functions that work with file systems.

Function fs.mkdir() creates a directory. If there are non-existing directories in the specified
pathname, it would occur an error. Specifying attribute :tree would create intermediate
directories in the pathname if they don’t exist.

Function fs.rmdir() removes a directory. If the specified directory contains files or sub direc-
tories, it would occur an error. Specifying attribute :tree would remove all such items before
deleting the specified directory.

Function fs.remove() removes a file.

Function fs.rename() rename a file or a directory.

Function fs.chmod() modifies attribute of a file or a directory.

Function fs.cpdir() copies content of a directory to another directory.

147

15.5.2 Execute Other Process

Function os.exec() executes a process and waits until it finishes. While the process runs, its
standard output and standard error are redirected to streams defined by variables os.stdout
and os.stderr, and its standard input is redirected from os.stdin. By default, variables
os.stdin, os.stdout and os.stderr are assigned with sys.stdin, sys.stdout and sys.stderr
respectively. You can modify those variables to retrieve console output from the process and
feed text data to it through standard input. Below is an example to run an executable foo

after redirecting the standard output to a memory buffer.

buff = binary()

saved = os.stdout

os.stdout = buff.writer()

os.exec(’foo’)

os.stdout = saved

print(os.fromnative(buff))

Function os.fromnative() converts binary instance that contains a raw data from the process
to a string in UTF-8 format.

148

Chapter 16

Network Operation

16.1 Overview

curl module

http module

client-side and server-side

16.2 Client-side Operation

You can download files via HTTP protocol using a generic stream-copy function copy. Below
is the example.

import(http)

copy(’http://sourceforge.jp/’, ’sf.html’)

If you want to use a proxy server, you need to specify a server setting using http.addproxy like
follows.

import(http)

http.addproxy(’xx.xx.xx.xx’, 8080, ’username’, ’password’)

copy(’http://sourceforge.jp/’, ’sf.html’)

16.3 Server-side Operation

Simple Example:

import(http)

text = R’’’

<html>

<body>

Welcome to Gura server

</body>

</html>

’’’

149

http.server(port => 8000).wait {|req|

println(req.uri)

req.response(’200’, nil, text.encode(’utf-8’),

’Cache-Control’ => ’private’

’Server’ => ’Gura_HTTP_Server’

’Connection’ => ’Keep-Alive’

’Content-Type’ => ’text/html’)

}

The following example works as a HTTP server, which generates a graph that shows values in
SQLite3 database temperature.sqlite3.

import(re)

import(cairo)

import(http)

import(png)

import(sqlite3)

makeGraph(iSites[]:number) = {

Item = struct(day:number, temps*:number)

tbl = Item * sqlite3.db(’temperature.sqlite3’).query(’select * from sites’)

img = image(‘rgba, 320, 320, ‘white)

[wdAxis, htAxis] = [img.width * 0.9, img.height * 0.9]

[xAxis, yAxis] = [(img.width - wdAxis) / 2, (img.height - htAxis) / 2]

[dayMax, dayMin] = [tbl:*day.max(), tbl:*day.min()]

dayRange = dayMax - dayMin

[tempMax, tempMin] = [tbl:*temps:*max().max(), tbl:*temps:*min().min()]

tempRange = tempMax - tempMin

calcX(day) = xAxis + (day - dayMin) * wdAxis / dayRange

calcY(temp) = yAxis + htAxis - (temp - tempMin) * htAxis / tempRange

img.cairo {|cr|

cr.set_line_width(img.height / 300)

cr.rectangle(xAxis, yAxis, wdAxis, htAxis).stroke()

cr.save {

cr.set_dash([img.height / 200, img.height / 200], 0)

cr.move_to(xAxis, calcY(0)).line_to(xAxis + wdAxis, calcY(0))

cr.stroke()

}

for (iSite in iSites) {

func = cr.move_to

for (item in tbl) {

func(calcX(item.day), calcY(item.temps[iSite]))

func = cr.line_to

}

cr.stroke()

}

}

img

}

http.server(port => 80).wait {|req|

iSites = [0]

query = req.query

if (query.haskey(’site’)) {

iSites = tonumber(query[’site’].split(’,’):list)

}

buff = binary()

makeGraph(iSites).pngwrite(buff)

req.response(’200’, nil, buff,

’Server’ => ’Gura_HTTP_Server’ ’Connection’ => ’close’)

150

}

After the script runs, it waits for HTTP requests. Launch a Web browser and access to it as
like http://localhost/?site=0,1. If you try it on Linux, you have to run the script as a root user
or replace the port number with one larger than or equal to 1024.

151

Chapter 17

Image Operation

17.1 Overview

17.2 Image Instance

An instance of image class contains image data and provides functions such as reading/writing
image files, resizing and rotating.

An image instance can be created by a constructor function image. Calling image function
with an argument that specifies a stream containing an image data would read that data. The
code below reads a JPEG file and write it in PNG format.

import(jpeg)

import(png)

image(’foo.jpg’).write(’foo.png’)

Before image function, you have to import a module that can handle an image type. The
following table shows image types and associated module names.

Image Type Module Added Methods to image

BMP bmp bmpread, bmpwrite
JPEG jpeg jpegread, jpegwrite
GIF gif gifread, gifwrite
PNG png pngread, pngwrite
Microsoft Icon msico msicoread, msicowrite
PPM ppm ppmread, ppmwrite
XPM xpm xpmdata, xpmwrite
TIFF tiff tiffread

Importing those modules also add methods to image class like jpegmodule adding image#jpegread
and image#jpegwrite.

17.3 Format-specific Operations

17.4 JPEG

EXIF

152

17.5 GIF

Here is a JPEG image file that contains animation frames: cat-picture.jpg.

(Any size of picture would be acceptable if only all the frames have the same size and are aligned
at regular invervals.)

The program needs to do the following jobs.

• Reads a JPEG file as a source image.

• Reduces number of colors in the image down to 256 so that it suits GIF specification.

• Creates a GIF content.

• Divides the source image into frames and adds them to the GIF content.

• Writes the GIF content to a file.

And here is the script code:

import(jpeg)

import(gif)

delayTime = 12 // interval time in 1/100 seconds

[nx, ny] = [6, 2] // number to divide a source image

img = image(’cat-picture.jpg’).reducecolor(‘win256)

[w, h] = [img.width / nx, img.height / ny]

i = range(nx * ny)

xs = (i % nx) * w

ys = int(i / nx) * h

imgFrames = img.crop(xs, ys, w, h)

gif.content().addimage(imgFrames, delayTime).write(’cat-anim.gif’)

It utilizes Implicit Mapping feature to process frame images. If you’re interested in what’s
running in the code, trace the variable imgFrames about how it’s created by image#crop() and
how it’s processed in gif.content#addimage().

cat-anim.gif

17.6 Cairo

17.6.1 Simple Example

Here is a simple example using Cairo.

import(cairo)

import(show)

img = image(‘rgba, 300, 300)

img.cairo {|cr|

cr.scale(img.width, img.height)

cairo.pattern.create_linear(0, 0, 1, 1) {|pat|

pat.add_color_stop_rgb(0, 0, 0, 0)

pat.add_color_stop_rgb(1, 1.0, 1.0, 1.0)

cr.set_source(pat)

}

cr.rectangle(0.1, 0.1, 0.8, 0.8)

153

cr.fill()

}

img.show()

17.6.2 Render in Exisiting Image

The following is an example that performs reading a JPEG file, drawing something on it with
Cairo APIs and writing it out as a JPEG file.

import(jpeg)

import(cairo)

I(filename:string) = path.join(sys.datadir, ’sample/resource’, filename)

img = image(I(’Winter.jpg’))

img.cairo {|cr|

repeat (10) {|i|

[x, y, r] = [128 + 30 * i, 128 + 30 * i, 60 - i * 4]

pat = cairo.pattern_create_radial(

x - r / 10, y - r / 6, r / 5, x - r / 6, y - r / 6, r * 1.2)

pat.add_color_stop_rgba(0, 1, 1, 1, 1)

pat.add_color_stop_rgba(1, 0, 0, 0, 1)

cr.set_source(pat)

cr.arc(x, y, r)

cr.fill()

}

}

img.write(’result.jpg’)

17.6.3 Output Animation GIF File Combining Multiple Image Files

You can create a GIF file that has a dynamically produced image. The example below shows
how to output an animation GIF file that contains images created by Cairo APIs.

import(cairo)

import(gif)

str = ’Hello’

img = image(‘rgba, 64, 64, ‘white)

gifobj = gif.content()

img.cairo {|cr|

cr.select_font_face(’Georgia’, cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_BOLD)

cr.set_font_size(64)

te = cr.text_extents(str)

cr.set_source_rgb(0.0, 0.0, 0.0)

for (x in interval(64, -te.width, 30)) {|i|

img.fill(‘white)

cr.move_to(x, 50)

cr.show_text(str)

gifobj.addimage(img.clone(), 10)

}

}

gifobj.write(’anim2.gif’)

17.6.4 More Sample Scripts

You can find sample scripts using Cairo on GitHub repository.

154

17.7 OpenGL

17.7.1 Sample Script

Gura supports APIs of OpenGL 1.1.

The following example has been ported from one of the samples in http://www.wakayama-
u.ac.jp/ tokoi/opengl/libglut.html.

import(glu) {*}

import(opengl) {*}

import(gltester)

vertex = [

[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0]

[0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1]

]

init(w:number, h:number) = {

glClearColor(1, 1, 1, 1)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST, GL_CULL_FACE)

glEnable(GL_LIGHTING, GL_LIGHT0, GL_LIGHT1)

glCullFace(GL_FRONT)

glViewport(0, 0, w, h)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

gluPerspective(30, w / h, 1, 100)

}

display(degree:number) = {

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

gluLookAt(3, 4, 5, 0, 0, 0, 0, 1, 0)

glRotated(degree, 1, 1, 0)

glMaterialfv(GL_FRONT_AND_BACK,

GL_AMBIENT_AND_DIFFUSE, [0.8, 0.2, 0.2, 1])

glBegin(GL_QUADS) {

glNormal3dv([0, 0, -1]), glVertex3dv(vertex[0, 1, 2, 3])

glNormal3dv([1, 0, 0]), glVertex3dv(vertex[1, 5, 6, 2])

glNormal3dv([0, 0, 1]), glVertex3dv(vertex[5, 4, 7, 6])

glNormal3dv([-1, 0, 0]), glVertex3dv(vertex[4, 0, 3, 7])

glNormal3dv([0, -1, 0]), glVertex3dv(vertex[4, 5, 1, 0])

glNormal3dv([0, 1, 0]), glVertex3dv(vertex[3, 2, 6, 7])

}

}

degree = 0

[width, height] = [300, 300]

gltester.mainloop(width, height, 0, ‘idle) {

‘onDraw => function {

init(width, height)

display(degree)

}

‘onKeyPoll => %{

‘left => function { degree += 1 }

‘right => function { degree -= 1 }

}

}

Execution result.

155

17.7.2 More Sample Scripts

You can find sample scripts using OpenGL on GitHub repository, which have been ported from
SGI.

156

Chapter 18

Graphical User Interface

18.1 Overview

wxWidgets

Tk

SDL

18.2 wxWidgets

18.2.1 About wxWidgets

Gura’s wx module uses libraries of wxWidgets 3.0.0.

18.2.2 Simple Example

The code below is the simplest example that shows an empty window.

import(wx)

MyApp = class(wx.App) {

OnInit() = {

frame = MyFrame(’Button Test’, size => wx.Size(200, 100))

frame.Show()

true

}

}

MyFrame = class(wx.Frame) {

__init__(title:string, pos:wx.Point => wx.DefaultPosition,

size:wx.Size => wx.DefaultSize) = {|nil, wx.ID_ANY, title, pos, size|

wx.Button(this, wx.ID_ANY, ’Push Me’)

}

}

wx.IMPLEMENT_APP(MyApp)

An application using wx module must create a class that derives from wx.App and implement
OnInit() method in it. The method is responsible of initializing GUI-related resource and
creating a main frame. It should return true at the end if no error occurs.

157

In the above example, the main frame is declared by a class MyFrame that derives from wx.Frame,
which has a constructor function including an instance creation of wx.Button contol. You can
create any necessary controls within the constructor.

An application class is realized by calling wx.IMPLEMENT APP, which runs a main loop in it.

18.2.3 Event Handling

There are several ways to address event handling. The first one is to call wx.Window#Bind
method to the control instance like below.

import(wx)

MyApp = class(wx.App) {

OnInit() = {

frame = MyFrame(’Button Test’, size => wx.Size(200, 100))

frame.Show()

true

}

}

MyFrame = class(wx.Frame) {

__init__(title:string, pos:wx.Point => wx.DefaultPosition,

size:wx.Size => wx.DefaultSize) = {|nil, wx.ID_ANY, title, pos, size|

ctrl = wx.Button(this, wx.ID_ANY, ’Push Me’)

ctrl.Bind(wx.EVT_BUTTON) {|event|

wx.MessageBox(’Button was pushed’, ’Button Test’, wx.OK, this)

}

}

}

wx.IMPLEMENT_APP(MyApp)

You need to specify an event type like wx.EVT BUTTON as an argument for wx.Window#Bind

method and also describe a procedure that will be evaluated when the event occurs as its block.
You may specify a block parameter event, which will take an instance of wx.CommandEvent
class at the block’s evaluation. Even though the button controls doesn’t offer much information
with the event instance, more complicated controls could include more data in it.

Another approach is to assign unique identifiers to controls and let the parent window to handle
events that are sent from them. The example comes like this:

import(wx)

MyApp = class(wx.App) {

OnInit() = {

frame = MyFrame(’Button Test’, size => wx.Size(200, 100))

frame.Show()

true

}

}

MyFrame = class(wx.Frame) {

[

ID_BTN_PushMe

] = wx.NewIds()

__init__(title:string, pos:wx.Point => wx.DefaultPosition,

size:wx.Size => wx.DefaultSize) = {|nil, wx.ID_ANY, title, pos, size|

ctrl = wx.Button(this, ID_BTN_PushMe, ’Push Me’)

158

this.Bind(wx.EVT_BUTTON, ID_BTN_PushMe) {|event|

wx.MessageBox(’Button was pushed’, ’Button Test’, wx.OK, this)

}

}

}

wx.IMPLEMENT_APP(MyApp)

The function wx.NewIds generates as many unique identifers as you want. You can specify
one of them to the second argument of a control constructor and also the second argument of
window#Bind method. The identifier is necessary because the parent window must determine
what control has issued the event.

18.2.4 Layout Management

You can use classes derived from wx.Sizer to arrange controls’ size and position.

import(wx)

MyApp = class(wx.App) {

OnInit() = {

frame = MyFrame(’Button Test’, size => wx.Size(200, 200))

frame.Show()

true

}

}

MyFrame = class(wx.Frame) {

__init__(title:string, pos:wx.Point => wx.DefaultPosition,

size:wx.Size => wx.DefaultSize) = {|nil, wx.ID_ANY, title, pos, size|

vbox = wx.BoxSizer(wx.VERTICAL)

this.SetSizer(vbox)

ctrl = wx.Button(this, wx.ID_ANY, ’First’)

vbox.Add(ctrl, wx.SizerFlags(1).Expand())

ctrl = wx.Button(this, wx.ID_ANY, ’Second’)

vbox.Add(ctrl, wx.SizerFlags(1).Expand())

ctrl = wx.Button(this, wx.ID_ANY, ’Third’)

vbox.Add(ctrl, wx.SizerFlags(1).Expand())

}

}

wx.IMPLEMENT_APP(MyApp)

wx.BoxSizer is one the sizer classes that layouts controls in a direction, either vertical or
horizontal. A top-level sizer must be associated to the window by window#SetSizer method.
And then, you can put each control under the sizer’s management by calling wx.Sizer#Add

method. The method takes a wx.SizerFlags instance as its second argument, with which you
can specify how the control’s size is arranged.

18.2.5 More Sample Scripts

You can find sample scripts using wxWidgets on GitHub repository.

159

18.3 Tk

18.3.1 About Tk

Gura provides modules named tcl and tk that use Tcl/Tk library for GUI programming.

18.3.2 Simple Example

The following example creates a window that has one Button widget.

import(tk)

tk.mainwindow() {|mw|

mw.Button(text => ’Push me’) {|w|

w.pack()

w.bind(‘command) {

w.tk$MessageBox(title => ’event’, message => ’hello’)

}

}

}

tk.mainloop()

18.3.3 Sample Script

The code below is a drawing program. I have ported it from a sample in TkDocs.

import(tk)

tk.mainwindow() {|mw|

mw.Canvas(bg => ’white’) {|c|

c.pack(fill => ’both’, expand => true)

[lastx, lasty] = [0, 0]

color = ’black’

c.bind(’<1>’) {|x:number, y:number|

[lastx, lasty] = [x, y]

}

c.bind(’<B1-Motion>’) {|x:number, y:number|

addLine(x, y)

}

addLine(x:number, y:number) = {

extern(lastx, lasty)

c.Line(lastx, lasty, x, y, fill => color, width => 3)

[lastx, lasty] = [x, y]

}

setColor(colorNew:string) = {

color:extern = colorNew

}

function(color:string, y:number):map {

c.Rectangle(10, y, 30, y + 20, fill => color) {|item|

item.bind(’<1>’) { setColor(color) }

}

}([’red’, ’blue’, ’black’], 10 + (0..) * 25)

}

}

tk.mainloop()

Sample result.

160

18.3.4 More Sample Scripts

You can find sample scripts using Tk on GitHub repository.

18.4 SDL

18.4.1 About SDL

Gura provides a module named sdl that uses SDL library.

SDL, Simple DirectMedia Layer, is a cross-platform development library designed to provide
low level access to audio, keyboard, mouse, joystick, and graphics hardware via OpenGL and
Direct3D.

18.4.2 Simple Example

The following script only shows a blank window by using SDL.

import(sdl)

sdl.Init(sdl.INIT_EVERYTHING)

screen = sdl.SetVideoMode(640, 480, 16, sdl.SWSURFACE)

repeat {

event = sdl.WaitEvent()

(event.type == sdl.QUIT) && break

}

At first, you have to initialize SDL’s status by calling sdl.Init. Then, calling sdl.SetVideoMode
with screen size and depth in its arguments will show a window.

Unlike other GUI platform, SDL requires you to implement an event handling loop explicitly.
The function sdl.WaitEvent would wait until some events come in and returns an instance of
sdl.Event class that contains event type and related information.

18.4.3 More Sample Scripts

You can find sample scripts using SDL on GitHub repository.

161

Chapter 19

Mathematic Functions

This section summarizes mathematic functions.

19.1 Complex Number

A number literal followed by suffix j becomes an imaginary part of a complex value.

>>> (1 - 2j) * (3 + 1j)

5 - 5j

19.2 Rational Number

A number literal followed by suffix r becomes a rational value with which you can do faction
calculations.

>>> 2 / 3r + 1 / 2r

7/6r

19.3 Big Number

Importing gmp module would add following suffixes:

• Suffix L creates a gmp.mpz or gmp.mpf instances that can calculate numbers with variable-
length digits.

• Suffix Lr creates a gmp.mpq instance that can calculate rational value with variable-length
digits.

19.4 Differentiation Formula

When a function is declared with a body that contains math calculation, you can get a dif-
ferentiation formula from it using function#mathdiff() method. Assumes that you have the
following function:

162

>>> f(x) = math.sin(x ** 2)

Then, you can call function#mathdiff() method for it like following:

>>> g = f.mathdiff()

The newly created function g(x) is one that does differential calculation of f(x). You can
examine what body it has by seeing function#expr property.

>>> g.expr

‘(math.cos(x ** 2) * (2 * x))

The table below shows what differentiation formulas are obtained from original math functions:

163

Original Differentiation Forumula
x ∗∗ 2 2 ∗ x

x ∗∗ 3 3 ∗ x ∗∗ 2

x ∗∗ 4 4 ∗ x ∗∗ 3

a ∗∗ x math.log(a) ∗ a ∗∗ x

math.sin(x) math.cos(x)

math.cos(x) -math.sin(x)

math.tan(x) 1 / math.cos(x) ∗∗ 2

math.exp(x) math.exp(x)

math.log(x) 1 / x

math.log10(x) 1 / (x ∗ math.log(10))

math.asin(x) 1 / math.sqrt(1 - x ∗∗ 2)

math.acos(x) (-1) / math.sqrt(1 - x ∗∗ 2)

math.atan(x) 1 / (1 + x ∗∗ 2)

math.sqrt(x) 1 / (2 ∗ math.sqrt(x))

math.sin(x) ∗∗ 2 math.cos(x) ∗ 2 ∗ math.sin(x)

math.sin(x ∗∗ 2) math.cos(x ∗∗ 2) ∗ (2 ∗ x)

math.log(math.sin(x)) math.cos(x) / math.sin(x)

x ∗∗ 2 ∗ math.sin(x) 2 ∗ x ∗ math.sin(x) + x ∗∗ 2 ∗ math.cos(x)

math.sin(x) / (x ∗∗
2)

(math.cos(x) ∗ x ∗∗ 2 - math.sin(x) ∗ (2 ∗ x)) / (x

∗∗ 4)

3 ∗∗ (2 ∗ x) 2 ∗ math.log(3) ∗ 3 ∗∗ (2 ∗ x)

math.log(x ∗∗ 2 + 1) 2 ∗ x / (x ∗∗ 2 + 1)

((x - 1) ∗∗ 2 ∗ (x -

2) ∗∗ 3) / ((x - 5)

∗∗ 2)

(((2 ∗ (x - 1) ∗ (x - 2) ∗∗ 3 + (x - 1) ∗∗ 2 ∗ (3 ∗
(x - 2) ∗∗ 2)) ∗ (x - 5) ∗∗ 2 - (x - 1) ∗∗ 2 ∗ (x -

2) ∗∗ 3 ∗ (2 ∗ (x - 5))) / (x - 5) ∗∗ 4)

math.sin(2 ∗ x - 3) math.cos(2 ∗ x - 3) ∗ 2

math.cos(x) ∗∗ 2 -(math.sin(x) ∗ 2 ∗ math.cos(x))

(2 ∗ x - 1) ∗∗ 3 6 ∗ (2 ∗ x - 1) ∗∗ 2

math.sqrt(x ∗∗ 2 + 2

∗ x + 3)

(2 ∗ x + 2) / (2 ∗ math.sqrt(x ∗∗ 2 + 2 ∗ x + 3))

1 / x (-1) / x ∗∗ 2

math.exp(x) +

math.exp(-x)

math.exp(x) - math.exp(-x)

math.exp(x) -

math.exp(-x)

math.exp(x) + math.exp(-x)

(math.sin(x + 2) + x

+ 2) ∗ (math.sin(x +

3) + x + 3)

(math.cos(x + 2) + 1) ∗ (math.sin(x + 3) + x + 3) +

(math.sin(x + 2) + x + 2) ∗ (math.cos(x + 3) + 1)

math.sin(math.sin(x

∗∗ 2 / 3))

math.cos(math.sin(x ∗∗ 2 / 3)) ∗ (math.cos(x ∗∗ 2 /

3) ∗ (2 ∗ x ∗ 3 / 9))

(2 ∗ x - 1) / x ∗∗ 2 (2 ∗ x ∗∗ 2 - (2 ∗ x - 1) ∗ (2 ∗ x)) / x ∗∗ 4

164

Chapter 20

Template Engine

20.1 Overview

Sometimes, you may want to daynamically generate text from a template that contains some
variable fields. You can use Template Engine to embed Gura scripts within a text for such
purposes.

20.2 How to Invoke Template Engine

There are two ways to invoke Template Engine as below:

• In a command line, launch Gura intepreter with -T option and a template file containing
embedded scripts.

• In a script, create a template instance in a script with which you can control the engine.

20.2.1 Invoke from Command Line

Consider a template file sample.tmpl that contains the below text content containing an em-
bedded script:

[sample.tmpl]

Current time is ${datetime.now().format(’%H:%M:%S’)}.

From a command line, execute the Gura interpreter with the option -T followed by the file
name as below:

$ gura -T sample.tmpl

This would evaluate the file with the engine that renders the result to the standard output like
below:

Current time is 12:34:56.

165

20.2.2 Invoke from Script

In a script, you can create a template instance to work with the engine. Below is an example
to read the above sample file and create the instance:

tmpl = template(’sample.tmpl’)

Then, you can render the result of the template with template#render() method. Below is
an example to put the result to standard output:

tmpl.render(sys.stdout)

If the method takes no argument, it would return the result as a string.

result = tmpl.render()

It may sometimes happen that you want to describe a template containing embedded scripts as
a string value in a script. The string class provides method string#template() that create
a template instance from the string.

str = ’Current time is ${datetime.now().format(’%H:%M:%S’)}.’

result = str.template().render()

As it’s thought to be a common process to create a template instance from a string and then
render it, a utility method called string#embed() is prepared. The above code can also be
writen as below:

str = ’Current time is ${datetime.now().format(’%H:%M:%S’)}.’

result = str.embed()

20.3 Embedded Script

When the engine finds a region surrounded by borders ”${” and ”}” in a template, that would be
recognized as an embedded script in which you can put any number and any type of expressions
as long as the embedded script has a final result value of one of the following types:

• string

• number

• nil

• a list or iterator of string

• a list of iterator of number

An error occurs if the embedded script has any other types of value.

If the embedded script has no element in it, it would render nothing. Below is an example:

Template:

166

Hello${}World

Result:

HelloWorld

If the embedded script has a string value, it would render that string.

Template:

Hello ${’gura’} World

Result:

Hello gura World

As the content of the embedded script is an ordinary script, it can contain any number and any
types of expressions including variable assignments and function calls.

Template:

Hello ${str = ’gura’, str.upper()} World

Result:

Hello GURA World

The embedded script can be written in free format as for inserted spaces, indentations and line
breaks. The format of the script doesn’t affect the rendering result as long as they’re described
within borders of a embedded script.

Template:

Hello ${

str = ’gura’

str.upper()

} World

Result:

Hello GURA World

If the embedded script has a number value, the engine converts the result into a string before
rendering.

Template:

167

Calculation: ${3 + 4 * 2}

Result:

Calculation: 11

If the embedded script has a value of nil, it would render nothing.

Template:

Hello${nil}World

Result:

HelloWorld

If the result is a list or iterator, the engine would render each element in it.

Template:

Hello ${[’1st’, ’2nd’, ’3rd’]} World

Result:

Hello 1st2nd3rd World

This feature would be useful when used in combination with iterator operations such as Implicit
Mapping. Below is an example to render the content of an external text file with line numbers:

Template:

Here is the content of foo.txt:

${format(’%d: %s’, 1.., readlines(’foo.txt’))}

20.4 Indentation

If an embedded script that has a string containing multiple lines appears first in a line and is
preceded by white spaces or tabs, each line would be indented with the preceding spaces.

Template:

Lines:

${’1st\n2nd\n3rd\n’}

Result:

168

Lines:

1st

2nd

3rd

When the embedded script has a list or iterator of string including line breaks, each element
would also be indented.

Template:

Lines:

${[’1st\n’, ’2nd\n’, ’3rd\n’]}

Result:

Lines:

1st

2nd

3rd

20.5 Rendering nil Value

An embedded script that has nil value would render nothing just like an empty string.

Template:

nil${nil}-ahead

empty${’’}-ahead

Result:

nil-ahead

empty-ahead

If an embedded script that has nil value appears at the end of a line, it would defeat the
trailing line break while an empty string would not.

Template

nil${nil}

-ahead

empty{’’}

-ahead

Result:

169

nil-ahead

empty

-ahead

If an embedded script that has nil value is an only element in a line, nothing would be rendered
for the line even if it’s preceded by white spaces.

Template

Hello

${nil}

World

Result:

Hello

World

Utilizing these rules of nil, some functions and methods are designed to return nil value so
that it doesn’t affect the rendering result.

The nil rules may sometimes have to be applied when you describe embedded scripts. Consider
the following template that has an embedded script to initialize variables x and y:

Template:

${x = 2, y = 3}

Hello World

Result:

3

Hello World

You would see an unexpected result that the embedded script renders ”3” caused by the evalu-
ation result of the last expression ”y = 3”. To avoid this, put nil at the last of the embedded
script as below:

Template:

${x = 2, y = 3, nil}

Hello World

Result:

Hello World

A symbol ”-” is defined as nil so that it can be used as a terminator for such scripts.

Template:

170

${x = 2, y = 3, -}

Hello World

Result:

Hello World

20.6 Calling Function with Block

The engine can also call a function with a block that usually appears surrounded by ”{” and
”}” in an ordinary script.

In a template text, a block starts implicitly after a function call that expects a mandatory block
and ends with a call of a function named end.

Consider a function repeat() that repeats the procedure of the given block for the specified
times. A template that repeats a text ”repeated” with a line-break for 4 times comes like
below:

Template:

${repeat (4)}

repeated

${end}

Result:

repeated

repeated

repeated

repeated

Besides the function end, some functions declared with :trailer attribute such as elsif and
else can work as a block terminator. A branch sequence of if-elsif-else could be described
like below:

Template:

${if (..)}

if-clause

${elsif (..)}

elsif-clause

${else}

else-clause

${end}

Below is an example that uses repetitions and branches in a more practical context:

Template:

${for (i in 1..5)}

${if (i < 2)}

171

${i} is less than two

${elsif (i < 4)}

${i} is less than four

${else}

${i} is greater or equal to four

${end}

${end}

Result:

1 is less than two

2 is less than four

3 is less than four

4 is greater or equal to four

5 is greater or equal to four

With the function repeat(), you can take an index number during the repetition using a block
paramter like below:

repeat(4) {|i|

println(’repeated #’, i)

}

In a template, such block parameters should be described in a block containing only a block
parameter list within an embedded script.

Template:

${repeat(4) {|i|}}

repeated #${i}

${end}

Result:

repeated #0

repeated #1

repeated #2

repeated #3

Some functions like range() can take an optional block, not a mandatory one, which doesn’t
give Template Engine any information on whether a block should be followed. To give such a
function a block, specify an empty block ”{}” in an embedded script.

Template:

${range(4) {}}

repeated

${end}

Result:

repeated

repeated

repeated

repeated

172

20.7 Template Directive

An embedded script that begins with a character ”=” is called a template directive, which is
categorized into the following types:

• Macro Definition and Call

• Inheritance

• Rendering Other Templates

20.7.1 Macro Definition and Call

Macros are used to define text patterns that can be applied for multiple times. They’re defined
and called with the following directives:

• ${=define(symbol:symbol, ‘args∗)} .. ${end}

• ${=call(symbol:symbol, args∗)}

Below is an example:

Template:

${=define(‘author)}Taro Yamada{end}

Author: ${=call(‘author)}

Result:

Author: Taro Yamada

20.7.2 Inheritance

Using Template Engine’s inheritance feature, you can create a derived template that inherits
the text content from a base template.

+------------------+

| base template |

+------------------+

A

|

+--------+---------+

| derived template |

+------------------+

Template Engine provides the following directives for the inheritance feature:

• ${=block(symbol:symbol)} .. ${end} .. In a base template, it defines a template block
which content would be replaced by the derived template. In a derived template, it
replaces the corresponding template block defined in its base template.

• ${=extends(template:template)} .. Declares the current template derives from the
specified one.

173

• ${=super(symbol:symbol)} .. Used within a template block in a derived template to
insert the content of a template block defined by its base template.

A base template provides basement text content including template blocks that are supposed
to be replaced by a derived template.

[base.tmpl]

block1

${=block(‘block1)}

block1-content base

${end}

block2

${=block(‘block2)}

block2-content base

${end}

block3

${=block(‘block3)}

block3-content base

${end}

Result:

block1

block1-content base

block2

block2-content base

block3

block3-content base

A template that calls ${=extends} directive becomes a derived template, which should only
contain ${=block} directive to replace the content of the base template.

[derived.tmpl]

${=extends(’base.tmpl’)}

${=block(‘block1)}

block1-content derived

${end}

${=block(‘block3)}

block3-content derived

${end}

Result:

174

block1

block1-content derived

block2

block2-content base

block3

block3-content derived

Using directive ${=super()}, you can render the content of the template block defined in the
base template.

[derived.tmpl]

${=extends(’base.tmpl’)}

${=block(‘block1)}

${=super(‘block1)}

block1-content derived

${end}

${=block(‘block3)}

block3-content derived

${end}

Result:

block1

block1-content base

block1-content derived

block2

block2-content base

block3

block3-content derived

20.7.3 Rendering Other Templates

The directive ${=embed()} renders other templates from the current template.

• ${=embed(template:template)}

Below is an example:

Template:

${=embed(’header.tmpl’)}

${=embed(’body.tmpl’)}

${=embed(’footer.tmpl’)}

175

20.7.4 How Does Directive Work?

A directive actually consists of two methods named like template#xxxxx() and template#init xxxxx()

where xxxxx is the directive name. They would work with the engine that has two phases
of process: presentation and initialization phase. The presentation phase runs all the ren-
dering and scripting process while the initialization phase only evaluates directive’s methods
template#init xxxxx().

When a parser in the engine finds a directive ${=xxxxx()}, it will add parsed result of this.init xxxxx()

to the initialization phase and this.xxxxx() to the presentation phase.

20.8 Comment

The engine recognizes a region surrounded by ”${==” and ”==}$” as a comment and just skips
it during parsing process.

Template:

1st line

2nd line

${== comment of single-line ==}$

3rd line

${==

comment of multi-lines

==}$

4th line

5th line${== comment at end of line ==}$

6th line

7th ${== comment in the middle of line ==}$line

8th line

Result:

1st line

2nd line

3rd line

4th line

5th line

6th line

7th line

8th line

20.9 Scope Issues

An embedded script in a template runs with a scope in which template#render() is evaluated.

Consider the following template file including an embedded script that contains variable refer-
ences named fruit and price:

[sample.tmpl]

The price of ${fruit} is ${price} yen.

Below is a script to render that template.

script:

176

func(tmpl:template, fruit:string, price:number) = {

tmpl.render(sys.stdout)

}

tmpl = template(’sample.tmpl’)

func(tmpl, ’grape’, 100)

Note that the template is evaluated with a scope in the context of func.

177

	Introduction
	Launch Program
	Program Files
	Interactive Mode
	Run Script File
	Composite File
	Command Line Options
	System Directory
	Working Directory

	Syntax
	Overview
	Token
	Symbol
	Number Literal
	String Literal
	Operator
	Bracket
	Back Quote
	Comment

	Expression
	Class Diagram of Expression
	Value
	EmbedString
	Identifier
	Suffixed
	Member
	UnaryOp
	Quote
	BinaryOp
	Assign
	Lister
	Iterer
	Block
	Root
	Indexer
	Caller

	Data Type
	Overview
	Primitive Data Types
	Object Data Types Frequently Used
	List
	Iterator
	Dictionary
	Expression
	Binary

	Operator
	Overview
	Precedence
	Calculation Operators
	Prefixed Unary Operators
	Suffixed Unary Operators
	Binary Operators

	Other Operators
	Operator Overload

	Environment
	Overview
	Frame

	Interpreter
	How Interpreter Works
	Evaluation Stage
	Overview
	Evaluation of Value
	Evaluation of Identifier
	Evaluation of Suffixed
	Evaluation of UnaryOp
	Evaluation of Quote
	Evaluation of BinaryOp
	Evaluation of Assign
	Evaluation of Member
	Evaluation of Lister
	Evaluation of Iterer
	Evaluation of Block
	Evaluation of Root
	Evaluation of Indexer
	Evaluation of Caller

	Assignment Stage
	Overview
	Assignment for Identifier
	Assignment for Lister
	Assignment for Member
	Assignment for Indexer
	Assignment for Caller
	Operator before Assignment

	Function
	Definition and Evaluation
	Returned Value
	Arguments
	Type Name Declaration
	Data Type Casting
	Optional Argument
	Argument with Default Value
	Variable-length Argument
	Named Argument
	Argument Expansion
	Quoted Argument

	Block
	Attribute
	User-defined Attribute
	Predefined Attributes

	Help Block
	Anonymous Function
	Closure
	Leader-trailer Relationship

	Flow Control
	Branch
	Repeat
	Repeating Functions
	Block Parameter
	Result Value of Repeat
	Flow Control in Repeat Sequence
	Generate Iterator
	Repeat Process with Function that Creates Iterator

	Error Handling

	Object Oriented Programming
	Class and Instance
	User-defined Class
	Inheritance
	Basic
	Constructor in Derived Class
	Method Override

	Encapsulation
	Structure
	Creation of Multiple Instances
	Forward Declaration

	Mapping Process
	About This Chapter
	Implicit Mapping
	Overview
	Mapping Rule with Operator
	Mapping Rule with Function
	Result Control on List
	Result Control on Iterator
	Suspend Implicit Mapping

	Member Mapping
	Overview
	Mapping Rule

	Module
	Module as Environment
	Importing Module File
	Creating Module File
	Extensions by Module
	List of Bundled Modules
	Creating Binary Module File

	String and Binary
	Overview
	Operation on String
	Character Manipulation
	Iteration
	Modification and Conversion
	Extraction
	Search, Replace and Inspection

	Formatter
	Functions Equipped with Formatter
	Syntax of Format Specifier
	Regular Expression
	Operation on Binary
	Creation of Instance
	Byte Manipulation
	Pack and Unpack
	Pointer
	Binary as Stream

	Iterator/List Operation
	Overview
	Iteration on Iterators and Lists
	Iterator-specific Manipulation
	About This Section
	Finite Iterator vs. Infinite Iterator
	Conversion into List
	Operation on Elements

	List-specific Manipulation
	About This Section
	Indexing Read from List
	Indexing Modification on List
	Conversion into Iterator
	Operation on Elements

	Common Manipulation for Iterator and List
	About This Section
	Inspection and Reduce
	Mapping Method
	Element Manipulation

	Iterator Generation

	File Operation
	Overview
	Pathname
	Acceptable Format of Pathname
	Utility Functions to Parse Pathname

	Stream
	Stream Instance
	Cast from String to Stream Instance
	Stream Instance to Access Memory
	Stream Instance for Standard Input/Output
	Stream with Text Data
	Character Codecs
	Stream with Binary Data
	Filter Stream
	Stream with Archive File and Network

	Directory
	Operations
	Status Object
	Directory in Archive File

	OS-specific Operations
	Operation on File System
	Execute Other Process

	Network Operation
	Overview
	Client-side Operation
	Server-side Operation

	Image Operation
	Overview
	Image Instance
	Format-specific Operations
	JPEG
	GIF
	Cairo
	Simple Example
	Render in Exisiting Image
	Output Animation GIF File Combining Multiple Image Files
	More Sample Scripts

	OpenGL
	Sample Script
	More Sample Scripts

	Graphical User Interface
	Overview
	wxWidgets
	About wxWidgets
	Simple Example
	Event Handling
	Layout Management
	More Sample Scripts

	Tk
	About Tk
	Simple Example
	Sample Script
	More Sample Scripts

	SDL
	About SDL
	Simple Example
	More Sample Scripts

	Mathematic Functions
	Complex Number
	Rational Number
	Big Number
	Differentiation Formula

	Template Engine
	Overview
	How to Invoke Template Engine
	Invoke from Command Line
	Invoke from Script

	Embedded Script
	Indentation
	Rendering nil Value
	Calling Function with Block
	Template Directive
	Macro Definition and Call
	Inheritance
	Rendering Other Templates
	How Does Directive Work?

	Comment
	Scope Issues

