
Gura Library Reference

Yutaka Saito

June 17th, 2017

Contents

1 About This Reference 16

2 Explanatory Note 17

3 Predefined Variables 18

4 Built-in Function 19

4.1 Formatting and Printing of Text . 19

4.2 Repetition . 20

4.3 Value Generator . 23

4.4 Branch and Flow Control . 25

4.5 Exception Handling . 26

4.6 Data Converter . 26

4.7 Class Operations . 27

4.8 Scope Operations . 28

4.9 Module Operations . 29

4.10 Value Type Information . 29

4.11 Data Processing . 31

4.12 Random . 32

4.13 Property Listing . 34

5 Built-in Class 35

5.1 argument Class . 35

5.1.1 Property . 35

5.1.2 Method . 35

5.2 array Class . 36

5.2.1 Property . 36

5.2.2 Constructor . 37

5.2.3 Method . 40

5.3 audio Class . 43

5.3.1 Method . 43

5.4 binary Class . 43

1

5.4.1 Property . 43

5.4.2 Constructor . 44

5.4.3 Method . 44

5.5 boolean Class . 45

5.6 codec Class . 45

5.6.1 Predefined Variable . 46

5.6.2 Constructor . 46

5.6.3 Method . 46

5.6.4 Cast Operation . 46

5.7 color Class . 47

5.7.1 Predefined Variable . 47

5.7.2 Property . 47

5.7.3 Cast Operation . 48

5.7.4 Constructor . 48

5.7.5 Method . 48

5.8 complex Class . 49

5.8.1 Constructor . 49

5.8.2 Method . 49

5.9 datetime Class . 49

5.9.1 Predefined Variable . 50

5.9.2 Property . 50

5.9.3 Constructor . 50

5.9.4 Method . 51

5.10 declaration Class . 53

5.10.1 Property . 53

5.10.2 Method . 53

5.11 dict Class . 54

5.11.1 Constructor . 54

5.11.2 Method . 55

5.12 directory Class . 57

5.12.1 Constructor . 58

5.13 environment Class . 58

5.13.1 Method . 58

5.14 error Class . 58

5.14.1 Predefined Variable . 58

5.14.2 Property . 59

5.15 expr Class . 59

5.15.1 Property . 59

5.15.2 Constructor . 60

2

5.15.3 Method . 60

5.16 formatter Class . 62

5.16.1 Method . 63

5.17 function Class . 64

5.17.1 Property . 65

5.17.2 Operator . 65

5.17.3 Constructor . 65

5.17.4 Method . 65

5.18 help Class . 66

5.18.1 Property . 67

5.18.2 Method . 67

5.19 image Class . 67

5.19.1 Property . 68

5.19.2 Constructor . 68

5.19.3 Method . 69

5.20 list/iterator Class . 73

5.20.1 List-specific Features . 73

5.20.2 Iterator-specific Features . 77

5.20.3 Method Common to Both list and iterator Classes 78

5.21 memory Class . 92

5.21.1 Property . 92

5.21.2 Constructor . 92

5.21.3 Method . 92

5.22 nil Class . 94

5.23 number Class . 94

5.23.1 Method . 94

5.24 operator Class . 94

5.24.1 Property . 94

5.24.2 Constructor . 94

5.24.3 Method . 94

5.25 palette Class . 95

5.25.1 Constructor . 95

5.25.2 Method . 96

5.26 pointer Class . 97

5.26.1 Property . 97

5.26.2 Constructor . 97

5.26.3 Method . 97

5.26.4 Cast Operation . 109

5.27 rational Class . 109

3

5.27.1 Constructor . 110

5.27.2 Method . 110

5.28 semaphore Class . 110

5.28.1 Constructor . 110

5.28.2 Method . 110

5.29 stream Class . 110

5.29.1 Property . 111

5.29.2 Operator . 111

5.29.3 Cast Operation . 111

5.29.4 Constructor . 112

5.29.5 Utility Function . 112

5.29.6 Method . 113

5.30 string Class . 116

5.30.1 Suffix Management . 117

5.30.2 Method . 117

5.31 suffixmgr Class . 123

5.31.1 Constructor . 123

5.31.2 Method . 123

5.32 symbol Class . 123

5.32.1 Method . 123

5.33 template Class . 123

5.33.1 Cast Operation . 123

5.33.2 Constructor . 124

5.33.3 Method . 124

5.33.4 Method Called by Template Directive . 125

5.34 timedelta Class . 127

5.34.1 Property . 127

5.34.2 Constructor . 128

5.35 uri Class . 128

5.35.1 Property . 128

5.35.2 Constructor . 128

5.35.3 Method . 128

5.35.4 Cast Operation . 129

5.36 vertex Class . 129

5.36.1 Property . 129

5.36.2 Constructor . 129

5.36.3 Method . 129

6 argopt Module 131

6.1 argopt.Parser Class . 131

4

6.1.1 Constructor . 131

6.1.2 Method . 131

7 base64 Module 133

7.1 Module Function . 133

7.2 Extension to stream Class . 134

8 bmp Module 135

8.1 Exntension to Function’s Capability . 135

8.2 Extension to image Class . 135

9 bzip2 Module 136

9.1 Module Function . 136

9.2 Extension to stream Class . 137

9.3 Thanks . 137

10 cairo Module 138

10.1 Drawing . 138

10.1.1 cairo.context - The cairo drawing context 138

10.1.2 Paths - Creating paths and manipulating path data 147

10.1.3 cairo.pattern - Sources for drawing . 151

10.1.4 Regions - Representing a pixel-aligned area 155

10.1.5 Transformations - Manipulating the current transformation matrix 156

10.1.6 text - Rendering text and glyphs . 157

10.1.7 Raster Sources - Supplying arbitary image data 160

10.2 Fonts . 160

10.2.1 cairo.font face - Base class for font faces 160

10.2.2 cairo.scaled font - Font face at particular size and options 160

10.2.3 cairo font options t - How a font should be rendered 160

10.2.4 FreeType Fonts - Font support for FreeType 161

10.2.5 Win32 Fonts - Font support for Microsoft Windows 161

10.2.6 Quartz (CGFont) Fonts - Font support via CGFont on OS X 161

10.2.7 User Fonts - Font support with font data provided by the user 161

10.3 Surfaces . 161

10.3.1 cairo.device - interface to underlying rendering system 161

10.3.2 cairo.surface - Base class for surfaces . 161

10.3.3 Image Surfaces - Rendering to memory buffers 164

10.3.4 PDF Surfaces - Rendering PDF documents 164

10.3.5 PNG Support - Reading and writing PNG images 165

10.3.6 PostScript Surfaces - Rendering PostScript documents 165

10.3.7 Recording Surfaces - Records all drawing operations 165

5

10.3.8 Win32 Surfaces - Microsoft Windows surface support 165

10.3.9 SVG Surfaces - Rendering SVG documents 165

10.3.10Quartz Surfaces - Rendering to Quartz surfaces 166

10.3.11XCB Surfaces - X Window System rendering using the XCB library . . . 166

10.3.12XLib Surfaces - X Window System rendering using XLib 166

10.3.13XLib-XRender Backend - X Window System rendering using XLib and
the X Render extension . 166

10.3.14Script Surfaces - Rendering to replayable scripts 166

10.4 Utilities . 166

10.4.1 cairo.matrix - Generic matrix operations 166

10.5 Thanks . 166

11 calendar Module 167

11.1 Module Function . 167

12 cbridge Module 168

12.1 Module Function . 168

13 conio Module 169

13.1 Module Function . 169

14 csv Module 172

14.1 Module Function . 172

14.2 csv.writer Class . 173

14.2.1 Constructor . 173

14.2.2 Method . 173

14.3 Extension of stream Class . 173

15 curl Module 175

15.1 Module Function . 175

15.2 curl.easy handle Class . 175

15.3 Thanks . 175

16 diff Module 176

16.1 Module Function . 176

16.2 diff.diff@line Class . 177

16.2.1 Property . 177

16.2.2 Method . 177

16.3 diff.hunk@line Class . 178

16.3.1 Property . 178

16.3.2 Method . 179

16.4 diff.edit@line Class . 179

6

16.4.1 Property . 179

16.4.2 Method . 179

16.5 diff.diff@char Class . 179

16.5.1 Property . 179

16.6 diff.edit@char Class . 180

16.6.1 Property . 180

16.7 Thanks . 180

17 doxygen Module 181

17.1 doxygen.document Class . 181

17.1.1 Constructor . 181

17.1.2 Method . 181

17.2 doxygen.structure Class . 182

17.2.1 Property . 182

17.2.2 Method . 182

17.3 doxygen.elem Class . 183

17.3.1 Method . 183

17.4 doxygen.configuration Class . 183

17.4.1 Property . 183

17.4.2 Constructor . 183

17.4.3 Method . 184

17.5 doxygen.aliases Class . 184

17.5.1 Method . 184

17.6 doxygen.renderer Class . 184

17.6.1 Constructor . 184

18 example Module 185

19 freetype Module 186

19.1 Module Function . 186

19.2 freetype.BBox Class . 186

19.3 freetype.BDF Property Class . 186

19.4 freetype.Bitmap Class . 186

19.4.1 Method . 186

19.5 freetype.CharMap Class . 186

19.5.1 Method . 186

19.6 freetype.FTC CMapCache Class . 187

19.7 freetype.FTC ImageCache Class . 187

19.8 freetype.FTC ImageType Class . 187

19.9 freetype.FTC Manager Class . 187

7

19.10freetype.FTC Node Class . 187

19.11freetype.FTC SBit Class . 187

19.12freetype.FTC SBitCache Class . 187

19.13freetype.FTC Scaler Class . 187

19.14freetype.Face Class . 187

19.14.1Constructor . 187

19.14.2Method . 187

19.15freetype.Glyph Class . 188

19.15.1Method . 188

19.16freetype.GlyphSlot Class . 188

19.16.1Method . 188

19.17freetype.Matrix Class . 188

19.17.1Constructor . 188

19.17.2Method . 188

19.18freetype.Outline Class . 188

19.18.1Method . 188

19.19freetype.Raster Class . 189

19.20freetype.Span Class . 189

19.21freetype.Stroker Class . 189

19.21.1Constructor . 189

19.21.2Method . 189

19.22freetype.Vector Class . 189

19.22.1Constructor . 189

19.22.2Method . 189

19.23freetype.font Class . 189

19.24Constructor . 189

19.24.1Method . 189

19.25Extension to image Class . 190

19.26Thanks . 190

20 fs Module 191

20.1 Module Function . 191

20.2 fs.stat Class . 193

20.2.1 Constructor . 193

20.2.2 Property . 193

21 gif Module 194

21.1 Exntension to Function’s Capability . 194

21.2 gif.content Class . 194

21.2.1 Constructor . 195

8

21.2.2 Property . 195

21.2.3 Method . 196

21.3 gif.Header Class . 196

21.3.1 Property . 196

21.4 gif.LogicalScreenDescriptor Class . 196

21.4.1 Property . 197

21.5 gif.CommentExtension Class . 197

21.5.1 Property . 197

21.6 gif.PlainTextExtension Class . 197

21.6.1 Property . 197

21.7 gif.ApplicationExtension Class . 198

21.7.1 Property . 198

21.8 gif.GraphicControl Class . 198

21.8.1 Property . 198

21.9 gif.ImageDescriptor Class . 198

21.9.1 Property . 198

21.10gif.imgprop Class . 199

21.10.1Property . 199

21.11Extension to image Class . 199

22 glu Module 200

22.1 Module Function . 200

23 glut Module 203

23.1 Module Function . 203

23.2 Thanks . 208

24 gmp Module 209

24.1 Operator . 209

24.2 Module Function . 211

24.3 gmp.mpf Class . 211

24.3.1 Constructor . 211

24.3.2 Method . 212

24.4 gmp.mpq Class . 212

24.4.1 Constructor . 212

24.4.2 Method . 212

24.5 gmp.mpz Class . 212

24.5.1 Constructor . 212

24.6 Extention to string Class . 213

24.7 Thanks . 213

9

25 gurcbuild Module 214

25.1 Module Function . 214

26 gzip Module 215

26.1 Module Function . 215

26.2 Extension to stream Class . 215

26.3 Thanks . 215

27 hash Module 216

27.1 hash.accumulator Class . 216

27.1.1 Property . 216

27.1.2 Constructor . 216

27.1.3 Method . 217

28 http Module 218

28.1 Module Function . 218

29 jpeg Module 219

29.1 Exntension to Function’s Capability . 219

29.2 jpeg.exif Class . 219

29.2.1 Property . 220

29.2.2 Constructor . 220

29.2.3 Method . 220

29.3 jpeg.ifd Class . 221

29.3.1 Property . 221

29.3.2 Method . 221

29.4 jpeg.tag Class . 221

29.4.1 Property . 221

29.5 Extension to image Class . 222

29.6 Thanks . 222

30 lexer Module 223

30.1 Module Function . 223

31 markdown Module 224

31.1 Operator . 224

31.2 markdown.document Class . 224

31.2.1 Property . 224

31.2.2 Constructor . 225

31.2.3 Method . 225

31.3 markdown.item Class . 225

31.3.1 Property . 226

10

31.3.2 Method . 226

32 math Module 227

32.1 Module Function . 227

33 midi Module 231

33.1 Module Function . 231

33.2 midi.event Class . 231

33.3 midi.track Class . 231

33.4 midi.sequence Class . 232

33.5 midi.port Class . 233

33.6 midi.controller Class . 233

33.7 midi.program Class . 233

33.8 midi.soundfont Class . 233

33.9 midi.synthesizer Class . 233

34 modbuild Module 234

34.1 Module Function . 234

35 model.obj Module 235

36 model.stl Module 236

36.1 model.stl.face Class . 236

36.1.1 Property . 236

36.2 model.stl.solid Class . 236

36.2.1 Property . 237

36.2.2 Constructor . 237

37 msico Module 238

37.1 Exntension to Function’s Capability . 238

37.2 msico.content Class . 238

37.2.1 Constructor . 238

37.2.2 Method . 238

37.3 Extension to image Class . 239

38 opengl Module 240

38.1 Module Function . 240

39 os Module 254

39.1 Module Function . 254

40 path Module 256

40.1 Module Function . 256

11

41 png Module 259

41.1 Exntension to Function’s Capability . 259

41.2 Module Function . 259

41.3 Extension to image Class . 259

41.4 Thanks . 260

42 ppm Module 261

42.1 Exntension to Function’s Capability . 261

42.2 Extension to image Class . 261

43 re Module 262

43.1 Regular Expression . 263

43.2 re.match Class . 263

43.2.1 Property . 263

43.2.2 Index Access . 263

43.2.3 Method . 264

43.3 re.group Class . 265

43.3.1 Property . 265

43.4 re.pattern Class . 265

43.4.1 Cast Operation . 265

43.4.2 Constructor . 265

43.4.3 Method . 266

43.5 Extension to string Class . 267

43.6 Extension to iterable Classes . 269

43.7 Module Function . 269

43.8 Thanks . 270

44 show Module 271

44.1 Extension to image Class . 271

45 sdl2 Module 272

45.1 Module Function . 272

45.2 sdl2.Window Class . 295

45.3 sdl2.Renderer Class . 295

45.4 sdl2.Texture Class . 295

45.5 sdl2.Event Class . 295

45.6 sdl2.Point Class . 295

45.7 sdl2.Rect Class . 295

45.8 sdl2.Color Class . 295

45.9 sdl2.Palette Class . 295

45.10sdl2.PixelFormat Class . 295

12

45.11sdl2.Keysym Class . 295

45.12sdl2.Cursor Class . 295

45.13sdl2.Joystick Class . 295

45.14sdl2.JoystickGUID Class . 295

45.15sdl2.GameController Class . 295

45.16sdl2.GameControllerButtonBind Class . 295

45.17sdl2.AudioCVT Class . 295

45.18sdl2.AudioSpec Class . 295

45.19sdl2.Wav Class . 295

45.20sdl2.RendererInfo Class . 295

45.21sdl2.DisplayMode Class . 295

45.22sdl2.GLContext Class . 295

45.23sdl2.HapticEffect Class . 295

45.24sdl2.Surface Class . 295

45.25sdl2.Finger Class . 295

45.26Thanks . 295

46 sqlite3 Module 297

46.1 sqlite3.db Class . 297

46.1.1 Constructor . 297

46.1.2 Method . 297

46.2 Thanks . 298

47 sys Module 299

47.1 Module Variable . 299

47.2 Module Function . 300

48 tar Module 301

48.1 tar.reader Class . 301

48.1.1 Function To Create Instance . 301

48.1.2 Method . 301

48.2 tar.writer Class . 301

48.2.1 Function To Create Instance . 301

48.2.2 Method . 302

48.3 Thanks . 302

49 tiff Module 303

49.1 Exntension to Function’s Capability . 303

49.2 Extension to image Class . 303

49.3 Thanks . 303

13

50 tokenizer Module 304

50.1 Module Function . 304

51 units Module 305

51.1 Module Function . 305

52 uuid Module 306

52.1 Module Function . 306

53 wav Module 307

53.1 Module Function . 307

53.2 Extension to audio Class . 307

54 wx Module 308

54.1 Module Function . 308

54.2 Thanks . 308

55 xml Module 309

55.1 xml.attribute Class . 309

55.1.1 Property . 309

55.2 xml.document Class . 310

55.2.1 Constructor . 310

55.2.2 Property . 310

55.2.3 Method . 310

55.3 xml.element Class . 310

55.3.1 Constructor . 310

55.3.2 Property . 310

55.3.3 Method . 311

55.4 xml.parser Class . 311

55.4.1 Constructor . 312

55.4.2 Method . 312

55.5 Thanks . 312

56 xpm Module 313

56.1 Extension to image Class . 313

57 yaml Module 314

57.1 Correspondance of Data Object . 314

57.2 Module Function . 314

57.3 Thanks . 315

58 zip Module 316

58.1 zip.reader Class . 316

14

58.1.1 Constructor . 316

58.1.2 Method . 316

58.2 zip.writer Class . 317

58.2.1 Constructor . 317

58.2.2 Method . 318

58.3 zip.stat Class . 318

58.3.1 Property . 318

58.4 Thanks . 318

15

Chapter 1

About This Reference

This reference explains about functions and classes that are shipped with Gura interpreter.
Refer to Gura Language Manual if you want information about syntax and specifications of
Gura language itself.

16

Chapter 2

Explanatory Note

Functions in this reference are described in a generic expression. For example, if there is a
reference described like func(num:number), it means that func function takes one argument
named num with value type of number. You can call it like func(3).

If an argument is optional, the argument name is followed by a symbol ?. For example:
func(num?:number). You can call it as func(2) or can omit the arugument like func().

If the the arument name has ∗ symbol followed, the arument takes zero or more values. For
a function that has a generic expression func(args∗:number), it can be called like func(),
func(3), func(3, 4), func(3, 4, 2), and so on.

If the the arument name has + symbol followed, the arument takes one or more values. For
a function that has a generic expression func(args+:number), it can be called like func(3),
func(3, 4), func(3, 4, 2), and so on. In difference with ∗, it must take at least one value.

An argument may have a default value. The default value is described with => operator like
func(num:number => 4). In such a case, if num is omitted, the default value 4 shall be used.

17

Chapter 3

Predefined Variables

Vari-
able

Type Explanation

∗ iteratorAn iterator instance equivalent with ”0..”.
- nil Value of nil.
@rem nil Value of nil.
name string If the current script is a main one that the interpreter launches, this variable

is set to ’ main ’. If it is imported by another as a module, this variable
is set to that module name.

false boolean Value of false.
nil nil Value of nil.
root environmentTop level scope.
true boolean Value of true.

18

Chapter 4

Built-in Function

4.1 Formatting and Printing of Text

format(format:string, values∗):map

Converts values into string depending on formatter specifications in format and returns the
result in string. For a detail information about formatter specications, refer to the document
of printf() function.

print(values∗):map:void

Prints out values to standard output.

printf(format:string, values∗):map:void

Prints out values to standard output according to formatter specifiers in format. The format
specifier has a format of %[flags][width][.precision]specifier.

The specifier takes one of the following characters:

• d, i .. decimal integer number with a sign mark

• u .. decimal integer number wihout a sign mark

• b .. binary integer number without a sign mark

• o .. octal integer number without a sign mark

• x .. hexadecimal integer number in lower character without a sign mark

• X .. hexadecimal integer number in upper character without a sign mark

• e .. floating number in exponential form

• E .. floating number in exponential form (in upper character)

• f .. floating number in decimal form

• F .. floating number in decimal form (in upper character)

• g .. better form between e and f

• G .. better form between E and F

• s .. string

• c .. character

19

The flags takes one of the following characters.

• + .. Appends a character ”+” before a positive number.

• - .. Adjust a string to left.

• [SPC] .. Appends a space character before a positive number.

• # .. Appends a prefix before a numbers ”0b” for a binary, ”0” for an octal and ”0x” for
a hexadecimal number.

• 0 .. Fills lacking columns with ”0” instead of space characters.

The width is a decimal number that specifies a minimum character. If the width of the cor-
responding field is less than this number, the lacking part will be filled with space characters
or ”0”. If the width is equal to or more than this number, there’s nothing to be processed. If
an asterisk character ”∗” is specified for width, the minimum character width will be retrieved
from the argument list.

The width it a character width that appears on a console, and it takes into account each
character width based on the specification of East Asian Width. This means that a kanji-
character occupies two characters in width.

The precision is a decimal number and has different effects depending on specifier.

For specifiers that formats integer numbers, it specifies a minimum character width and fills
0 for the lacking column. Format specifiers ”%03d” and ”%.3d” have the same effect. When
it works in combination with width, precision fills 0 in the lacking space before width does
padding. An example is shown below:

printf(’%5.3d’, 23) .. prints " 023"

For specifiers e, f and g, it specifies a digit number after a decimal point. Examples are shown
below:

printf(’%.3f’, 1 / 3) .. prints "0.333"

printf(’%.5f’, 1 / 3) .. prints "0.33333"

It has no effect with other specifiers.

println(values∗):map:void

Prints out values and an end-of-line character to the standard output.

4.2 Repetition

cross (‘expr+) {block}

Executes the block while evaluating all the combinations of results from expr that has format
”var in iteratable”. You can specify one or more such exprs as arguments and they are
counted up from the one on the right side. Iterators and lists are the most popular iteratables,
but even any objects that are cable of generating iterators can be specified as such.

It returns the last evaluated value in the block as its own result, but, if one of :list, :xlist,
:set, :xset or :iter is specified, it returns a list or evaluated value or an iterator. The rule
is as follows:

20

• :list .. returns a list of result values

• :xlist .. returns a list of result values eliminating nil

• :set .. returns a list of unique values of results

• :xset .. returns a list of unique values of results eliminating nil

• :iter .. returns an iterator that executes the block

• :xiter .. returns an iterator that executes the block, skipping nil

Block parameter format is |idx:number, i0:number, i1:number, ..| where idx indicates
an index of the whole loop and each of i0, i1 .. indicates an index of each corresponding
iterable.

Example:

cross (ch in [’A’, ’B’, ’C’], i in 1..4) {

printf(’%s-%d ’, ch, i)

}

// prints "A-1 A-2 A-3 A-4 B-1 B-2 B-3 B-4 C-1 C-2 C-3 C-4 "

for (‘expr+) {block}

Executes the block while evaulating iteration command expr that has a format ”var in

iteratable”. For var, an identifier or a list of identifiers is specified. For iterable, you
can spedify iterators and lists as well as any objects that are cable of generating iterators.

You can specify one or more expr in the argument list. In such a case, it continues to repeat
until the shortest iterable among them reaches at its end.

It returns the last evaluated value in the block as its own result, but, if one of :list, :xlist,
:set, :xset or :iter is specified, it returns a list or evaluated value or an iterator. The rule
is as follows:

• :list .. returns a list of result values

• :xlist .. returns a list of result values eliminating nil

• :set .. returns a list of unique values of results

• :xset .. returns a list of unique values of results eliminating nil

• :iter .. returns an iterator that executes the block

• :xiter .. returns an iterator that executes the block, skipping nil

Block parameter format is |idx:number| where idx indicates an index of the loop.

Example:

Example:

for (ch in [’A’, ’B’, ’C’], i in 1..4) {

printf(’%s-%d ’, ch, i)

}

// prints "A-1 B-2 C-3"

21

repeat (n?:number) {block}

Executes the block for n times. If n is omitted, it repeats the block execution forever.

It returns the last evaluated value in the block as its own result, but, if one of :list, :xlist,
:set, :xset or :iter is specified, it returns a list or evaluated value or an iterator. The rule
is as follows:

• :list .. returns a list of result values

• :xlist .. returns a list of result values eliminating nil

• :set .. returns a list of unique values of results

• :xset .. returns a list of unique values of results eliminating nil

• :iter .. returns an iterator that executes the block

• :xiter .. returns an iterator that executes the block, skipping nil

Block parameter format is |idx:number| where idx indicates an index of the loop.

while (‘cond) {block}

Executes the block while the evaluation result of cond is true.

It returns the last evaluated value in the block as its own result, but, if one of :list, :xlist,
:set, :xset or :iter is specified, it returns a list or evaluated value or an iterator. The rule
is as follows:

• :list .. returns a list of result values

• :xlist .. returns a list of result values eliminating nil

• :set .. returns a list of unique values of results

• :xset .. returns a list of unique values of results eliminating nil

• :iter .. returns an iterator that executes the block

• :xiter .. returns an iterator that executes the block, skipping nil

Block parameter format is |idx:number| where idx indicates an index of the loop.

break(value?):symbol func:void

Exits from an inside of a loop that is formed with repeating functions like repeat(), while(),
for() and cross(), as well as other functions generating an iterator.

After this function is called, the current loop value would be set to value given in the function’s
argument. If the argument is omitted, that would be set to nil.

However, when the loop function is called with one of the attributes, :list, :xlist, :set,
:xset, :iter and :xiter, the argument value of break() is NOT included as an element in
the list or iterator.

continue(value?):symbol func:void

Cancels the current turn of a loop and continues on to the next. This function can be used in
a loop that is formed with repeating functions like repeat(), while(), for() and cross(), as
well as other functions generating an iterator.

After this function is called, the current loop value would be set to value given in the function’s
argument. If the argument is omitted, that would be set to nil.

If the loop function is specified with one of the attributes :list, :xlist, :set, :xset, :iter
and :xiter, the argument value of continue() is included as an element in the list or iterator.

22

4.3 Value Generator

consts(value, num?:number) {block?}

Creates an iterator that generates the same value specified by the argument value.

The argument num specifies the number of elements to be generated. If omitted, it would
generate the value infinitely.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Below is an example to create an iterator that returns constant values:

x = consts(’hello’, 10)

// x generates ’hello’ for 10 times

dim(n+:number) {block?}

Returns a list that contains n values of nil. If you pass multiple numbers for n, it would create
a nested list.

Below is an example to create a one-dimentional list:

x = dim(3)

// x is [nil, nil, nil]

Below is an example to create a two-dimentional list:

x = dim(3, 2)

// x is [[nil, nil], [nil, nil], [nil, nil]]

The optional block should return values for each element and takes block parameters: |i0:number,
i1:number, ..| where the arguments i0 and i1 take indices of the loops.

Below is an example to create a one-dimentional list containing a string:

23

x = dim(3) {’Hi’}

// x is [’Hi’, ’Hi’, ’Hi’]

Below is an example to create a two-dimentional list that consists of strings showing indices.

x = dim(3, 2) {|i, j| format(’%d-%d’, i, j) }

// x is [[’0-0’, ’0-1’], [’1-0’, ’1-1’], [’2-0’, ’2-1’]]

interval(begin:number, end:number, samples:number):map:[open,open l,open r] {block?}

Creates an iterator that generates a sequence of numbers by specifying the beginning and ending
numbers, and the number of samples between them.

In default, it creates a sequence that contains the beginning and ending numbers. Following
attributes would generate the following numbers:

• :open .. Numbers in range of (begin, end) that doesn’t contain either begin or end.

• :open l .. Numbers in range of (begin, end] that doesn’t contain begin.

• :open r .. Numbers in range of [begin, end) that doesn’t contain end.

range(num:number, num end?:number, step?:number):map {block?}

Creates an iterator that generates a sequence of integer numbers.

This function can be called in three formats that generate following numbers:

• range(num) .. Numbers between 0 and (num - 1).

• range(num, num end) .. Numbers between num and (num end - 1).

• range(num, num end, step) .. Numbers between num and (num end - 1) incremented
by step.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Below are examples:

24

x = range(10)

// x generates 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

x = range(3, 10)

// x generates 3, 4, 5, 6, 7, 8, 9

x = range(3, 10, 2)

// x generates 3, 5, 7, 9

4.4 Branch and Flow Control

if (‘cond):leader {block}

Specify an ”if” block within a statement of if-elsif-else.

If the evaluation result of cond is determined as true, the block would be executed, and its
evaluation result would become the returned value of the function.

Otherwise, if the function is followed by a trailer elsif or else, that would be evaluated. If
no trailer exists, the function returns nil value.

elsif (‘cond):leader:trailer {block}

Specify an ”elsif” block within a statement of if-elsif-else.

If the evaluation result of cond is determined as true, the block would be executed, and its
evaluation result would become the returned value of the function.

Otherwise, if the function is followed by a trailer elsif or else, that would be evaluated. If
no trailer exists, the function returns nil value.

else():trailer {block}

Specify an ”else” block within a statement of if-elsif-else or try-catch-else-finally.

end(dummy∗):end marker:symbol func:trailer:void

Specify an end of a sequence.

This function is supposed to be used as a block terminator in an embedded script of a template.

switch() {block}

Form a switch block that contains case() and default() function calls. It calls these functions
sequentially and exits the execution when one of the conditions is evaluated as true.

case(‘cond) {block}

Specify an case block within a switch block. After evaluating an expr object cond, the block
shall be executed if it has a value of true.

default() {block}

Specify a default block within a switch block. If all the preceding condition of case block are
not evaluated as true, this block shall be executed.

return(value?):symbol func:void

Skips the remaining procedure of the current function and returns to the context that calls it.

25

If it takes an argument, the value is treated as a result of the function. Otherwise, the returned
value would be nil.

4.5 Exception Handling

try():leader {block}

Specify a try block of a statement of try-catch-else-finally. It catches signals that occur in the
block and executes a corresponding catch() or else() function that follow after it.

catch(errors∗:error):leader:trailer {block}

Specify an catch block of a statement of try-catch-else-finally. It can take multiple numbers of
arguments of error objects to handle. If there’s no error objects specified, it handles all the
errors that are not handled in the preceding catch() function calls. Block parameter format:
|error:error|error is an error object that contains information of the handled error.

finally():finalizer:trailer {block}

raise(error:error, msg:string => ’error’, value?)

Raises an error signal with a specified error object, a message string and an additional value.

4.6 Data Converter

chr(code:number):map

Converts a UTF-32 code into a string.

hex(num:number, digits?:number):map:[upper]

Converts a number into a hexadecimal string. Argument digits specifies a minimum columns
of the converted result and fills 0 in the lacking space.

In default, it uses lower-case characters in its conversion, while it uses upper-case ones when
:upper attribute is specified.

int(value):map

Converts a value into an integer number like below:

• For a number value, it would be converted into an integer number.

• For a compex value, its absolute number would be converted into an integer number.

• For a string value, it would be parsed as an integer number. An error occurs if it has an
invalid format.

• For other values, an error occurs.

ord(str:string):map

Converts the first character of a string into a number of UTF-32 code. If the string contains
more than one characters, it simply neglects trailing ones.

tonumber(value):map:[nil,raise,strict,zero]

26

Converts a string value into a number by a lexical parsing. If the value is not a string, it first
tries to convert the value into a string.

If the string starts with a sequence of characters that can be parsed as a number literal, it’s
not a failure even when it contains other characters following them. Specifying an attribute
:strict doesn’t allow such a case and fails the process.

If it fails the conversion, it would return nil value. Attributes described below are prepared to
customize the behaviour in the case of a failure.

• :raise .. raises an error

• :zero .. returns zero value

• :nil .. returns nil value (default)

tostring(value):map

Converts a value into a string.

tosymbol(str:string):map

Converts a string into a symbol.

4.7 Class Operations

class(superclass?:class) {block?}

Creates a class that includes methods and properties described in the content of the block.
The detail information on how to describe the block content for this function is written in
”Gura Language Manual”.

Below is an example to create a class named Person:

Person = class {

__init__(name:string, age:number) = {

this.name = name

this.age = age

}

Print() = {

printf(’name:%s age:%d\n’, this.name, this.age)

}

}

person = Person(’Smith’, 26)

person.Print()

If the argument superclass, which is expected to be a constructor function of a super class, is
specified, the created class would inherit methods and properties from the specified class.

classref(type+:expr):map {block?}

Looks up a class by an expression of a type name.

struct(‘args+):nonamed:[loose] {block?}

Creates a class for a structure that contains properties specified by args. It can optionally
take a block which declares methods and properties just like class() function does.

27

An element in args is an expression that has the same format with one in the argument list of
a function’s declaration. Each variable name becomes a member name in the created instance.

Below is an example to create a structure named Person:

Person = struct(name:string, age:number)

person = Person(’Smith’, 26)

printf(’name:%s age:%d\n’, person.name, person.age)

If :loose attribute is speicied, the generated constructor would take all the arguments as
optional. Omitted variables are set to nil

super(obj):map {block?}

Returns a reference to obj through which you can call methods of the super class.

Example:

A = class {

func() = {}

}

B = class(A) {

func() = {}

}

b = B()

b.func() // B#func() is called.

super(b).func() // A#func() is called.

4.8 Scope Operations

local(‘syms+)

Declares symbols of variable that are supposed to be accessed locally in a block.

locals(module?:module) {block?}

Returns an environment object that belongs to a specified module. If the argument module is
omitted, it returns an environment object of the current scope.

outers() {block?}

Returns an environment object that accesses to an outer scope.

public():void {block}

Declares symbols as public ones that are accessible from outer scopes.

If you want to make foo and bar accessible, call this function like below:

public { foo, bar }

scope(target?) {block}

Evaluates block with a local scope.

28

4.9 Module Operations

import(‘module, ‘alias?):[binary,mixin type,overwrite] {block?}

Imports a module and creates a variable that represents the imported module. It also returns
a value that is a reference to the module.

It searches module files in directories specified by a variable sys.path.

There are three format to call this function like follow:

• import(foo) .. imports foo module and creates a module object named foo

• import(foo, bar) .. imports foo module and creates a module object named bar

• import(foo) {symbol1, symbol2, symbol3} .. imports foo and mixes up the module’s
properties symbol1, symbol2 and symbol3 in the current scope.

In the third format, you can specify an asterisk character to mixes up all the symbols defined
in the module like below:

import(foo) {*}

If a specified symbol conflicts with what already exists in the current scope, it will cause an
error. Specifying the attribute :overwrite will avoid such an error and allow overwriting of
symbols.

If the argument module is prefixed by a minus operator like -foo, it will not create a variable
that represents the imported module.

If the argument module is prefixed by an and operator like &foo, the trailing expression will be
evaluated and its result, which must be a string, is treated as a module name to be imported.
Below is a sample to import foo module through a variable that contains that name:

var = ’foo’

import(&var)

module() {block}

Creates a module that contains functions and variables defined in the block and returns it as a
module object. This can be used to realize a namespace.

4.10 Value Type Information

isbinary(value)

Returns true if the value is an instance of binary, and false otherwise.

isboolean(value)

Returns true if the value is an instance of boolean, and false otherwise.

isclass(value)

Returns true if the value is an instance of class, and false otherwise.

29

iscomplex(value)

Returns true if the value is an instance of complex, and false otherwise.

isdatetime(value)

Returns true if the value is an instance of datetime, and false otherwise.

isdict(value)

Returns true if the value is an instance of dict, and false otherwise.

isenvironment(value)

Returns true if the value is an instance of environment, and false otherwise.

iserror(value)

Returns true if the value is an instance of error, and false otherwise.

isexpr(value)

Returns true if the value is an instance of expr, and false otherwise.

isfunction(value)

Returns true if the value is an instance of function, and false otherwise.

isiterator(value)

Returns true if the value is an instance of iterator, and false otherwise.

islist(value)

Returns true if the value is an instance of list, and false otherwise.

ismodule(value)

Returns true if the value is an instance of module, and false otherwise.

isnil(value)

Returns true if the value is an instance of nil, and false otherwise.

isnumber(value)

Returns true if the value is an instance of number, and false otherwise.

isrational(value)

Returns true if the value is an instance of rational, and false otherwise.

issemaphore(value)

Returns true if the value is an instance of semaphore, and false otherwise.

isstring(value)

Returns true if the value is an instance of string, and false otherwise.

issymbol(value)

Returns true if the value is an instance of symbol, and false otherwise.

30

istimedelta(value)

Returns true if the value is an instance of timedelta, and false otherwise.

isuri(value)

Returns true if the value is an instance of uri, and false otherwise.

isdefined(‘identifier)

Returns true if identifier is defined, and false otherwise.

isinstance(value, type+:expr):map

Returns true if value is an instance of type or its descendant, and false otherwise.

istype(value, type+:expr):map

Returns true if value is of the type of type, and false otherwise.

typename(‘value)

Returns a type name of the value.

undef(‘identifier+):[raise]

Undefines identifier in the current scope.

4.11 Data Processing

choose(index:number, values+):map

Picks up a value placed at index in the argument list values.

Sample:

choose(0, ’apple’, ’orange’, ’banana’) // returns ’apple’

choose(2, ’apple’, ’orange’, ’banana’) // returns ’banana’

cond(flag:boolean, value1:nomap, value2?:nomap):map

Returns value1 if flag is determined as true, and value2 otherwise. If the argument value2
is omitted, it will return nil when flag is determined as false.

This function behaves in a similar way with if function when it’s called like below:

if (flag) { value1 } else { value2 }

Notice that they have the following differences:

• Function cond() always evaluates arguments value1 and value2 no matter what flag
value is, while function if() doesn’t evaluate value1 expression when flag is determined
as false.

• Function cond() works with implicit mapping, which means that the argument flag may
be a list or an iterator that are to be processed with the implicit mapping.

31

The arguments value1 and value2 are not processed by the implicit mapping, so you can
specify a list or an iterator for them as selected items.

conds(flag:boolean, value1, value2?):map

Returns value1 if flag is determined as true, and value2 otherwise. If argument value2 is
omitted, it will return nil when flag is determined as false.

This function behaves in a similar way with if function when it’s called like below:

if (flag) { value1 } else { value2 }

Notice that they have the following differences:

• Function conds() always evaluates arguments value1 and value2 no matter what flag
value is, while function if() doesn’t evaluate value1 expression when flag is determined
as false.

• Function conds() works with implicit mapping, which means that the arguments flag,
value1 and value2 may be lists or iterators that are to be processed with the implicig
mapping.

If you want to specify a list or an iterator for value1 and value2 as selected values, use cond()
function instead.

max(values+):map

Returns the maximum value among the given arguments.

min(values+):map

Returns the minimum value among the given arguments.

4.12 Random

Random numbers are generated using SIMD-oriented Fast Mersenne Twister (SFMT) library.

rand(range?:number) {block?}

Returns a random number between 0 and (range - 1). If argument range is not specified, it
generates random numbers in a range of [0, 1).

rand@normal(mu?:number, sigma?:number) {block?}

Returns a normal distribution random number with a mean value of mu and a standard deviation
of sigma. The default values for mu and sigma are 0 and 1 respectively.

rands(range?:number, num?:number) {block?}

Creates an iterator that returns random numbers between 0 and (range - 1).

If argument range is not specified, it generates random numbers in a range of [0, 1).

In default, the created iterator infinitely generates random numbers. The argument num specifies
how many elements should be generated.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

32

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Below is an example to create a create that generates random numbers:

x = rands(100)

// x is an infinite iterator to generates random numbers between 0 and 99

rands@normal(mu?:number, sigma?:number, num?:number) {block?}

Creates an iterator that returns normal distribution random numbers with a mean value of mu
and a standard deviation of sigma. The default values for mu and sigma are 0 and 1 respectively.

If argument range is not specified, it generates random numbers in a range of [0, 1).

In default, the created iterator infinitely generates random numbers. The argument num specifies
how many elements should be generated.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Below is an example to create a create that generates random numbers:

x = randns(100)

// x is an infinite iterator to generates random numbers between 0 and 99

randseed(seed:number):void

Initializes random seed with a specified number.

33

4.13 Property Listing

dir(obj?):[noesc]

Returns a symbol list of variables and functions that are assigned in the environment of obj.

In default, when the obj is an instance of a class, it also searches symbols assigned in the class
that it belongs to and its parent classes. Specifying attribute :noesc avoids that behavior.

dirtype(obj?):[noesc]

Returns a symbol list of value types that are assigned in the environment of obj.

In default, when the obj is an instance of a class, it also searches symbols assigned in the class
that it belongs to and its parent classes. Specifying attribute :noesc inhibits avoids behavior.

34

Chapter 5

Built-in Class

5.1 argument Class

The argument class provides measures to access argument information that is passed to a
function. One of its purposes is to check if an attribute is specified in the function call. It also
provides a method to control a leader-trailer sequence, a mechanism that flow controls such as
if-elsif-else and try-catch utilize.

There’s no constructor to realize an instance of argument class. Its instance is implicitly created
when a function is called, and you can refer to it by a variable named arg .

Below is an example to use argument class:

func(v0, v1, v2):[attr1,attr2] = {

printf(’arg#%d %s\n’, 0.., __arg__.values)

printf(’attr1:%s attr2:%s\n’, __arg__.isset(‘attr1), __arg__.isset(‘attr2))

}

5.1.1 Property

An argument instance has the following properties:

Property Type R/W Explanation
function function R The function instance that has created the argument.
values list R A list of argument values.

5.1.2 Method

argument#finalize trailer():void

Signals finalizing status to trailers after the current function.

argument#isset(symbol:symbol)

Returns true if the function is called with an attribute that matches the specified symbol.

argument#quit trailer():void

35

Cancels evaluation of following trailers.

Example:

f(flag:boolean) = {

!flag && __arg__.quit_trailer()

}

f(true) println(’printed’)

f(false) println(’not printed’)

5.2 array Class

An instance of the array class stores multiple numeric values in a seamless binary sequence. It
can directly be passed to functions in C libraries without any modification that expect arrays
of char, short, int, float, double and so on.

There are several array classes that deal with different element types as shown below:

Class Name Element Type
array@int8 Int8

array@uint8 Uint8

array@int16 Int16

array@uint16 Uint16

array@int32 Int32

array@uint32 Uint32

array@int64 Int64

array@uint64 Uint64

array@half Half

array@float Float

array@double Double

array@complex Complex

In the specification described here, the class name is is represented as array@T where T means
its element type.

Most of methods in array class are implemented in arrayutil module while the class itself
is provided by the intepreter. This is because array features cost much code size and it would
be preferable to reduce the size of the intepreter body by separating the implementation of
array methods. So, you have to import arrayutil module before using the array class in your
program.

5.2.1 Property

A array instance has the following properties:

36

Prop-
erty

Type R/WExplanation

T array R Return an array with its row and column being tranposed.
elembytesnumberR Returns the size of each element in bytes.
elemtypesymbolR Returns the typename of the elements as a ‘symbol‘ such as “ ‘boolean“,

“ ‘int8“, “ ‘uint8“, “ ‘int16“, “ ‘uint16“, “ ‘int32“, “ ‘uint32“, “ ‘int64“,
“ ‘uint64“, “ ‘half“, “ ‘float“, “ ‘double“ and “ ‘complex“.

memoryidstringR Returns the id of memory.
ndim numberR Returns the number of dimensions.
p pointerR Returns the pointer through which you can inspect and modify the con-

tent of the array as a binary data.
shape numberR Returns a list of sizes of each dimension.
size numberR Returns the total number of elements.

5.2.2 Constructor

array(src?, elemtype?:symbol) {block?}

Creates an array instance with elements of type double from a list or an iterator specified
in the argument src, or elements described in a block. Below are examples:

array([[0, 1, 2], [3, 4, 5]])

array {{0, 1, 2}, {3, 4, 5}}

Specifying the argument elemtype would create an array of other type than double.

Available symbols for elemtype are as follows:

• ‘boolean

• ‘int8

• ‘uint8

• ‘int16

• ‘uint16

• ‘int32

• ‘uint32

• ‘int64

• ‘uint64

• ‘half

• ‘float

• ‘double

• ‘complex

37

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array.identity(n:number, elemtype?:symbol):static:map {block?}

Creates an array that represents a identity matrix with specified size n.

Example:

x = array.identity(3)

// array@double {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}

array.interval(begin:number, end:number, samples:number, elemtype?:symbol):static:map:[open,open l,open r] {block?}

Creates a one-dimentional array that contains a sequence of numbers by specifying the beginning
and ending numbers, and the number of samples between them.

In default, it creates a sequence that contains the beginning and ending numbers. Following
attributes would generate the following numbers:

• :open .. Numbers in range of (begin, end) that doesn’t contain either begin or end.

• :open l .. Numbers in range of (begin, end] that doesn’t contain begin.

• :open r .. Numbers in range of [begin, end) that doesn’t contain end.

Example:

x = array.interval(0, 3, 7)

// array@double {0, 0.5, 1, 1.5, 2, 2.5, 3}

array.ones(dims[]:number, elemtype?:symbol):static:map {block?}

Creates an array with the specified dimensions, which elements are initialized by one.

Example:

x = array.ones([3, 4])

// array@double {{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}}

array.rands(dims[]:number, range?:number, elemtype?:symbol):static:map {block?}

Creates an array with the specified dimensions, which contains random numbers.

array.rands@normal(dims[]:number, mu?:number, sigma?:number, elemtype?:symbol):static:map {block?}

Creates an array with the specified dimensions, which contains normal distribution random
numbers.

array.range(num:number, num end?:number, step?:number, elemtype?:symbol):static:map {block?}

Creates an array that contains a sequence of integer numbers.

This function can be called in three formats that generate following numbers:

38

• array.range(num) .. Numbers between 0 and (num - 1).

• array.range(num, num end) .. Numbers between num and (num end - 1).

• array.range(num, num end, step) .. Numbers between num and (num end - 1) incre-
mented by step.

Example:

x = array.range(5)

// array@double {0, 1, 2, 3, 4}

x = array.range(2, 5)

// array@double {2, 3, 4}

x = array.range(2, 10, 2)

// array@double {2, 4, 6, 8}

array.rotation(angle:number, xtrans?:number, ytrans?:number, elemtype?:symbol):static:map:[deg] {block?}

Creates an array that rotates 2-D coords by the specified angle.

The angle is specified in radian value. If the attribute :deg is specified, the angle is specified
in degree value.

If one or more of xtrans or ytrans is specified, it would create an array that works as translation
as well as rotation.

array.rotation@x(angle:number, xtrans?:number, ytrans?:number, ztrans?:number, elemtype?:symbol):static:map:[deg] {block?}

Creates an array that rotates 3-D coords around x-axis by the specified angle.

The angle is specified in radian value. If the attribute :deg is specified, the angle is specified
in degree value.

If one or more of xtrans, ytrans or ztrans is specified, it would create an array that works as
translation as well as rotation.

array.rotation@y(angle:number, xtrans?:number, ytrans?:number, ztrans?:number, elemtype?:symbol):static:map:[deg] {block?}

Creates an array that rotates 3-D coords around y-axis by the specified angle.

The angle is specified in radian value. If the attribute :deg is specified, the angle is specified
in degree value.

If one or more of xtrans, ytrans or ztrans is specified, it would create an array that works as
translation as well as rotation.

array.rotation@z(angle:number, xtrans?:number, ytrans?:number, ztrans?:number, elemtype?:symbol):static:map:[deg] {block?}

Creates an array that rotates 3-D coords around z-axis by the specified angle.

The angle is specified in radian value. If the attribute :deg is specified, the angle is specified
in degree value.

If one or more of xtrans, ytrans or ztrans is specified, it would create an array that works as
translation as well as rotation.

array.scaling(xscale:number, yscale:number, zscale?:number, elemtype?:symbol):static:map {block?}

Creates an array that scales coords. If the argument zscale is specified, it would create an
array that works with 3-D coords. Otherwise, it would create what works with 2-D coord.n

array.translation(xtrans:number, ytrans:number, ztrans?:number, elemtype?:symbol):static:map {block?}

39

Creates an array that translates coords. If the argument ztrans is specified, it would create an
array that works with 3-D coords. Otherwise, it would create what works with 2-D coords.n

array.zeros(dims[]:number, elemtype?:symbol):static:map {block?}

Creates an array with the specified dimensions, which elements are initialized by zero.

Example:

x = array.zeros([3, 4])

// array@double {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}

5.2.3 Method

array.dot(a:array, b:array):static:map {block?}

Calculates a dot product between two arrays that have one or two dimensions.

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#dump(stream?:stream):void:[upper]

Prints out a binary dump of the array’s content.

array#each():[flat] {block?}

Creates an iterator that iterates each element in the array.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

The block parameter is |elem:number, idx:number| where elem is the element value.

array#elemcast(elemtype:symbol) {block?}

Cast value type of contained elements.

Available symbols for elemtype are as follows:

• ‘boolean

40

• ‘int8

• ‘uint8

• ‘int16

• ‘uint16

• ‘int32

• ‘uint32

• ‘int64

• ‘uint64

• ‘half

• ‘float

• ‘double

• ‘complex

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#fill(value:number):map:void

Fills array with a specified value.

array#flatten() {block?}

Returns an array instance as a result that has flattened elements in the target array.

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#head(n:number):map {block?}

Returns an array instance as a result that has extracted n elements from the beginning of the
target array.

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#invert(eps?:number):map {block?}

Returns an array instance as a result that has elements of inverted matrix of the target array.
If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#iselemsame(array:array)

Returns true if the target array instance has the same elements with the specified array.

array#issquare()

Returns true if the target array consists square matrices.

array#mean(axis?:number):map {block?}

41

Calculates an mean value of elements in the array.

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#offset(n:number):map {block?}

Returns an array instance as a result that has extracted elements of the target array after
skipping its first n elements.

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#paste(offset:number, src:array):map

Pastes elements of src into the target array instance.

The argument offset specifies the posision where elements are pasted in

array#reshape(dims[]:number:nil) {block?}

Returns an array instance as a result that has reshaped the target array according to a list of
dimension size specified by dims.

Below are examples:

x = array(1..24)

a = x.reshape([6, 4]) // a is an array of 6x4.

b = x.reshape([2, 3, 4]) // b is an array of 2x3x4.

A value of nil in the list of dimension means it would be calculated from the whole size and
other dimension sizes. Only one nil is allowed to exist.

x = array(1..24)

b = x.reshape([2, nil, 4]) // b is an array of 2x3x4.

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#roundoff(threshold?:number) {block?}

Returns an array instance as a result that has rounded off elements less than threshold to
zero in the target array. The default value for threshold is 1.0e-6 when omitted.

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#sum(axis?:number):map {block?}

Calculates a summation value of elements in the target array.

array#tail(n:number):map {block?}

Returns an array instance as a result that has extracted n elements from the bottom of the
target array.

42

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

array#transpose(axes[]?:number) {block?}

Creates an array instance that transposes axes of the original array according to the specified
argument axes.

If the argument is not specified, two axes at the lowest rank, which correspond to row and
column for a matrix, would be transposed.

If block is specified, it would be evaluated with a block parameter |array:array|, where array
is the created instance. In this case, the block’s result would become the function’s returned
value.

5.3 audio Class

The audio class provides measures to work on audio data.

5.3.1 Method

audio#each(channel:number, offset?:number):map {block?}

audio#get(channel:number, offset:number):map

audio#put(channel:number, offset:number, data:number):map:reduce

audio#sinewave(channel:number, freq:number, len:number, amplitude?:number):map:reduce

audio#store(channel:number, offset:number, data:iterator):reduce

5.4 binary Class

The binary class provides measures to work on binary data that is a byte sequence without
any format.

You can create a binary instance by calling binary() function.

You can also create the instance by specifying b prefix before a string literal. For example,
the code below creates a binary instance that contains a sequence 0x41, 0x42, 0xfe, 0x03,

0x43, 0x44.

b’AB\xfe\x03CD’

5.4.1 Property

A binary instance has the following properties:

43

Prop-
erty

Type R/WExplanation

p pointerR Returns a pointer instance that accesses the binary. This result is
equivalent to that of calling the method binary#pointer()

size numberR Returns the binary size in bytes.
writablebooleanR Indicates if the content of the binary object is writable.

5.4.2 Constructor

binary(buff∗) {block?}

Creates a binary instance after combining string or binary specified by the arguments buff.
If no argument is specified for buff, an empty binary instance would be created.

If block is specified, it would be evaluated with a block parameter |bin:binary|, where bin

is the created instance. In this case, the block’s result would become the function’s returned
value.

5.4.3 Method

binary.alloc(bytes:number, data?:number):static:map {block?}

Creates a binary instance that has the specified size of buffer. If the argument data, which
should have a number between 0 and 255, is specified, the buffer would be initialized with the
value.

If block is specified, it would be evaluated with a block parameter |bin:binary|, where bin

is the created instance. In this case, the block’s result would become the function’s returned
value.

binary#dump(stream?:stream:w):void:[upper]

Prints a hexadecimal dump from the content of the binary to the standard output. If the
argument stream is specified, the result would be output to the stream.

In default, hexadecimal digit are printed with lower-case characters. Specifying an attribute
:upper would output them with upper-case characters instead.

Example:

>>> b’A quick brown fox jumps over the lazy dog.’.dump():upper

41 20 71 75 69 63 6B 20 62 72 6F 77 6E 20 66 6F A quick brown fo

78 20 6A 75 6D 70 73 20 6F 76 65 72 20 74 68 65 x jumps over the

20 6C 61 7A 79 20 64 6F 67 2E lazy dog.

binary#pointer(offset?:number):map {block?}

Returns a pointer instance that has an initial offset specified by the argument offset. If the
argument is omitted, it would return a pointer instance that points to the top of the binary.

If block is specified, it would be evaluated with a block parameter |p:pointer|, where p is the
created instance. In this case, the block’s result would become the function’s returned value.

binary#reader() {block?}

44

Creates a stream instance with which you can read data from the binary by stream#read()

method. If block is specified, it would be evaluated with a block parameter |s:stream|, where
s is the created instance. In this case, the block’s result would become the function’s returned
value.

binary#writer() {block?}

Creates a stream instance with which you can append data to the binary by stream#write()

method. If block is specified, it would be evaluated with a block parameter |s:stream|, where
s is the created instance. In this case, the block’s result would become the function’s returned
value.

5.5 boolean Class

The boolean class represents a boolean data type that is used in logical operations including
NOT, AND, OR and XOR.

The boolean type provides two values: true and false. The other types of values can also be
calculated in logical operations according to the following general rule:

• The nil value is evaluated as false value.

• Other values are evaluated as true.

Note that the number 0 is treated as true in logical operations.

5.6 codec Class

The codec class has features to decoding/encoding character codes stored in string and
binary. Following measures are provided:

• Decode .. Converts specific character codes stored in binary into UTF-8 code and gener-
ages string containing the result. It can also delete a CR code (0x0d) before a LF code
(0x0d) at each end of line so that lines in the result are joined with LF code.

• Encode .. Converts UTF-8 character codes stored in string into specific codes and
generates binary containing the result. It can also add a CR code (0x0d) before a LF
code (0x0a) at each end of line so that lines in the result are joined with CR-LF sequence.

You can utilize these functions using codec class’s methods codec#decode() and codec#encode()
as well as using stream class’s method to read/write text by specifying codec instance when
creating its instance.

The actual functions for encoding and decoding are provided by sub modules under codecs

module. Each module provides following codecs:

• codecs.basic .. us-ascii, utf-8, utf-16, utf-16le, utf-16be

• codecs.iso8859.. iso-8859-1, iso-8859-2, iso-8859-3, iso-8859-4, iso-8859-5,
iso-8859-6, iso-8859-7, iso-8859-8, iso-8859-9, iso-8859-10, iso-8859-11, iso-8859-13,
iso-8859-14, iso-8859-15, iso-8859-16

• codecs.korean .. cp949, euc-kr

• codecs.chinese .. cp936, gb2312, gbk, cp950, big5

• codecs.japanese .. euc-jp, cp932, shift jis, ms kanji, jis, iso-2022-jp

Importing other codec modules would expand available codecs. You can call codecs.dir() to
get a list of codec names currently available.

45

5.6.1 Predefined Variable

Variable Type Explanation
codec.bom@utf8 binary BOM for UTF-8: b’\xef\xbb\xbf’
codec.bom@utf16le binary BOM for UTF-16 little endian: b’\xff\xfe’
codec.bom@utf16be binary BOM for UTF-16 big endian: b’\xfe\xff’
codec.bom@utf32le binary BOM for UTF-32 little endian: b’\xff\xfe\x00\x00’
codec.bom@utf32be binary BOM for UTF-32 big endian: b’\x00\x00\xfe\xff’

5.6.2 Constructor

codec(encoding:string) {block?}

Creates a codec instance of the specified encoding name. You can call codecs.dir() to get a
list of available encoding names.

If block is specified, it would be evaluated with a block parameter |codec:codec|, where codec
is the created instance. In this case, the block’s result would become the function’s returned
value.

5.6.3 Method

codec#addcr(flag?:boolean):reduce

The codec’s encoder has a feature to add a CR code (0x0d) before a LF code (0x0a) so that
the lines are joined with CR-LF codes in the encoded result. This method enables or disables
the feature.

• To enable it, call the method with the argument flag set to true or without any argument.

• To disable it, call the method with the argument flag set to false.

codec#decode(buff:binary):map

Decodes a binary buff and returns the decoded result as string.

codec#delcr(flag?:boolean):reduce

The codec’s decoder has a feature to delete a CR code (0x0d) before a LF code (0x0a) so that
the lines are joined with LF code in the decoded result. This method enables or disables the
feature.

• To enable it, call the method with the argument flag set to true or without any argument.

• To disable it, call the method with the argument flag set to false.

codec#encode(str:string):map

Encodes a string str and returns the encoded result as binary.

5.6.4 Cast Operation

A function that expects a codec instance in its argument can also take a value of string that
is recognized as a codec name.

46

With the above casting feature, you can call a function f(codec:codec) that takes a codec

instance in its argument as below:

• f(codec(’utf-16’)) .. The most explicit way.

• f(’utf-16’) .. Implicit casting: from string to codec.

5.7 color Class

An instance of the color class represents a color data that consists of red, green, blue and
alpha elements.

You can create a color instance by calling color() function.

There are class variables as shown below:

5.7.1 Predefined Variable

Variable Type Explanation
color.names string[] A list of color names that can be passed to color() function.
color.zero color Color instance equivalent with color(0, 0, 0, 0)

color.black color Color instance equivalent with color(0, 0, 0, 255)

color.maroon color Color instance equivalent with color(128, 0, 0, 255)

color.green color Color instance equivalent with color(0, 128, 0, 255)

color.olive color Color instance equivalent with color(128, 128, 0, 255)

color.navy color Color instance equivalent with color(0, 0, 128, 255)

color.purple color Color instance equivalent with color(128, 0, 128, 255)

color.teal color Color instance equivalent with color(0, 128, 128, 255)

color.gray color Color instance equivalent with color(128, 128, 128, 255)

color.silver color Color instance equivalent with color(192, 192, 192, 255)

color.red color Color instance equivalent with color(255, 0, 0, 255)

color.lime color Color instance equivalent with color(0, 255, 0, 255)

color.yellow color Color instance equivalent with color(255, 255, 0, 255)

color.blue color Color instance equivalent with color(0, 0, 255, 255)

color.fuchsia color Color instance equivalent with color(255, 0, 255, 255)

color.aqua color Color instance equivalent with color(0, 255, 255, 255)

color.white color Color instance equivalent with color(255, 255, 255, 255)

5.7.2 Property

A color instance has the following properties:

Property Type R/W Explanation
a number R/W Value of the alpha element.
b number R/W Value of the blue element.
g number R/W Value of the green element.
r number R/W Value of the red element.

47

5.7.3 Cast Operation

A function that expects a color instance in its argument can also take a value of symbol,
string and list as below:

• symbol .. Recognized as a color name to look up the color table.

• string .. Recognized as a color name to look up the color table.

• list .. Expected to contain elements in a format [red, green, blue] or [red, green,

blue, alpha].

With the above casting feature, you can call a function f(c:color) that takes a color instance
in its argument as below:

• f(color(‘purple)) .. The most explicit way.

• f(‘purple) .. Implicit casting: from symbol to color.

• f(’purple’) .. Implicit casting: from string to color.

• f([128, 0, 128]) .. Implicit casting: from list to color.

5.7.4 Constructor

color(args+):map {block?}

Creates a color instance.

If block is specified, it would be evaluated with a block parameter |c:color|, where c is the
created instance. In this case, the block’s result would become the function’s returned value.

There are two forms to call this function as below:

• color(name:string, a?:number) .. Creates an instance from color name and an op-
tional alpha element. Predefined variable color.names is a list that contains available
color names. A string in a format of ’#rrggbb’ that is used in HTML documents is also
acceptable as a color name.

• color(r:number, g?:number, b?:number, a?:number) .. Creates an instance from
RGB elements and an optional alpha element.

5.7.5 Method

color#getgray()

Calculates a gray scale from RGB elements in the color instance.

This is computed by a formula: gray = 0.299 ∗ red + 0.587 ∗ blue + 0.114 ∗ blue.

color#html()

Returns a color string in a format of ’#rrggbb’ that is used in HTML documents.

color#list():[alpha]

Returns a list of RGB elements in a form [r, g, b].

Specifying :alpha attribute would add the alpha element to the list.

48

5.8 complex Class

The complex class provides measures to calculate complex numbers.

You can create a complex instance by following ways:

• Calls complex() function with a real and imaginary part of numbers. e.g., complex(2,
3)

• Calls complex.polar() function with an absolute value and an argument in radius. e.g.,
complex.polar(5, math.pi / 6)

• Appending j suffix after a number literal would create an imaginal part of a complex
numbrer. e.g., 2 + 3j

5.8.1 Constructor

complex(real:number, imag?:number):map {block?}

Creates a complex instance with a real part real and an imaginary part imag.

If the argument imag is omitted, the imaginary part would be set to zero.

If block is specified, it would be evaluated with a block parameter |n:complex|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

5.8.2 Method

complex.polar(abs:number, arg:number):static:map:[deg] {block?}

Creates a complex instance with an absolute number abs and an angle arg in polar coords.

The argument arg is specified in a unit of radian. You can give it a degree value by calling the
function with :deg attribute.

If block is specified, it would be evaluated with a block parameter |n:complex|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

complex.roundoff(threshold:number => 1e-10) {block?}

Returns a complex number with real and imaginary parts being rounded off.

The argument threshold specifies the threshold value for the round-off.

If block is specified, it would be evaluated with a block parameter |n:complex|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

5.9 datetime Class

The datetime class provides measures to handle date and time information.

You can create a datetime instance by calling following functions:

• datetime() .. Creates an intance from specified date and time.

• datetime.now() .. Creates an instance with its date and time fields set as the current
one.

• datetime.today() .. Creates an instance with its date field set as the current one. Its
time fields, hour, min, sec and usec, are set to zero.

49

You can calculate a datetime with a timedelta to put its date and time values forward and
backward.

5.9.1 Predefined Variable

Variable Type Explanation
datetime.Sunday number Assigned with number 0 that represents Sunday.
datetime.Monday number Assigned with number 1 that represents Monday.
datetime.Tuesday number Assigned with number 2 that represents Tuesday.
datetime.Wednesday number Assigned with number 3 that represents Wednesday.
datetime.Thursday number Assigned with number 4 that represents Thursday.
datetime.Friday number Assigned with number 5 that represents Friday.
datetime.Saturday number Assigned with number 6 that represents Saturday.

5.9.2 Property

A datetime instance has the following properties:

Prop-
erty

Type R/WExplanation

year numberR/W Chritian year.
month numberR/W Month starting from 1. Numbers from 1 to 12 correspond to January

to December.
day numberR/W Day in a month starting from 1.
hour numberR/W Hour in a day between 0 and 23.
min numberR/W Minute in an hour between 0 and 59.
sec numberR/W Second in a minute between 0 and 59.
usec numberR/W Millisecond in a second between 0 and 999.
wday numberR Week number starting from 0. Number from 0 to 6 corresponds to

Sunday to Saturday.
week numberR Week symbol that takes one of the followings: ‘sunday, ‘monday,

‘tuesday, ‘wednesday, ‘thursday, ‘friday, ‘saturday
yday numberR Day in a year starting from 1.
unixtimenumberR Seconds passed from 00:00:00 on January 1st in 1970 in UTC.

5.9.3 Constructor

datetime(year:number, month:number, day:number, hour:number => 0, min:number => 0, sec:number => 0, usec:number => 0, minsoff?:number):map {block?}

Creates an instance of datetime class based on the specified arguments.

Explanations of the arguments are shown below:

• year .. Christian year.

• month .. Month starting from 1. Numbers from 1 to 12 correspond to January to Decem-
ber.

• day .. Day in a month starting from 1.

• hour .. Hour in a day between 0 and 23.

• min .. Minute in an hour between 0 and 59.

50

• sec .. Second in a minute between 0 and 59.

• usec .. Millisecond in a second between 0 and 999.

• minsoff .. Timezone offset in minutes.

In default, the instance has a timezone offset based on the current system settings.

If block is specified, it would be evaluated with a block parameter |dt:datetime|, where dt

is the created instance. In this case, the block’s result would become the function’s returned
value.

5.9.4 Method

datetime#clrtzoff():reduce

Eliminates timezone offset information from the instance.

datetime#format(format => ‘w3c)

Returns a string of the datetime properties based on the specified format. For the argument
format, you can specify either a string of user-specific format or a symbol of predefined style.

A string of user-specific format contains following specifiers:

• %d .. day of month

• %H .. hour in 24-hour format

• %I .. hour in 12-hour format

• %m .. month

• %M .. minute

• %S .. second

• %w .. week number starting from 0 for Sunday.

• %y .. lower two digits of year

• %Y .. four digits of year

Below are the symbols of predefined styles:

• ‘w3c .. W3C style. eg) ’2015-01-01T12:34:56+09:00’

• ‘http .. a style used in HTTP protocol. eg) ’Thu, 01 Jan 2015 12:34:56 +0900’

• ‘asctime .. a style used by the C function asctime(). eg) ’Thu Jan 1 12:34:56 +0900

2015’

datetime.isleap(year:number):static:map

Returns true if the specified year is a leap one.

datetime.monthdays(year:number, month:number):static:map {block?}

Returns a number of days that exists in the specified month.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

51

datetime.now():static:[utc] {block?}

Creates a datetime instance of the current time.

In default, the timezone offset is set to one in the system setting. Specifying :utc attribute
would set the offset to 0.

If block is specified, it would be evaluated with a block parameter |dt:datetime|, where dt

is the created instance. In this case, the block’s result would become the function’s returned
value.

datetime.parse(str:string):static:map {block?}

Parses a string that describs date and time information and returns the datetime instance.

It is capable of parsing the following style:

• RFC1123 style. eg) ’Sat, 06 Nov 2010 08:49:37 GMT’

• RFC1036 style. eg) ’Saturday, 06-Nov-10 08:49:37 GMT’

• C’s asctime() style. eg) ’Sat Nov 6 08:49:37 2010’, ’Sat Nov 6 08:49:37 +0000

2010’

• W3C style. eg) ’2010-11-06T08:49:37Z’

If block is specified, it would be evaluated with a block parameter |dt:datetime|, where dt

is the created instance. In this case, the block’s result would become the function’s returned
value.

datetime#settzoff(mins:number):reduce

Sets timezone offset in minutes.

datetime.time(hour:number => 0, minute:number => 0, sec:number => 0, usec:number => 0):static:map {block?}

Creates a datetime instance from time information. The date inforomation is set as 1st of
January in the Christian year of 0.

If block is specified, it would be evaluated with a block parameter |dt:datetime|, where dt

is the created instance. In this case, the block’s result would become the function’s returned
value.

datetime.today():static:[utc] {block?}

Creates a datetime instance of today. All the time information are cleared to 0.

In default, the timezone offset is set to one in the system setting. Specifying :utc attribute
would set the offset to 0.

If block is specified, it would be evaluated with a block parameter |dt:datetime|, where dt

is the created instance. In this case, the block’s result would become the function’s returned
value.

datetime#utc()

Calculates UTC time of the target datetime instance. An error occurs if the instance has no
timezone offset

datetime.weekday(year:number, month:number, day:number):static:map

Returns a week number for the specified date, which starts from 0 for Sunday.

52

5.10 declaration Class

The declaration class provides information about argument’s declaration defined in a function.
You can get an iterator of declaration instances with the following measures that the function
class provides:

• A property value: function#decls

• An instance method: function.getdecls()

Below is an example to print argument names declared in a function.

f(a, b, c, d) = {}

println(f.decls:*name)

5.10.1 Property

A declaration instance has the following properties:

Property Type R/W Explanation
symbol symbol R The name of the declaration in symbol.
name string R The name of the declaration in string.
default expr R The expression that provides a default value.

5.10.2 Method

declaration#istype(type+:expr):map

Return true if the declaration is defined as a type that is specified in the arguments.

The argument type has following formats:

• a single symbol.

• a sequence of symbols joined by a dot.

In the second format, a symbol on the left side indicates a container such as a module and a
class.

Below is an example to check if the declaration is defined as number type.

decl.istype(‘number)

Below is an example to check if the declaration is defined as re.match type, which is a type
named match defined in re module.

decl.istype(‘re.match)

You can also specify a type by describing factors in separate arguments like below:

decl.istype(‘re, ‘match)

53

5.11 dict Class

The dict class provides measures to handle dictionary data that can seek values by indexing
with their associated keys. You can specify values of string, number and symbol as a dictionary
key.

You can create a dict instance by following measures:

• Calls dict() constructor.

• Calls a function named % that is an alias of dict() constructor.

Below are examples to create a dict instance:

dict {’first’ => 1, ’second’ => 2, ’third’ => 3}

dict {{’first’, 1}, {’second’, 2}, {’third’, 3}}

dict {’first’, 1, ’second’, 2, ’third’, 3}

dict([’first’ => 1, ’second’ => 2, ’third’ => 3])

dict([[’first’, 1], [’second’, 2], [’third’, 3]])

dict([’first’, 1, ’second’, 2, ’third’, 3])

%{’first’ => 1, ’second’ => 2, ’third’ => 3}

%{{’first’, 1}, {’second’, 2}, {’third’, 3}}

%{’first’, 1, ’second’, 2, ’third’, 3}

You can specify different type of values for keys in the same dictionary. In this case, values of
different types are just recognized as different values.

Index Access

You can read and write element values in a dict with an indexer by giving it a key value which
type is string, number or symbol. Below is an example:

x = %{’first’ => 1, ’second’ => 2, ’third’ => 3}

println(x[’second’]) // prints ‘2‘

x[’third’] = 33 // replaces ‘3‘ with ‘33‘

5.11.1 Constructor

dict(elems?):[icase] {block?}

Creates a dict instance.

It takes a list of key-value pairs in an argument as shown below:

d = dict([[’apple’, 100], [’grape’, 200], [’banana’, 80]])

Or, you can use a block to describe them like below:

d = dict {

[’apple’, 100], [’grape’, 200], [’banana’, 80]

}

54

You can specify values of number, string or symbol as dictionary keys.

You can also use the operator => to create a key-value pair like below:

d = dict([’apple’ => 100, ’grape’ => 200, ’banana’ => 80])

Below is an example using a block:

d = dict {

’apple’ => 100, ’grape’ => 200, ’banana’ => 80

}

The symbol % is an alias of the function dict().

d = %{

’apple’ => 100, ’grape’ => 200, ’banana’ => 80

}

In default, if keys contain alphabet characters, different cases are distinguished. Appending the
attribute :icase would ignore cases in them.

5.11.2 Method

dict#append(elems?):reduce:[overwrite,strict,timid] {block?}

Adds multiple key-value pairs. It takes a list of key-value pairs in an argument or in a block
that has the same format with one for the function dict().

If the specified key already exists in the dictionary, it would be overwritten. This behavior can
be customized with the following attributes:

• :overwrite .. overwrite the existing one (default)

• :strict .. raises an error

• :timid .. keep the existing one

dict#clear()

Clears all the key-value pairs in the dictionary.

dict#erase(key):map

Erases a key-value pair that mathces the provided key.

The key is either number, string or symbol.

dict#get(key, default?):map:[raise]

Seeks a value that is associated with the specified key.

The method would return nil as its default value when the specified key doesn’t exist in the
dictionary. It would use different value if the argument default is specified.

Since the default value is also processed with implicit mapping, you have to apply object#nomap()
method to it if you want to specify a list or an iterator as a default value.

55

When the attribute :raise is specified, an error occurs in the case of the key’s absence.

Another measure to get a value associated with a key is to use an index operator. The following
two codes have the same effect.

• v = d[’foo’]

• v = d.get(’foo’):raise

dict#haskey(key):map

Returns true if the specified key exists in the dictionary.

dict#items() {block?}

Returns an iterator of key-value pairs in the dictionary.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

dict#keys() {block?}

Returns an iterator of keys in the dictionary.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

56

dict#len()

Returns the number of key-value pairs in the dictionary.

dict#put(key, value):map:reduce:[overwrite,strict,timid]

Adds a new key-value pair.

If the specified key already exists in the dictionary, it would be overwritten. This behavior can
be customized with the following attributes:

• :overwrite .. overwrite the existing one (default)

• :strict .. raises an error

• :timid .. keep the existing one

Another measure to add a key-value pair is to use an index operator. The following two codes
have the same effect.

• d[’foo’] = 3

• d.put(’foo’, 3)

dict#values() {block?}

Returns an iterator of values in the dictionary.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

5.12 directory Class

The directory class handles information necessary to seek directory structure in a path. Its
instance usually works with functions in path module: path.dir() and path.walk().

Though the instance can be created by directory() function, you don’t have to use it in many
cases because a casting from string to directory instance works implicitly in a function call.

57

5.12.1 Constructor

directory(pathname:string):map {block?}

Creates a directory instance from the specified path name.

5.13 environment Class

The environment class provides measures to operate variables in an environment, which is a
fundamental mechanism to store variables.

5.13.1 Method

environment#getprop!(symbol:symbol):map

environment#lookup(symbol:symbol, escalate:boolean => true):map

Looks up a specified symbol in the environment and returns the associated value. In default, if
the symbol is not defined in the environment, it will be searched in environments outside of the
current one. Set escalate flag to false in order to disable such an escalation behaviour. Returns
false when the symbol could not be found.

environment#setprop!(symbol:symbol, value):map

5.14 error Class

The error class provides measures to access error information.

There is no measures to create an error instance. They’re instantiated and passed to a block
of catch() function when an error occurs within a try block in a try-catch sequence.

In the following code, e is an instance that contains information about an error that has occured
in the try block.

try {

// any jobs

} catch {|e:error|

// ...

}

5.14.1 Predefined Variable

58

Variable Explanation
error.ArgumentError Argument error.
error.ArithmeticErrorArithmetic error.
error.AttributeError Invalid attribute is specified.
error.CodecError An error that is related to codec process.
error.CommandError An error that could happen in command line.
error.DeclarationErrorAn error in a function\’s declarations.
error.FormatError

error.IOError

error.ImportError

error.IndexError

error.IteratorError

error.KeyError

error.MemberAccessError

error.MemoryError

error.NameError

error.NotImplementedErrorAn error that could occur when a called function has no imple-
mented body but an entry.

error.OutOfRange Index number is out of range.
error.ResourceError Resource error.
error.RuntimeError Runtime error.
error.SyntaxError Syntax error.
error.SystemError System error.
error.TypeError Type error.
error.ValueError Invalid value is specified.
error.ZeroDivisionErrorZero-division occured in division or modulo operations.

5.14.2 Property

An error instance has the following properties:

Prop-
erty

Type R/W Explanation

source string R The name of the file that causes this error.
lineno number R The number of line where the expression that causes this error

starts.
linenobtmnumber R The number of line where the expression that causes this error

ends.
postext string R A text that consists of a source name and a line number.
text string R An error message. If an attribute ‘:lineno‘ is specified, it would

contain a line number.
trace expr[] R Stack trace.

5.15 expr Class

The expr class provides inromation about the language’s syntax expression.

5.15.1 Property

An expr instance has the following properties:

59

Property Type R/W Explanation
attrfront symbol[] R Exists in ”identifier” and ”caller”.
attrs symbol[] R Exists in ”identifier” and ”caller”.
attrsopt symbol[] R Exists in ”identifier” and ”caller”.
block expr R Exists in ”caller”.
blockparam iterator R Exists in ”block”.
body string R Exists in ”suffixed”.
car expr R Exists in ”compound”.
cdr iterator R Exists in ”compound”.
child expr R Exists in ”unary”.
children iterator R Exists in ”collector”.
left expr R Exists in ”binary”.
lineno number R
linenobtm number R
operator operator R Exists in ”unaryop”, ”binaryop” and ”assign”.
postext string R
right expr R Exists in ”binary”.
source string R
suffix symbol R Exists in ”suffixed”.
symbol symbol R Exists in ”identifier”.
trailer expr R Exists in ”caller”.
typename string R
typesym symbol R
value any R Exists in ”value”.

5.15.2 Constructor

expr(src:stream:r):map {block?}

Parses a Gura script from the stream src and creates an expr instance.

If block is specified, it would be evaluated with a block parameter |expr:expr|, where expr

is the created instance. In this case, the block’s result would become the function’s returned
value.

5.15.3 Method

expr#eval(env?:environment)

Evaluates the expr instance.

If the argument env is specified, that environment is used for evaluation. If omitted, the current
scope is used.

expr.parse(script:string):static:map {block?}

Parses a Gura script in the string script and creates an expr instance.

If block is specified, it will be evaluated with block parameter in a format of |expr:expr|
where expr is the created instance.

expr#textize(style?:symbol, indent?:string)

Composes a script text from a content of expr.

Argument style specifies the text style output, which takes the following symbols:

• ‘crammed .. Puts all the text in one line and removes volatile spaces.

60

• ‘oneline .. Puts all the text in one line.

• ‘brief .. Omits content of blocks and long strings with ”..”.

• ‘fancy .. Prints in the most readable style. This is the default.

The argument indent specifies a string used for indentation. Its default is a sequence of four
spaces.

expr#tofunction(‘args∗)

Converts the expr into a function.

If the expr is a block that has a block parameter, that would be used as an argument list of
the created function. Otherwise, the argument args declares the argument list.

It would be an error if args is specified and a block parameter exists as well.

expr#unquote()

Returns expr instance that has removed quote operator from the original expr.

expr#write(dst:stream:w, style?:symbol, indent?:string)

Outputs a script that describes the expression to the specified stream.

Argument style specifies the text style output, which takes the following symbols:

• ‘crammed .. Puts all the text in one line and removes volatile spaces.

• ‘oneline .. Puts all the text in one line.

• ‘brief .. Omits content of blocks and long strings with ”..”.

• ‘fancy .. Prints in the most readable style. This is the default.

The argument indent specifies a string used for indentation. Its default is a sequence of four
spaces.

expr#isunary()

Returns true if expr is an expression of unary.

expr#isunaryop()

Returns true if expr is an expression of unaryop.

expr#isquote()

Returns true if expr is an expression of quote.

expr#isbinary()

Returns true if expr is an expression of binary.

expr#isbinaryop()

Returns true if expr is an expression of binaryop.

expr#isassign()

Returns true if expr is an expression of assign.

expr#ismember()

61

Returns true if expr is an expression of member.

expr#iscollector()

Returns true if expr is an expression of collector.

expr#isroot()

Returns true if expr is an expression of root.

expr#isblock()

Returns true if expr is an expression of block.

expr#islister()

Returns true if expr is an expression of lister.

expr#isiterer()

Returns true if expr is an expression of iterer.

expr#iscompound()

Returns true if expr is an expression of compound.

expr#isindexer()

Returns true if expr is an expression of indexer.

expr#iscaller()

Returns true if expr is an expression of caller.

expr#isvalue()

Returns true if expr is an expression of value.

expr#isidentifier()

Returns true if expr is an expression of identifier.

expr#issuffixed()

Returns true if expr is an expression of suffixed.

5.16 formatter Class

The formatter class provides information about a format specifier.

The function printf() has the following declaration:

printf(’name: %s, age: %d\n’, name, age)

The first argument is a string containing format specifiers like %s and %d that determine the
manner on how the correspoding values name and age should be formatted. In the formatting
mechanism, when the specifiers %s and %d appear, it would call methods name. format s ()

and age. format s () respectively which are format handlers responsible of formatting these
values. In general, a format handler has a format like format X (fmt:formatter) where X

62

is the symbol of the specifier and fmt is a formatter instance that carries information about
the associated specifier such as minimum width and a padding character. The handler must
return a string as its result.

The table below summarizes associations between specifiers and the method name of their
format handlers:

Specifier Method Name
%d format d

%u format u

%b format b

%o format o

%x format x

%e format e

%f format f

%g format g

%s format s

%c format c

This feature is supposed to be used when you want your original class’s instance properly
formatted in printf. Below is an example to implement a format handler for the specifier %d:

A = class {

// any implementations

__format_d__(fmt:format) = {

// returns a string for %d specifier.

}

}

a = A()

printf(’%d’, a) // a.__format_d__() is called

5.16.1 Method

formatter#getminwidth()

Returns an expected minimum width for the field.

For example, with ’%3d’, this method would return 3.

formatter#getpadding()

Returns a string containing a padding character, a space or ’0’.

In default, a space is used for padding. For example, with ’%3d’, this method would return ’

’.

When a character ’0’ appears after ’%’, that becomes the padding character. For example,
with ’%03d’, this method would return ’0’.

formatter#getplusmode()

Returns a symbol that indicates an expected action when a positive number appears.

• ‘none .. No character ahead of the number.

63

• ‘space .. A space should be inserted.

• ‘plus .. A plus character should be inserted.

formatter#getprecision()

Returns an expected precision for the field.

For example, with ’%.3d’, this method would return 3.

formatter#isleftalign()

Returns true if the field is expected to be aligned on left.

For example, with ’%-3d’, this method would return true.

formatter#issharp()

Returns true if the specifier sequence includes ’#’ flag, which means some literal prefixes such
as 0x are expected to be appended at the top.

For example, with ’%#x’, this method would return true.

formatter#isuppercase()

Returns true if alphabet characters are expected to be shown in upper case.

Upper case characters are requested when a specifier such as ’%X’, ’%E’ and ’%G’ is specified.

5.17 function Class

The function class provides measure to inspect information about the instance.

All the functions are instances of function class, so an implementation of a function means
a realization of a function instance. You can also create the instance using function()

constructor. The following two codes have the same result:

f(a:number, b:number, c:number) = {

(a + b + c) / 3

}

f = function(a:number, b:number, c:number) {

(a + b + c) / 3

}

Using function(), you can use variables prefixed by a dollar character so that they are auto-
matically added to the argument list. In such a case, the variables are added to the argument
list in the same order as they appear in the function body. The code below creates a function
with a declaration f($a, $b, $c).

f = function {

($a + $b + $c) / 3

}

You can use & as an alias of function() as shown below:

64

f = &{

($a + $b + $c) / 3

}

5.17.1 Property

A function instance has the following properties:

Prop-
erty

Type R/WExplanation

decls iteratorR iterator of declaration instances that provide information about
argument declaration the function defines.

expr expr R/W an expression of the function.
format string R a string showing a declared format of the function.
fullnamestring R a full name of the function that is prefixed by a name of the module

or the class it belongs to.
name string R a name of the function in string.
symbol symbol R/W a name of the function in symbol.

5.17.2 Operator

You can print a function’s help from the interactive prompt using the unary operator ” ”.
Below is an example to print the help of printf() function:

>>> ~printf

5.17.3 Constructor

function(‘args∗) {block}

Creates a function instance with an argument list of args and a procedure body provided by
block.

Following two codes have the same effect with each other.

• f = function(a, b, c) { /∗ any job ∗/ }

• f(a, b, c) = { /∗ any job ∗/ }

5.17.4 Method

function.getdecls(func:function):static:map

Creates an iterator of declaration instances that provide information about argument decla-
ration that the function instance func defines.

This class method returns the same information as the property function#decls.

function.getexpr(func:function):static:map

65

Returns an expression of the function instance func.

It would return nil if the function is implemented with binary programs, not scripts.

This class method returns the same information as the property function#expr.

function.getformat(func:function):static:map

Returns a string showing a declared format of the function instance func.

This class method returns the same information as the property function#format.

function.getfullname(func:function):static:map

Returns a full name of the function instance func, which is prefixed by a name of the module
or the class the instance belongs to.

This class method returns the same information as the property function#fullname.

function.getname(func:function):static:map

Returns a name of the function instance func in string type.

This class method returns the same information as the property function#name.

function.getsymbol(func:function):static:map

Returns a name of the function instance func in symbol type.

This class method returns the same information as the property function#symbol.

function#mathdiff(var?:symbol):reduce

Returns a function instance that computes derivation of the target function, which is ex-
pected to contain only mathematical procedures. An error occurs if the target function has any
elements that have nothing to do with mathematics.

In default, it differentiates the target function with respect to its first argument. Below is an
example:

>>> f(x) = math.sin(x)

>>> g = f.mathdiff() // g is a function to compute math.cos(x)

Specify a symbol to argument var when you want to differentiate with respect to another
variable.

You can check the result of derivation by seeing property function#expr like below:

>>> g.expr

‘math.cos(x)

5.18 help Class

The help class provides measures to access help information associated with a function in-
stance.

You can get a help instance from a function instance or a class by calling help@function()

or help@class() respectively.

66

5.18.1 Property

A help instance has the following properties:

Prop-
erty

Type R/WExplanation

title stringR The title of the help.
format stringR A name of the syntax format in which the help text is described such

as ’markdown’.
lang symbolR A symbol of the natural language in which the help text is written.

For example, ‘en for English and ‘ja for Japanese.
text stringR The help text.

5.18.2 Method

help.text@iterator(lang:symbol):static {block?}

Returns a help text for functions that return an iterator.

The argument lang is a symbol that specifies the language in which the text is written, e.g.
‘en for English and ‘ja for Japanese.

If block is specified, it would be evaluated with a block parameter |str:string|, where str

is the created instance. In this case, the block’s result would become the function’s returned
value.

help.text@block(lang:symbol, varname:string, typename:string):static {block?}

Returns a help text that for functions that take a block .

The argument lang is a symbol that specifies the language in which the text is written, e.g.
‘en for English and ‘ja for Japanese.

In the text, variable names would be replaced by varname and type names by typename.

If block is specified, it would be evaluated with a block parameter |str:string|, where str

is the created instance. In this case, the block’s result would become the function’s returned
value.

help.presenter(format:string):static:void {block}

Registers a presentation procedure with a name specified by the argument format.

The procedure is written in the block that takes block parameters: |help:help|.

5.19 image Class

The image class provides following measures to handle graphic image data:

• Reads image data from a file.

• Writes image data to a file.

• Apply some modifications on image data including rotation, resize and color conversion.

Acceptable image data formats can be extended by importing modules. Below is a table to
show image formats and name of modules that handle them. The string listed in ”imagetype”

67

column shows a name that is used by functions image(), image#read() and image#write()

to explicitly specify the image data format in a process of reading and writing files.

Image Format Module Name imagetype
BMP bmp ’bmp’

GIF gif ’gif’

JPEG jpeg ’jpeg’

Microsoft Icon msico ’msico’

PNG png ’png’

PPM ppm ’ppm’

TIFF tiff ’tiff’

5.19.1 Property

An image instance has the following properties:

Prop-
erty

Type R/WExplanation

format symbolR Takes one of the following symbols indicating what elements are stored
in the memory: ‘rgb .. red, green and blue ‘rgba .. red, green, blue
and alpha

width numberR Image width.
height numberR Image height.
palettepaletteR/WA palette instance associated with this image. If there is no palette

associated, this property returns nil.

5.19.2 Constructor

image(args+):map {block?}

Returns an image instance with specified characteristics. There are three forms to call the
function as below:

• image(format:symbol) .. Creates an image instance of the specified format without
buffer allocated.

• image(format:symbol, width:number, height:number, color?:color) .. Allocates
an image buffer with the specified size and fills it with the color.

• image(stream:stream, format?:symbol, imagetype?:string) .. Reads image data
from the stream and allocates necessary buffer in which the read data is stored.

The argument format specifies what elements are stored in the memory and takes one of the
following symbols:

• ‘rgb .. red, green and blue

• ‘rgba .. red, green, blue and alpha

In the third form, the format of the image data is determined by the byte sequence of the
stream data and its file name.

You can also explicitly specify the image data format by the argument imagetype.

68

5.19.3 Method

image#allocbuff(width:number, height:number, color?:color):reduce

Allocates a specified size of buffer in the image instance that is supposed to has no buffer
allocated.

The allocated buffer will be filled with color. If omitted, it will be filled with zero value.

An error occurs in following cases:

• It fails to allocate necessary buffer.

• The image instance already has allocated buffer.

image#blur(radius:number, sigma?:number) {block?}

Returns a new image that blurs the original image with the given parameters.

If block is specified, it would be evaluated with a block parameter |img:image|, where img

is the created instance. In this case, the block’s result would become the function’s returned
value.

image#clear():reduce

Fills the buffer in the image instance with zero value.

This has the same effect with calling image#fill() with color.zero.

This method returns the reference to the target instance itself.

image#crop(x:number, y:number, width?:number, height?:number):map {block?}

Returns a new image instance of the extracted area of the source image.

The extracted area is specified by the following arguments:

• x .. The left position.

• y .. The top position.

• width .. The width. If it’s omitted or specified with nil, the whole area on the right of
x will be extracted.

• height .. The height. If it’s omitted or specified with nil, the whole area on the bottom
of y will be extracted.

If block is specified, it would be evaluated with a block parameter |img:image|, where img

is the created instance. In this case, the block’s result would become the function’s returned
value.

image#delpalette():reduce

Deletes a palette instance that belongs to the image.

This method returns the reference to the target instance itself.

image#extract(x:number, y:number, width:number, height:number, element:symbol, dst):reduce

Extracts the element values within the specified area of the image, and store them into a list.
The argument x and y specifies the left-top position, and width, and height does the size of
the area.

The argument element takes the following symbol that specifies which element should be
extracted:

69

• ‘r .. red

• ‘g .. green

• ‘b .. blue

• ‘a .. alpha

The argument dst specifies the variable into which the extracted data is stored, which must be
a list that has enough space to store the data.

This method returns the reference to the target instance itself.

image#fill(color:color):reduce

Fills the whole image with the specified color.

This method returns the reference to the target instance itself.

image#fillrect(x:number, y:number, width:number, height:number, color:color):map:reduce

Fills the specified area with the specified color. The argument x and y specifies the left-top
position, and width, and height does the size of the area.

This method returns the reference to the target instance itself.

image#flip(orient:symbol):map {block?}

Returns a new image instance that flips the source image horizontally or vertically. You can
specify the following symbol to the orient argument.

• ‘horz .. flips horizontally.

• ‘vert .. flips vertically.

• ‘both .. flips both horizontally and vertically. This has the same effect with rotating the
image 180 degrees.

If block is specified, it would be evaluated with a block parameter |img:image|, where img

is the created instance. In this case, the block’s result would become the function’s returned
value.

image#getpixel(x:number, y:number):map {block?}

Returns a color of a pixel data at the specified position.

If block is specified, it would be evaluated with a block parameter |c:color|, where c is the
created instance. In this case, the block’s result would become the function’s returned value.

image#grayscale() {block?}

Returns a new image instance that converts the source image into gray scale.

If block is specified, it would be evaluated with a block parameter |img:image|, where img

is the created instance. In this case, the block’s result would become the function’s returned
value.

image#mapcolorlevel(map@r:array@uint8, map@g?:array@uint8, map@b?:array@uint8) {block?}

Returns a new image that converts color levels according to the given table.

Each of the arguments map@r, map@g and map@b is an instance of array@uchar containing
256 numbers that range between 0 and 255 and corresponds to elements red, green and blue

70

respectively. An element value in the source image becomes an index of the list and the indexed
value will be stored as a converted element value.

If you want to apply a mapping table to all the elements, call the method with a single argument
like image#mapcolorlevel(map).

If block is specified, it would be evaluated with a block parameter |img:image|, where img

is the created instance. In this case, the block’s result would become the function’s returned
value.

image#paste(x:number, y:number, src:image, width?:number, height?:number, xoffset:number => 0, yoffset:number => 0, a:number => 255):map:reduce

Pastes the source image src onto the target image instance at the specified position.

The argument width, height, xoffset and yoffset specify the source image’s area to be
pasted. If they’re omitted, the whole image will be pasted.

The argument a specifies the alpha value that is put on the target image.

This method returns the reference to the target instance itself.

image#putpixel(x:number, y:number, color:color):map:reduce

Puts a color on the specified position.

This method returns the reference to the target instance itself.

image#size()

Returns the image size as a list [width, height].

image#store(x:number, y:number, width:number, height:number, element:symbol, src):reduce

image#read(stream:stream:r, imagetype?:string):map:reduce

Reads image data from a stream.

The format of the image data is determined by the byte sequence of the stream data and its
file name.

You can also explicitly specify the image data format by the argument imagetype.

This method returns the reference to the target instance itself.

image#reducecolor(palette?:palette) {block?}

Creates an image that reduces colors in the original image with a set of colors in the given
palette. The specified palette would be associated with the created image.

If no argument is specified, the associated palette would be used. In this case, an error occurs
if there’s no palette associated.

If block is specified, it would be evaluated with a block parameter |img:image|, where img

is the created instance. In this case, the block’s result would become the function’s returned
value.

image#replacecolor(colorOrg:color, color:color, tolerance?:number):reduce

Replaces pixels that have a color matching colorOrg with the color.

The argument tolerance specifies an acceptable distance for the matching. If omitted, only
an exact match is acceptable.

This method returns the reference to the target instance itself.

image#resize(width?:number, height?:number):map:[box,ratio] {block?}

71

Resizes the image to the size specified by width and height and returns the result.

• When both width and height are specified, the image would be resized to the size.

• When width is specified and height is omitted or nil, the resized height would be
calculated from the width so that they keep the same ratio as the original.

• When width is nil and height is specified, the resized width would be calculated from
the height so that they keep the same ratio as the original.

The following attributes are acceptable:

• :box .. When only width is specified, the same value is set to height.

• :ratio .. Treats values of width and height as magnifying ration instead of pixel size.

If block is specified, it would be evaluated with a block parameter |img:image|, where img

is the created instance. In this case, the block’s result would become the function’s returned
value.

image#rotate(rotate:number, background?:color):map {block?}

Creates an image that rotates the original image by the specified angle.

The argument angle specifies the rotation angle in degree unit, and positive numbers for
counterclockwise direction and negative for clockwise direction.

The created instance has a size that exactly fits the rotated image. The argument background
specifies the color of pixels to fill the empty area that appears after rotation. If omitted, the
color that has all elements set to zero is used for filling.

If block is specified, it would be evaluated with a block parameter |img:image|, where img

is the created instance. In this case, the block’s result would become the function’s returned
value.

image#scan(x?:number, y?:number, width?:number, height?:number, scandir?:symbol) {block?}

Returns an iterator that scans pixels in the image.

The arguments x, y, width and height specify the image area to scan. The argument scandir
specifies the scan direction and takes one of the following symbol:

Symbol Start Pos Direction
‘left top horz left-top horizontal
‘left top vert left-top vertical
‘left bottom horz left-bottom horizontal
‘left bottom vert left-bottom vertical
‘right top horz right-top horizontal
‘right top vert right-top vertical
‘right bottom horz right-bottom horizontal
‘right bottom vert right-bottom vertical

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

72

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

image#setalpha(a:number, color?:color, tolerance?:number):reduce

Replaces the alpha element of all the pixels in the image with the value specified by a.

If the argument color is specified, alpha element of pixels that match with that color would be
replaced. The argument tolerance specifies the distance within which the color is determined
as matched.

This method returns the reference to the target instance itself.

image#thumbnail(width?:number, height?:number):map:[box] {block?}

Resizes the image so that it fits within a rectangular area specified by width and height and
returns the result.

If block is specified, it would be evaluated with a block parameter |img:image|, where img

is the created instance. In this case, the block’s result would become the function’s returned
value.

image#write(stream:stream:w, imagetype?:string):map:reduce

Writes image data to a stream.

The format of the image data is determined by the stream’s file name.

You can also explicitly specify the image data format by the argument imagetype.

This method returns the reference to the target instance itself.

5.20 list/iterator Class

The list class provides measures to handle a list structure, which stores values on memory
that can be accessed by indexer.

The iterator class provides measures to operate an iterator, which iterates values that come
from containers and streams.

5.20.1 List-specific Features

Creating List

There are several ways to create a list.

[3, 1, 4, 1, 5, 9]

@{3, 1, 4, 1, 5, 9}

73

Index Access

You can read and write element values in a list with an indexer by giving it an index number
starting from zero. Below is an example:

x = [‘A, ‘B, ‘C, ‘D, ‘E, ‘F]

println(x[2]) // prints ‘C

x[4] = ‘e // replaces ‘E with ‘e

Function to Create list Instance

list(value+)

Creates a new list from given values in its argument list. If a given value is a list or an iteartor,
elements it contains are added to the created list.

xlist(value+)

Creates a new list from given values except for nil in its argument list. If a given value is a
list or an iteartor, elements it contains are added to the created list.

set(iter+:iterator):[and,or,xor]

Creates a new list that contains unique values from given iterators in its argument list.

In default, all the elements in each iterators are added to the created list. Specifying the
following attributes would apply a filtering condition.

• :and .. Elements that exist in all the iterators are added.

• :or .. All the elements are added. This is the default behavior.

• :xor .. Elements that exist in only one iterator are added.

xset(iter+:iterator):[and,or,xor]

Creates a new list that contains unique values except for nil from given iterators in its argument
list.

In default, all the elements in each iterators are added to the created list. Specifying the
following attributes would apply a filtering condition.

• :and .. Elements that exist in all the iterators are added.

• :or .. All the elements are added. This is the default behavior.

• :xor .. Elements that exist in only one iterator are added.

Method Specific to list Class

list#add(elem+):reduce

Add specified items to the list.

list#append(elem+):reduce

74

Adds specified items to the list. If the item is a list or an iterator, each element in such an item
is added to the list.

list#clear():reduce

Clear the content of the list.

list#combination(n:number) {block?}

Creates an iterator that generates lists that contain elements picked up from the original list
in a combination manner.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

list#erase(idx∗:number):reduce

Erases elements at the specified indices.

list#first()

Returns a first value in the list. An error occurs when the list is empty.

list#get(index:number):flat:map

Returns a value stored at the specified index in the list. An error occurs when the index is out
of range.

list#insert(idx:number, elem+):reduce

Insert specified items to the list from the selected index.

list#isempty()

Return true if the list is empty.

list#last()

Returns a last value in the list. An error occurs when the list is empty.

list#permutation(n?:number) {block?}

Creates an iterator that generates lists that contain elements picked up from the original list
in a permutation manner.

75

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

list#put(index:number, value:nomap):map:reduce

Stores a value at the specified index in the list. An error occurs when the index is out of range.

list#shift():[raise]

Shifts the elements of the list. If the content of the list is [1, 2, 3, 4], it becomes [2, 3, 4] after
calling this method. In default, no error occurs even when the list is empty. To raise an error
for executing this method on an empty list, specify :raise attribute.

list#shuffle():reduce

Shuffle the order of the list content based on random numbers.

list.zip(values+):static {block?}

Creates an iterator generating lists that bind given argument values. When the value is a list
or an iterator, each item in it would be zipped.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

76

5.20.2 Iterator-specific Features

Function to Create iterator Instance

iterator(value+) {block?}

Creates an iterator that combines iterators given in the argument.

If an argument is not an iterator, that would be added as an element.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Method Specific to iterator Class

iterator#delay(delay:number) {block?}

Creates an iterator that returns each element with an interval time specified by the argument
delay in seconds.

iterator#finite():reduce

Marks the iterator as a finite one by clearing its infinite flag.

This method returns the target instance itself.

iterator#infinite():reduce

Marks the iterator as an infinite one by setting its infinite flag.

This method returns the target instance itself.

iterator#isinfinite()

Returns true if the iterator is infinite one.

The trait of iterator’s infinity is used to avoid an endless process by evaluating an infinite
iterator. An attempt to evaluate an infinite iterator such as creation of a list from it would
occur an error.

iterator#next()

Returns a next element of the iterator. This operation updates the iterator’s internal status.

77

iterator#repeater()

Makes the iterator behave as a ”repeater”. This would allow the iterator be evaulated when it
appears as an element of another ”repeater” iterator.

Below is an example:

x = repeat(3):iter {

[’apple’, ’orange’, ’grape’].each()

}

println(x)

// Just prints iterator instance three times

// since x can’t evaluate the internal iterator.

x = repeat(3):iter {

[’apple’, ’orange’, ’grape’].each().repeater()

}

println(x)

// Prints ’apple’, ’orange’ and ’grape’ three times

// after evaluating the internal iterator.

5.20.3 Method Common to Both list and iterator Classes

iterable#after(criteria) {block?}

Creates an iterator that picks up elements that appear at positions after the criteria is evaluated
to be true.

You can specify a function, a list or an iterator as the criteria.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#align(n:number, value?) {block?}

Creates an iterator that returns the specified number of elements in the source iterator. If the
number is larger than the length of the source iterator, the lacking part is filled with value. If
the argument value is omitted, nil is used for the filling.

Below is an example to specify a number less than the source length:

78

x = [‘A, ‘B, ‘C, ‘D, ‘E, ‘F].align(3)

// x generates ‘A, ‘B, ‘C.

Below is an example to specify a number that exceeds the source length:

x = [‘A, ‘B, ‘C, ‘D, ‘E, ‘F].align(8)

// x generates ‘A, ‘B, ‘C, ‘D, ‘E, ‘F, nil, nil.

iterable#and()

Calculates a logical AND result of all the values in the iterable.

iterable#before(criteria) {block?}

Creates an iterator that extracts elements in the iterable before criteria is evaluated as true.
You can specify a function object, a list or an iterator as the criteria.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#contains(value)

Returns true if the specified value appears in the iterable.

iterable#count(criteria?)

Returns a number of elements that matches the given criteria which is a single-argument func-
tion or a value.

When a function is applied, it counts the number of true after evaluating element value with
the function. If a value is applied, it counts the number of elements that are equal to the value.

iterable#cycle(n?:number) {block?}

Creates an iterator that iterates elements in the source iterator cyclically.

The argument n specifies the number of elements the created iterator returns. If omitted, it
would iterates elements infinitely.

Below is an example:

79

x = [‘A, ‘B, ‘C, ‘D, ‘E].cycle()

// x generates ‘A, ‘B, ‘C, ‘D, ‘E, ‘A, ‘B, ‘C, ‘D, ‘E, ‘A, ‘B, ..

iterable#each() {block?}

Creates an iterator that iterates each element in the list.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#filter(criteria?) {block?}

Creates an iterable that filters values in the source iterable by a criteria.

A criteria can be an iterable or a function instance.

• When the criteria is an iterable, the created iterator would scan the source and the criteria
iterable simultaneously and would return a value of the source when the corresponding
criteria value is evaluated as true.

• When the criteria is a function instance, the created iterator would give it a value of the
source as an argument and would return the value when the function has returned true.

Below is an example to use an iterable as its criteria:

x = [3, 1, 4, 1, 5, 9]

y = filter(x > 3)

// (x > 3) makes a list [false, false, true, false, true, true]

// y generates 4, 5, 9

Below is an example to use a function as its criteria:

x = [3, 1, 4, 1, 5, 9]

y = filter(&{$x > 3})

// y generates 4, 5, 9

80

iterable#find(criteria?):[index]

iterable#flatten():[bfs,dfs] {block?}

Creates an iterator that searches items recursively if they are lists or iterators.

Specifying an attribute could customize searching order as below:

• :dfs .. Searches in depth-first order. This is the default behavior.

• :bfs .. Searches in breadth-first order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Below is an example:

x = [[‘A, ‘B, ‘C], [‘D, ‘E, [‘F, ‘G, ‘H], ‘I, ‘J], ‘K, ‘L]

y = x.flattten():dfs

// y generates ‘A, ‘B, ‘C, ‘D, ‘E, ‘F, ‘G, ‘H, ‘I, ‘J, ‘K, ‘L

y = x.flatten():bfs

// y generates ‘K, ‘L, ‘A, ‘B, ‘C, ‘D, ‘E, ‘I, ‘J, ‘F, ‘G, ‘H

iterable#fold(n:number, nstep?:number):map:[iteritem,neat] {block?}

Creates an iterator that packs n elements of the source iterator into a list and returns it as its
element.

The argument nstep specifies the shift amount to the next packing.If omitted, the next packing
is shifted by n elements.

Specifying the attribute :iteritem returns an iterator as its element instead of a list

If the last packing doesn’t satisfy n elements, its list would be shorter than n. When specifying
the attribute :neat, such an immature list would be eliminated.

Following is an example to fold elements by 3:

x = [‘A, ‘B, ‘C, ‘D, ‘E, ‘F, ‘G, ‘H].fold(3)

// x generates [‘A, ‘B, ‘C], [‘D, ‘E, ‘F], [‘G, ‘H].

81

Following is an example to fold elements by 3 with a step of 2:

x = [‘A, ‘B, ‘C, ‘D, ‘E, ‘F, ‘G, ‘H].fold(3, 2)

// x generates [‘A, ‘B, ‘C], [‘C, ‘D, ‘E], [‘E, ‘F, ‘G], [‘G, ‘H].

iterable#format(format:string):map {block?}

Creates an iterator that converts element values in the source iterable into strings depending
on formatter specifier in format.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#head(n:number):map {block?}

Creates an iterator that takes the first n elements from the source iterable.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#join(sep?:string):map

Joins all the elements in the iterable as strings while inserting the specified separator sep and
returns the result.

82

If an element is not a string value, it would be converted to a string before being joined.

iterable#joinb()

Joins all the binary values in the iterable and returns the result.

iterable#len()

Returns the length of the iterable.

iterable#map(func:function) {block?}

Creates an iterator that generates element values after applying the specfied function on them.
The function must take one argument.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#max():[index,indices,last index]

Returns the maximum value in the iterable.

It would return a position index where the maximum value is found when one of the following
attribute is specified:

• :index .. an index of the maximum value.

• :indices .. a list of indices where the maximum value is found.

• :last index .. the last index of the maximum value when the value exists at multiple
positions.

iterable#mean()

Calculates an average of elements in the iterable.

It can work on an iterable with elements of type that supports addition and division operators.
Below is a list of acceptable value types:

• number

• complex

• rational

83

iterable#min():[index,indices,last index]

Returns the minimum value in the iterable.

It would return a position index where the minimum value is found when one of the following
attribute is specified:

• :index .. an index of the minimum value.

• :indices .. a list of indices where the minimum value is found.

• :last index .. the last index of the minimum value when the value exists at multiple
positions.

iterable#nilto(replace) {block?}

Creates an iterator that converts nil in the source iterable to the specified value.

iterable#offset(n:number) {block?}

Creates an iterator that returns skips the first n elements in the source iterable.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Below is an example:

x = [‘A, ‘B, ‘C, ‘D, ‘E, ‘F, ‘G, ‘H].offset(3)

// x generates ‘D, ‘E, ‘F, ‘G, ‘H

iterable#or()

Calculates a logical OR result of all the values in the iterable.

iterable#pack(format:string) {block?}

Creates a binary instance that has packed elements in the iterable according to specifiers in
the format.

A specifier has a format of ”nX” where X is a format character that represents a packing format
and n is a number of packing size. The number can be omitted, and it would be treated as 1
in that case.

Following format characters would take a number value from the argument list and pack them
into a binary sequence.

84

• b .. A one-byte signed number.

• B .. A one-byte unsigned number.

• h .. A two-byte signed number.

• H .. A two-byte unsigned number.

• i .. A four-byte signed number.

• I .. A four-byte unsigned number.

• l .. A four-byte signed number.

• L .. A four-byte unsigned number.

• q .. A eight-byte signed number.

• Q .. A eight-byte unsigned number.

• f .. A float-typed number occupying four bytes.

• d .. A double-typed number occupying eight bytes.

As for them, the packing size n means the number of values to be packed.

Following format characters would take a string value from the argument list and pack them
into a binary sequence.

• s .. Packs a sequence of UTF-8 codes in the string. The packing size n means the size of
the room in bytes where the character codes are to be packed. Only the sequence within
the allocated room would be packed. If the string length is smaller than the room, the
lacking part would be filled with zero.

• c .. Picks the first byte of the string and packs it as a one-byte unsigned number. The
packing size n means the number of values to be packed.

Following format character would take no value from the argument list.

• x .. Fills the binary with zero. The packing size n means the size of the room in bytes to
be filled with zero.

The default byte-order for numbers of two-byte, four-byte and eight-byte depends on the system
the interpreter is currently running. You can change it by the following specifiers:

• @ .. System-dependent order.

• = .. System-dependent order.

• < .. Little endian

• > .. Big endian

• ! .. Big endian

You can specify an asterisk character ”∗” for the number of packing size that picks that number
from the argument list.

You can specify encoding name embraced with ”{” and ”}” in the format to change coding
character set while packing a string with format character ”s” from UTF-8.

iterable#pingpong(n?:number):[sticky,sticky@top,sticky@btm] {block?}

85

Creates an iterator that iterates elements in the source iterator from top to bottom, and then
from bottom to top repeatedly.

The argument n specifies the number of elements the created iterator returns. If omitted, it
would iterates elements infinitely.

Below is an example:

x = [‘A, ‘B, ‘C, ‘D, ‘E].pingpong()

// x generates ‘A, ‘B, ‘C, ‘D, ‘E, ‘D, ‘C, ‘B, ‘A, ‘B, ..

The following attributes specify whether the elements on top and bottom are duplicated:

• :sticky .. Duplicate the top and bottom elements.

• :sticky@top .. Duplicate the top element.

• :sticky@btm .. Duplicate the bottom element.

Below is an example:

x = [‘A, ‘B, ‘C, ‘D, ‘E].pingpong():sticky

// x generates ‘A, ‘B, ‘C, ‘D, ‘E, ‘E, ‘D, ‘C, ‘B, ‘A, ‘A, ‘B, ..

iterable#print(stream?:stream:w):void

Prints elements to the specified stream.

If omitted, they are printed to the standard output.

iterable#printf(format:string, stream?:stream:w):void

Prints items in the iterable by using the format.

iterable#println(stream?:stream:w):void

iterable#rank(directive?) {block?}

Creates an iterable of rank numbers for elements after sorting them.

In default, they are sorted in an ascending order. This means that, if two elements x and y has
the relationship of x < y, x would be placed before y. You can change the order by specifying
the argument directive with the following symbols:

• ‘ascend .. Sorts in an ascending order. This is the default.

• ‘descend .. Sorts in a descending order.

You can also put a function to the argument directive that takes two arguments x and y and
is expected to return numbers below:

• x == y .. Zero.

• x < y .. A number less than zero.

• x > y .. A number greater than zero.

86

When an attribute :stable is specified, the original order shall be kept for elements that are
determined as the same.

iterable#reduce(accum) {block}

Evaluates a block with a parameter format |value, accum| and leaves the result as the next
accum value.

It returns the final accum value as its result.

Below is an example to calculate summation of the elements:

x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

n = x.reduce(0) {|value, accum| value + accum}

// n is 55

iterable#replace(value, replace) {block?}

Creates an iterator that replaces the value in the original iterablewith the value of replace.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#reverse() {block?}

Creates an iterator that iterates elements in the source iterable from tail to top.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

87

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#roundoff(threshold:number => 1e-10) {block?}

Creates an iterator that replaces a number with zero if it is less than the specified threshold.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#runlength() {block?}

Creates an iterator that counts the number of consecutive same value and generates elements
in a form of [cnt, value] where cnt indicates how many value appears in a row.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Below is an example:

x = [‘A, ‘A, ‘B, ‘C, ‘C, ‘C, ‘D, ‘D].runlength()

// x generates [2, ‘A], [1, ‘B], [3, ‘C], [2, ‘D]

88

iterable#since(criteria) {block?}

Creates an iterator that picks up each element in the iterable since criteria is evaluated as true.
You can specify a function object, a list or an iterator as the criteria.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#skip(n:number) {block?}

Creates an iterator that skips n elements before picking up next element.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Below is an example:

x = [‘A, ‘B, ‘C, ‘D, ‘E, ‘F, ‘G, ‘H].skip(2)

// x generates ‘A, ‘D, ‘G

iterable#skipnil() {block?}

Creates an iterator that skips nil in the source iterable.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

89

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

Below is an example:

x = [‘A, nil, ‘C, nil, nil, ‘F, nil, ‘H].skipnil()

// x generates ‘A, ‘C, ‘F, ‘H

iterable#sort(directive?, keys[]?):[stable] {block?}

Creates an iterator of elements after sorting them.

In default, they are sorted in an ascending order. This means that, if two elements x and y has
the relationship of x < y, x would be placed before y. You can change the order by specifying
the argument directive with the following symbols:

• ‘ascend .. Sorts in an ascending order. This is the default.

• ‘descend .. Sorts in a descending order.

You can also put a function to the argument directive that takes two arguments x and y and
is expected to return numbers below:

• x == y .. Zero.

• x < y .. A number less than zero.

• x > y .. A number greater than zero.

When an attribute :stable is specified, the original order shall be kept for elements that are
determined as the same. If the argument keys is specified, it would be used as a key instead of
element values.

iterable#stddev()

Calculates a standard deviation of elements in the iterable.

iterable#sum()

Calculates a summation of elements in the iterable.

It can work on an iterable with elements of a value type that supports addition operator. Below
is a list of acceptable value types:

• number

90

• complex

• string

• rational

• timedelta

iterable#tail(n:number) {block?}

Creates an iterator that takes the last n elements from the source iterable.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#until(criteria) {block?}

Creates an iterator that picks up each element in the list until criteria is evaluated as true. You
can specify a function object, a list or an iterator as the criteria.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

iterable#variance()

Calculates a variance of elements in the iterable.

91

iterable#while (criteria) {block?}

Creates an iterator that picks up each element in the list while criteria is evaluated as true.
You can specify a function object, a list or an iterator as the criteria.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

5.21 memory Class

An instance of the memory class represents a memory that is stored in array instances.

5.21.1 Property

A memory instance has the following properties:

Prop-
erty

Type R/WExplanation

p pointerR Returns a pointer instance that accesses the memory. This result is
equivalent to that of calling the method memory#pointer()

size numberR Returns the memory size in bytes.

5.21.2 Constructor

memory(bytes:number):map {block?}

5.21.3 Method

memory#array@int8():map {block?}

Creates an array@int8 instance that accesses the content of the target memory instance.

memory#array@uint8():map {block?}

92

Creates an array@uint8 instance that accesses the content of the target memory instance.

memory#array@int16():map {block?}

Creates an array@int16 instance that accesses the content of the target memory instance.

memory#array@uint16():map {block?}

Creates an array@uint16 instance that accesses the content of the target memory instance.

memory#array@int32():map {block?}

Creates an array@int32 instance that accesses the content of the target memory instance.

memory#array@uint32():map {block?}

Creates an array@uint32 instance that accesses the content of the target memory instance.

memory#array@int64():map {block?}

Creates an array@int64 instance that accesses the content of the target memory instance.

memory#array@uint64():map {block?}

Creates an array@uint64 instance that accesses the content of the target memory instance.

memory#array@float():map {block?}

Creates an array@float instance that accesses the content of the target memory instance.

memory#array@double():map {block?}

Creates an array@double instance that accesses the content of the target memory instance.

memory#dump(stream?:stream:w):void:[upper]

Prints a hexadecimal dump from the content of the memory to the standard output. If the
argument stream is specified, the result would be output to the stream.

In default, hexadecimal digit are printed with lower-case characters. Specifying an attribute
:upper would output them with upper-case characters instead.

Example:

>>> b’A quick brown fox jumps over the lazy dog.’.dump():upper

41 20 71 75 69 63 6B 20 62 72 6F 77 6E 20 66 6F A quick brown fo

78 20 6A 75 6D 70 73 20 6F 76 65 72 20 74 68 65 x jumps over the

20 6C 61 7A 79 20 64 6F 67 2E lazy dog.

memory#pointer(offset?:number) {block?}

Returns a pointer instance that has an initial offset specified by the argument offset. If the
argument is omitted, it would return a pointer instance that points to the top of the memory.

If block is specified, it would be evaluated with a block parameter |p:pointer|, where p is the
created instance. In this case, the block’s result would become the function’s returned value.

93

5.22 nil Class

The nil class is the class of nil value that is usually used as an invalid value. In a logical
operation, the nil value is recognized as false.

5.23 number Class

The number class is a type of number values. A number literal would create a number instance.

5.23.1 Method

number.roundoff(threshold:number => 1e-10)

5.24 operator Class

The operator class provides measures to assign operators with a user-defined procedure.

5.24.1 Property

An operator instance has the following properties:

Property Type R/W Explanation
symbol symbol R Operator symbol.

5.24.2 Constructor

operator(symbol:symbol):map {block?}

Creates an operator instance that is associated with the specified symbol.

If block is specified, it would be evaluated with a block parameter |op:operator|, where op

is the created instance. In this case, the block’s result would become the function’s returned
value.

Below is an example to create an operator instance that is associated with the plus symbol.

op = operator(‘+)

5.24.3 Method

operator#assign(type l:expr, type r?:expr):map:void {block}

Associates the operator instance with a procedure described in block that takes values as a
block parameter and returns its operation result.

Some operator instances have two forms of expression: unary and binary. This method assignes
the procedure to one of them according to how it takes its arguments as below:

94

• operator#assign(type:expr) .. Assigns procedure to the unary form.

• operator#assign(type l:expr, type r:expr) .. Assignes procedure to the binary form.

They take different format of block parameters as below:

• |value| .. For unary form.

• |value l, value r| .. For binary form.

Below is an example to assign a procedure to a unary form of operator -.

operator(‘-).assign(‘string) = {|value|

// any job

}

Below is an example to assign a procedure to a binary form of operator -.

operator(‘-).assign(‘string, ‘number) = {|value_l, value_r|

// any job

}

operator#entries(type?:symbol)

Returns a list that contains type expressions that the operator can accept as its arguments.

The argument type takes a symbol ‘binary or ‘unary.

• If it’s omitted or specified with ‘binary, the method would return a list of pairs of type
expressions for its left element and right one.

• If it’s specified with ‘unary, the method would return a list of type expressions for its
single element.

5.25 palette Class

The palette instance has a set of color instance.

5.25.1 Constructor

palette(type) {block?}

Creates a palette instance.

If block is specified, it would be evaluated with a block parameter |plt:palette|, where plt
is the created instance. In this case, the block’s result would become the function’s returned
value.

This function can be called in the following two forms:

• palette(n:number) .. Creates an instance with the specified number of entries. All the
entries are initialized with a color of black.

• palette(type:symbol) .. Creates an instance initialized with a pre-defined set of entries
associated with the specified symbol.

95

In the second form, it can take one of the following symbols:

• ‘basic .. A palette with 16 basic colors that are: color.black, color.maroon, color.green,
color.olive, color.navy, color.purple, color.teal, color.gray, color.silver,
color.red, color.lime, color.yellow, color.blue, color.fuchsia, color.aqua and
color.white.

• ‘win256 .. A palette with 256 colors defined by Windows.

• ‘websafe .. A palette with 216 colors that assure to be displayed correctly in any Web
environments. It actually has 256 entries though the last 40 entries are initialized with
black.

5.25.2 Method

palette#each() {block?}

Creates an iterator that iterates each element in the palette.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

palette#nearest(color:color):map:[index]

Returns a color instance in the palette that is the nearest with the specified color.

If the attribute :index is specified, it would return an index of the nearst entry instead of its
color instance.

palette#shrink():reduce:[align]

Shrinks the size of the palette to a number powered by two that is enough to contain unique
entries. The ordef of existing entries will be kept intact.

palette#updateby(image or palette):reduce:[align,shrink]

Updates palette entries according to color data in an image or a palette.

The order of existing entries will be kept intact. If attribute shrink is specified, the whole size
will be shrinked to a number powered by two that is enough to contain unique entries.

96

5.26 pointer Class

The pointer class provides measures to read and write content in a binary and memory instance.

5.26.1 Property

A pointer instance has the following properties:

Prop-
erty

Type R/WExplanation

offset numberR/W The current offset.
size numberR Returns the size of data accessible from the current offset.
size@allnumberR Returns the entire size of the target binary or memory. This equals to

p.offset + p.size where ‘p‘ is a ‘pointer‘ instance.
target any R An instance that is associated with the pointer. Currently, this can be

an instance of ‘binary‘ or ‘memory‘.

5.26.2 Constructor

pointer(org:pointer):map {block?}

Creates a pointer instance that is cloned from the given instance org. You can use this to cast
a binary and memory instance to the pointer.

If block is specified, it would be evaluated with a block parameter |ptr:pointer|, where ptr
is the created instance. In this case, the block’s result would become the function’s returned
value.

5.26.3 Method

pointer#copyfrom(src:pointer, bytes?:number):map:reduce

Copies data from src to the target pointer.

If the argument bytes is specified, it would limit the size of data to be copied. Otherwise, all
the data pointerd by src is to be copied.

This method returns a reference to the target instance itself.

pointer#copyto(dst:pointer, bytes?:number):map:reduce

Copies data from the target pointer to dst.

If the argument bytes is specified, it would limit the size of data to be copied. Otherwise, all
the data pointerd by the target instance is to be copied.

This method returns a reference to the target instance itself.

pointer#decode(codec:codec, bytes?:number) {block?}

Decodes the content of the pointer as a sequence of string characters using codec and returns
the result in string.

If the argument bytes is specified, it would limit the size of data to be decoded. Otherwise, all
the data pointerd by the target instance is to be decoded.

97

If block is specified, it would be evaluated with a block parameter |str:string|, where str

is the created instance. In this case, the block’s result would become the function’s returned
value.

pointer#dump(stream?:stream:w, bytes?:number):reduce:[upper]

Prints a hexadecimal dump from the content of the pointer to the standard output. If the
argument stream is specified, the result would be output to the stream.

If the argument bytes is specified, it would limit the size of data to be dumped. Otherwise, all
the data pointerd by the target instance is to be dumped.

In default, hexadecimal digit are printed with lower-case characters. Specifying an attribute
:upper would output them with upper-case characters instead.

Example:

>>> b’A quick brown fox jumps over the lazy dog.’.p.dump():upper

41 20 71 75 69 63 6B 20 62 72 6F 77 6E 20 66 6F A quick brown fo

78 20 6A 75 6D 70 73 20 6F 76 65 72 20 74 68 65 x jumps over the

20 6C 61 7A 79 20 64 6F 67 2E lazy dog.

pointer#encodeuri(bytes?:number) {block?}

Returns a string in which non-URIC characters are converted to percent-encoded string.

For example, b’"Hello"’.p.encodeuri() would return ’%22Hello%22’.

If block is specified, it would be evaluated with a block parameter |str:string|, where str

is the created instance. In this case, the block’s result would become the function’s returned
value.

pointer#each@int8():[be] {block?}

Creates an iterator that extracts numbers in size of int8 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

pointer#each@uint8():[be] {block?}

98

Creates an iterator that extracts numbers in size of uint8 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

pointer#each@int16():[be] {block?}

Creates an iterator that extracts numbers in size of int16 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

pointer#each@uint16():[be] {block?}

Creates an iterator that extracts numbers in size of uint16 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

99

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

pointer#each@int32():[be] {block?}

Creates an iterator that extracts numbers in size of int32 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

pointer#each@uint32():[be] {block?}

Creates an iterator that extracts numbers in size of uint32 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

100

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

pointer#each@int64():[be] {block?}

Creates an iterator that extracts numbers in size of int64 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

pointer#each@uint64():[be] {block?}

Creates an iterator that extracts numbers in size of uint64 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

101

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

pointer#each@float():[be] {block?}

Creates an iterator that extracts numbers in size of float from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

pointer#each@double():[be] {block?}

Creates an iterator that extracts numbers in size of double from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

102

pointer#forward(distance:number):reduce

Put the pointer offset forward by distance. If a negative number is specified for the argument,
the offset would be put backward.

An error would occur when the pointer’s offset becomes a negative value while it would be no
error when the offset exceeds the target maximum range.

This method returns a reference to the target instance itself.

pointer#get@int8():[be,nil,stay] {block?}

Returns an extracted number in size of int8 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#get@uint8():[be,nil,stay] {block?}

Returns an extracted number in size of uint8 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#get@int16():[be,nil,stay] {block?}

Returns an extracted number in size of int16 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#get@uint16():[be,nil,stay] {block?}

Returns an extracted number in size of uint16 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#get@int32():[be,nil,stay] {block?}

Returns an extracted number in size of int32 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#get@uint32():[be,nil,stay] {block?}

Returns an extracted number in size of uint32 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

103

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#get@int64():[be,nil,stay] {block?}

Returns an extracted number in size of int64 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#get@uint64():[be,nil,stay] {block?}

Returns an extracted number in size of uint64 from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#get@float():[be,nil,stay] {block?}

Returns an extracted number in size of float from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#get@double():[be,nil,stay] {block?}

Returns an extracted number in size of double from the current pointer position.

In default, it assumes the byte seqeuces are ordered in little-endian. You can specify :be

attribute to extract them in big-endian order.

If block is specified, it would be evaluated with a block parameter |n:number|, where n is the
created instance. In this case, the block’s result would become the function’s returned value.

pointer#head():reduce

Moves the pointer position to the beginning.

This method returns a reference to the target instance itself.

pointer#hex(bytes?:number):[carray,cstr,upper] {block?}

Converts the binary data into a hexadecimal string.

In default, the result string is a sequence of joined hexadecimal values without any space. You
can specify the following attribute to change the format:

• :cstr .. Format of C string.

• :carray .. Format of C array.

Alphabet characters are described in lower characters unless the attribute :upper is specified.

If block is specified, it would be evaluated with a block parameter |str:string|, where str

is the created instance. In this case, the block’s result would become the function’s returned
value.

104

Example:

Code Result
b’\x01\x23\xab\xcd’.p.hex() ’0123abcd’

b’\x01\x23\xab\xcd’.p.hex():upper ’0123ABCD’

b’\x01\x23\xab\xcd’.p.hex():cstr ’\\x01\\x23\\xab\\xcd’
b’\x01\x23\xab\xcd’.p.hex():carray ’0x01, 0x23, 0xab, 0xcd’

pointer#pack(format:string, values+):reduce:[stay]

Packs values in the argument list according to specifiers in the format into a binary and adds
it to where the pointer points. The pointer offset is automatically incremented by the added
length unless :stay attribute is specified.

This method returns a reference to the target instance itself.

A specifier has a format of ”nX” where X is a format character that represents a packing format
and n is a number of packing size. The number can be omitted, and it would be treated as 1
in that case.

Following format characters would take a number value from the argument list and pack them
into a binary sequence.

• b .. One-byte signed number.

• B .. One-byte unsigned number.

• h .. Two-byte signed number.

• H .. Two-byte unsigned number.

• i .. Four-byte signed number.

• I .. Four-byte unsigned number.

• l .. Four-byte signed number.

• L .. Four-byte unsigned number.

• q .. Eight-byte signed number.

• Q .. Eight-byte unsigned number.

• f .. Float-typed number occupying four bytes.

• d .. Double-typed number occupying eight bytes.

As for them, the packing size n means the number of values to be packed.

Following format characters would take a string value from the argument list and pack them
into a binary sequence.

• s .. Packs a sequence of UTF-8 codes in the string. The packing size n means the size of
the room in bytes where the character codes are to be packed. Only the sequence within
the allocated room would be packed. If the string length is smaller than the room, the
lacking part would be filled with zero.

• c .. Picks the first byte of the string and packs it as a one-byte unsigned number. The
packing size n means the number of values to be packed.

Following format character would take no value from the argument list.

105

• x .. Fills the binary with zero. The packing size n means the size of the room in bytes to
be filled with zero.

The default byte-order for numbers of two-byte, four-byte and eight-byte depends on the system
the interpreter is currently running. You can change it by the following specifiers:

• @ .. System-dependent order.

• = .. System-dependent order.

• < .. Little endian

• > .. Big endian

• ! .. Big endian

You can specify an asterisk character ”∗” for the number of packing size that picks that number
from the argument list.

You can specify encoding name embraced with ”{” and ”}” in the format to change coding
character set from UTF-8 while packing a string with format character ”s”.

pointer#put@int8(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of int8.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

pointer#put@uint8(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of uint8.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

pointer#put@int16(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of int16.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

pointer#put@uint16(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of uint16.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

pointer#put@int32(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of int32.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

106

pointer#put@uint32(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of uint32.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

pointer#put@int64(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of int64.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

pointer#put@uint64(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of uint64.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

pointer#put@float(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of float.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

pointer#put@double(n:number):map:reduce:[be,stay]

Stores the specified number to the current pointer position in size of double.

In default, it stores the byte sequences in the order of little-endian. You can specify :be sttribute
to store them in big-endian order.

This method returns a reference to the target instance itself.

pointer#reader() {block?}

Creates a stream instance with which you can read data from the memory pointerd by the
pointer. If block is specified, it would be evaluated with a block parameter |s:stream|, where
s is the created instance. In this case, the block’s result would become the function’s returned
value.

pointer#seek(offset:number):reduce

Moves the pointer position to the specified offset.

This method returns a reference to the target instance itself.

pointer#tail():reduce

Moves the pointer position to the end.

This method returns a reference to the target instance itself.

pointer#unpack(format:string, values∗:number):[nil,stay] {block?}

Extracts values from data sequence pointed by the pointer instance according to specifiers in

107

the format and returns a list containing the values.

A specifier has a format of ”nX” where X is a format character that represents a packing format
and n is a number of packing size. The number can be omitted, and it would be treated as 1
in that case.

Following format characters would extract an integer or float value of specified size from the
binary and returns a number value.

• b .. One-byte signed number.

• B .. One-byte unsigned number.

• h .. Two-byte signed number.

• H .. Two-byte unsigned number.

• i .. Four-byte signed number.

• I .. Four-byte unsigned number.

• l .. Four-byte signed number.

• L .. Four-byte unsigned number.

• q .. Eight-byte signed number.

• Q .. Eight-byte unsigned number.

• f .. Float-typed number occupying four bytes.

• d .. Double-typed number occupying eight bytes.

As for them, the packing size n means the number of values to be extracted.

Following format characters would extract a string sequence from the binary and returns a
string value.

• s .. Extracts a sequence of UTF-8 codes and returns string instance containing it. The
unpacking size n means the size of the room in bytes where the character codes are to be
unpacked.

• c .. Extracts a one-byte unsigned number and returns a string instance containing it.
The unpacking size n means the number of values to be extracted.

Following format character would not return any value.

• x .. Advances the address by one byte. If the unpacking size n is specifies, it would
advance the address by n bytes.

The default byte-order for numbers of two-byte, four-byte and eight-byte depends on the system
the interpreter is currently running. You can change it by the following specifiers:

• @ .. System-dependent order.

• = .. System-dependent order.

• < .. Little endian

• > .. Big endian

• ! .. Big endian

108

You can specify an asterisk character ”∗” for the number of unpacking size that picks that
number from the argument list.

You can specify encoding name embraced with ”{” and ”}” in the format to change coding
character set from UTF-8 while extracting a string with format character ”s”.

An error occurs if the binary size is smaller than the format reqeusts. If the attribute :nil is
specified, nil value would be returned for such a case.

If block is specified, it would be evaluated with a block parameter |list:list|, where list

is the created instance. In this case, the block’s result would become the function’s returned
value.

pointer#unpacks(format:string, values∗:number):map {block?}

Returns an iterator that extracts values from data pointed by the pointer instance according
to specifiers in format.

For detailed information about specifiers, see the help of pointer#unpack().

If block is specified, it would be evaluated with a block parameter |iter:iterator|, where
iter is the created instance. In this case, the block’s result would become the function’s
returned value.

pointer#writer() {block?}

Creates a stream instance with which you can append data to the memory pointed by the
pointer. If block is specified, it would be evaluated with a block parameter |s:stream|, where
s is the created instance. In this case, the block’s result would become the function’s returned
value.

5.26.4 Cast Operation

A function that expects a pointer instance in its argument can also take a value of binary
and memory.

With the above casting feature, you can call a function f(p:pointer) that takes a pointer

instance in its argument as below:

• b = b’\x01\x23\x45\x67\x89\xab’, f(b)

• m = memory(32), f(m)

5.27 rational Class

The rational class provides measures to handle rational numbers.

You can create a rational instance with following ways:

• Use rational() function.

• Append r suffix after a number literal.

Below are examples to realize a common fraction two-thirds:

rational(2, 3)

2r / 3

2 / 3r

109

5.27.1 Constructor

rational(numer:number, denom?:number):map {block?}

Creates a rational value from given numerator numer and denominator denom.

If the argument denom is omitted, one is set as its denominator.

If block is specified, it would be evaluated with a block parameter |r:rational|, where r

is the created instance. In this case, the block’s result would become the function’s returned
value.

5.27.2 Method

rational.reduce()

Reduces the rational number by dividing its numerator and denominator by their GCD.

5.28 semaphore Class

5.28.1 Constructor

semaphore()

5.28.2 Method

semaphore#release()

Releases the owership of the semaphore that is grabbed by semaphore#wait().

semaphore#session() {block}

Forms a critical session by grabbing the semaphore’s ownership, executing the block and
releasing that ownership. It internally proccesses the same job as semaphore#wait() and
semaphore#release() before and after the block execution

semaphore#wait()

Watis for the semaphore being released by other threads, and ghen grabs that ownership.

5.29 stream Class

The stream class provides methods to read and write data through a stream, an abstract
structure to handle a byte sequence. It also provides information of the stream such as the
pathname and the creation date and time.

You can specify a proper codec when creating the stream instance, which is used to de-
code/encode character codes that appear in the stream. Features of codec would affect on
functions and methods that handle text data like follows:

• Decode

– readlines()

– stream#readchar()

110

– stream#readline()

– stream#readlines()

– stream#readtext()

• Encode

– operator <<

– stream#print()

– stream#printf()

– stream#println()

5.29.1 Property

A stream instance has the following properties:

Property Type R/W Explanation
stat object R Status of the stream.
name string R Name of the stream.
identifier string R Identifier of the stream.
readable boolean R Indicates whether the stream is readable.
writable boolean R Indicates whether the stream is writable.
codec codec R ‘codec‘ instance associated with the stream.

5.29.2 Operator

You can use the operator ”<<” to output a content of a value to a stream. It comes like ”stream
<< obj” where obj is converted to a string before output to the stream.

sys.stdout << ’Hello World.’

Since the operator returns the stream instance specified on the left as its result, you can chain
multiple operations as below:

sys.stdout << ’First’ << ’Second’

5.29.3 Cast Operation

A function that expects a stream instance in its argument can also take a value of string and
binary as below:

• string .. Recognized the string as a path name from which stream instance is created.

• binary .. Creates a stream instance that reads or modifies the content of the specified
binary data. If the binary data is a constant one, which might be created from a binary
literal such as b’\x00\x12\x34\x56’, the stream is created with read-only attribute.

Using the above casting feature, you can call a function f(stream:stream) that takes a stream
instance in its argument as below:

111

• f(stream(’foo.txt’)) .. The most explicit way.

• f(’foo.txt’) .. Implicit casting from string to stream.

• f(b’\x00\x12\x34\x56’) .. Implicit casting from binary to stream that reads the con-
tent.

5.29.4 Constructor

stream(pathname:string, mode?:string, codec?:codec):map {block?}

Creates a stream instance from the specified pathname.

The argument mode takes one of the strings that specifies what access should be allowed with
the stream. If omitted, the stream would be opened with read mode.

• ’r’ .. read

• ’w’ .. write

• ’a’ .. append

The argument codec specifies a name of the character codec that converts between the stream’s
character code and UTF-8, which is a code used in the iterpreter’s internal process.

If block is specified, it would be evaluated with a block parameter |s:stream|, where s is the
created instance. In this case, the block’s result would become the function’s returned value.

You can also call open() function that is just an alias of stream() to create a stream instance.

5.29.5 Utility Function

readlines(stream?:stream:r):[chop] {block?}

Creates an iterator that reads text from the specified stream line by line.

If attribute :chop is specified, it eliminates an end-of-line character that appears at the end of
each line.

This function decodes character codes in the stream using codec instance that is specified when
the stream instance is created.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

112

5.29.6 Method

stream#addcr(flag?:boolean):reduce

The codec’s encoder in the stream has a feature to add a CR code (0x0d) before a LF code
(0x0a) so that the lines are joined with CR-LF codes in the encoded result. This method
enables or disables the feature.

• To enable it, call the method with the argument flag set to true or without any argument.

• To disable it, call the method with the argument flag set to false.

stream#close():void

Closes the stream.

stream#compare(stream:stream:r):map

Returns true if there’s no difference between the binary sequences of the target stream instance
and that of stream in the argument.

stream.copy(src:stream:r, dst:stream:w, bytesunit:number => 65536):static:map:void:[finalize] {block?}

Copies the content in src to the stream dst.

The copying is done by the following process:

1. Reads data from stream src into a buffer with the size specified by bytesunit.

2. If block is specified, it would be evaluated with a block parameter |buff:binary| where
buff contains the read data. When the block’s result is a binary instance, the content
would be written to the stream dst. Otherwise, the read data would be written to stream
dst.

3. If block is not specified,　 the read data would be written to stream dst.

4. Continues from step 1 to 3 until data from src runs out.

If the attribute :finalize is specified, some finalizing process will be applied at the end such
as copying time stamp and attributes.

This has the same feature as stream#copyfrom() and stream#copyto().

stream#copyfrom(src:stream:r, bytesunit:number => 65536):map:reduce:[finalize] {block?}

Copies the content in src to the target stream instance.

The copying is done by the following process:

1. Reads data from stream src into a buffer with the size specified by bytesunit.

2. If block is specified, it would be evaluated with a block parameter |buff:binary| where
buff contains the read data. When the block’s result is a binary instance, the content
would be written to the stream dst. Otherwise, the read data would be written to stream
dst.

3. If block is not specified,　 the read data would be written to stream dst.

4. Continues from step 1 to 3 until data from src runs out.

113

If the attribute :finalize is specified, some finalizing process will be applied at the end such
as copying time stamp and attributes.

This has the same feature as stream.copy() and stream#copyto().

stream#copyto(dst:stream:w, bytesunit:number => 65536):map:reduce:[finalize] {block?}

Copies the content in the target stream instance to stream dst.

The copying is done by the following process:

1. Reads data from stream src into a buffer with the size specified by bytesunit.

2. If block is specified, it would be evaluated with a block parameter |buff:binary| where
buff contains the read data. When the block’s result is a binary instance, the content
would be written to the stream dst. Otherwise, the read data would be written to stream
dst.

3. If block is not specified,　 the read data would be written to stream dst.

4. Continues from step 1 to 3 until data from src runs out.

If the attribute :finalize is specified, some finalizing process will be applied at the end such
as copying time stamp and attributes.

This has the same feature as stream.copy() and stream#copyfrom().

stream#delcr(flag?:boolean):reduce

The codec’s decoder in the stream has a feature to delete a CR code (0x0d) before a LF code
(0x0a) so that the lines are joined with LF code in the decoded result. This method enables or
disables the feature.

• To enable it, call the method with the argument flag set to true or without any argument.

• To disable it, call the method with the argument flag set to false.

stream#deserialize()

stream#flush():void

Flushes cached data to the stream.

stream#peek(bytes?:number)

Reads specified length of data from the stream and returns a binary instance that contains it.
This doesn’t move the stream’s current file position.

stream#print(values∗):map:void

Prints out values to the stream instance after converting them to strings.

This function encodes character codes in the string using codec instance that is specified when
the stream instance is created.

stream#printf(format:string, values∗):map:void

Prints out values to the stream instance according to formatter specifiers in format.

Refer to the help of printf() function to see information about formatter specifiers.

This function encodes character codes in the string using codec instance that is specified when
the stream instance is created.

114

stream#println(values∗):map:void

Prints out values and an end-of-line character to the stream instanceafter converting them to
strings.

This function encodes character codes in the string using codec instance that is specified when
the stream instance is created.

stream#read(bytes?:number) {block?}

Reads specified length of data from the stream and returns a binary instance that contains it.
If the argument bytes is omitted, all the data available from the stream would be read.

If block is specified, it would be evaluated with a block parameter |buff:binary|, where buff
is the created instance. In this case, the block’s result would become the function’s returned
value.

stream#readchar() {block?}

Reads one character from the stream and returns a string instance that contains it.

This method decodes character codes in the stream using codec instance that is specified when
the stream instance is created.

If block is specified, it would be evaluated with a block parameter |ch:string|, where ch

is the created instance. In this case, the block’s result would become the function’s returned
value.

stream#readline():[chop] {block?}

Reads one line from the stream and returns a string instance that contains it.

If the attribute :chop is specified, it would remove the last new line character from the result.
This method decodes character codes in the stream using codec instance that is specified when
the stream instance is created.

If block is specified, it would be evaluated with a block parameter |line:string|, where line
is the created instance. In this case, the block’s result would become the function’s returned
value.

stream#readlines(nlines?:number):[chop] {block?}

Creates an iterator that reads text from the specified stream line by line.

The argument nlines specifies how many lines should be read from the stream. If omitted, it
would read all the lines.

If attribute :chop is specified, it eliminates an end-of-line character that appears at the end of
each line.

This method decodes character codes in the stream using codec instance that is specified when
the stream instance is created.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

115

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

stream#readtext() {block?}

Reads the whole data in the stream as a text sequence and returns a string instance that
contains it. This method decodes character codes in the stream using codec instance that is
specified when the stream instance is created.

If block is specified, it would be evaluated with a block parameter |text:string|, where text
is the created instance. In this case, the block’s result would become the function’s returned
value.

stream#seek(offset:number, origin?:symbol):reduce

Seeks the current file position to the offset specified by the argument offset.

The argument origin specifies the meaning of offset value as follows:

• set‘ ... ‘offset‘ is an absolute offset from the begining of the stream.

• cur‘ ... ‘offset‘ is a relative offset from the current position.

This method returns the target stream instance itself.

stream#serialize(value):void

stream#setcodec(codec:codec:nil):reduce

Sets codec instance to the target stream. If nil is specified for the argument, the current codec
instance would be removed.

This method returns the target stream instance itself.

stream#tell()

Returns the current file position at which read/write operation works.

stream#write(ptr:pointer, bytes?:number):reduce

Writes binary data pointer by ptr to the stream. The argument bytes limits the number of
data that is to be written to the stream.

5.30 string Class

The string class provides measures to operate on strings.

You can create a string instance by embracing a sequence of characters with a pair of single-
or double-quotes.

’Hello World’

"Hello World"

If you need to declare a string that contains multiple lines, embrace it with a pair of sequences
of three single- or double-quotes.

116

’’’first line

second line

third line

’’’

5.30.1 Suffix Management

When an string literal is suffixed by a character $, a handler registered by string.translate()

function that is supposed to translate the string into other natural languages would be evaluated.

5.30.2 Method

string#align(width:number, padding:string => ’ ’):map:[center,left,right] {block?}

Align the string to the left, right or center within the specified width and returns the result.

The following attributes specify the alignment position:

• :center .. Aligns to the center. This is the default.

• :left .. Aligns to the left

• :right .. Aligns to the right

If the string width is narrower than the specified width, nothing would be done.

It uses a string specified by the argument padding to fill lacking spaces. If omitted, a white
space is used for padding.

This method takes into account the character width based on the specification of East Asian
Width. A kanji-character occupies two characters in width.

string.binary() {block?}

Converts the string into binary instance.

string#capitalize() {block?}

Returns a string that capitalizes the first character.

string#chop(suffix∗:string):[eol,icase] {block?}

Returns a string that removes a last character.

If an attribute :eol is specified, only the end-of-line character shall be removed. In this case,
if the end-of-line has a sequence of CR-LF, CR code shall be removed as well.

string#decodeuri() {block?}

Returns a string in which percent-encoded characters are decoded.

string#each():map:[utf32,utf8] {block?}

Creates an iterator generating strings of each character in the original one.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

117

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

string#eachline(nlines?:number):[chop] {block?}

Creates an iterator generating strings of each line in the original one.

In default, end-of-line characters are involved in the result. You can eliminates them by speci-
fying :chop attribute.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

string#embed(dst?:stream:w):[lasteol,noindent]

Evaluates a string that contains embedded scripts and renders the result to the specified stream.

If the stream is omitted, the function returns the rendered result as a string.

Calling this method is equivalent to calling a method string#template() to create a template
instance on which a method template#render() is applied afterward.

string.encode(codec:codec) {block?}

Encodes the string with the given codec and return the result as a binary.

string#encodeuri() {block?}

Returns a string in which non-URIC characters are percent-encoded.

string#endswith(suffix:string, endpos?:number):map:[icase,rest]

118

Returns true if the string ends with suffix.

If attribute :rest is specified, it returns the rest part if the string ends with suffix, or nil

otherewise. You can specify a bottom position for the matching by an argument endpos.

With an attribute :icase, character cases are ignored while matching.

string#escapehtml():[quote] {block?}

Converts some characters into HTML entity symbols. If attribute :quote is specified, a double-
quotation character would be converted to an entity symbol ””.

string#find(sub:string, pos:number => 0):map:[icase,rev]

Finds a sub string from the string and returns its position.

Number of position starts from zero. You can specify a position to start finding by an argument
pos. It returns nil if finding fails.

With an attribute :icase, case of characters are ignored while finding.

When an attribute :rev, finding starts from tail of the string

string#fold(len:number, step?:number):[neat] {block?}

Creates an iterator that folds the source string by the specified length.

The argument step specifies the length of advancement for the next folding point. If omitted,
it would be the same amount as len.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

string#foldw(width:number):[padding] {block?}

Creates an iterator that folds the source string by the specified width.

This method takes into account the character width based on the specification of East Asian
Width.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

119

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

string#format(values∗):map

Taking the string instance as a printf-styled formatter string, it converts values into a string
depending on formatter specifiers in it.

string#isempty()

Returns true if the string is empty.

string#left(len?:number):map

Extracts the specified length of string from left of the source string.

If the argument is omitted, it would return whole the source string.

string#len()

Returns the length of the string in characters.

string#lower()

Converts upper-case to lower-case characters.

string#mid(pos:number => 0, len?:number):map {block?}

Extracts the specified length of string from the position pos and returns the result.

If an argument len is omitted, it returns a string from pos to the end. The number of an
argument pos starts from zero.

Below are examples:

’Hello world’.mid(3, 2) // ’lo’

’Hello world’.mid(5) // ’world’

string.print(stream?:stream:w):void

Prints out the string to the specified stream.

If the argument is omitted, it would print to the standard output.

string.println(stream?:stream:w):void

Prints out the string and a line-break to the specified stream.

If the argument is omitted, it would print to the standard output.

string#reader() {block?}

120

Returns a stream instance that reads the string content as a binary sequence.

If block is specified, it would be evaluated with a block parameter |s:stream|, where s is the
created instance. In this case, the block’s result would become the function’s returned value.

string#replace(match:string, sub:string, count?:number):map:[icase] {block?}

Replaces sub strings that matches the string match with a string specified by sub and returns
the result.

The argument count limits the maximum number of substitution. If omitted, there’s no limit
of the work.

With an attribute :icase, character cases are ignored while matching strings.

If block is specified, it would be evaluated with a block parameter |result:string, replaced:boolean|,
where result is the result string and replaced indicates if there is any change between the re-
sult and its original string. In this case, the block’s result would become the function’s returned
value.

string#replaces(map[]:string, count?:number):map:[icase] {block?}

Replaces string parts according to a list of pairs of a matching and a substituting string and
returns the result.

The argument map is a list of match-substitution paris like [match1, sub1, match2, sub2,

..] with which a sub string that matches matchn would be replaced with subn.

The argument count limits the maximum number of substitution. If omitted, there’s no limit
of the work.

With an attribute :icase, character cases are ignored while matching strings.

If block is specified, it would be evaluated with a block parameter |result:string, replaced:boolean|,
where result is the result string and replaced indicates if there is any change between the re-
sult and its original string. In this case, the block’s result would become the function’s returned
value.

string#right(len?:number):map {block?}

Extracts the specified length of string from right of the source string.

If the argument is omitted, it would return whole the source string.

string#split(sep?:string, count?:number):[icase] {block?}

Creates an iterator generating sub strings extracted from the original one separated by a spec-
ified string sep. With an attribute :icase, character cases are ignored while finding the sepa-
rator.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

121

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

string#startswith(prefix:string, pos:number => 0):map:[icase,rest]

Returns true if the string starts with prefix.

If attribute :rest is specified, it returns the rest part if the string starts with prefix, or nil

otherewise. You can specify a top position for the matching by an argument pos.

With an attribute :icase, character cases are ignored while matching.

string#strip():[both,left,right] {block?}

Returns a string that removes space characters on the left, the right or the both sides of the
original string.

The following attributes would specify which side of spaces should be removed:

• :both .. Removes spaces on both sides. This is the default.

• :left .. Removes spaces on the left side.

• :right .. Removes spaces on the right side.

string#template():[lasteol,noindent] {block?}

Parses the content of the string as a text containing embedded scripts and returns a template

instance.

string#tosymbol() {block?}

Convers the string into a symbol.

string.translator():static:void {block}

Register a procedure evaluated when a string literal appears with a suffix symbol ”$”, which is
meant to translate the string into another language.

The procedure is described in block takes a block parameter |str:string| where str is the
original string, and is expected to return a string translated from the original.

string#unescapehtml() {block?}

Converts escape sequences into readable characters.

string#upper() {block?}

Converts lower-case to upper-case characters.

string#width()

Returns the width of the string.

This method takes into account the character width based on the specification of East Asian
Width. For example, a kanji-character of Japanese occupies two characters in width.

string#zentohan() {block?}

Converts zenkaku to hankaku characters.

122

5.31 suffixmgr Class

The suffixmgr class provides measures to access suffix managers that are responsible to handle
suffix symbols appended to number or string literals.

Below is an example to register a suffix X that converts a string into upper case after being
appended to a string literal:

suffixmgr(‘string).assign(‘X) {|body| body.upper()}

You can use that suffix like below:

’hello world’X

5.31.1 Constructor

suffixmgr(type:symbol) {block?}

Creates a reference to one of two suffix managers, number and string.

• The number suffix manager works with number literals.

• The string suffix manager works with string literals.

Specify the argument type with a symbol ‘number for a number suffix manager and ‘string

for a string suffix manager.

5.31.2 Method

suffixmgr#assign(suffix:symbol):void:[overwrite] {block}

Assigns a procedure to a specified symbol in the suffix manager. The procedure is provided by
the block that takes a block parameter |value| where value comes from the preceded literal.

An error occurs if the same suffix symbol has already been assigned. Specifying :overwrite

attribute will forcibly overwrite an existing assignment.

5.32 symbol Class

5.32.1 Method

symbol#eval(env?:environment)

Evaluate a symbol object.

5.33 template Class

5.33.1 Cast Operation

A function that expects a template instance in its argument can also take a value of stream
as below:

123

• stream .. Creates a template instance by parsing the content of the stream.

As a stream is capable of being casted from string and binary, such values can also be passed
to the argument that expects template.

Using the above casting feature, you can call a function f(tmpl:template) that takes a
template instance in its argument as below:

• f(template(stream(’foo.txt’))) .. The most explicit way.

• f(stream(’foo.txt’)) .. Implicit casting: from stream to template.

• f(template(’foo.txt’)) .. Implicit casting: from string to stream.

• f(’foo.txt’) .. Implicit casting: from string to stream, then from stream to template.

5.33.2 Constructor

template(src?:stream:r):map:[lasteol,noindent] {block?}

Creates a template instance.

If the stream src is specified, the instance would be initialized with the parsed result of the
script-embedded text from the stream.

Following attributes would customize the parser’s behavior:

• :lasteol

• :noindent

5.33.3 Method

template#parse(str:string):void:[lasteol,noindent]

Creates a template instance by parsing a script-embedded text in a string.

Following attributes would customize the parser’s behavior:

• :lasteol

• :noindent

template#read(src:stream:r):void:[lasteol,noindent]

Creates a template instance by parsing a script-embedded text from a stream.

Following attributes would customize the parser’s behavior:

• :lasteol

• :noindent

template#render(dst?:stream:w)

Renders stored content to the specified stream.

If the stream is omitted, the function returns the rendered result as a string.

124

5.33.4 Method Called by Template Directive

template#block(symbol:symbol):void

Creates a template block which content is supposed to be replaced by a derived template.

This method is called by template directive ${=block()} during both the initialization and
presentation phase of a template process.

• Initialization: Creates a template block from the specified block that is then registered
in the current template with the specified symbol.

• Presentation: Evaluates a template block registered with the specified symbol.

Consider an example. Assume that a block associated with symbol ‘foo is declared in a
template file named base.tmpl as below:

[base.tmpl]

Block begins here.

${=block(‘foo)}

Content of base.

${end}

Block ends here.

This template renders the following result:

Block begins here.

Content of derived.

Block ends here.

Below is another template named derived.tmpl that devies from base.tmpl and overrides the
block ‘foo.

[derived.tmpl]

${=extends(’base.tmpl’)}

${=block(‘foo)}

Content of derived.

${end}

This template renders the following result:

Block begins here.

Content of derived.

Block ends here.

template#call(symbol:symbol, args∗)

Calls a template macro that has been created by directive ${=define}.

This method is called by template directive ${=call()} during the presentation phase of a
template process.

Below is an exemple to call a template macro:

125

${=call(‘show_person, ’Harry’, 24)}

This method would return nil if a line-break character is rendered at last and would return a
null string otherwise.

template#define(symbol:symbol, ‘args∗):void

Creates a template macro from the specified block, which is supposed to be called by ${=call}
directive, and associates it with the specified symbol.

This method is called by template directive ${=define()} during the initialization phase of a
template process.

Below is an example to create a template macro:

${=define(‘show_person, name:string, age:number)}

${name} is ${age} years old.

${end}

template#embed(template:template)

Renders the specified template at the current position.

This method is called by template directive ${=embed()} during the presentation phase of a
template process.

Below is an example to embed a template file named foo.tmpl.

${=embed(’foo.tmpl’)}

As the template rendered by this method runs in a different context from the current one,
macros and blocks that it defines are not reflected to the current context.

This method would return nil if a line-break character is rendered at last and would return a
null string otherwise.

template#extends(template:template):void

Declares the current template as a derived one from the specified template.

This method is called by template directive ${=extends()} during the initialization phase of
a template process.

The directive must appear in a template only once. An error occurs if the current template has
already derived from another template.

Below is an example to declare the current template as one derived from base.tmpl.

${=extends(’base.tmpl’)}

template#super(symbol:symbol):void

Evaluates a template block registered with the specified symbol in a template from which the
current template has derived.

This method is called by template directive ${=super()} during the presentation phase of a
template process. The directive is intended to be used within a directive ${=block()}.

126

Consider an example. Assume that a block associated with symbol ‘foo is declared in a
template named base.tmpl as below:

[base.tmpl]

Block begins here.

${=block(‘foo)}

Content of base.

${end}

Block ends here.

This template renders the following result:

Block begins here.

Content of derived.

Block ends here.

Below is another template named derived.tmpl that devies from base.tmpl and overrides the
block ‘foo.

[derived.tmpl]

${=extends(’base.tmpl’)}

${=block(‘foo)}

${=super(‘foo)}

Content of derived.

${end}

This template renders the following result:

Block begins here.

Content of base.

Content of derived.

Block ends here.

5.34 timedelta Class

The timedelta instance provides a time delta information that works with datetime instance.
You can shift time information of datetime by applying addition or subtraction of timedelta
to it.

5.34.1 Property

A timedelta instance has the following properties:

Property Type R/W Explanation
days number R/W Offset of days.
secs number R/W Offset of seconds.
usec number R/W Offset of micro seconds.

127

5.34.2 Constructor

timedelta(days:number => 0, secs:number => 0, usecs:number => 0):map {block?}

Returns a timedelta instance with specified values. The instance actually holds properties of
days, secs and usecs.

5.35 uri Class

The uri instance analyzes a URI string and returns each part in it such as the scheme and
path. A generic URI has the following format:

scheme:[//[user:password@]host:port]][/]path[?query][#fragment]

5.35.1 Property

A uri instance has the following properties:

Prop-
erty

Type R/W Explanation

scheme string R/W Scheme part in the URI.
user string R/W User part in the URI.
password string R/W Password part in the URI.
host string R/W Host part in the URI.
port string R/W Port part in the URI.
urlpath string R/W URL path part in the URI, which contains the path, query and

fragment part.
misc string R/W Misc part in the URI.

5.35.2 Constructor

uri(str?:string):map {block?}

Creates uri instance.

If the argument str is specified, it would be parsed as a URI which is stored in the instance.

If omitted, the instance would be initialized as an empty one.

5.35.3 Method

uri#getfragment()

Returns the fragment part contained in the URI path.

uri#getpath()

Returns the path part contained in the URI path.

uri#getquery()

128

Returns a dict instance that is made from the query part in the URI path.

uri.parsequery(query:string):static:map

This is a utility function to parse a query string and return a dict instance that contains
key-value pairs for the query.

5.35.4 Cast Operation

A function that expects a uri instance in its argument can also take a value of string that is
recognized as a URI string.

With the above casting feature, you can call a function f(uri:uri) that takes a uri instance
in its argument as below:

• f(uri(’http://example.com’)) .. The most explicit way.

• f(’http://example.com’) .. Implicit casting: from string to uri.

5.36 vertex Class

The vertex class provides vertex information that consists of x, y, z and w values.

5.36.1 Property

An vertex instance has the following properties:

Property Type R/W Explanation
x number R/W
y number R/W
z number R/W
w number R/W

5.36.2 Constructor

vertex(x:number, y:number, z?:number):map {block?}

Creates a vertex instance that has the given coordinates x, y and z. The argument z is optional
and set to zero if omitted.

If block is specified, it would be evaluated with a block parameter |v:vertex|, where v is the
created instance. In this case, the block’s result would become the function’s returned value.

5.36.3 Method

vertex.cross (v1:vertex, v2:vertex):static:map {block?}

Calculates cross product between v1 and v2 and returns the result as a vertex instance.

vertex.dot(v1:vertex, v2:vertex):static:map {block?}

Calculates dot product between v1 and v2 and returns the result as a number instance.

129

vertex#list() {block?}

Creates a list that contains coordinate values [x, y, z] of the target vertex.

If block is specified, it would be evaluated with a block parameter |list:list|, where list

is the created instance. In this case, the block’s result would become the function’s returned
value.

vertex.normal(v1:vertex, v2:vertex, v3:vertex):static:map:[unit] {block?}

Calculates a normal vector for a face that consists of three vertices given and returns it as a
vertex instance.

In default, it returns a vector before being regulated to have a length of one. Specifying the
attribute :unit would apply the calculation.

If block is specified, it would be evaluated with a block parameter |v:vertex|, where v is the
created instance. In this case, the block’s result would become the function’s returned value.

vertex#rotate@x(angle:number):[deg] {block?}

Creates a vertex that is rotated from the target vertex around X-axis by the specified angle

in radian. It would be rotated in a direction of tilting Y-axis toward Z-axis.

If the attribute :deg is specified, you can specify the angle in degree unit.

If block is specified, it would be evaluated with a block parameter |v:vertex|, where v is the
created instance. In this case, the block’s result would become the function’s returned value.

vertex#rotate@y(angle:number):[deg] {block?}

Creates a vertex that is rotated from the target vertex around Y-axis by the specified angle

in radian. It would be rotated in a direction of tilting Z-axis toward X-axis.

If the attribute :deg is specified, you can specify the angle in degree unit.

If block is specified, it would be evaluated with a block parameter |v:vertex|, where v is the
created instance. In this case, the block’s result would become the function’s returned value.

vertex#rotate@z(angle:number):[deg] {block?}

Creates a vertex that is rotated from the target vertex around Z-axis by the specified angle

in radian. It would be rotated in a direction of tilting X-axis toward Y-axis.

If the attribute :deg is specified, you can specify the angle in degree unit.

If block is specified, it would be evaluated with a block parameter |v:vertex|, where v is the
created instance. In this case, the block’s result would become the function’s returned value.

vertex#translate(tx:number, ty:number, tz?:number) {block?}

Creates a vertex that is translated from the target vertex by the specified offsets tx, ty and
tz.

If block is specified, it would be evaluated with a block parameter |v:vertex|, where v is the
created instance. In this case, the block’s result would become the function’s returned value.

130

Chapter 6

argopt Module

The argopt module provides measure to parse option strings in an argument list given through
the command line.

Below is an example:

import(argopt)

argopt.Parser {|p|

p.addParam(’text’, ’t’)

p.addFlag(’test’)

p.addFlag(’bold’, ’b’)

try {

[cfg, argv] = p.parse(sys.argv)

} catch {|e|

println(e.text)

sys.exit(1)

}

}

6.1 argopt.Parser Class

6.1.1 Constructor

argopt.Parser() {block?}

Create an argopt.Parser instance.

6.1.2 Method

argopt.Parser#parse(argv[]:string)

Parses an argument list which is usually the value of sys.argv given by sys module.

It returns the result in a format [cfg, argv] where cfg is a dict instance containing parameter
values and argv a list of arguments that have not been parsed as options.

argopt.Parser#addParam(longName:string, shortName?:string, help?:string, helpValue?:string, defValue?:string)

Adds an option that comes with a value like --foo=value where foo is a long name for the
option.

131

The argument longName specifies a long option name that follows after two hyphens in the
command line. This name is also used as a key when you look for a value in the dictionary cfg

returned by argopt.Parser#parse().

The argument shortName specifies a short option name that usually consists of a single char-
acter. If it exists, you can specify the option by a character followed by one hyphen like -f

value where f is the short name.

The argument help and helpValue are used in a option parameter help created by argopt.Parse#formatHelp().
The string for help specifies a help text for the option while helpValue is a string printed after
the equal character in the option presentation. If the argument helpValue is not specified, a
string X is printed instead.

The argument defValue specifies a default value that would be used when the option is not
specified in the command line.

argopt.Parser#addFlag(longName:string, shortName?:string, help?:string)

Adds an option that represents a boolean state. It comes like --foo where foo is a long name
for the option.

The argument longName specifies a long option name that follows after two hyphens in the
command line. This name is also used as a key when you look for a value in the dictionary cfg

returned by argopt.Parser#parse().

The argument shortName specifies a short option name that usually consists of a single charac-
ter. If it exists, you can specify the option by a character followed by one hyphen like -f where
f is the short name.

The argument help is used in a option parameter help created by argopt.Parse#formatHelp().
The string for help specifies a help text for the option.

argopt.Parser#formatHelp(longNameFlag:boolean => true, shortNameFlag:boolean => true):[linefeed]

Creates an iterator of strings that contain help text for each option.

If the argument longNameFlag is true, the help text would contain long names.

If the argument shortNameFlag is true, the help text would contain short names.

In default, each string doesn’t contain a line feed at the end. To add a line feed, specify an
attribute :linefeed.

Below is an example of showing help:

argopt.Parser {|p|

p.addParam(’text’, ’t’, ’text value’, ’txt’)

p.addFlag(’flag1’, ’f’, ’flag option #1’)

p.addFlag(’flag2’, ’g’, ’flag option #2’)

println(p.formatHelp())

}

The result comes as below:

-t, --text=txt text value

-f, --flag1 flag option #1

-g, --flag2 flag option #2

132

Chapter 7

base64 Module

The base64 module provides measures to decode/encode data formatted in base64 format.

To decode a stream that is formatted in base64, use one of the following functions:

• base64.decode() .. Reads base64 sequence from the given stream and returns a decoded
data as binary. This is convenient when the data size is expected to be small.

• base64.reader() .. Creates a stream that decodes base64 sequence from the given
stream. stream#reader@base64() method is another form of this function. You should
use this way if the data size is expected to be large.

To encode a data into base64 format, use one of the following functions:

• base64.encode() .. Encodes the stream from the given stream and returns a encoded
data as binary. This is convenient when the data size is expected to be small.

• base64.writer() .. Creates a stream that encodes data from write() method into the
given stream. stream#writer@base64() method is another form of this function. You
should use this way if the data size is expected to be large.

7.1 Module Function

base64.decode(stream:stream:r) {block?}

Reads text stream that is formatted in base64 and returns the decoded result in binary.

If block is specified, it would be evaluated with a block parameter |data:binary|, where data
is the created instance. In this case, the block’s result would become the function’s returned
value.

base64.encode(stream:stream:r, linelen:number:nil => 76) {block?}

Encodes content of the stream into base64 format and returns the result in binary.

If block is specified, it would be evaluated with a block parameter |data:binary|, where data
is the created instance. In this case, the block’s result would become the function’s returned
value.

base64.reader(stream:stream:r) {block?}

Creates a stream instance that reads data formatted in base64 from stream.

133

If block is specified, it would be evaluated with a block parameter |s:stream|, where s is the
created instance. In this case, the block’s result would become the function’s returned value.

base64.writer(stream:stream:w, linelen:number:nil => 76) {block?}

Creates a stream instance that encodes data to base64 format and writes it to the stream.

The number of characters per line is specified by an argument linelen. If omitted, that is 76.

If block is specified, it would be evaluated with a block parameter |s:stream|, where s is the
created instance. In this case, the block’s result would become the function’s returned value.

7.2 Extension to stream Class

This module extends the stream class with methods described here.

stream#reader@base64() {block?}

Creates a stream instance that reads data formatted in base64 from the target stream instance.

If block is specified, it would be evaluated with a block parameter |s:stream|, where s is the
created instance. In this case, the block’s result would become the function’s returned value.

stream#writer@base64(linelen:number:nil => 76) {block?}

Creates a stream instance that encodes data to base64 format and writes it to the target stream
instance.

The number of characters per line is specified by an argument linelen. If omitted, that is 76.

If block is specified, it would be evaluated with a block parameter |s:stream|, where s is the
created instance. In this case, the block’s result would become the function’s returned value.

134

Chapter 8

bmp Module

The bmp module provides measures to read/write image data in Microsoft BMP format. To
utilize it, import the bmp module using import function.

Below is an example to read a BMP file:

import(bmp)

img = image(’foo.bmp’)

8.1 Exntension to Function’s Capability

This module extends the capability of function image() and instance method image#write()

so that they can read/write BMP files.

When function image() is provided with a stream that satisfies the following conditions, it
would recognize the stream as a BMP file.

• The identifier of the stream ends with a suffix ”.bmp”.

• The stream data begins with a byte sequence ”BM”.

When instance method image#write() is provided with a stream that satisfies the following
condition, it would write image data in BMP format.

• The identifier of the stream ends with a suffix ”.bmp”.

8.2 Extension to image Class

This module extends the image class with methods described here.

image#read@bmp(stream:stream:r):reduce

Reads an BMP image from a stream.

This method returns the reference to the target instance itself.

image#write@bmp(stream:stream:w):reduce

Writes a BMP image to a stream.

This method returns the reference to the target instance itself.

135

Chapter 9

bzip2 Module

The bzip2 module provices measures to read/write BZIP2 files. To utilize it, import the bzip2
module using import function.

Below is an example to read data from a BZIP2 file and write its uncompressed data to another
file.

import(bzip2)

bzip2.reader(’foo.dat.bz2’).copyto(’foo.dat’)

Below is an example to read data from a file and write its compressed data to a BZIP2 file.

import(bzip2)

bzip2.writer(’foo.dat.bz2’).copyfrom(’foo.dat’)

9.1 Module Function

bzip2.reader(stream:stream:r) {block?}

Creates a stream instance that decompresses bzip2 data from the specified stream that has
readable attribute.

If block is specified, it would be evaluated with a block parameter |st:stream|, where st

is the created instance. In this case, the block’s result would become the function’s returned
value.

bzip2.writer(stream:stream:w, blockSize100k?:number) {block?}

Creates a stream instance that compresses data into bzip2 format and writes it to the specified
stream that has writable attribute.

The argument blockSize100k takes a number between 1 and 9 that specifies the block size to
be used for compression. The actual block size is 100000 times of this value. Nine gives the
best compression but takes most memory.

If block is specified, it would be evaluated with a block parameter |st:stream|, where st

is the created instance. In this case, the block’s result would become the function’s returned
value.

136

9.2 Extension to stream Class

This module extends the stream class with methods described here.

stream#reader@bzip2() {block?}

Creates a stream instance that decompresses bzip2 data from the specified stream that has
readable attribute.

If block is specified, it would be evaluated with a block parameter |st:stream|, where st

is the created instance. In this case, the block’s result would become the function’s returned
value.

stream#writer@bzip2(blockSize100k?:number) {block?}

Creates a stream instance that compresses data into bzip2 format and writes it to the specified
stream that has writable attribute.

The argument blockSize100k takes a number between 1 and 9 that specifies the block size to
be used for compression. The actual block size is 100000 times of this value. Nine gives the
best compression but takes most memory.

If block is specified, it would be evaluated with a block parameter |st:stream|, where st

is the created instance. In this case, the block’s result would become the function’s returned
value.

9.3 Thanks

This module uses libbzip2 which is distributed in the following site:

http://www.bzip.org/

137

Chapter 10

cairo Module

The cairo module provides methods to draw 2-D graphics using Cairo library. Official site of
Cairo is http://cairographics.org/.

10.1 Drawing

10.1.1 cairo.context - The cairo drawing context

Functions

cairo.context#status()

Checks whether an error has previously occurred for this context.

cairo.context#save():reduce {block?}

Makes a copy of the current state of cr and saves it on an internal stack of saved states for
cr. When cairo.context#restore() is called, cr will be restored to the saved state. Multi-
ple calls to cairo.context#save() and cairo.context#restore() can be nested; each call to
cairo.context#restore() restores the state from the matching paired cairo.context#save().

It isn’t necessary to clear all saved states before a cairo t is freed. If the reference count of a
cairo t drops to zero in response to a call to cairo.context#destroy(), any saved states will
be freed along with the cairo t.

cairo.context#restore():reduce

Restores cr to the state saved by a preceding call to cairo.context#save() and removes that
state from the stack of saved states.

cairo.context#get target()

Gets the target surface for the cairo context as passed to cairo.context constructor.

cairo.context#push group():reduce

Temporarily redirects drawing to an intermediate surface known as a group. The redirection
lasts until the group is completed by a call to cairo.context#pop group() or cairo.context#pop group to source().
These calls provide the result of any drawing to the group as a pattern, (either as an explicit
object, or set as the source pattern).

This group functionality can be convenient for performing intermediate compositing. One
common use of a group is to render objects as opaque within the group, (so that they occlude

138

each other), and then blend the result with translucence onto the destination.

Groups can be nested arbitrarily deep by making balanced calls to cairo.context#push group()/cairo.context#pop group().
Each call pushes/pops the new target group onto/from a stack.

The cairo.context#push group() function calls cairo save() so that any changes to the graph-
ics state will not be visible outside the group, (the pop group functions call cairo restore()).

By default the intermediate group will have a content type of cairo.CONTENT COLOR ALPHA.
Other content types can be chosen for the group by using cairo.context#push group with content()

instead.

As an example, here is how one might fill and stroke a path with translucence, but without any
portion of the fill being visible under the stroke:

cairo.context#push group with content(content:number):reduce

Temporarily redirects drawing to an intermediate surface known as a group. The redirection
lasts until the group is completed by a call to cairo.context#pop group() or cairo.context#pop group to source().
These calls provide the result of any drawing to the group as a pattern, (either as an explicit
object, or set as the source pattern).

The group will have a content type of content. The ability to control this content type is the
only distinction between this function and cairo.context#push group() which you should see
for a more detailed description of group rendering.

cairo.context#pop group()

Terminates the redirection begun by a call to cairo.context#push group() or cairo.context#push group with content()

and returns a new pattern containing the results of all drawing operations performed to the
group.

The cairo.context#pop group() function calls cairo restore(), (balancing a call to cairo save()

by the push group function), so that any changes to the graphics state will not be visible outside
the group.

cairo.context#pop group to source():reduce

Terminates the redirection begun by a call to cairo.context#push group() or cairo.context#push group with content()

and installs the resulting pattern as the source pattern in the given cairo context.

The cairo.context#pop group() function calls cairo restore(), (balancing a call to cairo save()
by the push group function), so that any changes to the graphics state will not be visible outside
the group.

cairo.context#get group target()

Gets the current destination surface for the context. This is either the original target surface
as passed to cairo.context constructor or the target surface for the current group as started by
the most recent call to cairo.context#push group() or cairo.context#push group with content().

cairo.context#set source rgb(red:number, green:number, blue:number):reduce

Sets the source pattern within cr to an opaque color. This opaque color will then be used for
any subsequent drawing operation until a new source pattern is set.

The color components are floating point numbers in the range 0 to 1. If the values passed in
are outside that range, they will be clamped.

The default source pattern is opaque black, (that is, it is equivalent to cr.set source rgb(0.0,

0.0, 0.0)).

cairo.context#set source rgba(red:number, green:number, blue:number, alpha:number):reduce

139

Sets the source pattern within cr to a translucent color. This color will then be used for any
subsequent drawing operation until a new source pattern is set.

The color and alpha components are floating point numbers in the range 0 to 1. If the values
passed in are outside that range, they will be clamped.

The default source pattern is opaque black, (that is, it is equivalent to cr.set source rgba(0.0,

0.0, 0.0, 1.0)).

cairo.context#set source(source:cairo.pattern):reduce

Sets the source pattern within cr to source. This pattern will then be used for any subsequent
drawing operation until a new source pattern is set.

Note: The pattern’s transformation matrix will be locked to the user space in effect at the
time of cairo.context#set source(). This means that further modifications of the current
transformation matrix will not affect the source pattern. See cairo.pattern#set matrix().

The default source pattern is a solid pattern that is opaque black, (that is, it is equivalent to
cr.set source rgb(0.0, 0.0, 0.0)).

cairo.context#set source surface(surface:cairo.surface, x:number, y:number):reduce

This is a convenience function for creating a pattern from surface and setting it as the source
in cr with cairo.context#set source().

The x and y parameters give the user-space coordinate at which the surface origin should appear.
(The surface origin is its upper-left corner before any transformation has been applied.) The x
and y parameters are negated and then set as translation values in the pattern matrix.

Other than the initial translation pattern matrix, as described above, all other pattern at-
tributes, (such as its extend mode), are set to the default values as in cairo.pattern.create for surface().
The resulting pattern can be queried with cairo.context#get source() so that these at-
tributes can be modified if desired, (eg. to create a repeating pattern with cairo.pattern#set extend()).

cairo.context#get source()

Gets the current source pattern for cr.

cairo.context#set antialias(antialias:number):reduce

Set the antialiasing mode of the rasterizer used for drawing shapes. This value is a hint, and a
particular backend may or may not support a particular value. At the current time, no backend
supports cairo.ANTIALIAS SUBPIXEL when drawing shapes.

Note that this option does not affect text rendering, instead see cairo.font options#set antialias().

cairo.context#get antialias()

Gets the current shape antialiasing mode, as set by cairo.context#set antialias().

cairo.context#set dash(dashes[]:number, offset:number):reduce

Sets the dash pattern to be used by cairo.context#stroke(). A dash pattern is specified by
dashes, an array of positive values. Each value provides the length of alternate ”on” and ”off”
portions of the stroke. The offset specifies an offset into the pattern at which the stroke begins.

Each ”on” segment will have caps applied as if the segment were a separate sub-path. In particu-
lar, it is valid to use an ”on” length of 0.0 with cairo.LINE CAP ROUND or cairo.LINE CAP SQUARE

in order to distributed dots or squares along a path.

Note: The length values are in user-space units as evaluated at the time of stroking. This is
not necessarily the same as the user space at the time of cairo.context#set dash().

If length of dashes is 0 dashing is disabled.

140

If length of dashes is 1 a symmetric pattern is assumed with alternating on and off portions of
the size specified by the single value in dashes.

If any value in dashes is negative, or if all values are 0, then cr will be put into an error state
with a status of cairo.STATUS INVALID DASH.

cairo.context#get dash()

Gets the current dash array.

cairo.context#set fill rule(fill rule:number):reduce

Set the current fill rule within the cairo context. The fill rule is used to determine which regions
are inside or outside a complex (potentially self-intersecting) path. The current fill rule affects
both cairo.context#fill() and cairo.context#clip(). See cairo fill rule t for details on
the semantics of each available fill rule.

The default fill rule is cairo.FILL RULE WINDING.

cairo.context#get fill rule()

Gets the current fill rule, as set by cairo.context#set fill rule().

cairo.context#set line cap(line cap:number):reduce

Sets the current line cap style within the cairo context. See cairo line cap t for details about
how the available line cap styles are drawn.

As with the other stroke parameters, the current line cap style is examined by cairo.context#stroke(),
cairo.context#stroke extents(), and cairo.context#stroke to path(), but does not have
any effect during path construction.

The default line cap style is cairo.LINE CAP BUTT.

cairo.context#get line cap()

Gets the current line cap style, as set by cairo.context#set line cap().

cairo.context#set line join(line join:number):reduce

Sets the current line join style within the cairo context. See cairo line join t for details
about how the available line join styles are drawn.

As with the other stroke parameters, the current line join style is examined by cairo.context#stroke(),
cairo.context#stroke extents(), and cairo.context#stroke to path(), but does not have
any effect during path construction.

The default line join style is cairo.LINE JOIN MITER.

cairo.context#get line join()

Gets the current line join style, as set by cairo.context#set line join().

cairo.context#set line width(width:number):reduce

Sets the current line width within the cairo context. The line width value specifies the diameter
of a pen that is circular in user space, (though device-space pen may be an ellipse in general
due to scaling/shear/rotation of the CTM).

Note: When the description above refers to user space and CTM it refers to the user space
and CTM in effect at the time of the stroking operation, not the user space and CTM in
effect at the time of the call to cairo.context#set line width(). The simplest usage makes
both of these spaces identical. That is, if there is no change to the CTM between a call to
cairo.context#set line width() and the stroking operation, then one can just pass user-

141

space values to cairo.context#set line width() and ignore this note.

As with the other stroke parameters, the current line width is examined by cairo.context#stroke(),
cairo.context#stroke extents(), and cairo.context#stroke to path(), but does not have
any effect during path construction.

The default line width value is 2.0.

cairo.context#get line width()

This function returns the current line width value exactly as set by cairo.context#set line width().
Note that the value is unchanged even if the CTM has changed between the calls to cairo.context#set line width()

and cairo.context#get line width().

cairo.context#set miter limit(limit:number):reduce

Sets the current miter limit within the cairo context.

If the current line join style is set to cairo.LINE JOIN MITER (see cairo.context#set line join()),
the miter limit is used to determine whether the lines should be joined with a bevel instead of
a miter. Cairo divides the length of the miter by the line width. If the result is greater than
the miter limit, the style is converted to a bevel.

As with the other stroke parameters, the current line miter limit is examined by cairo.context#stroke(),
cairo.context#stroke extents(), and cairo.context#stroke to path(), but does not have
any effect during path construction.

The default miter limit value is 10.0, which will convert joins with interior angles less than 11
degrees to bevels instead of miters. For reference, a miter limit of 2.0 makes the miter cutoff
at 60 degrees, and a miter limit of 1.414 makes the cutoff at 90 degrees.

A miter limit for a desired angle can be computed as: miter limit = 1/sin(angle/2)

cairo.context#get miter limit()

Gets the current miter limit, as set by cairo.context#set miter limit().

cairo.context#set operator(op:number):reduce

Sets the compositing operator to be used for all drawing operations. See cairo operator t for
details on the semantics of each available compositing operator.

The default operator is cairo.OPERATOR OVER.

cairo.context#get operator()

Gets the current compositing operator for a cairo context.

cairo.context#set tolerance(tolerance:number):reduce

Sets the tolerance used when converting paths into trapezoids. Curved segments of the path
will be subdivided until the maximum deviation between the original path and the polygonal
approximation is less than tolerance. The default value is 0.1. A larger value will give better
performance, a smaller value, better appearance. (Reducing the value from the default value
of 0.1 is unlikely to improve appearance significantly.) The accuracy of paths within Cairo is
limited by the precision of its internal arithmetic, and the prescribed tolerance is restricted to
the smallest representable internal value.

cairo.context#get tolerance()

Gets the current tolerance value, as set by cairo.context#set tolerance().

cairo.context#clip():reduce

142

Establishes a new clip region by intersecting the current clip region with the current path
as it would be filled by cairo.context#fill() and according to the current fill rule (see
cairo.context#set fill rule()).

After cairo.context#clip(), the current path will be cleared from the cairo context.

The current clip region affects all drawing operations by effectively masking out any changes
to the surface that are outside the current clip region.

Calling cairo.context#clip() can only make the clip region smaller, never larger. But the cur-
rent clip is part of the graphics state, so a temporary restriction of the clip region can be achieved
by calling cairo.context#clip() within a cairo.context#save()/cairo.context#restore()
pair. The only other means of increasing the size of the clip region is cairo.context#reset clip().

cairo.context#clip preserve():reduce

Establishes a new clip region by intersecting the current clip region with the current path
as it would be filled by cairo.context#fill() and according to the current fill rule (see
cairo.context#set fill rule()). Unlike cairo.context#clip(), cairo.context#clip preserve()

preserves the path within the cairo context.

The current clip region affects all drawing operations by effectively masking out any changes
to the surface that are outside the current clip region.

Calling cairo.context#clip preserve() can only make the clip region smaller, never larger.
But the current clip is part of the graphics state, so a temporary restriction of the clip region can
be achieved by calling cairo.context#clip preserve() within a cairo.context#save()/cairo.context#restore()
pair. The only other means of increasing the size of the clip region is cairo.context#reset clip().

cairo.context#clip extents()

Computes a bounding box in user coordinates covering the area inside the current clip.

cairo.context#in clip(x:number, y:number)

Tests whether the given point is inside the area that would be visible through the current clip,
i.e. the area that would be filled by a cairo.context#paint() operation.

See cairo.context#clip(), and cairo.context#clip preserve().

cairo.context#reset clip():reduce

Reset the current clip region to its original, unrestricted state. That is, set the clip region to
an infinitely large shape containing the target surface. Equivalently, if infinity is too hard to
grasp, one can imagine the clip region being reset to the exact bounds of the target surface.

Note that code meant to be reusable should not call cairo.context#reset clip() as it will
cause results unexpected by higher-level code which calls cairo.context#clip(). Consider
using cairo.context#save() and cairo.context#restore() around cairo.context#clip()

as a more robust means of temporarily restricting the clip region.

cairo.context#copy clip rectangle list()

Gets the current clip region as a list of rectangles in user coordinates.

The status in the list may be cairo.STATUS CLIP NOT REPRESENTABLE to indicate that the clip
region cannot be represented as a list of user-space rectangles. The status may have other
values to indicate other errors.

cairo.context#fill():reduce

A drawing operator that fills the current path according to the current fill rule, (each sub-path
is implicitly closed before being filled). After cairo.context#fill(), the current path will be
cleared from the cairo context. See cairo.context#set fill rule() and cairo.context#fill preserve().

143

cairo.context#fill preserve():reduce

A drawing operator that fills the current path according to the current fill rule, (each sub-path is
implicitly closed before being filled). Unlike cairo.context#fill(), cairo.context#fill preserve()

preserves the path within the cairo context.

See cairo.context#set fill rule() and cairo.context#fill().

cairo.context#fill extents():reduce

Computes a bounding box in user coordinates covering the area that would be affected, (the
”inked” area), by a cairo.context#fill() operation given the current path and fill parame-
ters. If the current path is empty, returns an empty rectangle ((0,0), (0,0)). Surface dimensions
and clipping are not taken into account.

Contrast with cairo.context#path extents(), which is similar, but returns non-zero extents
for some paths with no inked area, (such as a simple line segment).

Note that cairo.context#fill extents() must necessarily do more work to compute the
precise inked areas in light of the fill rule, so cairo.context#path extents() may be more
desirable for sake of performance if the non-inked path extents are desired.

See cairo.context#fill(), cairo.context#set fill rule() and cairo.context#fill preserve().

cairo.context#in fill(x:number, y:number)

Tests whether the given point is inside the area that would be affected by a cairo.context#fill()
operation given the current path and filling parameters. Surface dimensions and clipping are
not taken into account.

See cairo.context#fill(), cairo.context#set fill rule() and cairo.context#fill preserve().

cairo.context#mask(pattern:cairo.pattern):reduce

A drawing operator that paints the current source using the alpha channel of pattern as a mask.
(Opaque areas of pattern are painted with the source, transparent areas are not painted.)

cairo.context#mask surface(surface:cairo.surface, surface x:number, surface y:number):reduce

A drawing operator that paints the current source using the alpha channel of surface as a mask.
(Opaque areas of surface are painted with the source, transparent areas are not painted.)

cairo.context#paint():reduce

A drawing operator that paints the current source everywhere within the current clip region.

cairo.context#paint with alpha(alpha:number):reduce

A drawing operator that paints the current source everywhere within the current clip region
using a mask of constant alpha value alpha. The effect is similar to cairo.context#paint(), but
the drawing is faded out using the alpha value.

cairo.context#stroke():reduce

A drawing operator that strokes the current path according to the current line width, line join,
line cap, and dash settings. After cairo.context#stroke(), the current path will be cleared
from the cairo context. See cairo.context#set line width(), cairo.context#set line join(),
cairo.context#set line cap(), cairo.context#set dash(), and cairo.context#stroke preserve().

Note: Degenerate segments and sub-paths are treated specially and provide a useful result.
These can result in two different situations:

1. Zero-length ”on” segments set in cairo.context#set dash(). If the cap style is cairo.LINE CAP ROUND

or cairo.LINE CAP SQUARE then these segments will be drawn as circular dots or squares

144

respectively. In the case of cairo.LINE CAP SQUARE, the orientation of the squares is
determined by the direction of the underlying path.

2. A sub-path created by cairo.context#move to() followed by either a cairo.context#close path()

or one or more calls to cairo.context#line to() to the same coordinate as the cairo.context#move to().
If the cap style is cairo.LINE CAP ROUND then these sub-paths will be drawn as circular
dots. Note that in the case of cairo.LINE CAP SQUARE a degenerate sub-path will not be
drawn at all, (since the correct orientation is indeterminate).

In no case will a cap style of cairo.LINE CAP BUTT cause anything to be drawn in the case of
either degenerate segments or sub-paths.

cairo.context#stroke preserve():reduce

A drawing operator that strokes the current path according to the current line width, line join,
line cap, and dash settings. Unlike cairo.context#stroke(), cairo.context#stroke preserve()

preserves the path within the cairo context.

See cairo.context#set line width(), cairo.context#set line join(), cairo.context#set line cap(),
cairo.context#set dash(), and cairo.context#stroke preserve().

cairo.context#stroke extents()

Computes a bounding box in user coordinates covering the area that would be affected, (the
”inked” area), by a cairo.context#stroke() operation given the current path and stroke parame-
ters. If the current path is empty, returns an empty rectangle ((0,0), (0,0)). Surface dimensions
and clipping are not taken into account.

Note that if the line width is set to exactly zero, then cairo.context#stroke extents() will
return an empty rectangle. Contrast with cairo.context#path extents() which can be used
to compute the non-empty bounds as the line width approaches zero.

Note that cairo.context#stroke extents() must necessarily do more work to compute the
precise inked areas in light of the stroke parameters, so cairo.context#path extents() may
be more desirable for sake of performance if non-inked path extents are desired.

See cairo.context#stroke(), cairo.context#set line width(), cairo.context#set line join(),
cairo.context#set line cap(), cairo.context#set dash(), and cairo.context#stroke preserve().

cairo.context#in stroke(x:number, y:number)

Tests whether the given point is inside the area that would be affected by a cairo.context#stroke()
operation given the current path and stroking parameters. Surface dimensions and clipping are
not taken into account. See cairo.context#stroke(), cairo.context#set line width(),
cairo.context#set line join(), cairo.context#set line cap(), cairo.context# set dash(),
and cairo.context#stroke preserve().

cairo.context#copy page():reduce

Emits the current page for backends that support multiple pages, but doesn’t clear it, so, the
contents of the current page will be retained for the next page too. Use cairo.cairo#show page()

if you want to get an empty page after the emission.

This is a convenience function that simply calls cairo.context#surface copy page() on cr’s
target.

cairo.context#show page():reduce

Emits and clears the current page for backends that support multiple pages. Use cairo.context#copy page()

if you don’t want to clear the page.

This is a convenience function that simply calls cairo.context#surface show page() on cr’s
target.

145

Types and Values

cairo.antialias

• cairo.ANTIALIAS DEFAULT

• cairo.ANTIALIAS NONE

• cairo.ANTIALIAS GRAY

• cairo.ANTIALIAS SUBPIXEL

• cairo.ANTIALIAS FAST

• cairo.ANTIALIAS GOOD

• cairo.ANTIALIAS BEST

cairo.fill fule

• cairo.FILL RULE WINDING

• cairo.FILL RULE EVEN ODD

cairo.line cap

• cairo.LINE CAP BUTT

• cairo.LINE CAP ROUND

• cairo.LINE CAP SQUARE

cairo.line join

• cairo.LINE JOIN MITER

• cairo.LINE JOIN ROUND

• cairo.LINE JOIN BEVEL

cairo.operator

• cairo.OPERATOR CLEAR

• cairo.OPERATOR SOURCE

• cairo.OPERATOR OVER

• cairo.OPERATOR IN

• cairo.OPERATOR OUT

• cairo.OPERATOR ATOP

• cairo.OPERATOR DEST

• cairo.OPERATOR DEST OVER

• cairo.OPERATOR DEST IN

• cairo.OPERATOR DEST OUT

• cairo.OPERATOR DEST ATOP

146

• cairo.OPERATOR XOR

• cairo.OPERATOR ADD

• cairo.OPERATOR SATURATE

• cairo.OPERATOR MULTIPLY

• cairo.OPERATOR SCREEN

• cairo.OPERATOR OVERLAY

• cairo.OPERATOR DARKEN

• cairo.OPERATOR LIGHTEN

• cairo.OPERATOR COLOR DODGE

• cairo.OPERATOR COLOR BURN

• cairo.OPERATOR HARD LIGHT

• cairo.OPERATOR SOFT LIGHT

• cairo.OPERATOR DIFFERENCE

• cairo.OPERATOR EXCLUSION

• cairo.OPERATOR HSL HUE

• cairo.OPERATOR HSL SATURATION

• cairo.OPERATOR HSL COLOR

• cairo.OPERATOR HSL LUMINOSITY

10.1.2 Paths - Creating paths and manipulating path data

Functions

cairo.context#copy path()

Creates a copy of the current path and returns it to the user as a cairo.path. See cairo path data t

for hints on how to iterate over the returned data structure.

The result will have no data (data==nullptr and num data==0), if either of the following
conditions hold:

1. If there is insufficient memory to copy the path. In this case path-¿status will be set to
cairo.STATUS NO MEMORY.

2. If cr is already in an error state. In this case path.status will contain the same status
that would be returned by cairo.context#status().

cairo.context#copy path flat()

Gets a flattened copy of the current path and returns it to the user as a cairo.path. See
cairo path data t for hints on how to iterate over the returned data structure.

This function is like cairo.context#copy path() except that any curves in the path will be
approximated with piecewise-linear approximations, (accurate to within the current tolerance
value). That is, the result is guaranteed to not have any elements of type cairo.PATH CURVE TO

which will instead be replaced by a series of cairo.PATH LINE TO elements.

The result will have no data (data==nullptr and num data==0), if either of the following
conditions hold:

147

1. If there is insufficient memory to copy the path. In this case path.status will be set to
cairo.STATUS NO MEMORY.

2. If cr is already in an error state. In this case path-¿status will contain the same status
that would be returned by cairo.context#status().

cairo.context#append path(path:cairo.path):reduce

Append the path onto the current path. The path may be either the return value from one of
cairo.context#copy path() or cairo.context#copy path flat() or it may be constructed
manually. See cairo.path for details on how the path data structure should be initialized, and
note that path.status must be initialized to cairo.STATUS SUCCESS.

cairo.context#has current point()

Returns whether a current point is defined on the current path. See cairo.context#get current point()
for details on the current point.

cairo.context#get current point()

Gets the current point of the current path, which is conceptually the final point reached by the
path so far.

The current point is returned in the user-space coordinate system. If there is no defined current
point or if cr is in an error status, x and y will both be set to 0.0. It is possible to check this
in advance with cairo.context#has current point().

Most path construction functions alter the current point. See the following for details on
how they affect the current point: cairo.context#new path(), cairo.context#new sub path(),
cairo.context#append path(), cairo.context#close path(), cairo.context#move to(), cairo.context#line to(),
cairo.context#curve to(), cairo.context#rel move to(), cairo.context#rel line to(), cairo.context#rel curve to(),
cairo.context#arc(), cairo.context#arc negative(), cairo.context#rectangle(), cairo.context#text path(),
cairo.context#glyph path(), cairo.context#stroke to path().

Some functions use and alter the current point but do not otherwise change current path:
cairo.context#show text().

Some functions unset the current path and as a result, current point: cairo.context#fill(),
cairo.context#stroke().

cairo.context#new path():reduce

Clears the current path. After this call there will be no path and no current point.

cairo.context#new sub path():reduce

Begin a new sub-path. Note that the existing path is not affected. After this call there will be
no current point.

In many cases, this call is not needed since new sub-paths are frequently started with cairo.context#move to().

A call to cairo.context#new sub path() is particularly useful when beginning a new sub-path
with one of the cairo.context#arc() calls. This makes things easier as it is no longer necessary
to manually compute the arc’s initial coordinates for a call to cairo.context#move to().

cairo.context#close path():reduce

Adds a line segment to the path from the current point to the beginning of the current sub-path,
(the most recent point passed to cairo.context#move to()), and closes this sub-path. After this
call the current point will be at the joined endpoint of the sub-path.

The behavior of cairo.context#close path() is distinct from simply calling cairo.context#line to()
with the equivalent coordinate in the case of stroking. When a closed sub-path is stroked, there

148

are no caps on the ends of the sub-path. Instead, there is a line join connecting the final and
initial segments of the sub-path.

If there is no current point before the call to cairo.context#close path(), this function will have
no effect.

Note: As of cairo version 1.2.4 any call to cairo.context#close path() will place an explicit
MOVE TO element into the path immediately after the CLOSE PATH element, (which can
be seen in cairo.context#copy path() for example). This can simplify path processing in some
cases as it may not be necessary to save the ”last move to point” during processing as the
MOVE TO immediately after the CLOSE PATH will provide that point.

cairo.context#arc(xc:number, yc:number, radius:number, angle1?:number, angle2?:number):map:reduce:[deg]

Adds a circular arc of the given radius to the current path. The arc is centered at (xc, yc),
begins at angle1 and proceeds in the direction of increasing angles to end at angle2. If angle2
is less than angle1 it will be progressively increased by 2∗M PI until it is greater than angle1.

If there is a current point, an initial line segment will be added to the path to connect the
current point to the beginning of the arc. If this initial line is undesired, it can be avoided by
calling cairo.context#new sub path() before calling cairo.context#arc().

Angles are measured in radians. An angle of 0.0 is in the direction of the positive X axis (in user
space). An angle of math.pi/2.0 radians (90 degrees) is in the direction of the positive Y axis
(in user space). Angles increase in the direction from the positive X axis toward the positive Y
axis. So with the default transformation matrix, angles increase in a clockwise direction.

(To convert from degrees to radians, use degrees ∗ (math.pi / 180.).)

This function gives the arc in the direction of increasing angles; see cairo.context#arc negative()
to get the arc in the direction of decreasing angles.

The arc is circular in user space. To achieve an elliptical arc, you can scale the current trans-
formation matrix by different amounts in the X and Y directions. For example, to draw an
ellipse in the box given by x, y, width, height:

cr.save() cr.translate(x + width / 2., y + height / 2.) cr.scale(width / 2., height / 2.) cr.arc(0.,
0., 1., 0., 2 ∗ math.pi)cr.restore()

Gura: If attribute :deg is specified, angle1 and angle2 are represented in degrees instead of
radians.

cairo.context#arc negative(xc:number, yc:number, radius:number, angle1?:number, angle2?:number):map:reduce:[deg]

Adds a circular arc of the given radius to the current path. The arc is centered at (xc, yc),
begins at angle1 and proceeds in the direction of decreasing angles to end at angle2. If angle2 is
greater than angle1 it will be progressively decreased by 2∗math.pi until it is less than angle1.

See cairo.context#arc() for more details. This function differs only in the direction of the arc
between the two angles.

Gura: If attribute :deg is specified, angle1 and angle2 are represented in degrees instead of
radians.

cairo.context#curve to(x1:number, y1:number, x2:number, y2:number, x3:number, y3:number):map:reduce

Adds a cubic Bezier spline to the path from the current point to position (x3, y3) in user-space
coordinates, using (x1, y1) and (x2, y2) as the control points. After this call the current point
will be (x3, y3).

If there is no current point before the call to cairo.context#curve to() this function will behave
as if preceded by a call to cr.move to(x1, y1).

cairo.context#line to(x:number, y:number):map:reduce

149

Adds a line to the path from the current point to position (x, y) in user-space coordinates.
After this call the current point will be (x, y).

If there is no current point before the call to cairo.context#line to() this function will behave
as cr.move to(x, y).

cairo.context#move to(x:number, y:number):map:reduce

Begin a new sub-path. After this call the current point will be (x, y).

cairo.context#rectangle(x:number, y:number, width:number, height:number):map:reduce

Adds a closed sub-path rectangle of the given size to the current path at position (x, y) in
user-space coordinates.

This function is logically equivalent to:

cr.move to(x, y) cr.rel line to(width, 0) cr.rel line to(0, height) cr.rel line to(-width, 0) cr.close path()

cairo.context#text path(text:string):map:reduce

Adds closed paths for text to the current path. The generated path if filled, achieves an effect
similar to that of cairo.context#show text().

Text conversion and positioning is done similar to cairo.context#show text().

Like cairo.context#show text(), After this call the current point is moved to the origin of where
the next glyph would be placed in this same progression. That is, the current point will be at
the origin of the final glyph offset by its advance values. This allows for chaining multiple calls
to to cairo.context#text path() without having to set current point in between.

Note: The cairo.context#text path() function call is part of what the cairo designers call the
”toy” text API. It is convenient for short demos and simple programs, but it is not expected to
be adequate for serious text-using applications. See cairo.context#glyph path() for the ”real”
text path API in cairo.

cairo.context#rel curve to(dx1:number, dy1:number, dx2:number, dy2:number, dx3:number, dy3:number):map:reduce

Relative-coordinate version of cairo.context#curve to(). All offsets are relative to the current
point. Adds a cubic Bezier spline to the path from the current point to a point offset from the
current point by (dx3, dy3), using points offset by (dx1, dy1) and (dx2, dy2) as the control
points. After this call the current point will be offset by (dx3, dy3).

Given a current point of (x, y), cr.rel curve to(dx1, dy1, dx2, dy2, dx3, dy3) is logically equiv-
alent to cr.curve to(x+dx1, y+dy1, x+dx2, y+dy2, x+dx3, y+dy3).

It is an error to call this function with no current point. Doing so will cause cr to shutdown
with a status of cairo.STATUS NO CURRENT POINT.

cairo.context#rel line to(dx:number, dy:number):map:reduce

Relative-coordinate version of cairo.context#line to(). Adds a line to the path from the current
point to a point that is offset from the current point by (dx, dy) in user space. After this call
the current point will be offset by (dx, dy).

Given a current point of (x, y), cr.rel line to(dx, dy) is logically equivalent to cr.line to(x + dx,
y + dy).

It is an error to call this function with no current point. Doing so will cause cr to shutdown
with a status of cairo.STATUS NO CURRENT POINT.

cairo.context#rel move to(dx:number, dy:number):map:reduce

Begin a new sub-path. After this call the current point will offset by (dx, dy).

150

Given a current point of (x, y), cr.rel move to(dx, dy) is logically equivalent to cr.move to(x +
dx, y + dy).

It is an error to call this function with no current point. Doing so will cause cr to shutdown
with a status of cairo.STATUS NO CURRENT POINT.

cairo.context#path extents()

Computes a bounding box in user-space coordinates covering the points on the current path.
If the current path is empty, returns an empty rectangle ((0,0), (0,0)). Stroke parameters, fill
rule, surface dimensions and clipping are not taken into account.

Contrast with cairo.context#fill extents() and cairo.context#stroke extents() which return the
extents of only the area that would be ”inked” by the corresponding drawing operations.

The result of cairo.context#path extents() is defined as equivalent to the limit of cairo.context#stroke extents()
with cairo.LINE CAP ROUND as the line width approaches 0.0, (but never reaching the empty-
rectangle returned by cairo.context#stroke extents() for a line width of 0.0).

Specifically, this means that zero-area sub-paths such as cairo.context#move to();cairo.context#line to()
segments, (even degenerate cases where the coordinates to both calls are identical), will be
considered as contributing to the extents. However, a lone cairo.context#move to() will not
contribute to the results of cairo.context#path extents().

Types and Values

10.1.3 cairo.pattern - Sources for drawing

Functions

cairo.pattern#add color stop rgb(offset:number, red:number, green:number, blue:number):reduce

Adds an opaque color stop to a gradient pattern. The offset specifies the location along the
gradient’s control vector. For example, a linear gradient’s control vector is from (x0,y0) to
(x1,y1) while a radial gradient’s control vector is from any point on the start circle to the
corresponding point on the end circle.

The color is specified in the same way as in cairo.context#set source rgb().

If two (or more) stops are specified with identical offset values, they will be sorted according to
the order in which the stops are added, (stops added earlier will compare less than stops added
later). This can be useful for reliably making sharp color transitions instead of the typical
blend.

Note: If the pattern is not a gradient pattern, (eg. a linear or radial pattern), then the pattern
will be put into an error status with a status of cairo.STATUS PATTERN TYPE MISMATCH.

cairo.pattern#add color stop rgba(offset:number, red:number, green:number, blue:number, alpha:number):reduce

Adds a translucent color stop to a gradient pattern. The offset specifies the location along
the gradient’s control vector. For example, a linear gradient’s control vector is from (x0,y0)
to (x1,y1) while a radial gradient’s control vector is from any point on the start circle to the
corresponding point on the end circle.

The color is specified in the same way as in cairo.context#set source rgba().

If two (or more) stops are specified with identical offset values, they will be sorted according to
the order in which the stops are added, (stops added earlier will compare less than stops added
later). This can be useful for reliably making sharp color transitions instead of the typical
blend.

Note: If the pattern is not a gradient pattern, (eg. a linear or radial pattern), then the pattern
will be put into an error status with a status of cairo.STATUS PATTERN TYPE MISMATCH.

151

cairo.pattern#get color stop count()

Gets the number of color stops specified in the given gradient pattern.

cairo.pattern#get color stop rgba(index:number)

Gets the color and offset information at the given index for a gradient pattern. Values of index
are 0 to 1 less than the number returned by cairo.pattern#get color stop count().

cairo.pattern.create rgb(red:number, green:number, blue:number):static {block?}

Creates a new cairo.pattern corresponding to an opaque color. The color components are
floating point numbers in the range 0 to 1. If the values passed in are outside that range, they
will be clamped.

cairo.pattern.create rgba(red:number, green:number, blue:number, alpha:number):static {block?}

Creates a new cairo,pattern corresponding to a translucent color. The color components are
floating point numbers in the range 0 to 1. If the values passed in are outside that range, they
will be clamped.

cairo.pattern#get rgba()

Gets the solid color for a solid color pattern.

cairo.pattern.create for surface(surface:cairo.surface):static {block?}

Create a new cairo.pattern for the given surface.

cairo.pattern#get surface()

Gets the surface of a surface pattern. The reference returned in surface is owned by the pattern;
the caller should call cairo surface reference() if the surface is to be retained.

cairo.pattern.create linear(x0:number, y0:number, x1:number, y1:number):static {block?}

Create a new linear gradient cairo.pattern along the line defined by (x0, y0) and (x1, y1). Before
using the gradient pattern, a number of color stops should be defined using cairo.pattern#add color stop rgb()
or cairo.pattern#add color stop rgba().

Note: The coordinates here are in pattern space. For a new pattern, pattern space is identical to
user space, but the relationship between the spaces can be changed with cairo.pattern#set matrix().

cairo.pattern#get linear points()

Gets the gradient endpoints for a linear gradient.

cairo.pattern.create radial(cx0:number, cy0:number, radius0:number, cx1:number, cy1:number, radius1:number):static {block?}

Creates a new radial gradient cairo pattern t between the two circles defined by (cx0, cy0, ra-
dius0) and (cx1, cy1, radius1). Before using the gradient pattern, a number of color stops should
be defined using cairo.pattern#add color stop rgb() or cairo.pattern#add color stop rgba().

Note: The coordinates here are in pattern space. For a new pattern, pattern space is identical to
user space, but the relationship between the spaces can be changed with cairo.pattern#set matrix().

cairo.pattern#get radial circles()

Gets the gradient endpoint circles for a radial gradient, each specified as a center coordinate
and a radius.

cairo.mesh pattern.create():static {block?}

152

cairo.mesh pattern#begin patch():reduce

cairo.mesh pattern#end patch():reduce

cairo.mesh pattern#move to(x:number, y:number):reduce

cairo.mesh pattern#line to(x:number, y:number):reduce

cairo.mesh pattern#curve to(x1:number, y1:number, x2:number, y2:number, x3:number, y3:number):reduce

cairo.mesh pattern#set control point(point num:number, x:number, y:number):reduce

cairo.mesh pattern#set corner color rgb(corner num:number, red:number, green:number, blue:number):reduce

cairo.mesh pattern#set corner color rgba(corner num:number, red:number, green:number, blue:number, alpha:number):reduce

cairo.pattern#status()

Checks whether an error has previously occurred for this pattern.

cairo.pattern#set extend(extend:number):reduce

Sets the mode to be used for drawing outside the area of a pattern. See cairo extend t for
details on the semantics of each extend strategy.

The default extend mode is cairo.EXTEND NONE for surface patterns and cairo.EXTEND PAD
for gradient patterns.

cairo.pattern#get extend()

Gets the current extend mode for a pattern. See cairo extend t for details on the semantics of
each extend strategy.

cairo.pattern#set filter(filter:number):reduce

Sets the filter to be used for resizing when using this pattern. See cairo filter t for details on
each filter.

• Note that you might want to control filtering even when you do not have an explicit
cairo.pattern object, (for example when using cairo.context#set source surface()). In
these cases, it is convenient to use cairo.context#get source() to get access to the pattern
that cairo creates implicitly. For example:

cr.set source surface(image, x, y) cr.get source().set filter(cairo.FILTER NEAREST)

cairo.pattern#get filter()

Gets the current filter for a pattern. See cairo filter t for details on each filter.

cairo.pattern#set matrix(array:array@double):reduce

Sets the pattern’s transformation matrix to matrix. This matrix is a transformation from user
space to pattern space.

When a pattern is first created it always has the identity matrix for its transformation matrix,
which means that pattern space is initially identical to user space.

Important: Please note that the direction of this transformation matrix is from user space to
pattern space. This means that if you imagine the flow from a pattern to user space (and on to
device space), then coordinates in that flow will be transformed by the inverse of the pattern

153

matrix.

For example, if you want to make a pattern appear twice as large as it does by default the
correct code to use is:

cairo matrix init scale (&matrix, 0.5, 0.5); cairo pattern set matrix (pattern, &matrix);

Meanwhile, using values of 2.0 rather than 0.5 in the code above would cause the pattern to
appear at half of its default size.

Also, please note the discussion of the user-space locking semantics of cairo.context#set source().

cairo.pattern#get matrix()

Stores the pattern’s transformation matrix into matrix.

cairo.pattern#get type()

This function returns the type a pattern. See cairo pattern type t for available types.

Types and Values

cairo.extend

• cairo.EXTEND NONE

• cairo.EXTEND REPEAT

• cairo.EXTEND REFLECT

• cairo.EXTEND PAD

cairo.filter

• cairo.FILTER FAST

• cairo.FILTER GOOD

• cairo.FILTER BEST

• cairo.FILTER NEAREST

• cairo.FILTER BILINEAR

• cairo.FILTER GAUSSIAN

cairo.pattern type

• cairo.PATTERN TYPE SOLID

• cairo.PATTERN TYPE SURFACE

• cairo.PATTERN TYPE LINEAR

• cairo.PATTERN TYPE RADIAL

• cairo.PATTERN TYPE MESH

• cairo.PATTERN TYPE RASTER SOURCE

154

10.1.4 Regions - Representing a pixel-aligned area

cairo.region overlap

• cairo.REGION OVERLAP IN

• cairo.REGION OVERLAP OUT

• cairo.REGION OVERLAP PART

Functions

cairo.region.create():static {block?}

cairo.region.create rectangle(rectangle:cairo.rectangle int):static {block?}

cairo.region.create rectangles(rects[]:cairo.rectangle int):static {block?}

cairo.region#copy() {block?}

cairo.region#status()

cairo.region#get extents()

cairo.region#get rectangle(nth:number)

cairo.region#is empty()

cairo.region#contains point(x:number, y:number)

cairo.region#contains rectangle(rectangle:cairo.rectangle int)

cairo.region#equal(region:cairo.region)

cairo.region#translate(dx:number, dy:number)

cairo.region#intersect(other:cairo.region)

cairo.region#intersect rectangle(rectangle:cairo.rectangle int)

cairo.region#union(other:cairo.region)

cairo.region#union rectangle(rectangle:cairo.rectangle int)

cairo.region#xor(other:cairo.region)

cairo.region#xor rectangle(rectangle:cairo.rectangle int)

155

Types and Values

10.1.5 Transformations - Manipulating the current transformation
matrix

Functions

cairo.context#translate(tx:number, ty:number):reduce

Modifies the current transformation matrix (CTM) by translating the user-space origin by (tx,
ty). This offset is interpreted as a user-space coordinate according to the CTM in place before
the new call to cairo.context#translate(). In other words, the translation of the user-space
origin takes place after any existing transformation.

cairo.context#scale(sx:number, sy:number):reduce

Modifies the current transformation matrix (CTM) by scaling the X and Y user-space axes by
sx and sy respectively. The scaling of the axes takes place after any existing transformation of
user space.

cairo.context#rotate(angle:number):reduce:[deg]

Modifies the current transformation matrix (CTM) by rotating the user-space axes by angle
radians. The rotation of the axes takes places after any existing transformation of user space.
The rotation direction for positive angles is from the positive X axis toward the positive Y axis.

Gura: If attribute :deg is specified, angle is represented in degrees instead of radians.

cairo.context#transform(array:array@double):reduce

Modifies the current transformation matrix (CTM) by applying matrix as an additional trans-
formation. The new transformation of user space takes place after any existing transformation.

cairo.context#set matrix(array:array@double):reduce

Modifies the current transformation matrix (CTM) by setting it equal to matrix.

cairo.context#get matrix()

Stores the current transformation matrix (CTM) into matrix.

cairo.context#identity matrix():reduce

Resets the current transformation matrix (CTM) by setting it equal to the identity matrix. That
is, the user-space and device-space axes will be aligned and one user-space unit will transform
to one device-space unit.

cairo.context#user to device(x:number, y:number)

Transform a coordinate from user space to device space by multiplying the given point by the
current transformation matrix (CTM).

cairo.context#user to device distance(dx:number, dy:number)

Transform a distance vector from user space to device space. This function is similar to
cairo.context#user to device() except that the translation components of the CTM will be
ignored when transforming (dx,dy).

cairo.context#device to user(x:number, y:number)

Transform a coordinate from device space to user space by multiplying the given point by the

156

inverse of the current transformation matrix (CTM).

cairo.context#device to user distance(dx:number, dy:number)

Transform a distance vector from device space to user space. This function is similar to
cairo.context#device to user() except that the translation components of the inverse CTM will
be ignored when transforming (dx,dy).

10.1.6 text - Rendering text and glyphs

Functions

cairo.context#select font face(family:string, slant:number, weight:number):reduce

Note: The cairo.context#select font face() function call is part of what the cairo designers call
the ”toy” text API. It is convenient for short demos and simple programs, but it is not expected
to be adequate for serious text-using applications.

Selects a family and style of font from a simplified description as a family name, slant and
weight. Cairo provides no operation to list available family names on the system (this is a
”toy”, remember), but the standard CSS2 generic family names, (”serif”, ”sans-serif”, ”cursive”,
”fantasy”, ”monospace”), are likely to work as expected.

If family starts with the string ”cairo:”, or if no native font backends are compiled in, cairo
will use an internal font family. The internal font family recognizes many modifiers in the
family string, most notably, it recognizes the string ”monospace”. That is, the family name
”cairo:monospace” will use the monospace version of the internal font family.

For ”real” font selection, see the font-backend-specific font face create functions for the font
backend you are using. (For example, if you are using the freetype-based cairo-ft font backend,
see cairo ft font face create for ft face() or cairo ft font face create for pattern().) The result-
ing font face could then be used with cairo.scaled font create() and cairo.context#set scaled font().

Similarly, when using the ”real” font support, you can call directly into the underlying font
system, (such as fontconfig or freetype), for operations such as listing available fonts, etc.

It is expected that most applications will need to use a more comprehensive font handling and
text layout library, (for example, pango), in conjunction with cairo.

If text is drawn without a call to cairo.context#select font face(), (nor cairo.context#set font face()
nor cairo.context#set scaled font()), the default family is platform-specific, but is essentially
”sans-serif”. Default slant is cairo.FONT SLANT NORMAL, and default weight is cairo.FONT WEIGHT NORMAL.

This function is equivalent to a call to cairo.toy font face.create() followed by cairo.context#set font face().

cairo.context#set font size(size:number):reduce

Sets the current font matrix to a scale by a factor of size, replacing any font matrix previously
set with cairo.context#set font size() or cairo.context#set font matrix(). This results in a font
size of size user space units. (More precisely, this matrix will result in the font’s em-square
being a size by size square in user space.)

If text is drawn without a call to cairo.context#set font size(), (nor cairo.context#set font matrix()
nor cairo.context#set scaled font()), the default font size is 10.0.

cairo.context#set font matrix(array:array@double):reduce

Sets the current font matrix to matrix. The font matrix gives a transformation from the design
space of the font (in this space, the em-square is 1 unit by 1 unit) to user space. Normally, a
simple scale is used (see cairo set font size()), but a more complex font matrix can be used to
shear the font or stretch it unequally along the two axes.

157

cairo.context#get font matrix()

Stores the current font matrix into matrix. See cairo.context#set font matrix().

cairo.context#set font options(options:cairo.font options):reduce

Sets a set of custom font rendering options for the cairo t. Rendering options are derived by
merging these options with the options derived from underlying surface; if the value in options
has a default value (like cairo.ANTIALIAS DEFAULT), then the value from the surface is used.

cairo.context#get font options()

Retrieves font rendering options set via cairo.context#set font options. Note that the returned
options do not include any options derived from the underlying surface; they are literally the
options passed to cairo.context#set font options().

cairo.context#set font face(font face:cairo.font face):reduce

Replaces the current cairo font face t object in the cairo t with font face. The replaced font
face in the cairo t will be destroyed if there are no other references to it.

cairo.context#get font face()

Gets the current font face for a cairo t.

cairo.context#set scaled font(scaled font:cairo.scaled font):reduce

Replaces the current font face, font matrix, and font options in the cairo t with those of the
cairo scaled font t. Except for some translation, the current CTM of the cairo t should be the
same as that of the cairo scaled font t, which can be accessed using cairo.context#scaled font get ctm().

cairo.context#get scaled font()

Gets the current scaled font for a cairo t.

cairo.context#show text(text:string):reduce

A drawing operator that generates the shape from a string of UTF-8 characters, rendered
according to the current font face, font size (font matrix), and font options.

This function first computes a set of glyphs for the string of text. The first glyph is placed so
that its origin is at the current point. The origin of each subsequent glyph is offset from that
of the previous glyph by the advance values of the previous glyph.

After this call the current point is moved to the origin of where the next glyph would be placed
in this same progression. That is, the current point will be at the origin of the final glyph offset
by its advance values. This allows for easy display of a single logical string with multiple calls
to cairo.context#show text().

Note: The cairo.context#show text() function call is part of what the cairo designers call the
”toy” text API. It is convenient for short demos and simple programs, but it is not expected to
be adequate for serious text-using applications. See cairo.context#show glyphs() for the ”real”
text display API in cairo.

cairo.context#show glyphs(glyphs:cairo.glyph):reduce

A drawing operator that generates the shape from an array of glyphs, rendered according to
the current font face, font size (font matrix), and font options.

cairo.context#font extents()

Gets the font extents for the currently selected font.

158

cairo.context#text extents(text:string)

Gets the extents for a string of text. The extents describe a user-space rectangle that encloses the
”inked” portion of the text, (as it would be drawn by cairo.context#show text()). Additionally,
the x advance and y advance values indicate the amount by which the current point would be
advanced by cairo.context#show text().

Note that whitespace characters do not directly contribute to the size of the rectangle (ex-
tents.width and extents.height). They do contribute indirectly by changing the position of
non-whitespace characters. In particular, trailing whitespace characters are likely to not affect
the size of the rectangle, though they will affect the x advance and y advance values.

cairo.context#glyph extents(glyphs:cairo.glyph)

Gets the extents for an array of glyphs. The extents describe a user-space rectangle that encloses
the ”inked” portion of the glyphs, (as they would be drawn by cairo.context#show glyphs()).
Additionally, the x advance and y advance values indicate the amount by which the current
point would be advanced by cairo.context#show glyphs().

Note that whitespace glyphs do not contribute to the size of the rectangle (extents.width and
extents.height).

cairo.toy font face.create(family:string, slant:number, weight:number):static {block?}

Creates a font face from a triplet of family, slant, and weight. These font faces are used in
implementation of the the cairo t ”toy” font API.

If family is the zero-length string ””, the platform-specific default family is assumed. The
default family then can be queried using cairo.toy font face#get family().

The cairo.context#select font face() function uses this to create font faces. See that function
for limitations and other details of toy font faces.

cairo.toy font face#get family()

Gets the familly name of a toy font.

cairo.toy font face#get slant()

Gets the slant a toy font.

cairo.toy font face#get weight()

Gets the weight a toy font.

159

Types and Values

10.1.7 Raster Sources - Supplying arbitary image data

Functions

10.2 Fonts

10.2.1 cairo.font face - Base class for font faces

Functions

10.2.2 cairo.scaled font - Font face at particular size and options

Functions

cairo.scaled font.create(font face:cairo.font face, font matrix:array@double, ctm:array@double, options):static {block?}

10.2.3 cairo font options t - How a font should be rendered

Functions

cairo.font options.create():static {block?}

cairo.font options#status()

cairo.font options#merge(other:cairo.font options):void

cairo.font options#hash()

cairo.font options#equal(other:cairo.font options)

cairo.font options#set antialias(antialias:number):void

cairo.font options#get antialias()

cairo.font options#set subpixel order(subpixel order:number):void

cairo.font options#get subpixel order()

cairo.font options#set hint style(hint style:number):void

cairo.font options#get hint style()

cairo.font options#set hint metrics(hint metrics:number):void

cairo.font options#get hint metrics()

160

10.2.4 FreeType Fonts - Font support for FreeType

Functions

10.2.5 Win32 Fonts - Font support for Microsoft Windows

Functions

10.2.6 Quartz (CGFont) Fonts - Font support via CGFont on OS X

Functions

10.2.7 User Fonts - Font support with font data provided by the user

Functions

10.3 Surfaces

10.3.1 cairo.device - interface to underlying rendering system

Functions

cairo.device#status()

cairo.device#finish():reduce

cairo.device#flush():reduce

cairo.device#get type()

cairo.device#acquire()

cairo.device#release():void

10.3.2 cairo.surface - Base class for surfaces

Functions

cairo.surface.create similar(other:cairo.surface, content:number, width:number, height:number):static {block?}

Create a new surface that is as compatible as possible with an existing surface. For example
the new surface will have the same fallback resolution and font options as other. Generally, the
new surface will also use the same backend as other, unless that is not possible for some reason.
The type of the returned surface may be examined with cairo.surface#get type().

Initially the surface contents are all 0 (transparent if contents have transparency, black other-
wise.)

Use cairo.surface.create similar image() if you need an image surface which can be painted
quickly to the target surface.

cairo.surface.create similar image(other:cairo.surface, format:number, width:number, height:number):static {block?}

Create a new image surface that is as compatible as possible for uploading to and the use in
conjunction with an existing surface. However, this surface can still be used like any normal

161

image surface.

Initially the surface contents are all 0 (transparent if contents have transparency, black other-
wise.)

Use cairo.surface.create similar() if you don’t need an image surface.

cairo.surface.create for rectangle(other:cairo.surface, format:number, width:number, height:number):static {block?}

Create a new surface that is a rectangle within the target surface. All operations drawn to
this surface are then clipped and translated onto the target surface. Nothing drawn via this
sub-surface outside of its bounds is drawn onto the target surface, making this a useful method
for passing constrained child surfaces to library routines that draw directly onto the parent
surface, i.e. with no further backend allocations, double buffering or copies.

Note: The semantics of subsurfaces have not been finalized yet unless the rectangle is in full
device units, is contained within the extents of the target surface, and the target or subsurface’s
device transforms are not changed.

cairo.surface#status()

Checks whether an error has previously occurred for this surface.

cairo.surface#finish():reduce

This function finishes the surface and drops all references to external resources. For example,
for the Xlib backend it means that cairo will no longer access the drawable, which can be freed.
After calling cairo.surface#finish() the only valid operations on a surface are getting and setting
user, referencing and destroying, and flushing and finishing it. Further drawing to the surface
will not affect the surface but will instead trigger a cairo.STATUS SURFACE FINISHED error.

When the last call to cairo surface destroy() decreases the reference count to zero, cairo will
call cairo surface finish() if it hasn’t been called already, before freeing the resources associated
with the surface.

cairo.surface#flush():reduce

Do any pending drawing for the surface and also restore any temporary modifications cairo has
made to the surface’s state. This function must be called before switching from drawing on the
surface with cairo to drawing on it directly with native APIs. If the surface doesn’t support
direct access, then this function does nothing.

cairo.surface#get device()

This function returns the device for a surface. See cairo.device.

cairo.surface#get font options()

Retrieves the default font rendering options for the surface. This allows display surfaces to
report the correct subpixel order for rendering on them, print surfaces to disable hinting of
metrics and so forth. The result can then be used with cairo.scaled font.create().

cairo.surface#get content()

This function returns the content type of surface which indicates whether the surface contains
color and/or alpha information. See cairo content t.

cairo.surface#mark dirty():reduce

Tells cairo that drawing has been done to surface using means other than cairo, and that cairo
should reread any cached areas. Note that you must call cairo.surface#flush() before doing
such drawing.

162

cairo.surface#mark dirty rectangle(x:number, y:number, width:number, height:number):reduce

Like cairo.surface#mark dirty(), but drawing has been done only to the specified rectangle, so
that cairo can retain cached contents for other parts of the surface.

Any cached clip set on the surface will be reset by this function, to make sure that future cairo
calls have the clip set that they expect.

cairo.surface#set device offset(x offset:number, y offset:number):reduce

Sets an offset that is added to the device coordinates determined by the CTM when drawing to
surface. One use case for this function is when we want to create a cairo.surface that redirects
drawing for a portion of an onscreen surface to an offscreen surface in a way that is completely
invisible to the user of the cairo API. Setting a transformation via cairo.context#translate()
isn’t sufficient to do this, since functions like cairo.context#device to user() will expose the
hidden offset.

Note that the offset affects drawing to the surface as well as using the surface in a source
pattern.

cairo.surface#get device offset()

This function returns the previous device offset set by cairo.surface#set device offset().

cairo.surface#set fallback resolution(x pixels per inch:number, y pixels per inch:number):reduce

Set the horizontal and vertical resolution for image fallbacks.

When certain operations aren’t supported natively by a backend, cairo will fallback by rendering
operations to an image and then overlaying that image onto the output. For backends that are
natively vector-oriented, this function can be used to set the resolution used for these image
fallbacks, (larger values will result in more detailed images, but also larger file sizes).

Some examples of natively vector-oriented backends are the ps, pdf, and svg backends.

For backends that are natively raster-oriented, image fallbacks are still possible, but they are
always performed at the native device resolution. So this function has no effect on those
backends.

Note: The fallback resolution only takes effect at the time of completing a page (with cairo.context#show page()
or cairo.context#copy page()) so there is currently no way to have more than one fallback res-
olution in effect on a single page.

The default fallback resoultion is 300 pixels per inch in both dimensions.

cairo.surface#get fallback resolution()

This function returns the previous fallback resolution set by cairo.surface#set fallback resolution(),
or default fallback resolution if never set.

cairo.surface#get type()

This function returns the type of the backend used to create a surface. See cairo surface type t
for available types.

cairo.surface#copy page():reduce

Emits the current page for backends that support multiple pages, but doesn’t clear it, so that the
contents of the current page will be retained for the next page. Use cairo.surface#show page()
if you want to get an empty page after the emission.

There is a convenience function for this that takes a cairo.context, namely cairo.context#copy page().

cairo.surface#show page():reduce

163

Emits and clears the current page for backends that support multiple pages. Use cairo.surface#copy page()
if you don’t want to clear the page.

There is a convenience function for this that takes a cairo.context, namely cairo.context#show page().

cairo.surface#has show text glyphs()

Returns whether the surface supports sophisticated cairo.context#show text glyphs() opera-
tions. That is, whether it actually uses the provided text and cluster data to a cairo.context#show text glyphs()
call.

Note: Even if this function returns false, a cairo.context#show text glyphs() operation targeted
at surface will still succeed. It just will act like a cairo.context#show glyphs() operation. Users
can use this function to avoid computing UTF-8 text and cluster mapping if the target surface
does not use it.

cairo.surface#set mime data():reduce

cairo.surface#get mime data()

cairo.surface#supports mime type()

cairo.surface#map to image(extents:cairo.rectangle int)

cairo.surface#unmap image()

cairo.surface#write to png(stream:stream:w):reduce

10.3.3 Image Surfaces - Rendering to memory buffers

Functions

cairo.image surface.create(image:image):static {block?}

cairo.image surface.create from png(stream:stream:r):static {block?}

cairo.image surface#get format()

cairo.image surface#get width()

cairo.image surface#get height()

cairo.image surface#get stride()

10.3.4 PDF Surfaces - Rendering PDF documents

Functions

cairo.pdf surface.create(stream:stream:w, width in points:number, height in points:number):static {block?}

cairo.pdf surface#restrict to version(version:number):reduce

cairo.pdf surface#set size(width in points:number, height in points:number):reduce

164

10.3.5 PNG Support - Reading and writing PNG images

Functions

10.3.6 PostScript Surfaces - Rendering PostScript documents

Functions

10.3.7 Recording Surfaces - Records all drawing operations

Functions

10.3.8 Win32 Surfaces - Microsoft Windows surface support

Functions

10.3.9 SVG Surfaces - Rendering SVG documents

Functions

cairo.svg surface.create(stream:stream:w, width in points:number, height in points:number):static {block?}

cairo.svg surface#restrict to version(version:number):reduce

165

10.3.10 Quartz Surfaces - Rendering to Quartz surfaces

Functions

10.3.11 XCB Surfaces - X Window System rendering using the XCB
library

Functions

10.3.12 XLib Surfaces - X Window System rendering using XLib

Functions

10.3.13 XLib-XRender Backend - X Window System rendering using
XLib and the X Render extension

Functions

10.3.14 Script Surfaces - Rendering to replayable scripts

Functions

10.4 Utilities

Functions

10.4.1 cairo.matrix - Generic matrix operations

Functions

10.5 Thanks

This module uses Cairo library which is distributed in the following site:

http://cairographics.org/

166

Chapter 11

calendar Module

The calendar module provides a function to generate a string of calendar for the specified year.

Below is an example to print a calendar for the year 2015.

println(calendar.calendar(2015))

11.1 Module Function

calendar.calendar(year:number, weekoffset:number => 0, ncols:number => 3)

Prints calendars of a specified year. The argument weekoffset specifies from which week the
calendar starts, 0 from Sunday, 1 from Monday, and so on. The argument ncols specifies how
many months are printed in one row.

167

Chapter 12

cbridge Module

The cbridge module ...

12.1 Module Function

168

Chapter 13

conio Module

The conio module provides following measures to work on a console screen:

• Moves the cursor where texts are printed.

• Changes text colors.

• Retrieves console size.

• Waits for keyboard input.

To utilize it, import the conio module using import function.

Below is an example to print a frame around a console:

import(conio)

conio.clear()

[w, h] = conio.getwinsize()

conio.moveto(0, 0) {

print(’*’ * w)

}

conio.moveto(0, 1 .. (h - 2)) {

print(’*’, ’ ’ * (w - 2), ’*’)

}

conio.moveto(0, h - 1) {

print(’*’ * w)

}

conio.waitkey():raise

13.1 Module Function

conio.clear(region?:symbol):void

Clears the screen.

In default, it clears whole the screen. Argument region that takes one of the symbols below
would specify the region to be cleared.

• ‘line .. clears characters in the line where the cursor exists.

• ‘left .. clears characters on the left side of the cursor.

169

• ‘right .. clears characters on the right side of the cursor.

• ‘top .. clears characters on the above side of the cursor.

• ‘bottom .. clears characters on the below side of the cursor.

conio.getwinsize()

Returns the screen size as a list [width, height].

conio.setcolor(fg:symbol:nil, bg?:symbol):map:void {block?}

Sets foreground and background color of text by specifying a color symbol. Available color
symbols are listed below:

• ‘black

• ‘blue

• ‘green

• ‘aqua

• ‘cyan

• ‘red

• ‘purple

• ‘magenta

• ‘yellow

• ‘white

• ‘gray

• ‘bright blue

• ‘bright green

• ‘bright aqua

• ‘bright cyan

• ‘bright red

• ‘bright purple

• ‘bright magenta

• ‘bright yellow

• ‘bright white

If fg is set to nil, the foreground color remains unchanged. If bg is omitted or set to nil, the
background color remains unchanged.

If block is specified, the color is changed before evaluating the block, and then gets back to
what has been set when done.

conio.moveto(x:number, y:number):map:void {block?}

Moves cursor to the specified position. The most top-left position on the screen is represented
as 0, 0.

170

If block is specified, the cursor is moved before evaluating the block, and then gets back to
where it has been when done.

conio.waitkey():[raise]

Waits for a keyboard input and returns a character code number associated with the key.

If :raise attribute is specified, hitting Ctrl-C issues a terminating signal that causes the
program done.

Character code numbers of some of the special keys are defined as below:

• conio.K BACKSPACE

• conio.K TAB

• conio.K RETURN

• conio.K ESCAPE

• conio.K SPACE

• conio.K UP

• conio.K DOWN

• conio.K RIGHT

• conio.K LEFT

• conio.K INSERT

• conio.K HOME

• conio.K END

• conio.K PAGEUP

• conio.K PAGEDOWN

• conio.K DELETE

171

Chapter 14

csv Module

The csvmodule provices measures to read/write CSV files. To utilize it, import the csvmodule
using import() function.

Below is an example to read a CSV file that contains three fields per line:

import(csv)

Record = struct(name:string, age:number, email:string)

records = Record * csv.read(’records.csv’)

printf(’name:%s, age:%d, email:%s￥n’,

records:*name, records:*age, records:*email)

14.1 Module Function

csv.parse(str:string):map {block?}

Creates an iterator that parses a text in CSV format that is contained in the specified string
and returns a list of fields as its each element.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

csv.read(stream:stream:r) {block?}

172

Creates an iterator that parses a text in CSV format from the specified stream and returns a
list of fields as its each element.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

14.2 csv.writer Class

14.2.1 Constructor

csv.writer(stream:stream:w, format?:string) {block?}

Creates a csv.writer instance that provides methods to write CSV text to the specified stream.

The argument format specifies a printf-style format string that is used to convert a number and
complex value to a string.

14.2.2 Method

csv.writer#write(fields+):map:reduce

Writes values in CSV format.

The argument fields takes string, number or complex values that are to be put out in a row.

14.3 Extension of stream Class

This module extends the stream class with methods described here.

stream#read@csv() {block?}

Creates an iterator that parses a text in CSV format from the specified stream and returns a
list of fields as its each element.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

173

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

stream#writer@csv(format?:string) {block?}

Creates a csv.writer instance that provides methods to write CSV text to the target stream.

The argument format specifies a printf-style format string that is used to convert a number and
complex value to a string.

174

Chapter 15

curl Module

The curl module provices measures to access Internet resources using cURL library. To utilize
it, import the curl module using import function.

15.1 Module Function

curl.version() {block?}

Returns a string of the libcurl version.

curl.easy init() {block?}

Initializes cURL and returns a easy handle object.

15.2 curl.easy handle Class

curl.easy handle#escape(string:string):void

curl.easy handle#getinfo(info:number)

curl.easy handle#perform(stream?:stream:w):void

curl.easy handle#recv(buflen:number)

curl.easy handle#reset():void

curl.easy handle#send(buffer:binary)

curl.easy handle#setopt(option:number, arg):void

curl.easy handle#unescape(string:string):void

15.3 Thanks

This module uses libcurl which is distributed in the following site:

http://curl.haxx.se/libcurl/

175

Chapter 16

diff Module

The diff module provices measures to detect differences between texts. To utilize it, import
the diff module using import function.

Below is an example to show differences between files file1.txt and file2.txt:

diff.compose(stream(’file1.txt’), stream(’file2.txt’)).render(sys.stdout)

16.1 Module Function

diff.compose(src1, src2):[icase,sync] {block?}

Extracts differences between two sets of line sequence and returns diff.diff@line instance
that contains the difference information.

You can specify a value of string, stream, iterator or list for the argument src1 and src2.
In the result, the content of src1 is referred to as an ”original” one and that of src2 as a ”new”
one.

Below is an example to compare between two strings:

str1 = ’...’

str2 = ’...’

result = diff.compose(str1, str2)

Below is an example to compare between two files:

file1 = stream(’file1.txt’)

file2 = stream(’file2.txt’)

result = diff.compose(file1, file2)

Below is an example to compare between two iterators:

chars1 = ’...’.each()

chars2 = ’...’.each()

result = diff.compose(chars1, chars2)

Below is an example to compare between a file and a string:

176

file = stream(’file.txt’)

str = ’...’

result = diff.compose(file, str)

If block is specified, it would be evaluated with a block parameter |d:diff.diff@line|, where
d is the created instance. In this case, the block’s result would become the function’s returned
value.

If attribute :icase is specified, it wouldn’t distinguish upper and lower case of characters.

diff.compose@char(src1:string, src2:string):[icase] {block?}

Extracts differences between two strings and returns diff.diff@line instance that contains
the difference information.

If block is specified, it would be evaluated with a block parameter |d:diff.diff@char|, where
d is the created instance. In this case, the block’s result would become the function’s returned
value.

If attribute :icase is specified, it wouldn’t distinguish upper and lower case of characters.

16.2 diff.diff@line Class

The diff.diff@line instance is created by function diff.compose() and provides information
about differences between two texts by lines.

16.2.1 Property

Prop-
erty

Type R/W Explanation

distance number R The distance between the texts. Zero means that they are
identical each other.

edits iterator R An iterator that returns diff.edit@line instances stored in
the result.

nlines@orgnumber R Number of lines in the ”original” text.
nlines@newnumber R Number of lines in the ”new” text.

16.2.2 Method

diff.diff@line#eachhunk(format?:symbol, lines?:number) {block?}

Creates an iterator that returns diff.hunk@line instance stored in the result.

The argument format takes one of the symbols that specifies the hunk format:

• ‘normal .. Normal format (not supported yet).

• ‘context .. Context format (not supported yet).

• ‘unified .. Unified format. This is the default.

The argument lines specifies a number of common lines appended before and after different
lines

177

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

diff.diff@line#render(out?:stream:w, format?:symbol, lines?:number) {block?}

Renders diff result to the specified stream.

If the argument out is omitted, this method returns a string of the rendered text. Otherwise,
it returns nil.

The argument format takes one of the symbols that specifies the rendering format:

• ‘normal .. Normal format (not supported yet).

• ‘context .. Context format (not supported yet).

• ‘unified .. Unified format. This is the default.

The argument lines specifies a number of common lines appended before and after different
lines.

16.3 diff.hunk@line Class

The diff.hunk@line instance provides information about a hunk.

16.3.1 Property

Prop-
erty

Type R/W Explanation

edits iterator R An iterator that returns diff.edit@line instances stored
in the hunk.

lineno@org number R Top line number of the ”original” text covered by the hunk.
lineno@new number R Top line number of the ”new” text covered by the hunk.
nlines@org number R Number of lines in the ”original” text covered by the hunk.
nlines@new number R Number of lines in the ”new” text covered by the hunk.

178

16.3.2 Method

diff.hunk@line#print(out?:stream):void {block?}

Prints the content of the diff.hunk instance to the specified stream.

16.4 diff.edit@line Class

The diff.edit@line provides information about an edit operation.

16.4.1 Property

Property Type R/W Explanation
diff.edit@line#typesymbolR Edit operation: ‘copy .. Copy the line. ‘add .. Add the

line. ‘delete .. Delete the line.

mark stringR A mark string that appears on the top of each line in Unified
format.

lineno@org numberR Line number of the ”original” text correspond to the edit.
lineno@new numberR Lop line number of the ”new” text correspond to the edit.
source stringR A source text.
unified stringR A composed string in Unified format.

16.4.2 Method

diff.edit@line#print(out?:stream):void {block?}

Prints the content of the diff.edit instance to the specified stream.

16.5 diff.diff@char Class

The diff.diff@char instance is created by function diff.compose@char() and provides in-
formation about differences between two texts by characters.

16.5.1 Property

Prop-
erty

Type R/W Explanation

distance number R The distance between the texts. Zero means that they are iden-
tical each other.

edits iteratorR An iterator that returns diff.edit@char instances stored in the
result.

edits@orgiteratorR An iterator that returns diff.edit@char instances that are ap-
plied to the ”original” string.

edits@newiteratorR An iterator that returns diff.edit@char instances that are ap-
plied to the ”new” string.

179

16.6 diff.edit@char Class

The diff.edit@char provides information about an edit operation.

16.6.1 Property

Property Type R/W Explanation
diff.edit@char#typesymbolR Edit operation: ‘copy .. Copy the line. ‘add .. Add the

line. ‘delete .. Delete the line.

diff.edit@char#markstringR A mark string that appears on the top of each line in Uni-
fied format.

diff.edit@char#sourcestringR A source text.

16.7 Thanks

This module uses dtl (Diff Template Library) which is distributed in the following site:

https://code.google.com/p/dtl-cpp/

180

Chapter 17

doxygen Module

The doxygen module provides measures to parse a document written in Doxygen syntax. To
utilize it, import the doxygen module using import function.

+----------+ 1.. +-----------+ 1.. +------+

| document *------| structure *------| elem |

+----------+ +-----------+ +------+

+---------------+ 1 +---------+

| configuration *----| aliases |

+---------------+ +---------+

+----------+ +-------------------+

| renderer |<----| specific_renderer |

+----------+ +-------------------+

17.1 doxygen.document Class

17.1.1 Constructor

doxygen.document(stream?:stream, aliases?:doxygen.aliases, extracted?:boolean) {block?}

Reads a Doxygen document from stream and creates an instance of doxygen.document class.

The argument aliases is an instance that is available as a member of doxygen.configuration
instance and contains information about command aliases, or custom commands in the other
word.

In default, the parser expects the Doxygen document is written within C-style comments and
extracts the document body from them before parsing. If the argument extracted is set to
true, it exepcts the document already have been extracted from the comments.

If block is specified, it would be evaluated with a block parameter |doc:doxygen.document|,
where doc is the created instance. In this case, the block’s result would become the function’s
returned value.

17.1.2 Method

doxygen.document#structures() {block?}

Creates an iterator that returns instances of doxygen.structure contained in the doxygen.document.

181

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

17.2 doxygen.structure Class

17.2.1 Property

Property Type R/W Explanation
aftermember boolean R

17.2.2 Method

doxygen.structure#elems():map {block?}

Creates an iterator that returns doxygen.elem instances of all the elements contained in the
structure.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

182

doxygen.structure#substructures() {block?}

Creates an iterator that returns doxygen.structure instances of sub structures contained in
the structure.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

17.3 doxygen.elem Class

17.3.1 Method

doxygen.elem#print(indent?:number, out?:stream):map:void

Prints out the content of the element to out with an indentation level specified by indent that
starts from zero. If out is omitted, the result would be put out to standard output.

doxygen.elem#render(renderer:doxygen.renderer):void

Renders the element content using doxygen.renderer.

17.4 doxygen.configuration Class

17.4.1 Property

Property Type R/W Explanation
aliases doxygen.aliases R

17.4.2 Constructor

doxygen.configuration(stream?:stream) {block?}

Reads a configuration file, which is usually dubbed ”Doxyfile”, from stream and creates a
doxygen.configuration instance.

183

If block is specified, it would be evaluated with a block parameter |cfg:doxygen.configuration|,
where cfg is the created instance. In this case, the block’s result would become the function’s
returned value.

17.4.3 Method

doxygen.configuration#get(tagname:string):map:[raise]

Returns a value associated with the tag specified by the argument tagname.

If the specified tag is not found, the method would return nil while it would cause an error in
the case the attribute :raise is specified.

doxygen.configuration#print(out?:stream):map:void

Prints out the content of the configuration to out. If omitted, the result would be put out to
standard output.

17.5 doxygen.aliases Class

17.5.1 Method

doxygen.aliases#print(out?:stream):map:void

Prints out definitions of aliases to the stream out. If the argument is omitted, the result would
be put out to the standard output.

17.6 doxygen.renderer Class

17.6.1 Constructor

doxygen.renderer(out:stream, cfg:doxygen.configuration) {block?}

Creates a doxygen.renderer instance.

If block is specified, it would be evaluated with a block parameter |renderer:doxygen.renderer|,
where renderer is the created instance. In this case, the block’s result would become the func-
tion’s returned value.

184

Chapter 18

example Module

The example module is just an example that is supposed to be referenced as a skeleton when
you want to create a new module.

185

Chapter 19

freetype Module

The freetype module provices measures to access vectorized font data using freetype library.
To utilize it, import the freetype module using import function.

19.1 Module Function

freetype.sysfontpath(name:string):map

19.2 freetype.BBox Class

19.3 freetype.BDF Property Class

19.4 freetype.Bitmap Class

19.4.1 Method

freetype.Bitmap#Embolden(strength:number):reduce

19.5 freetype.CharMap Class

19.5.1 Method

freetype.CharMap#Get Index()

186

19.6 freetype.FTC CMapCache Class

19.7 freetype.FTC ImageCache Class

19.8 freetype.FTC ImageType Class

19.9 freetype.FTC Manager Class

19.10 freetype.FTC Node Class

19.11 freetype.FTC SBit Class

19.12 freetype.FTC SBitCache Class

19.13 freetype.FTC Scaler Class

19.14 freetype.Face Class

19.14.1 Constructor

freetype.Face(stream:stream, face index:number => 0):map {block?}

19.14.2 Method

freetype.Face#CheckTrueTypePatents()

freetype.Face#Get Advance(glyph index:number, load flags:number)

freetype.Face#Get Advances(glyph index start:number, count:number, load flags:number)

freetype.Face#Get Glyph Name(glyph index:number)

freetype.Face#Get Postscript Name()

freetype.Face#Get Kerning(left glyph:number, right glyph:number, kern mode:number)

freetype.Face#Load Char(char code:number, load flags:number):reduce

freetype.Face#Load Glyph(glyph index:number, load flags:number):reduce

freetype.Face#Set Charmap(charmap:freetype.CharMap):reduce

freetype.Face#Set Pixel Sizes(pixel width:number, pixel height:number):reduce

187

19.15 freetype.Glyph Class

19.15.1 Method

freetype.Glyph#Copy()

freetype.Glyph#Stroke(stroker:freetype.Stroker):reduce

freetype.Glyph#StrokeBorder(stroker:freetype.Stroker, inside:boolean):reduce

19.16 freetype.GlyphSlot Class

19.16.1 Method

freetype.GlyphSlot#Get Glyph()

freetype.GlyphSlot#Render(render mode:number):reduce

19.17 freetype.Matrix Class

19.17.1 Constructor

freetype.Matrix(array:array@double):map {block?}

19.17.2 Method

freetype.Matrix#Multiply(matrix:freetype.Matrix):reduce

freetype.Matrix#Invert():reduce

19.18 freetype.Outline Class

19.18.1 Method

freetype.Outline#Translate(xOffset:freetype.Matrix, yOffset:freetype.Matrix):reduce

freetype.Outline#Transform(matrix:freetype.Matrix):reduce

freetype.Outline#Embolden(strength:number):reduce

freetype.Outline#Reverse():reduce

188

19.19 freetype.Raster Class

19.20 freetype.Span Class

19.21 freetype.Stroker Class

19.21.1 Constructor

freetype.Stroker():map {block?}

19.21.2 Method

freetype.Stroker#BeginSubPath(to:freetype.Vector, open:boolean):reduce

19.22 freetype.Vector Class

19.22.1 Constructor

freetype.Vector(x:number, y:number):map {block?}

19.22.2 Method

freetype.Vector#Length()

freetype.Vector#Transform(matrix:freetype.Matrix):reduce

19.23 freetype.font Class

19.24 Constructor

freetype.font(face:freetype.Face):map {block?}

19.24.1 Method

freetype.font#cleardeco():reduce

freetype.font#drawtext(image:image, x:number, y:number, str:string):map:reduce {block?}

Draws a text on the image.

freetype.font#calcsize(str:string):map

freetype.font#calcbbox(x:number, y:number, str:string):map

189

19.25 Extension to image Class

This module extends the image class with methods described here.

image#drawtext(font:freetype.font, x:number, y:number, str:string):map:reduce {block?}

Draws a text on the image.

19.26 Thanks

This module uses FreeType library which is distributed in the following site:

http://www.freetype.org/

190

Chapter 20

fs Module

The fs module provides measures to access and modify information in file systems. This is a
built-in module, so you can use it without being imported.

20.1 Module Function

fs.chdir(pathname:string) {block?}

Changes the current working directory to pathname.

The block would be evaluated if specified, and the working directory would be changed only
during that evaluation period.

fs.chmod(mode, pathname:string):map:void:[follow link]

Changes the access mode of a file specified by pathname.

There are two formats to specify the mode: one is by a number, and another in a string.

When specified in a number, following bits are associated with access permissions:

• b8 b7 b6 .. Read, write and executable permissions for owners

• b5 b4 b3 .. Read, write and executable permissions for groups

• b2 b1 b0 .. Read, write and executable permissions for others

When set to one, each permission is validated.

When specified in a string, it accepts a permission directive in a format of following regular
expression

[ugoa]+([-+=][rwx]+)+

It starts with characters that represent target which permissions are modified as described
below:

• u .. owners

• g .. groups

• o .. others

191

• a .. all users

Then, follows an operation:

• - .. remove

• + .. append

• = .. set

At last, permission attributes are specified as below:

• r .. read permission

• w .. write permission

• x .. executable permission

If the modification target is a link file, each platform would have different result:

• Linux .. Modifies permissions of the link file itself. Specifying :follow link attribute
would modify permsisions of the target file instead.

• MacOS .. Modifies permissions of the target file. Attribute :follow link has no effect.

• Windows .. Modifies permissions of the link file. Attribute :follow link has no effect.

fs.copy(src:string, dst:string):map:void:[overwrite]

Copies a file.

An argument src needs to specify a path name of a file that is to be copied while dst can
specify a path name of either a file or a directory. If dst is a directory, the file would be copied
into that. Otherwise, it would create a copy of src that has a name specified by dst.

If a destination file already exists, an error occurs. Specifying an attribute :overwrite would
overwrite an existing one.

fs.cpdir(src:string, dst:string):map:void:[tree]

Copies a directory.

Arguments src and dst specify source directory and destination directory respectively. In de-
fault, sub directories are not copied.Specifying :tree attribute would copy all the sub directories
in the source.

fs.getcwd()

Returns the current working directory.

fs.mkdir(pathname:string):map:void:[tree]

Creates a directory.

If pathname consists of multiple sub directories and some of them still doesn’t exist, an error
occurs. Specifying :tree attribute would create such directories.

fs.remove(pathname:string):map:void

Removes a file from the file system.

fs.rename(src:string, dst:string):map:void

192

Renames a file or directory.

fs.rmdir(pathname:string):map:void:[tree]

Removes a directory.

If the directory contains sub directories, an error occurs. Specifying :tree attribute would
delete such a directory.

20.2 fs.stat Class

An instance of fs.stat class contains information about a file or directory on the file system,
which includes its full path name, size, creation time and file attributes. A stream instance has
a property named stat that is a fs.stat instance when it comes from a file or directory in a
file system. You can also get the instance using fs.stat() function.

20.2.1 Constructor

fs.stat(pathname:string) {block?}

20.2.2 Property

A fs.stat instance has the following properties:

Property Type R/W Explanation
pathname string R
dirname string R
filename string R
size number R
uid number R
gid number R
atime datetime R
mtime datetime R
ctime datetime R
isdir boolean R
ischr boolean R
isblk boolean R
isreg boolean R
isfifo boolean R
islnk boolean R
issock boolean R

193

Chapter 21

gif Module

The gif module provides measures to read/write image data in GIF format. To utilize it,
import the gif module using import function.

Below is an example to read a GIF file:

import(gif)

img = image(’foo.gif’)

Below is an example to create a GIF file that contains multiple images:

import(gif)

g = gif.content()

g.addimage([’cell1.png’, ’cell2.png’, ’cell3.png’], 10) g.write(’anim.gif’)

21.1 Exntension to Function’s Capability

This module extends the capability of function image() and instance method image#write()

so that they can read/write GIF files.

When function image() is provided with a stream that satisfies the following conditions, it
would recognize the stream as a GIF file.

• The identifier of the stream ends with a suffix ”.gif”.

• The stream data begins with a byte sequence ”GIF87a” or ”GIF89a”.

When instance method image#write() is provided with a stream that satisfies the following
condition, it would write image data in GIF format.

• The identifier of the stream ends with a suffix ”.gif”.

21.2 gif.content Class

The gif.content class provides properties to explain GIF information and methods to manip-
ulate contents of GIF file. Below is a class diagram of gif.content:

194

+-------------+ +-----------------------------+

| gif.content |images | image |

|-------------*-------------------------+-----------------------------|

| | 1.. +-----------------------------+

| |

| | +-----------------------------+

| |Header | gif.Header |

| *-------------------------+-----------------------------|

| | +-----------------------------+

| |

| | +-----------------------------+

| |LogicalScreenDescriptor | gif.LogicalScreenDescriptor |

| *-------------------------+-----------------------------|

| | +-----------------------------+

| |

| | +-----------------------------+

| |CommentExtension | gif.CommentExtension |

| *-------------------------+-----------------------------|

| | +-----------------------------+

| |

| | +-----------------------------+

| |PlainTextExntension | gif.PlainTextExtension |

| *-------------------------+-----------------------------|

| | +-----------------------------+

| |

| | +-----------------------------+

| |ApplicationExntension | gif.ApplicationExtension |

| *-------------------------+-----------------------------|

| | +-----------------------------+

+-------------+

• A property of gif.content has one or more images. Multiple images are mainly used for
animation.

• The property named Header is an instance of gif.Header class.

• The property named LogicalScreenDescriptor is an instance of gif.LogicalScreenDescriptor
class.

• The property named CommentExtension is an instance of gif.CommentExtension class.

• The property named PlainTextExtension is an instance of gif.PlainTextExtension
class.

• The property named ApplicationExtension is an instance of gif.ApplicationExtension
class.

21.2.1 Constructor

gif.content(stream?:stream:r, format:symbol => ‘rgba) {block?}

Reads a GIF data from a stream and returns an object that contains GIF related information
and images of a specified format. format is is rgb,rgba or noimage. Ifnoimage is specified,
only the information data is read

21.2.2 Property

A gif.content instance has the following properties:

195

Property Type R/W Explanation
images image[] R
Header gif.Header R
LogicalScreenDescriptor gif.LogicalScreenDescriptor R
CommentExtension gif.CommentExtension R
PlainTextExtension gif.PlainTextExtension R
ApplicationExtension gif.ApplicationExtension R

21.2.3 Method

gif.content#addimage(image:image, delayTime:number => 10, leftPos:number => 0, topPos:number => 0, disposalMethod:symbol => ‘none):map:reduce

Adds an image to GIF information.

You can add multiple images that can be played as a motion picture.

The argument delayTime specifies the delay time in 10 milli seconds between images.

The arguments leftPost and topPos specifies the rendered offset in the screen.

The argument disposalMethod takes one of following symbols that specifies how the image
will be treated after being rendered.

• ‘none ..

• ‘keep ..

• ‘background..

• ‘previous ..

This method returns the reference to the target instance itself.

gif.content#write(stream:stream:w):reduce

Writes a GIF image to a stream.

This method returns the reference to the target instance itself.

21.3 gif.Header Class

A gif.Header instance provides information of Header structure in GIF format.

21.3.1 Property

A gif.Header instance has the following properties:

Property Type R/W Explanation
Signature binary R
Version binary R

21.4 gif.LogicalScreenDescriptor Class

A gif.LogicalScreenDescriptor instance provides information of Logical Screen Descriptor
structure in GIF format.

196

21.4.1 Property

A gif.LogicalScreenDescriptor instance has the following properties:

Property Type R/W Explanation
LogicalScreenWidth number R
LogicalScreenHeight number R
GlobalColorTableFlag boolean R
ColorResolution number R
SortFlag boolean R
SizeOfGlobalColorTable number R
BackgroundColorIndex number R
BackgroundColor color R
PixelAspectRatio number R

21.5 gif.CommentExtension Class

A gif.CommentExtnsion instance provides information of Comment Extension structure in
GIF format.

21.5.1 Property

A gif.CommentExtension instance has the following properties:

Property Type R/W Explanation
CommentData binary R

21.6 gif.PlainTextExtension Class

A gif.PlainTextExtnsion instance provides information of Plain Text Extension structure in
GIF format.

21.6.1 Property

A gif.PlainTextExtension instance has the following properties:

Property Type R/W Explanation
TextGridLeftPosition number R
TextGridTopPosition number R
TextGridWidth number R
TextGridHeight number R
CharacterCellWidth number R
CharacterCellHeight number R
TextForegroundColorIndex number R
TextBackgroundColorIndex number R
PlainTextData binary R

197

21.7 gif.ApplicationExtension Class

A gif.ApplicationExtnsion instance provides information of Application Extension structure
in GIF format.

21.7.1 Property

A gif.ApplicationExtension instance has the following properties:

Property Type R/W Explanation
ApplicationIdentifier binary R
AuthenticationCode binary R
ApplicationData binary R

21.8 gif.GraphicControl Class

A gif.GraphicControl instance provides information of Graphi Control Extension structure
in GIF format.

21.8.1 Property

A gif.GraphicControl instance has the following properties:

Property Type R/W Explanation
DisposalMethod symbol R
UserInputFlag boolean R
TransparentColorFlag boolean R
DelayTime number R
TransparentColorIndex number R

21.9 gif.ImageDescriptor Class

A gif.ImageDescriptor instance provides information of Image Descriptor structure in GIF
format.

21.9.1 Property

A gif.ImageDescriptor instance has the following properties:

Property Type R/W Explanation
ImageLeftPosition number R
ImageTopPosition number R
ImageWidth number R
ImageHeight number R
LocalColorTableFlag boolean R
InterlaceFlag boolean R
SortFlag boolean R
SizeOfLocalColorTable number R

198

21.10 gif.imgprop Class

Below is a class diagram of gif.imgprop:

+-------------+ +-------------+ +---------------------+

| image |gif | gif.imgprop |GraphicControl | gif.GraphicControl |

|-------------*--------+-------------*------------------+---------------------|

+-------------+ | | +---------------------+

| |

| | +---------------------+

| |ImageDescriptor | gif.ImageDescriptor |

| *------------------+---------------------|

| | +---------------------+

+-------------+

• An image instance that the gif module creates from GIF file holds a gif.imgprop instance
as its property that is named gif.

• The property named GraphicControl is an instance of gif.GraphiControl class.

• The property named ImageDescriptor is an instance of gif.ImageDescriptor class.

21.10.1 Property

A gif.imgprop instance has the following properties:

Property Type R/W Explanation
GraphicControl gif.GraphicControl R
ImageDescriptor gif.ImageDescriptor R

21.11 Extension to image Class

This module extends the stream class with methods described here.

image#read@gif(stream:stream:r):reduce

Reads a GIF image from a stream.

This method returns the reference to the target instance itself.

image#write@gif(stream:stream:w):reduce

Writes a GIF image to a stream.

This method returns the reference to the target instance itself.

Property Type R/W Explanation
gif gif.imgprop R

199

Chapter 22

glu Module

The glu module provides functions of GLU library.

22.1 Module Function

glu.gluBeginCurve(nurb:glu.Nurbs):void {block?}

glu.gluBeginPolygon(tess:glu.Tesselator):void {block?}

glu.gluBeginSurface(nurb:glu.Nurbs):void {block?}

glu.gluBeginTrim(nurb:glu.Nurbs):void {block?}

glu.gluBuild1DMipmaps(target:number, internalFormat:number, width:number, format:number, type:number, data:array:nomap)

glu.gluBuild1DMipmapsFromImage(target:number, internalFormat:number, image:image)

glu.gluBuild2DMipmaps(target:number, internalFormat:number, width:number, height:number, format:number, type:number, data:array:nomap)

glu.gluBuild2DMipmapsFromImage(target:number, internalFormat:number, image:image)

glu.gluCylinder(quad:glu.Quadric, base:number, top:number, height:number, slices:number, stacks:number):void

glu.gluDeleteNurbsRenderer(nurb:glu.Nurbs):void

glu.gluDeleteQuadric(quad:glu.Quadric):void

glu.gluDeleteTess(tess:glu.Tesselator):void

glu.gluDisk(quad:glu.Quadric, inner:number, outer:number, slices:number, loops:number):void

glu.gluEndCurve(nurb:glu.Nurbs):void

glu.gluEndPolygon(tess:glu.Tesselator):void

glu.gluEndSurface(nurb:glu.Nurbs):void

200

glu.gluEndTrim(nurb:glu.Nurbs):void

glu.gluErrorString(error:number)

glu.gluGetNurbsProperty(nurb:glu.Nurbs, property:number, data:array@float:nomap):void

glu.gluGetString(name:number)

glu.gluGetTessProperty(tess:glu.Tesselator, which:number, data:array@double:nomap):void

glu.gluLoadSamplingMatrices(nurb:glu.Nurbs, model:array@float:nomap, perspective:array@float:nomap, view:array@int32:nomap):void

glu.gluLookAt(eyeX:number, eyeY:number, eyeZ:number, centerX:number, centerY:number, centerZ:number, upX:number, upY:number, upZ:number):void

glu.gluNewNurbsRenderer()

glu.gluNewQuadric()

glu.gluNewTess()

glu.gluNextContour(tess:glu.Tesselator, type:number):void

glu.gluNurbsCallback(nurbs:glu.Nurbs, which:number, func:function)

glu.gluNurbsCallbackData(nurb:glu.Nurbs, userData):void

glu.gluNurbsCallbackDataEXT(nurb:glu.Nurbs, userData):void

glu.gluNurbsCurve(nurb:glu.Nurbs, knots:array@float:nomap, stride:number, control:array@float:nomap, order:number, type:number):void

glu.gluNurbsProperty(nurb:glu.Nurbs, property:number, value:number):void

glu.gluNurbsSurface(nurb:glu.Nurbs, sKnots:array@float:nomap, tKnots:array@float:nomap, sStride:number, tStride:number, control:array@float:nomap, sOrder:number, tOrder:number, type:number):void

glu.gluOrtho2D(left:number, right:number, bottom:number, top:number):void

glu.gluPartialDisk(quad:glu.Quadric, inner:number, outer:number, slices:number, loops:number, start:number, sweep:number):void

glu.gluPerspective(fovy:number, aspect:number, zNear:number, zFar:number):void

glu.gluPickMatrix(x:number, y:number, delX:number, delY:number, viewport:array@int32:nomap):void

glu.gluProject(objX:number, objY:number, objZ:number, model:array@double:nomap, proj:array@double:nomap, view:array@int32:nomap, winX:array@double:nomap, winY:array@double:nomap, winZ:array@double:nomap)

glu.gluPwlCurve(nurb:glu.Nurbs, data:array@float:nomap, stride:number, type:number):void

glu.gluQuadricCallback(quad:glu.Quadric, which:number, func:function:nil):void

glu.gluQuadricDrawStyle(quad:glu.Quadric, draw:number):void

glu.gluQuadricNormals(quad:glu.Quadric, normal:number):void

glu.gluQuadricOrientation(quad:glu.Quadric, orientation:number):void

201

glu.gluQuadricTexture(quad:glu.Quadric, texture:boolean):void

glu.gluScaleImage(imageIn:image, wOut:number, hOut:number)

glu.gluSphere(quad:glu.Quadric, radius:number, slices:number, stacks:number):void

glu.gluTessBeginContour(tess:glu.Tesselator):void {block?}

glu.gluTessBeginPolygon(tess:glu.Tesselator, polygon data):void {block?}

glu.gluTessCallback(tess:glu.Tesselator, which:number, func:function):void

glu.gluTessEndContour(tess:glu.Tesselator):void

glu.gluTessEndPolygon(tess:glu.Tesselator):void

glu.gluTessNormal(tess:glu.Tesselator, valueX:number, valueY:number, valueZ:number):void

glu.gluTessProperty(tess:glu.Tesselator, which:number, data:number):void

glu.gluTessVertex(tess:glu.Tesselator, location:array@double:nomap, vertex data):void

glu.gluUnProject(winX:number, winY:number, winZ:number, model:array@double:nomap, proj:array@double:nomap, view:array@int32:nomap, objX:array@double:nomap, objY:array@double:nomap, objZ:array@double:nomap)

202

Chapter 23

glut Module

The glut module provides functions of GLUT library.

23.1 Module Function

glut.glutInit(argv[]:string) {block?}

glutInit is used to initialize the GLUT library.

glut.glutInitDisplayMode(mode:number):map:void

glutInitDisplayMode sets the initial display mode.

glut.glutInitDisplayString(string:string):map:void

glut.glutInitWindowPosition(x:number, y:number):map:void

glutInitWindowPosition sets the initial window position.

glut.glutInitWindowSize(width:number, height:number):map:void

glutInitWindowSize sets the initial window size.

glut.glutMainLoop():void

glutMainLoop enters the GLUT event processing loop.

glut.glutCreateWindow(title:string):map {block?}

glutCreateWindow creates a top-level window.

glut.glutCreateSubWindow(win:number, x:number, y:number, width:number, height:number):map {block?}

glutCreateSubWindow creates a subwindow.

glut.glutDestroyWindow(win:number):map:void

glutDestroyWindow destroys the specified window.

glut.glutPostRedisplay():void

glutPostRedisplay marks the ∗current window∗ as needing to be redisplayed.

203

glut.glutPostWindowRedisplay(win:number):map:void

glut.glutSwapBuffers():void

glutSwapBuffers swaps the buffers of the current window if double buffered.

glut.glutGetWindow() {block?}

glutGetWindow returns the identifier of the current window.

glut.glutSetWindow(win:number):map:void

glutSetWindow sets the current window.

glut.glutSetWindowTitle(title:string):map:void

glutSetWindowTitle changes the window title of the current top-level window.

glut.glutSetIconTitle(title:string):map:void

glutSetIconTitle changes the icon title of the current top-level window.

glut.glutPositionWindow(x:number, y:number):map:void

glutPositionWindow requests a change to the position of the current window.

glut.glutReshapeWindow(width:number, height:number):map:void

glutReshapeWindow requests a change to the size of the current window.

glut.glutPopWindow():void

glut.glutPushWindow():void

glut.glutIconifyWindow():void

glut.glutShowWindow():void

glut.glutHideWindow():void

glut.glutFullScreen():void

glut.glutSetCursor(cursor:number):map:void

glut.glutWarpPointer(x:number, y:number):map:void

glut.glutEstablishOverlay():void

glut.glutRemoveOverlay():void

glut.glutUseLayer(layer:number):map:void

glut.glutPostOverlayRedisplay():void

glut.glutPostWindowOverlayRedisplay(win:number):map:void

glut.glutShowOverlay():void

204

glut.glutHideOverlay():void

glut.glutCreateMenu(func:function) {block?}

glut.glutDestroyMenu(menu:number):map:void

glut.glutGetMenu() {block?}

glut.glutSetMenu(menu:number):map:void

glut.glutAddMenuEntry(label:string, value:number):map:void

glut.glutAddSubMenu(label:string, submenu:number):map:void

glut.glutChangeToMenuEntry(item:number, label:string, value:number):map:void

glut.glutChangeToSubMenu(item:number, label:string, submenu:number):map:void

glut.glutRemoveMenuItem(item:number):map:void

glut.glutAttachMenu(button:number):map:void

glut.glutDetachMenu(button:number):map:void

glut.glutDisplayFunc(func:function:nil):void

glut.glutReshapeFunc(func:function:nil):void

glut.glutKeyboardFunc(func:function:nil):void

glut.glutMouseFunc(func:function:nil):void

glut.glutMotionFunc(func:function:nil):void

glut.glutPassiveMotionFunc(func:function:nil):void

glut.glutEntryFunc(func:function:nil):void

glut.glutVisibilityFunc(func:function:nil):void

glut.glutIdleFunc(func:function:nil):void

glut.glutTimerFunc(millis:number, func:function:nil, value:number):void

glut.glutMenuStateFunc(func:function:nil):void

glut.glutSpecialFunc(func:function:nil):void

glut.glutSpaceballMotionFunc(func:function:nil):void

glut.glutSpaceballRotateFunc(func:function:nil):void

glut.glutSpaceballButtonFunc(func:function:nil):void

205

glut.glutButtonBoxFunc(func:function:nil):void

glut.glutDialsFunc(func:function:nil):void

glut.glutTabletMotionFunc(func:function:nil):void

glut.glutTabletButtonFunc(func:function:nil):void

glut.glutMenuStatusFunc(func:function:nil):void

glut.glutOverlayDisplayFunc(func:function:nil):void

glut.glutWindowStatusFunc(func:function:nil):void

glut.glutKeyboardUpFunc(func:function:nil):void

glut.glutSpecialUpFunc(func:function:nil):void

glut.glutJoystickFunc(func:function:nil, pollInterval:number):void

glut.glutSetColor(ndx:number, red:number, green:number, blue:number):void

glut.glutGetColor(ndx:number, component:number):map {block?}

glut.glutCopyColormap(win:number):map:void

glut.glutGet(type:number):map {block?}

glut.glutDeviceGet(type:number):map {block?}

glut.glutExtensionSupported(name:string):map {block?}

glut.glutGetModifiers() {block?}

glut.glutLayerGet(type:number):map {block?}

glut.glutGetProcAddress(procName:string):map:void {block?}

glut.glutBitmapCharacter(font:glut.Font, character:number):map:void

glut.glutBitmapWidth(font:glut.Font, character:number):map {block?}

glut.glutStrokeCharacter(font:glut.Font, character:number):map:void

glut.glutStrokeWidth(font:glut.Font, character:number):map {block?}

glut.glutBitmapLength(font:glut.Font, string:string):map {block?}

glut.glutStrokeLength(font:glut.Font, string:string):map {block?}

glut.glutWireSphere(radius:number, slices:number, stacks:number):map:void

glut.glutSolidSphere(radius:number, slices:number, stacks:number):map:void

206

glut.glutWireCone(base:number, height:number, slices:number, stacks:number):map:void

glut.glutSolidCone(base:number, height:number, slices:number, stacks:number):map:void

glut.glutWireCube(size:number):map:void

glut.glutSolidCube(size:number):map:void

glut.glutWireTorus(innerRadius:number, outerRadius:number, sides:number, rings:number):map:void

glut.glutSolidTorus(innerRadius:number, outerRadius:number, sides:number, rings:number):map:void

glut.glutWireDodecahedron():void

glut.glutSolidDodecahedron():void

glut.glutWireTeapot(size:number):map:void

glut.glutSolidTeapot(size:number):map:void

glut.glutWireOctahedron():void

glut.glutSolidOctahedron():void

glut.glutWireTetrahedron():void

glut.glutSolidTetrahedron():void

glut.glutWireIcosahedron():void

glut.glutSolidIcosahedron():void

glut.glutVideoResizeGet(param:number):map {block?}

glut.glutSetupVideoResizing():void

glut.glutStopVideoResizing():void

glut.glutVideoResize(x:number, y:number, width:number, height:number):map:void

glut.glutVideoPan(x:number, y:number, width:number, height:number):map:void

glut.glutReportErrors():void

glut.glutIgnoreKeyRepeat(ignore:number):map:void

glut.glutSetKeyRepeat(repeatMode:number):map:void

glut.glutForceJoystickFunc():void

glut.glutGameModeString(string:string):map:void

glut.glutEnterGameMode() {block?}

207

glut.glutLeaveGameMode():void

glut.glutGameModeGet(mode:number):map {block?}

23.2 Thanks

This module uses freeglut which official site is:

http://freeglut.sourceforge.net/

208

Chapter 24

gmp Module

The gmp module provides measures to calculate numbers with multiple precision using GMP
library. To utilize it, import the gmp module using import function.

It expands features of operators like addition and multiplier so that they can calculate such
numbers.

24.1 Operator

Following tables show values types of operands and returned value for each operator:

+x gmp.mpz gmp.mpq gmp.mpf

-x gmp.mpz gmp.mpq gmp.mpf

x gmp.mpz gmp.mpq gmp.mpf

x + y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz gmp.mpz gmp.mpq gmp.mpf gmp.mpf gmp.mpq

gmp.mpq gmp.mpz gmp.mpq gmp.mpf gmp.mpf gmp.mpq

gmp.mpf gmp.mpz gmp.mpq gmp.mpf gmp.mpf gmp.mpq

number gmp.mpz gmp.mpq gmp.mpf number rational

rational gmp.mpz gmp.mpq gmp.mpf rational rational

x - y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

209

x ∗ y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

x / y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

x % y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

x == y; x != y; x > y; x < y; x >= y; x <= y; x <=> y

comparator gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

x & y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

x | y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

210

x ∧ y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

x y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

x y gmp.mpz gmp.mpq gmp.mpf number rational

gmp.mpz

gmp.mpq

gmp.mpf

number

rational

x..; x .. y

24.2 Module Function

gmp.gcd(num1:gmp.mpz, num2:gmp.mpz):map

Calculates the greatest common divisor, GCD, between num1 and num2 and returns the result
as gmp.mpz.

gmp.lcm(num1:gmp.mpz, num2:gmp.mpz):map

Calculates the least common multiple, LCM, between num1 and num2 and returns the result as
gmp.mpz.

gmp.sqrt(num):map

Calculates the square root of num.

The type of the argument num must be gmp.mpz, gmp.mpq, gmp.mpf or number.

24.3 gmp.mpf Class

24.3.1 Constructor

gmp.mpf(value?, prec?:number):map {block?}

Creates a gmp.mpf instance.

If the argument value is specified, it would be casted to gmp.mpf. Acceptable types for value
are: number, string, gmp.mpf, gmp.mpz and gmp.mpq.

211

You can specify the precision of the number by the argument prec. If it’s omitted, a default
precision would be applied.

24.3.2 Method

gmp.mpf.get default prec():static

Gets the default precision for gmp.mpf.

gmp.mpf.set default prec(prec:number):static:void

Sets the default precision for gmp.mpf.

24.4 gmp.mpq Class

24.4.1 Constructor

gmp.mpq(numer?, denom?:number):map {block?}

Creates a gmp.mpq instance.

You can call this function with one of the following form.

• gmp.mpq(numer:number)

• gmp.mpq(numer:number, denom:number)

• gmp.mpq(str:string)

• gmp.mpq(num:gmp.mpq)

24.4.2 Method

gmp.mpq#cast@mpf() {block?}

Casts the value to gmp.mpf.

If block is specified, it would be evaluated with a block parameter |num:gmp.mpf|, where num
is the created instance. In this case, the block’s result would become the function’s returned
value.

24.5 gmp.mpz Class

24.5.1 Constructor

gmp.mpz(value?):map {block?}

Creates a gmp.mpz instance.

If the argument value is specified, it would be casted to gmp.mpz. Acceptable types for value
are: number, string, gmp.mpf and gmp.mpz.

212

24.6 Extention to string Class

This module extends the string class with methods described here.

string#cast@mpf(prec?:number):map

Casts the string to gmp.mpf.

You can specify the precision of the number by the argument prec. If it’s omitted, a default
precision would be applied.

If block is specified, it would be evaluated with a block parameter |num:gmp.mpf|, where num
is the created instance. In this case, the block’s result would become the function’s returned
value.

string#cast@mpq():map {block?}

Casts the string to gmp.mpq.

If block is specified, it would be evaluated with a block parameter |num:gmp.mpq|, where num
is the created instance. In this case, the block’s result would become the function’s returned
value.

string#cast@mpz(base?:number):map

Casts the string to gmp.mpz.

You can specify the basement of the number format by the argument base. If it’s omitted, the
basement would be decided by the prefix described in the string such as ”0” and ”0x”.

If block is specified, it would be evaluated with a block parameter |num:gmp.mpz|, where num
is the created instance. In this case, the block’s result would become the function’s returned
value.

24.7 Thanks

This module uses GMP and its forked project MPIR which are distributed in the following
sites:

• https://gmplib.org

• http://www.mpir.org/

213

Chapter 25

gurcbuild Module

The gurcbuild module is prepared to help create a composite Gura file, which contains script
and other data files.

The example below would create a composite Gura file named hello.gurc that contains three
files:

import(gurcbuild)

gurcbuild.build([’hello.gura’, ’startimg.jpg’, ’README.txt’])

25.1 Module Function

gurcbuild.build(pathNames[]:string, dirName?:string)

Creates a composite Gura file from files specified by pathNames, which includes script and other
data files. The first entry of pathNames must be a script file that is to be executed as a main
script.

The result file would be created in the directory specified by dirName. If the argument is
omitted, the file would be created in the current working directory.

214

Chapter 26

gzip Module

The gzip module provides measures to read/write GZIP files. To utilize it, import the gzip

module using import function.

Below is an example to read data from a GZIP file and write its uncompressed data to another
file.

import(gzip)

gzip.reader(’foo.dat.gz’).copyto(’foo.dat’)

Below is an example to read data from a file and write its compressed data to a GZIP file.

import(gzip)

gzip.writer(’foo.dat.gz’).copyfrom(’foo.dat’)

26.1 Module Function

gzip.reader(stream:stream:r) {block?}

gzip.writer(stream:stream:w, level?:number) {block?}

26.2 Extension to stream Class

This module extends the stream class with methods described here.

stream#reader@gzip() {block?}

stream#writer@gzip(level?:number) {block?}

26.3 Thanks

This module uses zlib which official site is:

http://zlib.net/

215

Chapter 27

hash Module

The hash module provides measures to calculate hash values of a data sequence in a stream.
To utilize it, import the hash module using import function.

Below is an example to calculate MD5, SHA-1 and CRC32 hash values of a file named foo.txt.

import(hash)

fileName = ’foo.txt’

println(’MD5: ’, hash.md5(fileName).hexdigest)

println(’SHA-1: ’, hash.sha1(fileName).hexdigest)

println(’CRC32: ’, hash.crc32(fileName).hexdigest)

27.1 hash.accumulator Class

The hash.accumulator class provides measures to calculate hashed numbers including MD5,
SHA-1 and CRC32.

As the class inhefits from stream, you can call methods of stream class with hash.accumulator

instances.

27.1.1 Property

Prop-
erty

Type R/W Explanation

digest binaryR Returns the hashed result as binary.
hexdigeststringR Returns the hashed result as string in hexadecimal format.
number numberR Returns the hashed result as number. This field is valid only for

CRC32 and returns ‘nil‘ for other hashes.

27.1.2 Constructor

hash.md5(stream?:stream:r) {block?}

Creates an hash.accumulator instance that calculates MD5 hashed value from the content of
stream.

216

hash.sha1(stream?:stream:r) {block?}

Creates an hash.accumulator instance that calculates SHA1 hashed value from the content of
stream.

hash.crc32(stream?:stream:r) {block?}

Creates an hash.accumulator instance that calculates CRC32 hashed value from the content
of stream.

27.1.3 Method

hash.accumulator#init():reduce

Initializes the state of the accumulator.

hash.accumulator#update(stream:stream:r):reduce

Updates the accumulator with the content of stream.

217

Chapter 28

http Module

The http module provides measures to connect the Internet through HTTP protocol.

28.1 Module Function

218

Chapter 29

jpeg Module

The jpeg module provides measures to read/write image data in JPEG format. To utilize it,
import the jpeg module using import function.

Below is an example to read a JPEG file:

import(jpeg)

img = image(’foo.jpeg’)

29.1 Exntension to Function’s Capability

This module extends the capability of function image() and instance method image#write()

so that they can read/write JPEG files.

When function image() is provided with a stream that satisfies the following conditions, it
would recognize the stream as a JPEG file.

• The identifier of the stream ends with a suffix ”.jpeg”, ”.jpg” or ”.jpe”.

• The stream data begins with a byte sequence ”\xff\xd8” that means SOI (start of Image)
marker in JPEG specification.

When instance method image#write() is provided with a stream that satisfies the following
condition, it would write image data in JPEG format.

• The identifier of the stream ends with a suffix ”.jpeg”, ”.jpg” or ”.jpe”.

29.2 jpeg.exif Class

The jpeg.exif class provides EXIF information in a JPEG stream.

A jpeg.exif instance contains jpeg.ifd instances as properties named jpeg.exif#ifd0 and
jpeg.exif#ifd1 that include a list of jpeg.tag instances.

+-----------+ +----------+ +----------+

| jpeg.exif |ifd0, ifd1 | jpeg.ifd |1.. | jpeg.tag |

|-----------*-------------+----------*--------+----------|

| | | | | |

+-----------+ +----------+ +----------+

219

29.2.1 Property

A jpeg.exif instance has the following properties:

Property Type R/W Explanation
endian symbol R The endian type: ‘big for big-endian and ‘little for

little-endian.
ifd0 jpeg.ifd R IFD0 instance.
ifd1 jpeg.ifd R IFD1 instance.
thumbnail image R Thumbnail image as image value.
thumbnail@jpegbinary R Thumbnail image as JPEG binary data.

29.2.2 Constructor

jpeg.exif(stream?:stream:r):map:[raise] {block?}

Reads EXIF data from stream and creates a jpeg.exif instance.

If no EXIF information exists in the stream, this function returns nil. If the attribute :raise
is specified, an error occurs for that case.

If block is specified, it would be evaluated with a block parameter |exif:jpeg.exif|, where
exif is the created instance. In this case, the block’s result would become the function’s
returned value.

29.2.3 Method

jpeg.exif#each() {block?}

Creates an iterator that returns jpeg.tag values as elements that are stored in the property
jpeg.exif#ifd0.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

220

29.3 jpeg.ifd Class

29.3.1 Property

A jpeg.ifd instance has the following properties:

Property Type R/W Explanation
name string R
symbol symbol R

29.3.2 Method

jpeg.ifd#each() {block?}

Creates an iterator that returns jpeg.tag values as elements that are stored in the target
jpeg.ifd instance.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

29.4 jpeg.tag Class

29.4.1 Property

A jpeg.tag instance has the following properties:

221

Prop-
erty

Type R/WExplanation

id number R Tag ID.
name string R Tag name.
symbol symbol R Tag name as symbol.
type number R Tag type.
typenamestring R Tag type name.
value any R Tag value. When the attribute :cooked is specified, numbers in some

tags are translated to human-readable symbols.
ifd jpeg.ifdR IFD instance. Valid only for tags Exif, GPSInfo and

Interoperability.

29.5 Extension to image Class

This module extends the image class with methods described here.

image#read@jpeg(stream:stream:r, size?:number):reduce:[fast,rough]

Reads a JPEG image data from the specified stream.

When the argument size is specified, the image would be shrinked so that it is boxed within
the size.

The attribute :fast indicates a fast but less-qualified decompression process.

The attriubte :rough is only valid when size is specified and makes the shrinked image with
nearest neighbor method. Othereise, shrinking shall be done with bilinear method.

image#write@jpeg(stream:stream:w, quality:number => 75):reduce

Writes a JPEG image data to the specified stream.

The argument quality takes a number between 0 and 100 with which a a higher number results
in a higher quality of result but a less compression performance. The default value for it is 75.

29.6 Thanks

This module uses JPEG library which is distributed in the following site:

http://www.ijg.org/

222

Chapter 30

lexer Module

The lexer module provices functions that parse souces to generate tokens. This is a built-in
module, so you can use it without being imported.

30.1 Module Function

223

Chapter 31

markdown Module

The markdown module provides measures to parse a text formatted in markdown syntax. To
utilize it, import the markdown module using import function.

Below is an example to read a document written in Markdown format and then render its
HTML text into a file.

import(markdown)

markdown.document(’foo.md’).render@html(’foo.html’)

markdown module consists of the following two module files:

• markdown.gurd .. a binary module file that provides parser procedures.

• markdown.gura .. a script module file that renders parsed result in desired formats.

31.1 Operator

markdown.document << function

31.2 markdown.document Class

The markdown.document class provides measures to parse a document written in Markdown
format.

You can parse documents written in both string and stream using the following methods:

• markdown.document#parse() .. Parses document written in a string.

• markdown.document#read() .. Parses document from a stream.

You can get the parsed result by inspecting a property markdown.document#root and its chil-
dren that are markdown.item instances.

31.2.1 Property

224

Prop-
erty

Type R/W Explanation

refs iterator R An iterator that returns referee items as
markdown.item.

root markdown.item R The root item of the parsed Markdown document.

31.2.2 Constructor

markdown.document(stream?:stream:r) {block?}

Returns an instance of markdown.document. If stream is specified, the content of the instance
shall be initialized with the result of parsing the stream.

31.2.3 Method

markdown.document#parse(str:string):void

Parses a Markdown text in a string.

markdown.document#read(stream:stream:r):void

Parses a Markdown text from a stream.

markdown.document#render@console(colorFlag:boolean => true)

Renders the content of markdown document to the console.

In default, it uses colors to highlight items. Specify the argument colorFlag with false to
disable the coloring process.

markdown.document#render@html(out?:stream:w, easyFormatFlag:boolean => true, captionIndex:boolean => false)

markdown.document#render@toc() {block}

31.3 markdown.item Class

The markdown.item class provides information about items that composes a Markdown docu-
ment.

Below is a table of item type:

225

Item Type Explanation
root container
h1 container
h2 container
h3 container
h4 container
h5 container
h6 container
p container
blockquote container
em container
strong container
codeblock container
ol container
ul container
li container
line container
a container
img text
text text
code text
entity text
tag container/text
hr no-content
br no-content
referee no-content

31.3.1 Property

Property Type R/W Explanation
type string R
text string R
children iterator R
url string R
title string R
attrs string R
align symbol R none, left, center, right

31.3.2 Method

markdown.item#print(indent?:number):void

Prints structured content of the item. Argument indent specifies an indentation level and is
set to zero when omitted.

226

Chapter 32

math Module

The math module provices functions for mathematical calculation. This is a built-in module,
so you can use it without being imported.

32.1 Module Function

math.abs(num):map

Returns an absolute value.

math.acos(num):map:[deg]

Returns an inverse cosine value.

In default, the result is returned in radian. Specifying an attribute :deg would return that in
degree.

math.arg(num):map:[deg]

Returns an argument, an angle from the real-axis in the complex plane, of a complex number.

In default, the angle value is returned in radian. Specifying an attribute :deg would return
that in degree.

math.asin(num):map:[deg]

Returns an inverse sine value.

In default, the result is returned in radian. Specifying an attribute :deg would return that in
degree.

math.atan(num):map:[deg]

Returns an inverse tangent value.

math.atan2(num1, num2):map:[deg]

Returns an inverse tangent value of a fraction of num1 and num2.

In default, the result is returned in radian. Specifying an attribute :deg would return that in
degree.

math.bezier(nums[]+:number)

Returns a list that consists of functions that generate coordinates of bezier curves with specified

227

control points. One or more lists of control points can be specified. This means that if you give
it two lists of numbers as arguments, it returns two functions of bezier curve.

math.ceil(num):map

Returns a nearest integer number above or equal to the specified value.

math.conj(num):map

Returns a conjugate of a complex number.

math.cos(num):map:[deg]

Returns a cosine value.

In default, the given argument is treated as a radian number. Specifying an attribute :deg

would treat that as a degree number.

math.cosh(num):map

Returns a hyperbolic cosine value.

math.covariance(a, b)

Returns a covariance between the a and b.

math.cross (a, b)

Calculates a cross product between a and b.

math.delta(num):map

Evaluates a delta function with a given argument num that returns 1 when num == 0 and 0

otherwise.

math.diff(expr:expr, var:symbol):map {block?}

Calculates a mathematical differential expression of the given expr by a variable var.

If block is specified, it would be evaluated with a block parameter |rtn:expr|, where rtn

is the created instance. In this case, the block’s result would become the function’s returned
value.

Example: math.diff((math.sin(x 2)), x)∗∗

math.dot(a, b)

Calculates a dot product between a and b.

math.exp(num):map

Returns an exponential value.

math.fft(seq[])

math.floor(num):map

Returns a nearest integer number below or equal to the specified value.

math.gcd(a:number, b+:number):map

Returns a greatest common divisor among two or more numbers.

228

math.hypot(x, y):map

Returns a hyperbolic tangent value.

math.imag(num):map

Returns an imaginary part of a complex number.

math.integral()

math.lcm(a:number, b+:number):map

Returns a least common multiple among two or more numbers.

math.least square(x:iterator, y:iterator, dim:number => 1, var:symbol => ‘x)

Takes two iterators x and y that return coordinate of points and returns a function that fits
them using least square metho. You can specify the fitting curve’s dimension by an argument
dim, which default value is one. The variable symbol used in the function is x, which can be
changed by specifying an argument var.

math.log(num):map

Returns a natural logarithm value.

math.log10(num):map

Returns a decadic logarithm value.

math.norm(num):map

Returns a norm value of a complex number.

math.optimize(expr:expr):map {block?}

Returns an optimized expression of the given argument expr, which needs to be made up of
mathematical elements.

If block is specified, it would be evaluated with a block parameter |rtn:expr|, where rtn

is the created instance. In this case, the block’s result would become the function’s returned
value.

math.ramp(num):map

Evaluates a ramp function with a given argument num that returns num when num >= 0 and 0

otherwise.

math.real(num):map

Returns a real part of a complex number.

math.sin(num):map:[deg]

Returns a sine value.

In default, the given argument is treated as a radian number. Specifying an attribute :deg

would treat that as a degree number.

math.sinh(num):map

Returns a hyperbolic sine value.

229

math.sqrt(num):map

Returns a square root value.

math.tan(num):map:[deg]

Returns a tangent value.

In default, the given argument is treated as a radian number. Specifying an attribute :deg

would treat that as a degree number.

math.tanh(num):map

Returns a hyperbolic tangent value.

math.unitstep(num):map

Evaluates a unit step function with a given argument num that returns 1 when num >= 0 and
0 otherwise.

230

Chapter 33

midi Module

The midi module provides measures to read/write MIDI files. To utilize it, import the midi

module using import function.

33.1 Module Function

33.2 midi.event Class

33.3 midi.track Class

midi.track#seek(offset:number, origin?:symbol):reduce

Moves the insertion point in the track at which the next event is inserted. If origin is omitted
or set to ‘set, the insertion point will be set to absolute offset from the beginning. If origin
is set to ‘cur, the insertion point will be moved by offset from the current position.

midi.track#tell()

Returns the current insertion point in the track.

midi.track#erase(n?:number):reduce

Deletes an event at the current insertion point in the track. The argument n specifies the
number of events to be deleted. If n is omitted, one event will be deleted.

midi.track#mml(str:string, max velocity?:number):map:reduce

Parses MML in the string str and inserts resulted MIDI events at the current insertion point
in the track.

The argument max velocity specifies the maximum number of velocity in the MML. If omitted,
it will be set to 127.

midi.track#note off(channel:number, note:number, velocity:number, deltaTime?:number):map:reduce

midi.track#note on(channel:number, note:number, velocity:number, deltaTime?:number):map:reduce

midi.track#poly pressure(channel:number, note:number, value:number, deltaTime?:number):map:reduce

midi.track#control change(channel:number, controller, value:number, deltaTime?:number):map:reduce

231

midi.track#program change(channel:number, program, deltaTime?:number):map:reduce

midi.track#channel pressure(channel:number, pressure:number, deltaTime?:number):map:reduce

midi.track#pitch bend(channel:number, value:number, deltaTime?:number):map:reduce

midi.track#sequence number(number:number, deltaTime?:number):map:reduce

midi.track#text event(text:string, deltaTime?:number):map:reduce

midi.track#copyright notice(text:string, deltaTime?:number):map:reduce

midi.track#sequence or track name(text:string, deltaTime?:number):map:reduce

midi.track#instrument name(text:string, deltaTime?:number):map:reduce

midi.track#lyric text(text:string, deltaTime?:number):map:reduce

midi.track#marker text(text:string, deltaTime?:number):map:reduce

midi.track#cue point(text:string, deltaTime?:number):map:reduce

midi.track#midi channel prefix assignment(channel:number, deltaTime?:number):map:reduce

midi.track#end of track(deltaTime?:number):map:reduce

midi.track#tempo setting(mpqn:number, deltaTime?:number):map:reduce

midi.track#smpte offset(hour:number, minute:number, second:number, frame:number, subFrame:number, deltaTime?:number):map:reduce

midi.track#time signature(numerator:number, denominator:number, metronome:number, cnt32nd:number, deltaTime?:number):map:reduce

midi.track#key signature(key:number, scale:number, deltaTime?:number):map:reduce

midi.track#sequencer specific event(binary:binary, deltaTime?:number):map:reduce

33.4 midi.sequence Class

midi.sequence(stream?:stream) {block?}

It creates an instance that contains SMF information.

midi.sequence#read(stream:stream:r):map:reduce

midi.sequence#write(stream:stream:w):map:reduce

midi.sequence#play(port:midi.port, speed?:number, repeat:number:nil => 1):[background,player]

midi.sequence#track(index:number):map {block?}

midi.sequence#mml(str:string, max velocity?:number):reduce

232

midi.sequence#readmml(stream:stream, max velocity?:number):reduce

33.5 midi.port Class

midi.port#send(msg+:number):map:reduce

midi.port#play(sequence:midi.sequence, speed?:number, repeat:number:nil => 1):map:[background,player]

midi.port#mml(str:string, max velocity?:number):[background,player]

midi.port#readmml(stream:stream, max velocity?:number):[background,player]

midi.port#note off(channel:number, note:number, velocity:number):map:reduce

midi.port#note on(channel:number, note:number, velocity:number):map:reduce

midi.port#poly pressure(channel:number, note:number, value:number):map:reduce

midi.port#control change(channel:number, controller:number, value:number):map:reduce

midi.port#program change(channel:number, program:number):map:reduce

midi.port#channel pressure(channel:number, pressure:number):map:reduce

midi.port#pitch bend(channel:number, value:number):map:reduce

33.6 midi.controller Class

33.7 midi.program Class

33.8 midi.soundfont Class

midi.soundfont(stream:stream) {block?}

It creates an instance to access data in SoundFont file.

midi.soundfont#synthesizer(preset:number, bank:number, key:number, velocity:number):map {block?}

midi.soundfont#print():void

33.9 midi.synthesizer Class

233

Chapter 34

modbuild Module

The modbuild module ...

34.1 Module Function

234

Chapter 35

model.obj Module

The model.obj module provides measures to read/write files in OBJ format for 3D models.

235

Chapter 36

model.stl Module

The model.stl module provides measures to read/write files in STL format for 3D models.

Below is an example to read a STL file and to print information of faces it contains.

solid = model.stl.solid(’example.stl’)

println(solid.name || solid.header)

solid.faces.each {|face|

printf(’normal: %g, %g, %g\n’, face.normal.x, face.normal.y, face.normal.z)

printf(’vertex1: %g, %g, %g\n’, face.vertex1.x, face.vertex1.y, face.vertex1.z)

printf(’vertex2: %g, %g, %g\n’, face.vertex2.x, face.vertex2.y, face.vertex2.z)

printf(’vertex3: %g, %g, %g\n’, face.vertex3.x, face.vertex3.y, face.vertex3.z)

}

36.1 model.stl.face Class

An instance of model.stl.face class provides properties of face that consists of one normal
vector and three vertices.

36.1.1 Property

Property Type R/W Explanation
normal vertex R Normal vector.
vertex1 vertex R 1st vertex.
vertex2 vertex R 2nd vertex.
vertex3 vertex R 3rd vertex.

36.2 model.stl.solid Class

An instance of model.stl.solid class represents a top-level data in STL format.

236

36.2.1 Property

Prop-
erty

Type R/W Explanation

header string R This is only valid for binary format and is set to ‘nil‘ for
ASCII.

name string R This is only valid for ASCII format and is set to ‘nil‘ for
binary.

faces iterator R An iterator that returns instances of model.stl.face.

36.2.2 Constructor

stl.solid(stream:stream) {block?}

Parses a file in STL format from stream and creates an instance of model.stl.solid that
contains an iterator of model.stl.face representing faces in the STL. It can read both binary
and ASCII format of STL.

If block is specified, it would be evaluated with a block parameter |solid:model.stl.solid|,
where solid is the created instance. In this case, the block’s result would become the function’s
returned value.

237

Chapter 37

msico Module

The msico module provides measures to read/write image data in Microsoft Icon file format.
To utilize it, import the msico module using import function.

Below is an example to read an ICO file:

import(msico)

img = image(’foo.ico’)

This module has been implemented referring to the specification: http://msdn.microsoft.com/en-
us/library/ms997538.aspx.

37.1 Exntension to Function’s Capability

This module extends the capability of function image() and instance method image#write()

so that they can read/write ICO files.

When function image() is provided with a stream that satisfies the following conditions, it
would recognize the stream as a ICO file.

• The identifier of the stream ends with a suffix ”.ico”.

When instance method image#write() is provided with a stream that satisfies the following
condition, it would write image data in ICO format.

• The identifier of the stream ends with a suffix ”.ico”.

37.2 msico.content Class

37.2.1 Constructor

msico.content(stream?:stream:r, format:symbol => ‘rgba) {block?}

37.2.2 Method

msico.content#write(stream:stream:w):reduce

238

Writes an ICO image to a stream.

msico.content#addimage(image:image):map:reduce

37.3 Extension to image Class

This module extends the image class with methods described here.

image#read@msico(stream:stream:r, idx:number => 0):reduce

Reads an ICO image from a stream.

239

Chapter 38

opengl Module

The opengl module provides functions of OpenGL library.

38.1 Module Function

opengl.glAccum(op:number, value:number):map:void

operate on the accumulation buffer

opengl.glAlphaFunc(func:number, ref:number):map:void

specify the alpha test function

opengl.glAreTexturesResident(textures:array@uint32:nomap):map {block?}

determine if textures are loaded in texture memory

opengl.glArrayElement(i:number):map:void

render a vertex using the specified vertex array element

opengl.glBegin(mode:number):map:void {block?}

delimit the vertices of a primitive or a group of like primitives

opengl.glBindTexture(target:number, texture:number):map:void

opengl.glBitmap(width:number, height:number, xorig:number, yorig:number, xmove:number, ymove:number, bitmap:array@uint8:nil:nomap):map:void

opengl.glBlendFunc(sfactor:number, dfactor:number):map:void

opengl.glCallList(list:number):map:void

opengl.glCallLists(type:number, lists[]:number):map:void

opengl.glClear(mask:number):map:void

opengl.glClearAccum(red:number, green:number, blue:number, alpha:number):map:void

opengl.glClearColor(red:number, green:number, blue:number, alpha:number):map:void

240

opengl.glClearDepth(depth:number):map:void

opengl.glClearIndex(c:number):map:void

opengl.glClearStencil(s:number):map:void

opengl.glClipPlane(plane:number, equation:array@double:nomap):map:void {block?}

opengl.glColor3b(red:number, green:number, blue:number):map:void

opengl.glColor3bv(v:array@int8:nomap):map:void

opengl.glColor3d(red:number, green:number, blue:number):map:void

opengl.glColor3dv(v:array@double:nomap):map:void

opengl.glColor3f(red:number, green:number, blue:number):map:void

opengl.glColor3fv(v:array@float:nomap):map:void

opengl.glColor3i(red:number, green:number, blue:number):map:void

opengl.glColor3iv(v:array@int32:nomap):map:void

opengl.glColor3s(red:number, green:number, blue:number):map:void

opengl.glColor3sv(v:array@int16:nomap):map:void

opengl.glColor3ub(red:number, green:number, blue:number):map:void

opengl.glColor3ubv(v:array@uint8:nomap):map:void

opengl.glColor3ui(red:number, green:number, blue:number):map:void

opengl.glColor3uiv(v:array@uint32:nomap):map:void

opengl.glColor3us(red:number, green:number, blue:number):map:void

opengl.glColor3usv(v:array@uint16:nomap):map:void

opengl.glColor4b(red:number, green:number, blue:number, alpha:number):map:void

opengl.glColor4bv(v:array@int8:nomap):map:void

opengl.glColor4d(red:number, green:number, blue:number, alpha:number):map:void

opengl.glColor4dv(v:array@double:nomap):map:void

opengl.glColor4f(red:number, green:number, blue:number, alpha:number):map:void

opengl.glColor4fv(v:array@float:nomap):map:void

opengl.glColor4i(red:number, green:number, blue:number, alpha:number):map:void

241

opengl.glColor4iv(v:array@int32:nomap):map:void

opengl.glColor4s(red:number, green:number, blue:number, alpha:number):map:void

opengl.glColor4sv(v:array@int16:nomap):map:void

opengl.glColor4ub(red:number, green:number, blue:number, alpha:number):map:void

opengl.glColor4ubv(v:array@uint8:nomap):map:void

opengl.glColor4ui(red:number, green:number, blue:number, alpha:number):map:void

opengl.glColor4uiv(v:array@uint32:nomap):map:void

opengl.glColor4us(red:number, green:number, blue:number, alpha:number):map:void

opengl.glColor4usv(v:array@uint16:nomap):map:void

opengl.glColorMask(red:boolean, green:boolean, blue:boolean, alpha:boolean):map:void

opengl.glColorMaterial(face:number, mode:number):map:void

opengl.glCopyPixels(x:number, y:number, width:number, height:number, type:number):map:void

opengl.glCopyTexImage1D(target:number, level:number, internalformat:number, x:number, y:number, width:number, border:number):map:void

opengl.glCopyTexImage2D(target:number, level:number, internalformat:number, x:number, y:number, width:number, height:number, border:number):map:void

opengl.glCopyTexSubImage1D(target:number, level:number, xoffset:number, x:number, y:number, width:number):map:void

opengl.glCopyTexSubImage2D(target:number, level:number, xoffset:number, yoffset:number, x:number, y:number, width:number, height:number):map:void

opengl.glCullFace(mode:number):map:void

opengl.glDeleteLists(list:number, range:number):map:void

opengl.glDeleteTextures(textures:array@uint32:nomap):map:void

opengl.glDepthFunc(func:number):map:void

opengl.glDepthMask(flag:boolean):map:void

opengl.glDepthRange(zNear:number, zFar:number):map:void

opengl.glDisable(cap:number):map:void

opengl.glDisableClientState(array:number):map:void

opengl.glDrawArrays(mode:number, first:number, count:number):map:void

opengl.glDrawBuffer(mode:number):map:void

opengl.glDrawPixels(width:number, height:number, format:number, type:number, pixels:array:nomap):map:void

242

opengl.glDrawPixelsFromImage(image:image):map:void

opengl.glEdgeFlag(flag:boolean):map:void

opengl.glEdgeFlagv(flag[]:boolean):map:void

opengl.glEnable(cap:number):map:void

opengl.glEnableClientState(array:number):map:void

opengl.glEnd():void

opengl.glEndList():void

opengl.glEvalCoord1d(u:number):map:void

opengl.glEvalCoord1dv(u:array@double:nomap):map:void

opengl.glEvalCoord1f(u:number):map:void

opengl.glEvalCoord1fv(u:array@float:nomap):map:void

opengl.glEvalCoord2d(u:number, v:number):map:void

opengl.glEvalCoord2dv(u:array@double:nomap):map:void

opengl.glEvalCoord2f(u:number, v:number):map:void

opengl.glEvalCoord2fv(u:array@float:nomap):map:void

opengl.glEvalMesh1(mode:number, i1:number, i2:number):map:void

opengl.glEvalMesh2(mode:number, i1:number, i2:number, j1:number, j2:number):map:void

opengl.glEvalPoint1(i:number):map:void

opengl.glEvalPoint2(i:number, j:number):map:void

opengl.glFeedbackBuffer(type:number, buffer:array@float:nil:nomap):void

opengl.glFinish():void

opengl.glFlush():void

opengl.glFogf(pname:number, param:number):map:void

opengl.glFogfv(pname:number, params:array@float:nomap):map:void

opengl.glFogi(pname:number, param:number):map:void

opengl.glFogiv(pname:number, params:array@int32:nomap):map:void

opengl.glFrontFace(mode:number):map:void

243

opengl.glFrustum(left:number, right:number, bottom:number, top:number, zNear:number, zFar:number):map:void

opengl.glGenLists(range:number):map {block?}

opengl.glGenTextures(n:number):map {block?}

opengl.glGetBooleanv(pname:number):map {block?}

opengl.glGetClipPlane(plane:number):map

opengl.glGetDoublev(pname:number):map {block?}

opengl.glGetError() {block?}

opengl.glGetFloatv(pname:number):map {block?}

opengl.glGetIntegerv(pname:number):map {block?}

opengl.glGetLightfv(light:number, pname:number):map {block?}

opengl.glGetLightiv(light:number, pname:number):map {block?}

opengl.glGetMapdv(target:number, query:number, v:array@double:nomap):map:void

opengl.glGetMapfv(target:number, query:number, v:array@float:nomap):map:void

opengl.glGetMapiv(target:number, query:number, v:array@int32:nomap):map:void

opengl.glGetMaterialfv(face:number, pname:number):map {block?}

opengl.glGetMaterialiv(face:number, pname:number):map {block?}

opengl.glGetPixelMapfv(map:number, values:array@float:nomap):map:void

opengl.glGetPixelMapuiv(map:number, values:array@uint32:nomap):map:void

opengl.glGetPixelMapusv(map:number, values:array@uint16:nomap):map:void

opengl.glGetPolygonStipple():map

opengl.glGetString(name:number):map {block?}

opengl.glGetTexEnvfv(target:number, pname:number):map {block?}

opengl.glGetTexEnviv(target:number, pname:number):map {block?}

opengl.glGetTexGendv(coord:number, pname:number):map {block?}

opengl.glGetTexGenfv(coord:number, pname:number):map {block?}

opengl.glGetTexGeniv(coord:number, pname:number):map {block?}

opengl.glGetTexLevelParameterfv(target:number, level:number, pname:number):map {block?}

244

opengl.glGetTexLevelParameteriv(target:number, level:number, pname:number):map {block?}

opengl.glGetTexParameterfv(target:number, pname:number):map {block?}

opengl.glGetTexParameteriv(target:number, pname:number):map {block?}

opengl.glHint(target:number, mode:number):map:void

opengl.glIndexMask(mask:number):map:void

opengl.glIndexd(c:number):map:void

opengl.glIndexdv(c:array@double:nomap):map:void

opengl.glIndexf(c:number):map:void

opengl.glIndexfv(c:array@float:nomap):map:void

opengl.glIndexi(c:number):map:void

opengl.glIndexiv(c:array@int32:nomap):map:void

opengl.glIndexs(c:number):map:void

opengl.glIndexsv(c:array@int16:nomap):map:void

opengl.glIndexub(c:number):map:void

opengl.glIndexubv(c:array@uint8:nomap):map:void

opengl.glInitNames():void

opengl.glIsEnabled(cap:number):map {block?}

opengl.glIsList(list:number):map {block?}

opengl.glIsTexture(texture:number):map {block?}

opengl.glLightModelf(pname:number, param:number):map:void

opengl.glLightModelfv(pname:number, params:array@float:nomap):map:void

opengl.glLightModeli(pname:number, param:number):map:void

opengl.glLightModeliv(pname:number, params:array@int32:nomap):map:void

opengl.glLightf(light:number, pname:number, param:number):map:void

opengl.glLightfv(light:number, pname:number, params:array@float:nomap):map:void

opengl.glLighti(light:number, pname:number, param:number):map:void

opengl.glLightiv(light:number, pname:number, params:array@int32:nomap):map:void

245

opengl.glLineStipple(factor:number, pattern:number):map:void

opengl.glLineWidth(width:number):map:void

opengl.glListBase(base:number):map:void

opengl.glLoadIdentity():void

opengl.glLoadMatrixd(m):void

opengl.glLoadMatrixf(m):void

opengl.glLoadName(name:number):map:void

opengl.glLogicOp(opcode:number):map:void

opengl.glMap1d(target:number, u1:number, u2:number, stride:number, order:number, points:array@double:nomap):map:void

opengl.glMap1f(target:number, u1:number, u2:number, stride:number, order:number, points:array@float:nomap):map:void

opengl.glMap2d(target:number, u1:number, u2:number, ustride:number, uorder:number, v1:number, v2:number, vstride:number, vorder:number, points:array@double:nomap):map:void

opengl.glMap2f(target:number, u1:number, u2:number, ustride:number, uorder:number, v1:number, v2:number, vstride:number, vorder:number, points:array@float:nomap):map:void

opengl.glMapGrid1d(un:number, u1:number, u2:number):map:void

opengl.glMapGrid1f(un:number, u1:number, u2:number):map:void

opengl.glMapGrid2d(un:number, u1:number, u2:number, vn:number, v1:number, v2:number):map:void

opengl.glMapGrid2f(un:number, u1:number, u2:number, vn:number, v1:number, v2:number):map:void

opengl.glMaterialf(face:number, pname:number, param:number):map:void

opengl.glMaterialfv(face:number, pname:number, params:array@float:nomap):map:void

opengl.glMateriali(face:number, pname:number, param:number):map:void

opengl.glMaterialiv(face:number, pname:number, params:array@int32:nomap):map:void

opengl.glMatrixMode(mode:number):map:void

opengl.glMultMatrixd(m):void

opengl.glMultMatrixf(m):void

opengl.glNewList(list:number, mode:number):map:void {block?}

opengl.glNormal3b(nx:number, ny:number, nz:number):map:void

opengl.glNormal3bv(v:array@int8:nomap):map:void

opengl.glNormal3d(nx:number, ny:number, nz:number):map:void

246

opengl.glNormal3dv(v:array@double:nomap):map:void

opengl.glNormal3f(nx:number, ny:number, nz:number):map:void

opengl.glNormal3fv(v:array@float:nomap):map:void

opengl.glNormal3i(nx:number, ny:number, nz:number):map:void

opengl.glNormal3iv(v:array@int32:nomap):map:void

opengl.glNormal3s(nx:number, ny:number, nz:number):map:void

opengl.glNormal3sv(v:array@int16:nomap):map:void

opengl.glOrtho(left:number, right:number, bottom:number, top:number, zNear:number, zFar:number):map:void

opengl.glPassThrough(token:number):map:void

opengl.glPixelMapfv(map:number, mapsize:number, values:array@float:nomap):map:void

opengl.glPixelMapuiv(map:number, mapsize:number, values:array@uint32:nomap):map:void

opengl.glPixelMapusv(map:number, mapsize:number, values:array@uint16:nomap):map:void

opengl.glPixelStoref(pname:number, param:number):map:void

opengl.glPixelStorei(pname:number, param:number):map:void

opengl.glPixelTransferf(pname:number, param:number):map:void

opengl.glPixelTransferi(pname:number, param:number):map:void

opengl.glPixelZoom(xfactor:number, yfactor:number):map:void

opengl.glPointSize(size:number):map:void

opengl.glPolygonMode(face:number, mode:number):map:void

opengl.glPolygonOffset(factor:number, units:number):map:void

opengl.glPolygonStipple(mask:array@uint8:nomap):map:void

opengl.glPopAttrib():void

opengl.glPopClientAttrib():void

opengl.glPopMatrix():void

opengl.glPopName():void

opengl.glPrioritizeTextures(textures:array@uint32:nomap, priorities:array@float:nomap):map:void

opengl.glPushAttrib(mask:number):map:void {block?}

247

opengl.glPushClientAttrib(mask:number):map:void {block?}

opengl.glPushMatrix():void {block?}

opengl.glPushName(name:number):map:void {block?}

opengl.glRasterPos2d(x:number, y:number):map:void

opengl.glRasterPos2dv(v:array@double:nomap):map:void

opengl.glRasterPos2f(x:number, y:number):map:void

opengl.glRasterPos2fv(v:array@float:nomap):map:void

opengl.glRasterPos2i(x:number, y:number):map:void

opengl.glRasterPos2iv(v:array@int32:nomap):map:void

opengl.glRasterPos2s(x:number, y:number):map:void

opengl.glRasterPos2sv(v:array@int16:nomap):map:void

opengl.glRasterPos3d(x:number, y:number, z:number):map:void

opengl.glRasterPos3dv(v:array@double:nomap):map:void

opengl.glRasterPos3f(x:number, y:number, z:number):map:void

opengl.glRasterPos3fv(v:array@float:nomap):map:void

opengl.glRasterPos3i(x:number, y:number, z:number):map:void

opengl.glRasterPos3iv(v:array@int32:nomap):map:void

opengl.glRasterPos3s(x:number, y:number, z:number):map:void

opengl.glRasterPos3sv(v:array@int16:nomap):map:void

opengl.glRasterPos4d(x:number, y:number, z:number, w:number):map:void

opengl.glRasterPos4dv(v:array@double:nomap):map:void

opengl.glRasterPos4f(x:number, y:number, z:number, w:number):map:void

opengl.glRasterPos4fv(v:array@float:nomap):map:void

opengl.glRasterPos4i(x:number, y:number, z:number, w:number):map:void

opengl.glRasterPos4iv(v:array@int32:nomap):map:void

opengl.glRasterPos4s(x:number, y:number, z:number, w:number):map:void

opengl.glRasterPos4sv(v:array@int16:nomap):map:void

248

opengl.glReadBuffer(mode:number):map:void

opengl.glReadPixels(x:number, y:number, width:number, height:number, format:symbol):map {block?}

opengl.glRectd(x1:number, y1:number, x2:number, y2:number):map:void

opengl.glRectdv(v1:array@double:nomap, v2:array@double:nomap):map:void

opengl.glRectf(x1:number, y1:number, x2:number, y2:number):map:void

opengl.glRectfv(v1:array@float:nomap, v2:array@float:nomap):map:void

opengl.glRecti(x1:number, y1:number, x2:number, y2:number):map:void

opengl.glRectiv(v1:array@int32:nomap, v2:array@int32:nomap):map:void

opengl.glRects(x1:number, y1:number, x2:number, y2:number):map:void

opengl.glRectsv(v1:array@int16:nomap, v2:array@int16:nomap):map:void

opengl.glRenderMode(mode:number):map {block?}

opengl.glRotated(angle:number, x:number, y:number, z:number):map:void

opengl.glRotatef(angle:number, x:number, y:number, z:number):map:void

opengl.glScaled(x:number, y:number, z:number):map:void

opengl.glScalef(x:number, y:number, z:number):map:void

opengl.glScissor(x:number, y:number, width:number, height:number):map:void

opengl.glSelectBuffer(buffer:array@uint32:nil:nomap):void

opengl.glShadeModel(mode:number):map:void

opengl.glStencilFunc(func:number, ref:number, mask:number):map:void

opengl.glStencilMask(mask:number):map:void

opengl.glStencilOp(fail:number, zfail:number, zpass:number):map:void

opengl.glTexCoord1d(s:number):map:void

opengl.glTexCoord1dv(v:array@double:nomap):map:void

opengl.glTexCoord1f(s:number):map:void

opengl.glTexCoord1fv(v:array@float:nomap):map:void

opengl.glTexCoord1i(s:number):map:void

opengl.glTexCoord1iv(v:array@int32:nomap):map:void

249

opengl.glTexCoord1s(s:number):map:void

opengl.glTexCoord1sv(v:array@int16:nomap):map:void

opengl.glTexCoord2d(s:number, t:number):map:void

opengl.glTexCoord2dv(v:array@double:nomap):map:void

opengl.glTexCoord2f(s:number, t:number):map:void

opengl.glTexCoord2fv(v:array@float:nomap):map:void

opengl.glTexCoord2i(s:number, t:number):map:void

opengl.glTexCoord2iv(v:array@int32:nomap):map:void

opengl.glTexCoord2s(s:number, t:number):map:void

opengl.glTexCoord2sv(v:array@int16:nomap):map:void

opengl.glTexCoord3d(s:number, t:number, r:number):map:void

opengl.glTexCoord3dv(v:array@double:nomap):map:void

opengl.glTexCoord3f(s:number, t:number, r:number):map:void

opengl.glTexCoord3fv(v:array@float:nomap):map:void

opengl.glTexCoord3i(s:number, t:number, r:number):map:void

opengl.glTexCoord3iv(v:array@int32:nomap):map:void

opengl.glTexCoord3s(s:number, t:number, r:number):map:void

opengl.glTexCoord3sv(v:array@int16:nomap):map:void

opengl.glTexCoord4d(s:number, t:number, r:number, q:number):map:void

opengl.glTexCoord4dv(v:array@double:nomap):map:void

opengl.glTexCoord4f(s:number, t:number, r:number, q:number):map:void

opengl.glTexCoord4fv(v:array@float:nomap):map:void

opengl.glTexCoord4i(s:number, t:number, r:number, q:number):map:void

opengl.glTexCoord4iv(v:array@int32:nomap):map:void

opengl.glTexCoord4s(s:number, t:number, r:number, q:number):map:void

opengl.glTexCoord4sv(v:array@int16:nomap):map:void

opengl.glTexEnvf(target:number, pname:number, param:number):map:void

250

opengl.glTexEnvfv(target:number, pname:number, params:array@float:nomap):map:void

opengl.glTexEnvi(target:number, pname:number, param:number):map:void

opengl.glTexEnviv(target:number, pname:number, params:array@int32:nomap):map:void

opengl.glTexGend(coord:number, pname:number, param:number):map:void

opengl.glTexGendv(coord:number, pname:number, params:array@double:nomap):map:void

opengl.glTexGenf(coord:number, pname:number, param:number):map:void

opengl.glTexGenfv(coord:number, pname:number, params:array@float:nomap):map:void

opengl.glTexGeni(coord:number, pname:number, param:number):map:void

opengl.glTexGeniv(coord:number, pname:number, params:array@int32:nomap):map:void

opengl.glTexImage1D(target:number, level:number, internalformat:number, width:number, border:number, format:number, type:number, pixels:array:nomap):map:void

opengl.glTexImage1DFromImage(target:number, level:number, internalformat:number, border:number, image:image):map:void

opengl.glTexImage2D(target:number, level:number, internalformat:number, width:number, height:number, border:number, format:number, type:number, pixels:array:nomap):map:void

opengl.glTexImage2DFromImage(target:number, level:number, internalformat:number, border:number, image:image):map:void

opengl.glTexParameterf(target:number, pname:number, param:number):map:void

opengl.glTexParameterfv(target:number, pname:number, params:array@float:nomap):map:void

opengl.glTexParameteri(target:number, pname:number, param:number):map:void

opengl.glTexParameteriv(target:number, pname:number, params:array@int32:nomap):map:void

opengl.glTexSubImage1D(target:number, level:number, xoffset:number, width:number, format:number, type:number, pixels:array:nomap):map:void

opengl.glTexSubImage1DFromImage(target:number, level:number, xoffset:number, image:image):map:void

opengl.glTexSubImage2D(target:number, level:number, xoffset:number, yoffset:number, width:number, height:number, format:number, type:number, pixels:array:nomap):map:void

opengl.glTexSubImage2DFromImage(target:number, level:number, xoffset:number, yoffset:number, image:image):map:void

opengl.glTranslated(x:number, y:number, z:number):map:void

opengl.glTranslatef(x:number, y:number, z:number):map:void

opengl.glVertex2d(x:number, y:number):map:void

opengl.glVertex2dv(v:array@double:nomap):map:void

opengl.glVertex2f(x:number, y:number):map:void

opengl.glVertex2fv(v:array@float:nomap):map:void

251

opengl.glVertex2i(x:number, y:number):map:void

opengl.glVertex2iv(v:array@int32:nomap):map:void

opengl.glVertex2s(x:number, y:number):map:void

opengl.glVertex2sv(v:array@int16:nomap):map:void

opengl.glVertex3d(x:number, y:number, z:number):map:void

opengl.glVertex3dv(v:array@double:nomap):map:void

opengl.glVertex3f(x:number, y:number, z:number):map:void

opengl.glVertex3fv(v:array@float:nomap):map:void

opengl.glVertex3i(x:number, y:number, z:number):map:void

opengl.glVertex3iv(v:array@int32:nomap):map:void

opengl.glVertex3s(x:number, y:number, z:number):map:void

opengl.glVertex3sv(v:array@int16:nomap):map:void

opengl.glVertex4d(x:number, y:number, z:number, w:number):map:void

opengl.glVertex4dv(v:array@double:nomap):map:void

opengl.glVertex4f(x:number, y:number, z:number, w:number):map:void

opengl.glVertex4fv(v:array@float:nomap):map:void

opengl.glVertex4i(x:number, y:number, z:number, w:number):map:void

opengl.glVertex4iv(v:array@int32:nomap):map:void

opengl.glVertex4s(x:number, y:number, z:number, w:number):map:void

opengl.glVertex4sv(v:array@int16:nomap):map:void

opengl.glViewport(x:number, y:number, width:number, height:number):map:void

opengl.glGetAttachedShaders(program:number, maxCount:number, count[]:number, shaders:array@uint32:nomap):map:void

opengl.glGetShaderInfoLog(shader:number):map {block?}

opengl.glGetProgramInfoLog(program:number):map {block?}

opengl.glGetUniformLocation(program:number, name:string):map {block?}

opengl.glGetActiveUniform(program:number, index:number):map {block?}

opengl.glGetUniformfv(program:number, location:number, params:array@float:nomap):map:void

252

opengl.glGetUniformiv(program:number, location:number, params:array@int32:nomap):map:void

opengl.glGetShaderSource(shader:number):map:void

opengl.glBindAttribLocation(program:number, index:number, name:string):map:void

opengl.glGetActiveAttrib(program:number, index:number):map

opengl.glGetAttribLocation(program:number, name:string):map {block?}

opengl.glUniformMatrix2x3fv(location:number, count:number, transpose:boolean, value:array@float:nomap):map:void

opengl.glUniformMatrix3x2fv(location:number, count:number, transpose:boolean, value:array@float:nomap):map:void

opengl.glUniformMatrix2x4fv(location:number, count:number, transpose:boolean, value:array@float:nomap):map:void

opengl.glUniformMatrix4x2fv(location:number, count:number, transpose:boolean, value:array@float:nomap):map:void

opengl.glUniformMatrix3x4fv(location:number, count:number, transpose:boolean, value:array@float:nomap):map:void

opengl.glUniformMatrix4x3fv(location:number, count:number, transpose:boolean, value:array@float:nomap):map:void

253

Chapter 39

os Module

The os module provides functions that are specific to each OS environment. This is a built-in
module, so you can use it without being imported.

39.1 Module Function

os.clock() {block?}

Returns the time duration in second since the system has started.

If block is specified, it would calculate how much time has been spent during evaluating the
block.

os.exec(pathname:string, args∗:string):map:[fork]

Executes the specified executable file.

os.fromnative(buff:binary):map

Converts binary data that includes OS’s native string into Gura’s regulated string.

os.getenv(name:string, default?:string):map

Returns the value of an environment variable.

os.putenv(name:string, value:string):void

Set the value of an environment variable.

os.redirect(stdin:stream:nil:r, stdout:stream:nil:w, stderr?:stream:w) {block?}

Modifies variables os.stdin, os.stdout and os.stderr with values of arguments. When block

is specified, the modification only has effect within the block.

os.sleep(secs:number)

Sleeps for a time specified in seconds.

os.symlink(src:string, tgt:string):map:void

Creates a symbol link.

os.tonative(str:string):map

254

Converts Gura’s regulated string into binary data that includes OS’s native string.

os.unsetenv(name:string):void

Unset an environment variable.

255

Chapter 40

path Module

The path module provides functions related to path operations. This is a built-in module, so
you can use it without being imported.

Below is an example to list path names that exist in the current directory.

println(path.dir(’.’))

Below is an example to list path names that exist in the current directory and its child direc-
tories.

println(path.walk(’.’))

Below is an example to list path names that matches a wild card pattern ”∗.txt”.

println(path.glob(’*.txt’))

40.1 Module Function

path.absname(name:string):map:[uri]

Returns an absolute path name of the given name.

path.basename(pathname:string):map

Removes a suffix part of a path name.

path.bottom(pathname:string):map

Returns the last part of a path name.

path.cutbottom(pathname:string):map

Returns a path name after eliminating its bottom part.

path.dir(directory?:directory, pattern∗:string):flat:map:[dir,file,stat] {block?}

Creates an iterator that lists item names in the specified directory. If pathname is omitted,
the current directory shall be listed. In default, this returns an iterator as its result value.
Specifying the following attributes would customize the returned value:

256

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

path.dirname(pathname:string):map

Splits a pathname by a directory separator and returns a directory name part.

path.exists(pathname:string):map

Returns true if the specified file exists in a file system.

path.extname(pathname:string):map

Extracts a suffix part of a path name.

path.filename(pathname:string):map

Splits a pathname by a directory separator and returns a file name part.

path.glob(pattern:string):flat:map:[dir,file,stat] {block?}

Creates an iterator for item names that match with a pattern supporting UNIX shell-style wild
cards. In default, case of characters is distinguished. In default, this returns an iterator as its
result value. Specifying the following attributes would customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

path.join(paths+:string):map:[uri]

Returns a path name that joins given strings with directory separators.

257

path.match(pattern:string, name:string):map

Returns true if a name matches with a pattern that supports UNIX shell-style wild cards. In
default, case of characters is distinguished.

path.regulate(name:string):map:[uri]

Returns a regulated path name of the given name.

path.split(pathname:string):map:[bottom]

Splits a pathname by a directory separator and returns a list containing a directory name as
the first element and a base name as the second one. This has the same result as calling
path.dirname() and path.filename().

path.splitext(pathname:string):map

Splits a pathname by a dot character indicating a beginning of an extension and returns a list
containing a path name without an extention and an extention part.

path.stat(directory:directory):map

Returns a stat object associated with the specified item.

path.walk(directory?:directory, maxdepth?:number, pattern∗:string):flat:map:[dir,file,stat] {block?}

Creates an iterator that recursively lists item names under the specified directory. If pathname
is omitted, search starts at the current directory In default, this returns an iterator as its result
value. Specifying the following attributes would customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

258

Chapter 41

png Module

The png module provides measures to read/write image data in PNG format. To utilize it,
import the png module using import function.

Below is an example to read a PNG file:

import(png)

img = image(’foo.png’)

41.1 Exntension to Function’s Capability

This module extends the capability of function image() and instance method image#write()

so that they can read/write PNG files.

When function image() is provided with a stream that satisfies the following conditions, it
would recognize the stream as a PNG file.

• The identifier of the stream ends with a suffix ”.png”.

• The stream data begins with a byte sequence ”\x89\x50\x4e\x47\x0d\x0a\x1a\x0a”.

When instance method image#write() is provided with a stream that satisfies the following
condition, it would write image data in PNG format.

• The identifier of the stream ends with a suffix ”.png”.

41.2 Module Function

41.3 Extension to image Class

This module extends the image class with methods described here.

image#read@png(stream:stream:r):reduce

Reads a PNG image from a stream.

image#write@png(stream:stream:w):reduce

Writes a PNG image to a stream.

259

41.4 Thanks

This module uses libpng library which is distributed in the following site:

http://www.libpng.org/pub/png/libpng.html

260

Chapter 42

ppm Module

The ppm module provides measures to read/write image data in PPM format. To utilize it,
import the ppm module using import function.

Below is an example to read a PPM file:

import(ppm)

img = image(’foo.ppm’)

42.1 Exntension to Function’s Capability

This module extends the capability of function image() and instance method image#write()

so that they can read/write PPM files.

When function image() is provided with a stream that satisfies the following conditions, it
would recognize the stream as a PPM file.

• The identifier of the stream ends with a suffix ”.ppm” or ”.pbm”.

• The stream data begins with a byte sequence ”P2”, ”P3” or ”P6”.

When instance method image#write() is provided with a stream that satisfies the following
condition, it would write image data in PPM format.

• The identifier of the stream ends with a suffix ”.ppm” or ”.pbm”.

42.2 Extension to image Class

This module extends the image class with methods described here.

image#read@ppm(stream:stream:r):reduce

Reads a PPM/PGM image from a stream.

image#write@ppm(stream:stream:w):reduce:[gray]

Writes a PPM/PGM image to a stream.

261

Chapter 43

re Module

The re module provides measures to operate strings with a regular expression. To utilize it,
import the re module using import function.

This module provides three different forms of function that has the same feature as below:

• Module function

• Method of re.pattern class

• Method of string class

For example, a feature to match a string with a regular expression can be described as below:

Using a module function:

m = re.match(’gur[ai]’, str)

Using a method of re.pattern class:

m = re.pattern(’gur[ai]’).match(str)

Using a method of string class:

m = str.match(’gur[ai]’)

The table below shows the features related to regular-expression and functions that provides
them.

Feature Module Function Method of re.pattern Method of string
Match re.match() re.pattern#match() string#match()

Subtraction re.sub() re.pattern#sub() string#sub()

Split re.split() re.pattern#split() string#splitsub()

Scan re.scan() re.pattern#scan() string#scan()

262

43.1 Regular Expression

You can describe a matching pattern using a syntax based on POSIX Extended Regular Ex-
pression.

The syntax uses a back slash character to avoid some characters such as ”(” and ”)” from
being recognized as a meta character. Since a back slash is used as an escaping character in
Gura string as well, you have to write two back slashes to represent a single back slash in a
regular expression. For example, an expression ”sin\(x\)” that matches a string ”sin(x)” is
described as below:

m = str.match(’sin\\(x\\)’)

Using a raw string appended with a prefix ”r”, in which a back slash is parsed as a regular
character, could avoid such complications.

m = str.match(r’sin\(x\)’)

43.2 re.match Class

An instance of re.match class is used as a result value of re.match(), re.pattern#match()
and string#match() to provide matching information.

43.2.1 Property

Property Type R/W Explanation
source string R String that has been matched.
string string R String of the matched part.
begin number R Beginning position of the matched part.
end number R Ending position of the matched part.

43.2.2 Index Access

A re.match instance can be indexed with a number or string value.

The value of number indicates the group index number that starts from zero. The group indexed
by zero is special and represents the whole region of the match. The groups indexed by numbers
greater than zero correspond to matching patterns of grouping.

Below is an example:

str = ’12:34:56’\n"

m = str.match(r’(\d\d):(\d\d):(\d\d)’)\n"

m[0] // returns the whole region of matching: 12:34:56\n"

m[1] // returns the 1st group: 12\n"

m[2] // returns the 2nd group: 34\n"

m[3] // returns the 3rd group: 56\n"

The value of string is used to point out a named capturing group that is described as
”(?<name>group)” in a regular expression.

Below is an example:

263

str = ’12:34:56’\n"

m = str.match(r’(?<hour>\d\d):(?<min>\d\d):(?<sec>\d\d)’)\n"

m[’hour’] // returns the group named ’hour’: 12\n"

m[’min’] // returns the group named ’min’: 34\n"

m[’sec’] // returns the group named ’sec’: 56\n");

43.2.3 Method

re.match#group(index):map

Returns a re.group instance that is positioned by the specified index.

The argument index is a value of number or string.

The value of number indicates the group index number that starts from zero. The group indexed
by zero is special and represents the whole region of the match. The groups indexed by numbers
greater than zero correspond to matching patterns of grouping. Below is an example:

str = ’12:34:56’

m = str.match(r’(\d\d):(\d\d):(\d\d)’)

m.group(0).string // returns the whole region of matching: 12:34:56

m.group(1).string // returns the 1st group: 12

m.group(2).string // returns the 2nd group: 34

m.group(3).string // returns the 3rd group: 56

The value of string is used to point out a named capturing group that is described in a regular
expression as ”(?<name>group)”.

Below is an example:

str = ’12:34:56’

m = str.match(r’(?<hour>\d\d):(?<min>\d\d):(?<sec>\d\d)’)

m.group(’hour’).string // returns the group named ’hour’: 12

m.group(’min’).string // returns the group named ’min’: 34

m.group(’sec’).string // returns the group named ’sec’: 56

re.match#groups() {block?}

Creates an iterator that returns re.group instances.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

264

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

43.3 re.group Class

The re.group instance provides information of capturing groups that are stored in re.match

instance.

43.3.1 Property

Property Type R/W Explanation
string string R String of the group.
begin number R Beginning position of the group.
end number R Ending position of the group.

43.4 re.pattern Class

The re.pattern class is used to describe a pattern of regular expression.

43.4.1 Cast Operation

A function that expects a re.pattern instance in its argument can also take a value of string
below:

• string .. Recognized as a regular expression from which re.pattern instance is created.

Using the above casting feature, you can call a function f(pattern:re.pattern) that expects
a re.pattern instance in its argument as below:

• f(re.pattern(’gur[ai]’)) .. The most explicit way.

• f(’gur[ai]’) .. Implicit casting: from string to re.pattern.

43.4.2 Constructor

In many cases, re.pattern instance may be implicitly created by cast operation when a string
is passed to a function’s argument that expects re.pattern type. If you want to customize the
pattern’s behaviour, such as indicating it to ignore alphabet cases, you can explicitly create the
instance with the constructor described below.

re.pattern(pattern:string):map:[icase,multiline] {block?}

Creates a re.pattern instance from the given pattern string.

Following attributes would customize some traits of the pattern:

• :icase .. Ignores character cases.

265

• :multiline .. Matches ”.” with a line break.

If block is specified, it would be evaluated with a block parameter |pat:re.pattern|, where
pat is the created instance. In this case, the block’s result would become the function’s returned
value.

43.4.3 Method

re.pattern#match(str:string, pos:number => 0, endpos?:number):map {block?}

Applies a pattern matching to the given string and returns a re.match instance if the matching
successes. If not, it would return nil.

The argument pos specifies the starting position for matching process. If omitted, it starts
from the beginning of the string.

The argument endpos specifies the ending position for matching process. If omitted, it would
be processed until the end of the string.

If block is specified, it would be evaluated with a block parameter |m:re.match|, where m

is the created instance. In this case, the block’s result would become the function’s returned
value.

re.pattern#sub(replace, str:string, count?:number):map {block?}

Substitutes strings that matches pattern with the specified replacer.

The argument replace takes a string or function.

If a string is specified, it would be used as a substituting string, in which you can use macros
\0, \1, \2 .. to refer to matched groups.

If a function is specified, it would be called with an argument m:re.match and is expected to
return a string for subsitution.

The argument count specifies the maximum number of substitutions. If omitted, no limit would
be applied.

If block is specified, it would be evaluated with a block parameter |str:string|, where str

is the created instance. In this case, the block’s result would become the function’s returned
value.

re.pattern#split(str:string, count?:number):map {block?}

Creates an iterator that splits the source string with the specified pattern.

The argument count specifies the maximum number for splitting. If omitted, no limit would
be applied.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

266

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

re.pattern#scan(str:string, pos:number => 0, endpos?:number):map {block?}

Creates an iterator that returns strings that match the specified pattern.

The argument pos specifies the starting position for matching process. If omitted, it starts
from the beginning of the string.

The argument endpos specifies the ending position for matching process. If omitted, it would
be processed until the end of the string.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

43.5 Extension to string Class

This module extends the string class with methods described here.

string#match(pattern:re.pattern, pos:number => 0, endpos?:number):map {block?}

Applies a pattern matching to the given string and returns a re.match instance if the matching
successes. If not, it would return nil.

The argument pos specifies the starting position for matching process. If omitted, it starts
from the beginning of the string.

The argument endpos specifies the ending position for matching process. If omitted, it would
be processed until the end of the string.

If block is specified, it would be evaluated with a block parameter |m:re.match|, where m

is the created instance. In this case, the block’s result would become the function’s returned
value.

string#sub(pattern:re.pattern, replace, count?:number):map {block?}

Substitutes strings that matches pattern with the specified replacer.

The argument replace takes a string or function.

267

If a string is specified, it would be used as a substituting string, in which you can use macros
\0, \1, \2 .. to refer to matched groups.

If a function is specified, it would be called with an argument m:re.match and is expected to
return a string for subsitution.

The argument count specifies the maximum number of substitutions. If omitted, no limit would
be applied.

If block is specified, it would be evaluated with a block parameter |str:string|, where str

is the created instance. In this case, the block’s result would become the function’s returned
value.

string#splitreg(pattern:re.pattern, count?:number):map {block?}

Creates an iterator that splits the source string with the specified pattern.

The argument count specifies the maximum number for splitting. If omitted, no limit would
be applied.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

string#scan(pattern:re.pattern, pos:number => 0, endpos?:number):map {block?}

Creates an iterator that returns strings that match the specified pattern.

The argument pos specifies the starting position for matching process. If omitted, it starts
from the beginning of the string.

The argument endpos specifies the ending position for matching process. If omitted, it would
be processed until the end of the string.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

268

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

43.6 Extension to iterable Classes

This module extends the iterable classes, list and iterator, with methods described here.

iterable#grep(pattern:re.pattern):map {block?}

43.7 Module Function

re.match(pattern:re.pattern, str:string, pos:number => 0, endpos?:number):map {block?}

Applies a pattern matching to the given string and returns a re.match instance if the matching
successes. If not, it would return nil.

The argument pos specifies the starting position for matching process. If omitted, it starts
from the beginning of the string.

The argument endpos specifies the ending position for matching process. If omitted, it would
be processed until the end of the string.

If block is specified, it would be evaluated with a block parameter |m:re.match|, where m

is the created instance. In this case, the block’s result would become the function’s returned
value.

re.sub(pattern:re.pattern, replace, str:string, count?:number):map {block?}

Substitutes strings that matches pattern with the specified replacer.

The argument replace takes a string or function.

If a string is specified, it would be used as a substituting string, in which you can use macros
\0, \1, \2 .. to refer to matched groups.

If a function is specified, it would be called with an argument m:re.match and is expected to
return a string for subsitution.

The argument count specifies the maximum number of substitutions. If omitted, no limit would
be applied.

If block is specified, it would be evaluated with a block parameter |str:string|, where str

is the created instance. In this case, the block’s result would become the function’s returned
value.

re.split(pattern:re.pattern, str:string, count?:number):map {block?}

Creates an iterator that splits the source string with the specified pattern.

The argument count specifies the maximum number for splitting. If omitted, no limit would
be applied.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

269

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

re.scan(pattern:re.pattern, str:string, pos:number => 0, endpos?:number):map {block?}

Creates an iterator that returns strings that match the specified pattern.

The argument pos specifies the starting position for matching process. If omitted, it starts
from the beginning of the string.

The argument endpos specifies the ending position for matching process. If omitted, it would
be processed until the end of the string.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

43.8 Thanks

This module uses Oniguruma library which is distributed in the following site:

http://www.geocities.jp/kosako3/oniguruma/index.html

270

Chapter 44

show Module

The show module provides a method to display the content of image instance.

44.1 Extension to image Class

This module extends the image class with a method described here.

image#show(width => 640, height => 480)

Displays the content of image instance in a window.

271

Chapter 45

sdl2 Module

The sdl2 module provices functions of SDL2 library.

45.1 Module Function

sdl2.Init(flags:number):void

Use this function to initialize the SDL library. This must be called before using any other SDL
function.

The Event Handling, File I/O, and Threading subsystems are initialized by default. You must
specifically initialize other subsystems if you use them in your application.

flags may be any of the following OR’d together:

• sdl2.INIT TIMER .. timer subsystem

• sdl2.INIT AUDIO .. audio subsystem

• sdl2.INIT VIDEO .. video subsystem

• sdl2.INIT JOYSTICK .. joystick subsystem

• sdl2.INIT HAPTIC .. haptic (force feedback) subsystem

• sdl2.INIT GAMECONTROLLER .. controller subsystem

• sdl2.INIT EVENTS .. events subsystem

• sdl2.INIT EVERYTHING .. all of the above subsystems

• sdl2.INIT NOPARACHUTE .. compatibility; this flag is ignored

If you want to initialize subsystems separately you would call SDL Init(0) followed by SDL InitSubSystem()

with the desired subsystem flag.

sdl2.InitSubSystem(flags:number):void

Use this function to initialize specific SDL subsystems.

After SDL has been initialized with SDL Init() you may initialize uninitialized subsystems
with SDL InitSubSystem().

These are the flags which may be passed to SDL InitSubSystem() and may be OR’d together
to initialize multiple subsystems simultaneously.

272

• sdl2.INIT TIMER .. timer subsystem

• sdl2.INIT AUDIO .. audio subsystem

• sdl2.INIT VIDEO .. video subsystem

• sdl2.INIT JOYSTICK .. joystick subsystem

• sdl2.INIT HAPTIC .. haptic (force feedback) subsystem

• sdl2.INIT GAMECONTROLLER .. controller subsystem

• sdl2.INIT EVENTS .. events subsystem

• sdl2.INIT EVERYTHING .. all of the above subsystems

• sdl2.INIT NOPARACHUTE .. compatibility; this flag is ignored

If you want to initialize subsystems separately you would call SDL Init(0) followed by SDL InitSubSystem()

with the desired subsystem flag.

sdl2.Quit():void

Use this function to clean up all initialized subsystems. You should call it upon all exit condi-
tions.

You should call this function even if you have already shutdown each initialized subsystem with
SDL QuitSubSystem().

If you start a subsystem using a call to that subsystem’s init function (for example SDL VideoInit())
instead of SDL Init() or SDL InitSubSystem(), then you must use that subsystem’s quit func-
tion (SDL VideoQuit()) to shut it down before calling SDL Quit().

You can use this function with atexit() to ensure that it is run when your application is
shutdown, but it is not wise to do this from a library or other dynamically loaded code.

sdl2.QuitSubSystem(flags:number):void

Use this function to shut down specific SDL subsystems.

These are the flags which may be passed to SDL QuitSubSystem() and may be OR’d together
to quit multiple subsystems simultaneously.

• sdl2.INIT TIMER .. timer subsystem

• sdl2.INIT AUDIO .. audio subsystem

• sdl2.INIT VIDEO .. video subsystem

• sdl2.INIT JOYSTICK .. joystick subsystem

• sdl2.INIT HAPTIC .. haptic (force feedback) subsystem

• sdl2.INIT GAMECONTROLLER .. controller subsystem

• sdl2.INIT EVENTS .. events subsystem

• sdl2.INIT EVERYTHING .. all of the above subsystems

• sdl2.INIT NOPARACHUTE .. compatibility; this flag is ignored

If you want to initialize subsystems separately you would call SDL Init(0) followed by SDL InitSubSystem()

with the desired subsystem flag.

sdl2.SetMainReady():void

273

Use this function to circumvent failure of SDL Init() when not using SDL main() as an entry
point.

This function is defined in SDL main.h, along with the preprocessor rule to redefine main() as
SDL main(). Thus to ensure that your main() function will not be changed it is necessary to
define SDL MAIN HANDLED before including SDL.h.

sdl2.WasInit(flags:number) {block?}

Use this function to return a mask of the specified subsystems which have previously been
initialized.

These are the flags which may be passed to SDL WasInit() and may be OR’d together to query
multiple subsystems simultaneously.

• sdl2.INIT TIMER .. timer subsystem

• sdl2.INIT AUDIO .. audio subsystem

• sdl2.INIT VIDEO .. video subsystem

• sdl2.INIT JOYSTICK .. joystick subsystem

• sdl2.INIT HAPTIC .. haptic (force feedback) subsystem

• sdl2.INIT GAMECONTROLLER .. controller subsystem

• sdl2.INIT EVENTS .. events subsystem

• sdl2.INIT EVERYTHING .. all of the above subsystems

• sdl2.INIT NOPARACHUTE .. compatibility; this flag is ignored

If you want to initialize subsystems separately you would call SDL Init(0) followed by SDL InitSubSystem()

with the desired subsystem flag.

sdl2.AddHintCallback():void

sdl2.ClearHints():void

sdl2.DelhintCallback():void

sdl2.GetHint():void

sdl2.SetHint():void

sdl2.SetHintWithPriority():void

sdl2.ClearError():void

Use this function to clear any previous error message.

sdl2.GetError() {block?}

Use this function to retrieve a message about the last error that occurred.

Returns a message with information about the specific error that occurred, or an empty
string if there hasn’t been an error since the last call to SDL ClearError(). Without calling
SDL ClearError(), the message is only applicable when an SDL function has signaled an error.
You must check the return values of SDL function calls to determine when to appropriately call
SDL GetError().

274

This string is statically allocated and must not be freed by the application.

It is possible for multiple errors to occur before calling SDL GetError(). Only the last error is
returned.

sdl2.SetError():void

sdl2.Log():void

sdl2.LogCritical():void

sdl2.LogDebug():void

sdl2.LogError():void

sdl2.LogGetOutputFunction():void

sdl2.LogGetPriority():void

sdl2.LogInfo():void

sdl2.LogMessage():void

sdl2.LogMessageV():void

sdl2.LogResetPriorities():void

sdl2.LogSetAllPriority():void

sdl2.LogSetOutputFunction():void

sdl2.LogSetPriority():void

sdl2.LogVerbose():void

sdl2.LogWarn():void

sdl2.GetAssertionHandler():void

sdl2.GetAssertionReport():void

sdl2.GetDefaultAssertionHandler():void

sdl2.ResetAssertionReport():void

sdl2.SetAssertionHandler():void

sdl2.TriggerBreakpoint():void

sdl2.assert():void

sdl2.assert paranoid():void

275

sdl2.assert release():void

sdl2.GetRevision() {block?}

sdl2.GetRevisionNumber() {block?}

sdl2.GetVersion() {block?}

sdl2.VERSION() {block?}

sdl2.VERSION ATLEAST(X:number, Y:number, Z:number) {block?}

sdl2.CreateWindow(title:string, x:number, y:number, w:number, h:number, flags:number) {block?}

sdl2.CreateWindowAndRenderer(width:number, height:number, window flags:number) {block?}

sdl2.CreateWindowFrom():void

sdl2.DestroyWindow(window:sdl2.Window):void

sdl2.DisableScreenSaver():void

sdl2.EnableScreenSaver():void

sdl2.GL CreateContext(window:sdl2.Window) {block?}

sdl2.GL DeleteContext(context:sdl2.GLContext):void

sdl2.GL ExtensionSupported(extension:string) {block?}

sdl2.GL GetAttribute(attr:number) {block?}

sdl2.GL GetCurrentContext() {block?}

sdl2.GL GetCurrentWindow() {block?}

sdl2.GL GetDrawableSize(window:sdl2.Window) {block?}

sdl2.GL GetProcAddress():void

sdl2.GL GetSwapInterval() {block?}

sdl2.GL LoadLibrary(path:string):void

sdl2.GL MakeCurrent(window:sdl2.Window, context:sdl2.GLContext):void

sdl2.GL ResetAttributes():void

sdl2.GL SetAttribute(attr:number, value:number):void

sdl2.GL SetSwapInterval(interval:number):void

sdl2.GL SwapWindow(window:sdl2.Window):void

276

sdl2.GL UnloadLibrary():void

sdl2.GetClosestDisplayMode(displayIndex:number, mode:sdl2.DisplayMode) {block?}

sdl2.GetCurrentDisplayMode(displayIndex:number) {block?}

sdl2.GetCurrentVideoDriver() {block?}

sdl2.GetDesktopDisplayMode(displayIndex:number) {block?}

sdl2.GetDisplayBounds(displayIndex:number) {block?}

sdl2.GetDisplayMode(displayIndex:number, modeIndex:number) {block?}

sdl2.GetDisplayName(dipslayIndex:number) {block?}

sdl2.GetNumDisplayModes(displayIndex:number) {block?}

sdl2.GetNumVideoDisplays() {block?}

sdl2.GetNumVideoDrivers() {block?}

sdl2.GetVideoDriver(index:number) {block?}

sdl2.GetWindowBrightness(window:sdl2.Window) {block?}

sdl2.GetWindowData(window:sdl2.Window, name:string):void

sdl2.GetWindowDisplayIndex(window:sdl2.Window) {block?}

sdl2.GetWindowDisplayMode(window:sdl2.Window, mode:sdl2.DisplayMode):void

sdl2.GetWindowFlags(window:sdl2.Window) {block?}

sdl2.GetWindowFromID(id:number) {block?}

sdl2.GetWindowGammaRamp(window:sdl2.Window) {block?}

sdl2.GetWindowGrab(window:sdl2.Window) {block?}

sdl2.GetWindowID(window:sdl2.Window) {block?}

sdl2.GetWindowMaximumSize(window:sdl2.Window) {block?}

sdl2.GetWindowMinimumSize(window:sdl2.Window) {block?}

sdl2.GetWindowPixelFormat(window:sdl2.Window) {block?}

sdl2.GetWindowPosition(window:sdl2.Window) {block?}

sdl2.GetWindowSize(window:sdl2.Window) {block?}

sdl2.GetWindowSurface(window:sdl2.Window) {block?}

277

sdl2.GetWindowTitle(window:sdl2.Window) {block?}

sdl2.GetWindowWMInfo(window:sdl2.Window):void

sdl2.HideWindow(window:sdl2.Window):void

sdl2.IsScreenSaverEnabled() {block?}

sdl2.MaximizeWindow(window:sdl2.Window):void

sdl2.MinimizeWindow(window:sdl2.Window):void

sdl2.RaiseWindow(window:sdl2.Window):void

sdl2.RestoreWindow(window:sdl2.Window):void

sdl2.SetWindowBordered(window:sdl2.Window, bordered:boolean):void

sdl2.SetWindowBrightness(window:sdl2.Window, brightness:number):void

sdl2.SetWindowData(window:sdl2.Window, name:string):void

sdl2.SetWindowDisplayMode(window:sdl2.Window, mode:sdl2.DisplayMode):void

sdl2.SetWindowFullscreen(window:sdl2.Window, flags:number):void

sdl2.SetWindowGammaRamp(window:sdl2.Window, red[]:number, green[]:number, blue[]:number):void

sdl2.SetWindowGrab(window:sdl2.Window, grabbed:boolean):void

sdl2.SetWindowHitTest(window:sdl2.Window):void

sdl2.SetWindowIcon(window:sdl2.Window, icon:sdl2.Surface):void

sdl2.SetWindowMaximumSize(window:sdl2.Window, max w:number, max h:number):void

sdl2.SetWindowMinimumSize(window:sdl2.Window, min w:number, min h:number):void

sdl2.SetWindowPosition(window:sdl2.Window, x:number, y:number):void

sdl2.SetWindowSize(window:sdl2.Window, w:number, h:number):void

sdl2.SetWindowTitle(window:sdl2.Window, title:string):void

sdl2.ShowMessageBox():void

sdl2.ShowSimpleMessageBox(flags:number, title:string, message:string, window:sdl2.Window):void

sdl2.ShowWindow(window:sdl2.Window):void

sdl2.UpdateWindowSurface(window:sdl2.Window):void

sdl2.UpdateWindowSurfaceRects(window:sdl2.Window, rects[]:sdl2.Rect):void

278

sdl2.VideoInit(driver name:string):void

sdl2.VideoQuit():void

sdl2.CreateRenderer(window:sdl2.Window, index:number, flags:number) {block?}

sdl2.CreateSoftwareRenderer(surface:sdl2.Surface) {block?}

sdl2.CreateTexture(renderer:sdl2.Renderer, format:number, access:number, w:number, h:number) {block?}

sdl2.CreateTextureFromSurface(renderer:sdl2.Renderer, surface:sdl2.Surface) {block?}

sdl2.DestroyRenderer(renderer:sdl2.Renderer):void

sdl2.DestroyTexture(texture:sdl2.Texture):void

sdl2.GL BindTexture(texture:sdl2.Texture) {block?}

sdl2.GL UnbindTexture(texture:sdl2.Texture):void

sdl2.GetNumRenderDrivers() {block?}

sdl2.GetRenderDrawBlendMode(renderer:sdl2.Renderer) {block?}

sdl2.GetRenderDrawColor(renderer:sdl2.Renderer) {block?}

sdl2.GetRenderDriverInfo(index:number) {block?}

sdl2.GetRenderTarget(renderer:sdl2.Renderer) {block?}

sdl2.GetRenderer(window:sdl2.Window) {block?}

sdl2.GetRendererInfo(renderer:sdl2.Renderer) {block?}

sdl2.GetRenderOutputSize(renderer:sdl2.Renderer) {block?}

sdl2.GetTextureAlphaMod(texture:sdl2.Texture) {block?}

sdl2.GetTextureBlendMode(texture:sdl2.Texture) {block?}

sdl2.GetTextureColorMod(texture:sdl2.Texture) {block?}

sdl2.LockTexture(texture:sdl2.Texture, rect:sdl2.Rect):void

sdl2.QueryTexture(texture:sdl2.Texture) {block?}

sdl2.RenderClear(renderer:sdl2.Renderer):void

sdl2.RenderCopy(renderer:sdl2.Renderer, texture:sdl2.Texture, srcrect:sdl2.Rect:nil, dstrect:sdl2.Rect:nil):void

sdl2.RenderCopyEx(renderer:sdl2.Renderer, texture:sdl2.Texture, srcrect:sdl2.Rect:nil, dstrect:sdl2.Rect:nil, angle:number, center:sdl2.Point:nil, flip:number):void

sdl2.RenderDrawLine(renderer:sdl2.Renderer, x1:number, y1:number, x2:number, y2:number):void

279

sdl2.RenderDrawLines(renderer:sdl2.Renderer, points[]:sdl2.Point):void

sdl2.RenderDrawPoint(renderer:sdl2.Renderer, x:number, y:number):void

sdl2.RenderDrawPoints(renderer:sdl2.Renderer, points[]:sdl2.Point):void

sdl2.RenderDrawRect(renderer:sdl2.Renderer, rect:sdl2.Rect:nil):void

sdl2.RenderDrawRects(renderer:sdl2.Renderer, rects[]:sdl2.Rect):void

sdl2.RenderFillRect(renderer:sdl2.Renderer, rect:sdl2.Rect:nil):void

sdl2.RenderFillRects(renderer:sdl2.Renderer, rects[]:sdl2.Rect):void

sdl2.RenderGetClipRect(renderer:sdl2.Renderer) {block?}

sdl2.RenderGetLogicalSize(renderer:sdl2.Renderer) {block?}

sdl2.RenderGetScale(renderer:sdl2.Renderer) {block?}

sdl2.RenderGetViewport(renderer:sdl2.Renderer) {block?}

sdl2.RenderIsClipEnabled(renderer:sdl2.Renderer)

sdl2.RenderPresent(renderer:sdl2.Renderer):void

sdl2.RenderReadPixels(renderer:sdl2.Renderer, rect:sdl2.Rect:nil, format:symbol) {block?}

sdl2.RenderSetClipRect(renderer:sdl2.Renderer, rect:sdl2.Rect:nil):void

sdl2.RenderSetLogicalSize(renderer:sdl2.Renderer, w:number, h:number):void

sdl2.RenderSetScale(renderer:sdl2.Renderer, scaleX:number, scaleY:number):void

sdl2.RenderSetViewport(renderer:sdl2.Renderer, rect:sdl2.Rect:nil):void

sdl2.RenderTargetSupported(renderer:sdl2.Renderer) {block?}

sdl2.SetRenderDrawBlendMode(renderer:sdl2.Renderer, blendMode:number):void

sdl2.SetRenderDrawColor(renderer:sdl2.Renderer, r:number, g:number, b:number, a:number):void

sdl2.SetRenderTarget(renderer:sdl2.Renderer, texture:sdl2.Texture:nil):void

sdl2.SetTextureAlphaMod(texture:sdl2.Texture, alpha:number):void

sdl2.SetTextureBlendMode(texture:sdl2.Texture, blendMode:number):void

sdl2.SetTextureColorMod(texture:sdl2.Texture, r:number, g:number, b:number):void

sdl2.UnlockTexture(texture:sdl2.Texture):void

sdl2.UpdateTexture(texture:sdl2.Texture, rect:sdl2.Rect:nil, pitch:number):void

280

sdl2.UpdateYUVTexture():void

sdl2.AllocFormat(pixel format:number) {block?}

sdl2.AllocPalette(ncolors:number) {block?}

sdl2.CalculateGammaRamp(gamma:number) {block?}

sdl2.FreeFormat(format:sdl2.PixelFormat):void

sdl2.FreePalette(palette:sdl2.Palette):void

sdl2.GetPixelFormatName(format:number) {block?}

sdl2.GetRGB(pixel:number, format:sdl2.PixelFormat) {block?}

sdl2.GetRGBA(pixel:number, format:sdl2.PixelFormat) {block?}

sdl2.MapRGB(format:sdl2.PixelFormat, r:number, g:number, b:number) {block?}

sdl2.MapRGBA(format:sdl2.PixelFormat, r:number, g:number, b:number, a:number) {block?}

sdl2.MasksToPixelFormatEnum(bpp:number, Rmask:number, Gmask:number, Bmask:number, Amask:number) {block?}

sdl2.PixelFormatEnumToMasks(format:number) {block?}

sdl2.SetPaletteColors(palette:sdl2.Palette, colors[]:sdl2.Color, firstcolor:number, ncolors:number):void

sdl2.SetPixelFormatPalette(format:sdl2.PixelFormat, palette:sdl2.Palette):void

sdl2.EnclosePoints(points[]:sdl2.Point, clip:sdl2.Rect) {block?}

sdl2.HasIntersection(A:sdl2.Rect, B:sdl2.Rect) {block?}

sdl2.IntersectRect(A:sdl2.Rect, B:sdl2.Rect) {block?}

sdl2.IntersectRectAndLine(rect:sdl2.Rect, X1:number, Y1:number, X2:number, Y2:number):void

sdl2.PointInRect(p:sdl2.Point, r:sdl2.Rect):void

sdl2.RectEmpty(r:sdl2.Rect) {block?}

sdl2.RectEquals(a:sdl2.Rect, b:sdl2.Rect) {block?}

sdl2.UnionRect(A:sdl2.Rect, B:sdl2.Rect) {block?}

sdl2.BlitScaled(src:sdl2.Surface, srcrect:sdl2.Rect:nil, dst:sdl2.Surface, dstrect:sdl2.Rect:nil):void

sdl2.BlitSurface(src:sdl2.Surface, srcrect:sdl2.Rect:nil, dst:sdl2.Surface, dstrect:sdl2.Rect:nil):void

sdl2.ConvertPixels(width:number, height:number, src format:number, dst format:number):void

sdl2.ConvertSurface(src:sdl2.Surface, fmt:sdl2.PixelFormat, flags:number) {block?}

281

sdl2.ConvertSurfaceFormat(src:sdl2.Surface, pixel format:number, flags:number) {block?}

sdl2.CreateRGBSurface(flags:number, width:number, height:number, depth:number, Rmask:number, Gmask:number, Bmask:number, Amask:number) {block?}

sdl2.CreateRGBSurfaceFrom(pixels:array:nomap, width:number, height:number, depth:number, pitch:number, Rmask:number, Gmask:number, Bmask:number, Amask:number) {block?}

sdl2.CreateRGBSurfaceFromImage(image:image) {block?}

sdl2.FillRect(dst:sdl2.Surface, rect:sdl2.Rect:nil, color:number):void

sdl2.FillRects(dst:sdl2.Surface, rects[]:sdl2.Rect, color:number):void

sdl2.FreeSurface(surface:sdl2.Surface):void

sdl2.GetClipRect(surface:sdl2.Surface) {block?}

sdl2.GetColorKey(surface:sdl2.Surface) {block?}

sdl2.GetSurfaceAlphaMod(surface:sdl2.Surface) {block?}

sdl2.GetSurfaceBlendMode(surface:sdl2.Surface) {block?}

sdl2.GetSurfaceColorMod(surface:sdl2.Surface) {block?}

sdl2.LoadBMP(src:stream) {block?}

sdl2.LoadBMP RW():void

sdl2.LockSurface(surface:sdl2.Surface):void

sdl2.LowerBlit(src:sdl2.Surface, srcrect:sdl2.Rect:nil, dst:sdl2.Surface, dstrect:sdl2.Rect:nil):void

sdl2.LowerBlitScaled(src:sdl2.Surface, srcrect:sdl2.Rect:nil, dst:sdl2.Surface, dstrect:sdl2.Rect:nil):void

sdl2.MUSTLOCK(surface:sdl2.Surface) {block?}

sdl2.SaveBMP(surface:sdl2.Surface, dst:stream) {block?}

sdl2.SaveBMP RW():void

sdl2.SetClipRect(surface:sdl2.Surface, rect:sdl2.Rect) {block?}

sdl2.SetColorKey(surface:sdl2.Surface, flag:number, key:number):void

sdl2.SetSurfaceAlphaMod(surface:sdl2.Surface, alpha:number):void

sdl2.SetSurfaceBlendMode(surface:sdl2.Surface, blendMode:number):void

sdl2.SetSurfaceColorMod(surface:sdl2.Surface, r:number, g:number, b:number):void

sdl2.SetSurfacePalette(surface:sdl2.Surface, palette:sdl2.Palette):void

sdl2.SetSurfaceRLE(surface:sdl2.Surface, flag:number):void

282

sdl2.UnlockSurface(surface:sdl2.Surface):void

sdl2.GetClipboardText() {block?}

sdl2.HasClipboardText() {block?}

sdl2.SetClipboardText(text:string):void

sdl2.AddEventWatch():void

sdl2.DelEventWatch():void

sdl2.EventState(type:number, state:number) {block?}

sdl2.FilterEvents():void

sdl2.FlushEvent(type:number):void

sdl2.FlushEvents(minType:number, maxType:number):void

sdl2.GetEventFilter():void

sdl2.GetNumTouchDevices() {block?}

sdl2.GetNumTouchFingers(touchId:number) {block?}

sdl2.GetTouchDevice(index:number) {block?}

sdl2.GetTouchFinger(touchId:number, index:number) {block?}

sdl2.HasEvent(type:number) {block?}

sdl2.HasEvents(minType:number, maxType:number) {block?}

sdl2.LoadDollarTemplates(touchId:number, src:stream) {block?}

sdl2.AddEvents(events[]:sdl2.Event) {block?}

sdl2.PeekEvents(numevents:number, minType:number, maxType:number) {block?}

sdl2.GetEvents(numevents:number, minType:number, maxType:number) {block?}

sdl2.PollEvent() {block?}

sdl2.PumpEvents():void

sdl2.PushEvent(event:sdl2.Event) {block?}

sdl2.QuitRequested() {block?}

sdl2.RecordGesture(touchId:number) {block?}

sdl2.RegisterEvents(numevents:number) {block?}

283

sdl2.SaveAllDollarTemplates(dst:stream) {block?}

sdl2.SaveDollarTemplate(gestureId:number, dst:stream):void

sdl2.SetEventFilter():void

sdl2.WaitEvent() {block?}

sdl2.WaitEventTimeout(timeout:number) {block?}

sdl2.CheckKeyboardState(scancode:number) {block?}

sdl2.GetKeyFromName(name:string) {block?}

sdl2.GetKeyFromScancode(scancode:number) {block?}

sdl2.GetKeyName(key:number) {block?}

sdl2.GetKeyboardFocus() {block?}

sdl2.GetKeyboardState() {block?}

sdl2.GetModState() {block?}

sdl2.GetScancodeFromKey(key:number) {block?}

sdl2.GetScancodeFromName(name:string) {block?}

sdl2.GetScancodeName(scancode:number) {block?}

sdl2.HasScreenKeyboardSupport() {block?}

sdl2.IsScreenKeyboardShown(window:sdl2.Window) {block?}

sdl2.IsTextInputActive() {block?}

sdl2.SetModState(modstate:number):void

sdl2.SetTextInputRect(rect:sdl2.Rect):void

sdl2.StartTextInput():void

sdl2.StopTextInput():void

sdl2.CaptureMouse(enalbed:boolean):void

sdl2.CreateColorCursor(surface:sdl2.Surface, hot x:number, hot y:number) {block?}

sdl2.CreateCursor(data:array@uint8:nomap, mask:array@uint8:nomap, w:number, h:number, hot x:number, hot y:number) {block?}

sdl2.CreateSystemCursor(id:number) {block?}

sdl2.FreeCursor(cursor:sdl2.Cursor):void

284

sdl2.GetCursor() {block?}

sdl2.GetDefaultCursor() {block?}

sdl2.GetGlobalMouseState():void

sdl2.GetMouseFocus() {block?}

sdl2.GetMouseState() {block?}

sdl2.GetRelativeMouseMode() {block?}

sdl2.GetRelativeMouseState() {block?}

sdl2.SetCursor(cursor:sdl2.Cursor):void

sdl2.SetRelativeMouseMode(enabled:boolean):void

sdl2.ShowCursor(toggle:number):void

sdl2.WarpMouseGlobal(x:number, y:number):void

sdl2.WarpMouseInWindow(window:sdl2.Window, x:number, y:number):void

sdl2.JoystickClose(joystick:sdl2.Joystick):void

sdl2.JoystickEventState(state:number) {block?}

sdl2.JoystickGetAttached(joystick:sdl2.Joystick) {block?}

sdl2.JoystickGetAxis(joystick:sdl2.Joystick, axis:number) {block?}

sdl2.JoystickGetBall(joystick:sdl2.Joystick, ball:number) {block?}

sdl2.JoystickGetButton(joystick:sdl2.Joystick, button:number) {block?}

sdl2.JoystickGetDeviceGUID(device index:number) {block?}

sdl2.JoystickGetGUID(joystick:sdl2.Joystick) {block?}

sdl2.JoystickGetGUIDFromString(pchGUID:string) {block?}

sdl2.JoystickGetGUIDString(guid:sdl2.JoystickGUID) {block?}

sdl2.JoystickGetHat(joystick:sdl2.Joystick, hat:number) {block?}

sdl2.JoystickInstanceID(joystick:sdl2.Joystick) {block?}

sdl2.JoystickName(joystick:sdl2.Joystick) {block?}

sdl2.JoystickNameForIndex(device index:number) {block?}

sdl2.JoystickNumAxes(joystick:sdl2.Joystick) {block?}

285

sdl2.JoystickNumBalls(joystick:sdl2.Joystick) {block?}

sdl2.JoystickNumButtons(joystick:sdl2.Joystick) {block?}

sdl2.JoystickNumHats(joystick:sdl2.Joystick) {block?}

sdl2.JoystickOpen(device index:number) {block?}

sdl2.JoystickUpdate():void

sdl2.NumJoysticks() {block?}

sdl2.GameControllerAddMapping(mappingString:string) {block?}

sdl2.GameControllerAddMappingsFromFile(file:stream) {block?}

sdl2.GameControllerAddMappingsFromRW():void

sdl2.GameControllerClose(gamecontroller:sdl2.GameController):void

sdl2.GameControllerEventState(state:number) {block?}

sdl2.GameControllerGetAttached(gamecontroller:sdl2.GameController) {block?}

sdl2.GameControllerGetAxis(gamecontroller:sdl2.GameController, axis:number) {block?}

sdl2.GameControllerGetAxisFromString(pchString:string) {block?}

sdl2.GameControllerGetBindForAxis(gamecontroller:sdl2.GameController, axis:number) {block?}

sdl2.GameControllerGetBindForButton(gamecontroller:sdl2.GameController, button:number) {block?}

sdl2.GameControllerGetButton(gamecontroller:sdl2.GameController, button:number) {block?}

sdl2.GameControllerGetButtonFromString(pchString:string) {block?}

sdl2.GameControllerGetJoystick(gamecontroller:sdl2.GameController) {block?}

sdl2.GameControllerGetStringForAxis(axis:number) {block?}

sdl2.GameControllerGetStringForButton(button:number) {block?}

sdl2.GameControllerMapping(gamecontroller:sdl2.GameController) {block?}

sdl2.GameControllerMappingForGUID(guid:sdl2.JoystickGUID) {block?}

sdl2.GameControllerName(gamecontroller:sdl2.GameController) {block?}

sdl2.GameControllerNameForIndex(joystick index:number) {block?}

sdl2.GameControllerOpen(joystick index:number) {block?}

sdl2.GameControllerUpdate():void

286

sdl2.IsGameController(joystick index:number) {block?}

sdl2.HapticClose(haptic:sdl2.Haptic):void

sdl2.HapticDestroyEffect(haptic:sdl2.Haptic, effect:number):void

sdl2.HapticEffectSupported(haptic:sdl2.Haptic, effect:sdl2.HapticEffect) {block?}

sdl2.HapticGetEffectStatus(haptic:sdl2.Haptic, effect:number) {block?}

sdl2.HapticIndex(haptic:sdl2.Haptic) {block?}

sdl2.HapticName(device index:number) {block?}

sdl2.HapticNewEffect(haptic:sdl2.Haptic, effect:sdl2.HapticEffect) {block?}

sdl2.HapticNumAxes(haptic:sdl2.Haptic) {block?}

sdl2.HapticNumEffects(haptic:sdl2.Haptic) {block?}

sdl2.HapticNumEffectsPlaying(haptic:sdl2.Haptic) {block?}

sdl2.HapticOpen(device index:number) {block?}

sdl2.HapticOpenFromJoystick(joystick:sdl2.Joystick) {block?}

sdl2.HapticOpenFromMouse() {block?}

sdl2.HapticOpened(device index:number) {block?}

sdl2.HapticPause(haptic:sdl2.Haptic):void

sdl2.HapticQuery(haptic:sdl2.Haptic) {block?}

sdl2.HapticRumbleInit(haptic:sdl2.Haptic):void

sdl2.HapticRumblePlay(haptic:sdl2.Haptic, strength:number, length:number):void

sdl2.HapticRumbleStop(haptic:sdl2.Haptic):void

sdl2.HapticRumbleSupported(haptic:sdl2.Haptic) {block?}

sdl2.HapticRunEffect(haptic:sdl2.Haptic, effect:number, iterations:number):void

sdl2.HapticSetAutocenter(haptic:sdl2.Haptic, autocenter:number):void

sdl2.HapticSetGain(haptic:sdl2.Haptic, gain:number):void

sdl2.HapticStopAll(haptic:sdl2.Haptic):void

sdl2.HapticStopEffect(haptic:sdl2.Haptic, effect:number):void

sdl2.HapticUnpause(haptic:sdl2.Haptic):void

287

sdl2.HapticUpdateEffect(haptic:sdl2.Haptic, effect:number, data:sdl2.HapticEffect):void

sdl2.JoystickIsHaptic(joystick:sdl2.Joystick) {block?}

sdl2.MouseIsHaptic() {block?}

sdl2.NumHaptics() {block?}

sdl2.AudioInit(driver name:string):void

sdl2.AudioQuit():void

sdl2.BuildAudioCVT(cvt:sdl2.AudioCVT, src format:number, src channels:number, src rate:number, dst format:number, dst channels:number, dst rate:number) {block?}

sdl2.ClearQueuedAudio(dev:number):void

sdl2.CloseAudio():void

sdl2.CloseAudioDevice(dev:number):void

sdl2.ConvertAudio(cvt:sdl2.AudioCVT):void

sdl2.FreeWAV(wav:sdl2.Wav):void

sdl2.GetAudioDeviceName(index:number, iscapture:number) {block?}

sdl2.GetAudioDeviceStatus(dev:number) {block?}

sdl2.GetAudioDriver(index:number) {block?}

sdl2.GetAudioStatus() {block?}

sdl2.GetCurrentAudioDriver() {block?}

sdl2.GetNumAudioDevices(iscapture:number) {block?}

sdl2.GetNumAudioDrivers() {block?}

sdl2.GetQueuedAudioSize(dev:number):void

sdl2.LoadWAV(file:stream) {block?}

sdl2.LoadWAV RW():void

sdl2.LockAudio():void

sdl2.LockAudioDevice(dev:number):void

sdl2.MixAudio(volume:number):void

sdl2.MixAudioFormat(format:number, volume:number):void

sdl2.OpenAudio(desired:sdl2.AudioSpec) {block?}

288

sdl2.OpenAudioDevice(device:string, iscapture:number, desired:sdl2.AudioSpec, allowed changes:number):void

sdl2.PauseAudio(pause on:number):void

sdl2.PauseAudioDevice(dev:number, pause on:number):void

sdl2.QueueAudio(dev:number):void

sdl2.UnlockAudio():void

sdl2.UnlockAudioDevice(dev:number):void

sdl2.AUDIO BITSIZE(x:number) {block?}

sdl2.AUDIO ISFLOAT(x:number) {block?}

sdl2.AUDIO ISBIGENDIAN(x:number) {block?}

sdl2.AUDIO ISSIGNED(x:number) {block?}

sdl2.AUDIO ISINT(x:number) {block?}

sdl2.AUDIO ISLITTLEENDIAN(x:number) {block?}

sdl2.AUDIO ISUNSIGNED(x:number) {block?}

sdl2.CreateThread():void

sdl2.DetachThread():void

sdl2.GetThreadID():void

sdl2.GetThreadName():void

sdl2.GetThreadPriority():void

sdl2.TLSCreate():void

sdl2.TLSGet():void

sdl2.TLSSet():void

sdl2.ThreadID():void

sdl2.WaitThread():void

sdl2.CondBroadcast():void

sdl2.CondSignal():void

sdl2.CondWait():void

sdl2.CondWaitTimeout():void

289

sdl2.CreateCond():void

sdl2.CreateMutex():void

sdl2.CreateSemaphore():void

sdl2.DestroyCond():void

sdl2.DestroyMutex():void

sdl2.DestroySemaphore():void

sdl2.LockMutex():void

sdl2.SemPost():void

sdl2.SemTryWait():void

sdl2.SemValue():void

sdl2.SemWait():void

sdl2.SemWaitTimeout():void

sdl2.TryLockMutex():void

sdl2.UnlockMutex():void

sdl2.AtomicAdd():void

sdl2.AtomicCAS():void

sdl2.AtomicCASPtr():void

sdl2.AtomicDecRef():void

sdl2.AtomicGet():void

sdl2.AtomicGetPtr():void

sdl2.AtomicIncRef():void

sdl2.AtomicLock():void

sdl2.AtomicSet():void

sdl2.AtomicSetPtr():void

sdl2.AtomicTryLock():void

sdl2.AtomicUnlock():void

sdl2.CompilerBarrier():void

290

sdl2.AddTimer(interval:number):void

sdl2.Delay(ms:number):void

sdl2.GetPerformanceCounter() {block?}

sdl2.GetPerformanceFrequency() {block?}

sdl2.GetTicks() {block?}

sdl2.RemoveTimer(id:number) {block?}

sdl2.TICKS PASSED(A:number, B:number) {block?}

sdl2.GetBasePath():void

sdl2.GetPrefPath(org:string, app:string):void

sdl2.AllocRW():void

sdl2.FreeRW():void

sdl2.RWFromConstMem():void

sdl2.RWFromFP():void

sdl2.RWFromFile():void

sdl2.RWFromMem():void

sdl2.RWclose():void

sdl2.RWread():void

sdl2.RWseek():void

sdl2.RWtell():void

sdl2.RWwrite():void

sdl2.ReadBE16():void

sdl2.ReadBE32():void

sdl2.ReadBE64():void

sdl2.ReadLE16():void

sdl2.ReadLE32():void

sdl2.ReadLE64():void

sdl2.WriteBE16():void

291

sdl2.WriteBE32():void

sdl2.WriteBE64():void

sdl2.WriteLE16():void

sdl2.WriteLE32():void

sdl2.WriteLE64():void

sdl2.GetPlatform() {block?}

sdl2.GetCPUCacheLineSize() {block?}

sdl2.GetCPUCount() {block?}

sdl2.GetSystemRAM() {block?}

sdl2.Has3DNow() {block?}

sdl2.HasAVX() {block?}

sdl2.HasAVX2():void

sdl2.HasAltiVec() {block?}

sdl2.HasMMX() {block?}

sdl2.HasRDTSC() {block?}

sdl2.HasSSE() {block?}

sdl2.HasSSE2() {block?}

sdl2.HasSSE3() {block?}

sdl2.HasSSE41() {block?}

sdl2.HasSSE42() {block?}

sdl2.Swap16():void

sdl2.Swap32():void

sdl2.Swap64():void

sdl2.SwapBE16():void

sdl2.SwapBE32():void

sdl2.SwapBE64():void

sdl2.SwapFloat():void

292

sdl2.SwapFloatBE():void

sdl2.SwapFloatLE():void

sdl2.SwapLE16():void

sdl2.SwapLE32():void

sdl2.SwapLE64():void

sdl2.MostSignificantBitIndex32(x:number):void

sdl2.GetPowerInfo() {block?}

sdl2.AndroidGetActivity():void

sdl2.AndroidGetExternalStoragePath():void

sdl2.AndroidGetExternalStorageState():void

sdl2.AndroidGetInternalStoragePath():void

sdl2.AndroidGetJNIEnv():void

sdl2.acos(x:number) {block?}

293

294

45.2 sdl2.Window Class

45.3 sdl2.Renderer Class

45.4 sdl2.Texture Class

45.5 sdl2.Event Class

45.6 sdl2.Point Class

45.7 sdl2.Rect Class

45.8 sdl2.Color Class

45.9 sdl2.Palette Class

45.10 sdl2.PixelFormat Class

45.11 sdl2.Keysym Class

45.12 sdl2.Cursor Class

45.13 sdl2.Joystick Class

45.14 sdl2.JoystickGUID Class

45.15 sdl2.GameController Class

45.16 sdl2.GameControllerButtonBind Class

45.17 sdl2.AudioCVT Class

45.18 sdl2.AudioSpec Class

45.19 sdl2.Wav Class

45.20 sdl2.RendererInfo Class

45.21 sdl2.DisplayMode Class

45.22 sdl2.GLContext Class

45.23 sdl2.HapticEffect Class

45.24 sdl2.Surface Class

45.25 sdl2.Finger Class

45.26 Thanks

This module uses SDL2 library which is distributed in the following site:

295

http://www.libsdl.org/

296

Chapter 46

sqlite3 Module

The sqlite3 module provides measures to access SQLite3 database. To utilize it, import the
sqlite3 module using import function.

46.1 sqlite3.db Class

46.1.1 Constructor

sqlite3.db(filename:string) {block?}

Opens an sqlite3 database file and returns a connection handle with the database.

If block is specified, it would be evaluated with a block parameter |db:sqlite3|, where db

is the created instance. In this case, the block’s result would become the function’s returned
value. The connection handle will be automatically closed when the block finishes.

46.1.2 Method

sqlite3.db#close()

Shuts down the connection with an sqlite3 server.

sqlite3.db#exec(sql:string):map

Executes an SQL statement and creates an list that has list instances containing queried
result as its elements.

sqlite3.db#getcolnames(sql:string):map {block?}

sqlite3.db#query(sql:string):map {block?}

Executes an SQL statement and creates an iterator that returns list instances containing
queried result as its elements.

You should use sqlite3.db#query() instead of sqlite3.db#exec() when it’s likely that you
get a large size of data as the result.

sqlite3.db#transaction() {block}

Executes the block within a transaction. The process is like following:

1. Executes a sqlit3 command ’BEGIN TRANSACTION’.

297

2. Executes code in the block.

3. Executes a sqlite3 command ’END TRANSACTION’.

46.2 Thanks

This module uses SQlite3 library which is distributed in the following site:

http://www.sqlite.org/index.html

298

Chapter 47

sys Module

The sys module provides system-related information. This is a built-in module, so you can use
it without being imported.

47.1 Module Variable

• sys.argv

• sys.path

• sys.maindir

• sys.version

• sys.banner

• sys.timestamp

• sys.build

• sys.platform

• sys.ps1

• sys.ps2

• sys.langcode

• sys.executable

• sys.incdir

• sys.libdir

• sys.datadir

• sys.moddir

• sys.localdir

• sys.appdir

• sys.cfgdir

• sys.workdir

299

47.2 Module Function

sys.echo(flag:boolean)

Enables or disables echo-back functionality according to flag.

sys.exit(status?:number)

Terminates the program with a specified status number.

sys.interactive()

Enters to interactive mode.

sys.required version(major:number, minor:number, patch:number)

Raises an error if the running interpreter doesn’t satisfy the required version.

300

Chapter 48

tar Module

The tar module provides measures to read/write TAR files. To utilize it, import the tar

module using import function.

48.1 tar.reader Class

48.1.1 Function To Create Instance

tar.reader(stream:stream:r, compression?:symbol) {block?}

Reads a tar file from stream and returns a tar.reader instance that is to be used to read
contents from the archive.

The argument compression specifies the compression format of the tar file and takes one of
the following symbols:

• ‘auto .. determins the format from a suffix name of the stream.

• ‘gzip .. gzip format

• ‘bzip2 .. bzip2 format

48.1.2 Method

tar.reader#entries() {block?}

Creates an iterator that returns stream instances for each entry in the tar file.

48.2 tar.writer Class

48.2.1 Function To Create Instance

tar.writer(stream:stream:w, compression?:symbol) {block?}

Creates a tar file on stream and returns a tar.writer instance that is to be used to write
contents to the archive.

The argument compression specifies the compression format of the tar file and takes one of
the following symbols:

301

• ‘auto .. determins the format from a suffix name of the stream.

• ‘gzip .. gzip format

• ‘bzip2 .. bzip2 format

48.2.2 Method

tar.writer#add(stream:stream:r, filename?:string):map:reduce

Adds an entry to the tar archive with a content from stream and a name of filename.

If the argument filename is omitted, an identifier associated with the stream would be used
as the entry name.

tar.writer#close():reduce

Flushes all the unfinished writing processes and invalidates the tar.writer instance.

48.3 Thanks

This module uses zlib and bzip2 library which are distributed in the following sites:

• http://zlib.net/

• http://www.bzip.org/

302

Chapter 49

tiff Module

The tiff module provides measures to read/write image data in TIFF format. To utilize it,
import the tiff module using import function.

Below is an example to read a TIFF file:

import(tiff)

img = image(’foo.tiff’)

49.1 Exntension to Function’s Capability

This module extends the capability of function image() and instance method image#write()

so that they can read/write TIFF files.

When function image() is provided with a stream that satisfies the following conditions, it
would recognize the stream as a TIFF file.

• The identifier of the stream ends with a suffix ”.tif” or ”.tiff”.

When instance method image#write() is provided with a stream that satisfies the following
condition, it would write image data in TIFF format.

• The identifier of the stream ends with a suffix ”.tif” or ”.tiff”.

49.2 Extension to image Class

This module extends the image class with methods described here.

image#read@tiff(stream:stream:r):reduce

Reads a TIFF image from a stream.

49.3 Thanks

This module uses libtiff which is distributed in the following site:

http://www.libtiff.org/

303

Chapter 50

tokenizer Module

The tokenizer module ...

50.1 Module Function

304

Chapter 51

units Module

The units module provides functions to convert physical units into another.

51.1 Module Function

units.inch$mm(inch:number):map

Converts inch to mm.

units.mm$inch(mm:number):map

Converts mm to inch.

units.mm$pt(mm:number):map

Converts mm to pt.

units.pt$mm(pt:number):map

Converts pt to mm.

305

Chapter 52

uuid Module

The uuid module provides functions to generate UUIDs. To utilize it, import the uuid module
using import function.

52.1 Module Function

uuid.generate():[upper]

Generates a Universal Unique Identifier (UUID). In default, results are output in lower-case
characters. Specifying :upper would generates it in upper-case characters.

306

Chapter 53

wav Module

53.1 Module Function

53.2 Extension to audio Class

This module extends the audio class with methods described here.

audio#read@wav(stream:stream:r):reduce

Reads WAV audio from a stream.

audio#write@wav(stream:stream:w):reduce

Writes WAV audio to a stream.

307

Chapter 54

wx Module

The wx module provides functions and methods of wxWidgets library.

54.1 Module Function

54.2 Thanks

This module uses wxWidgets library which is distributed in the following site:

http://www.wxwidgets.org/

308

Chapter 55

xml Module

The xml module provides measures to parse or compose XML documents.

There are two ways to parse an XML document as follows.

One is to create an xml.document instance from a stream that contains all the XML elements
with a tree structure. This is an easy way to parse an XML document but consumes much
memory. Below is an example to read an XML file test.xml:

doc = xml.document(’test.xml’)

// doc contains all the information of XML document

Another one is to create a class inherited xml.parser and implements event handlers that
respond to tags, comments and texts, and then executes xml.parser#parse() method with it.
Below is an example to create a class that implements a handler for StartElement event:

Parser = class(xml.parser) {

StartElement(elem) = {

printf(’<%s>\n’, elem.tagname)

}

}

Parser().parse(’test.xml’)

55.1 xml.attribute Class

The xml.attribute instance represents a name-value pair of XML’s attribute that can be
retrieved from attrs property in the xml.element instance.

55.1.1 Property

Property Type R/W Explanation
name string R
value string R

309

55.2 xml.document Class

55.2.1 Constructor

xml.document(stream?:stream:r) {block?}

55.2.2 Property

Property Type R/W Explanation
version string R
encoding string R
root xml.element R

55.2.3 Method

xml.document#parse(str:string):void

xml.document#read(stream:stream:r):void

xml.document#textize(fancy?:boolean, tabs?:number)

xml.document#write(stream:stream:w, fancy?:boolean, tabs?:number):void

55.3 xml.element Class

55.3.1 Constructor

xml.element(tagname :string, attrs%):map {block?}

xml.comment(comment:string)

55.3.2 Property

Prop-
erty

Type R/WExplanation

tagnamestringR A tag name of this element.
text stringR The text string if the element is TEXT. Otherwise, this value would be

nil.
commentstringR The comment string if the element is COMMENT. Otherwise, this value

would be nil.
childreniteratorR An iterator to return xml.element instances that represent children

contained in this element. This value would be nil if the element has
no children.

attrs iteratorR An iterator to return xml.attribute instances that represent attributes
contained in this element. This value would be nil if the element has
no attributes.

310

55.3.3 Method

xml.element#addchild(value):map:void

xml.element#gettext()

xml.element#textize(fancy?:boolean, indentLevel?:number, tabs?:number)

xml.element#write(stream:stream:w, fancy?:boolean, indentLevel?:number, tabs?:number):void

55.4 xml.parser Class

The xml.parser class is a base class from which you can implement a inheritance class that
has methods corresponding to events associated with XML elements. Below are methods that
you can implement in the class for event handling:

• StartElement(elem:xml.element)

• EndElement(name:string)

• CharacterData(text:string)

• ProcessingInstruction(target:string, data:string)

• Comment(data:string)

• StartCdataSection()

• EndCdataSection()

• Default(text:string)

• DefaultExpand(text:string)

• ExternalEntityRef()

• SkippedEntity(entityName:string, isParameterEntity:boolean)

• StartNamespaceDecl(prefix:string, uri:string)

• EndNamespaceDecl(prefix:string)

• XmlDecl(version:string, encoding:string, standalone:boolean)

• StartDoctypeDecl(doctypeName:strng, systemId:string, publicId:string, hasInternalSubset:boolean)

• EndDoctypeDecl()

• ElementDecl()

• AttlistDecl(elemName:string, attName:string, attType:string, defaultValue:string,

isRequired:boolean)

• EntityDecl(entityName:string, isParameterEntity:boolean, value:string, base:string,

systemId:string, publicId:string, notationName:string)

• NotationDecl(notationName:string, base:string, systemId:string, publicId:string)

• NotStandalone()

311

55.4.1 Constructor

xml.parser() {block?}

55.4.2 Method

xml.parser#parse(stream:stream:r):void

55.5 Thanks

This module uses expat library which is distributed in the following site:

http://expat.sourceforge.net/

312

Chapter 56

xpm Module

The xpm module provides measures to write image data in XPM format and to parse a list
of strings that is described in the format. To utilize it, import the xpm module using import

function.

Below is an example to parse a list of strings described in XPM format.

import(xpm)

foo_xpm = @{

"13 13 2 2 0 0",

" c #000000",

"# c #ffffff",

" # ",

" # ",

" # # # # # # # # # # ",

" # ",

" # # ",

" # # # # # # ",

" # # # # ",

" # # # # ",

" # # # # ",

" # # # # ",

" # # # # ",

" # # # # ",

" # # ",

}

img = image(‘rgba).xpmdata(foo_xpm)

56.1 Extension to image Class

This module extends the image class with methods described here.

image#write@xpm(stream:stream:w):reduce

Writes a xpm image to a stream.

image#xpmdata(xpm[]:string):reduce

Read xpm data from a string list.

313

Chapter 57

yaml Module

The yaml module provides measures to read/write YAML files. You can use this module as a
measure to serialize and deserialize objects that consists of list, dict and string instances.

Below is an example to reconstruct values from YAML text:

txt = ’’’

key1:

- item-A

- item-B

- item-C

key2:

- item-D

- item-E

- item-F

’’’

x = yaml.parse(txt)

// x has the following value:

// %{

// ’key1’ => [’item-A’, ’item-B’, ’item-C’]

// ’key2’ => [’item-D’, ’item-E’, ’item-F’]

// }

57.1 Correspondance of Data Object

The below table shows how YAML data types correspond to Gura’s value types each other:

YAML Data Type Gura’s Value Type
sequence list

mapping dict

scalar string

57.2 Module Function

yaml.compose(obj)

Composes YAML text to represent the content of obj that consists of list, dict and string

instances.

314

yaml.parse(str:string)

Parses YAML text in str and returns a composition of list, dict and string instances.

yaml.read(stream:stream:r)

Parses YAML text from stream and returns a composition of list, dict and string instances.

yaml.write(stream:stream:w, obj):reduce

Composes YAML text to represent the content of obj that consists of list, dict and string

instances and writes the result to stream.

57.3 Thanks

This module uses yaml library which is distributed in the following site:

http://pyyaml.org/wiki/LibYAML

315

Chapter 58

zip Module

The zip module provides measures to read/write ZIP files.

58.1 zip.reader Class

The zip.reader class provides methods to read contents and to get information in a ZIP
file through stream instance. An instance of stream class created by the methods includes a
property named stat, a zip.stat instance, which provides information such as filename and
created time stamp that are contained in the ZIP file.

Below is an example to list filenames in a ZIP file:

import(zip)

zip.reader(’foo.zip’) {|r|

println(r.entries():*stat:*filename)

}

Below is an example to print a content of a text file that is stored in a ZIP file:

import(zip)

zip.reader(’foo.zip’) {|r|

print(r.entry(’README.txt’).readlines())

}

58.1.1 Constructor

zip.reader(stream:stream:r) {block?}

Creates zip.reader instance from the specified stream.

If block is specified, it would be evaluated with a block parameter |reader:zip.reader|,
where reader is the created instance. In this case, the block’s result would become the function’s
returned value.

58.1.2 Method

zip.reader#entry(name:string) {block?}

316

Seeks entry in the zip file that matches the specified name and returns a stream instance
associated with the entry.

If block is specified, it would be evaluated with a block parameter |s:stream|, where s is the
created instance. In this case, the block’s result would become the function’s returned value.

zip.reader#entries() {block?}

Creates an iterator instance that returns stream instances associated with each entry in the
ZIP file.

In default, this returns an iterator as its result value. Specifying the following attributes would
customize the returned value:

• :iter .. An iterator. This is the default behavior.

• :xiter .. An iterator that eliminates nil from its elements.

• :list .. A list.

• :xlist .. A list that eliminates nil from its elements.

• :set .. A list that eliminates duplicated values from its elements.

• :xset .. A list that eliminates duplicated values and nil from its elements.

See the chapter of Mapping Process in Gura Language Manual for the detail.

If a block is specified, it would be evaluated repeatingly with block parameters |value,

idx:number| where value is the iterated value and idx the loop index starting from zero.
In this case, the last evaluated value of the block would be the result value. If one of the at-
tributes listed above is specified, an iterator or a list of the evaluated value would be returned.

58.2 zip.writer Class

The zip.writer class provides methods to add entries to a ZIP file. When an instance of
zip.writer is created, a new ZIP file would be created.

Below is an exapmple to create a ZIP archive file that contains three entries:

import(zip)

zip.writer(’foo.zip’) {|w|

w.add(’file1.txt’)

w.add(’file2.txt’)

w.add(’file3.txt’)

w.close()

}

58.2.1 Constructor

zip.writer(stream:stream:w, compression?:symbol) {block?}

Creates zip.writer instance from the stream.

Argument compression specifies the compression method and takes one of the following symbol.

• ‘store

• ‘deflate

317

• ‘bzip2

If block is specified, it would be evaluated with a block parameter |writer:zip.writer|,
where writer is the created instance. In this case, the block’s result would become the function’s
returned value.

58.2.2 Method

zip.writer#add(stream:stream:r, filename?:string, compression?:symbol):map:reduce

Reads data from stream and adds it to the zip file. Entry name is decided by the file name
associated with the stream unless it’s specified by argument filename.

Argument compression specifies the compression method and takes one of the following symbol.

• ‘store

• ‘deflate

• ‘bzip2

zip.writer#close():void

Closes the zip file after flushing cached data.

58.3 zip.stat Class

The zip.stat class provides information of entries in a ZIP file.

58.3.1 Property

Property Type R/W Explanation
filename string R
comment string R
mtime datetime R
crc32 number R
compression method number R
size number R
compressed size number R
attributes number R

58.4 Thanks

This module uses zlib and bzip2 library which are distributed in the following sites:

• http://zlib.net/

• http://www.bzip.org/

318

	About This Reference
	Explanatory Note
	Predefined Variables
	Built-in Function
	Formatting and Printing of Text
	Repetition
	Value Generator
	Branch and Flow Control
	Exception Handling
	Data Converter
	Class Operations
	Scope Operations
	Module Operations
	Value Type Information
	Data Processing
	Random
	Property Listing

	Built-in Class
	argument Class
	Property
	Method

	array Class
	Property
	Constructor
	Method

	audio Class
	Method

	binary Class
	Property
	Constructor
	Method

	boolean Class
	codec Class
	Predefined Variable
	Constructor
	Method
	Cast Operation

	color Class
	Predefined Variable
	Property
	Cast Operation
	Constructor
	Method

	complex Class
	Constructor
	Method

	datetime Class
	Predefined Variable
	Property
	Constructor
	Method

	declaration Class
	Property
	Method

	dict Class
	Constructor
	Method

	directory Class
	Constructor

	environment Class
	Method

	error Class
	Predefined Variable
	Property

	expr Class
	Property
	Constructor
	Method

	formatter Class
	Method

	function Class
	Property
	Operator
	Constructor
	Method

	help Class
	Property
	Method

	image Class
	Property
	Constructor
	Method

	list/iterator Class
	List-specific Features
	Iterator-specific Features
	Method Common to Both list and iterator Classes

	memory Class
	Property
	Constructor
	Method

	nil Class
	number Class
	Method

	operator Class
	Property
	Constructor
	Method

	palette Class
	Constructor
	Method

	pointer Class
	Property
	Constructor
	Method
	Cast Operation

	rational Class
	Constructor
	Method

	semaphore Class
	Constructor
	Method

	stream Class
	Property
	Operator
	Cast Operation
	Constructor
	Utility Function
	Method

	string Class
	Suffix Management
	Method

	suffixmgr Class
	Constructor
	Method

	symbol Class
	Method

	template Class
	Cast Operation
	Constructor
	Method
	Method Called by Template Directive

	timedelta Class
	Property
	Constructor

	uri Class
	Property
	Constructor
	Method
	Cast Operation

	vertex Class
	Property
	Constructor
	Method

	argopt Module
	argopt.Parser Class
	Constructor
	Method

	base64 Module
	Module Function
	Extension to stream Class

	bmp Module
	Exntension to Function's Capability
	Extension to image Class

	bzip2 Module
	Module Function
	Extension to stream Class
	Thanks

	cairo Module
	Drawing
	cairo.context - The cairo drawing context
	Paths - Creating paths and manipulating path data
	cairo.pattern - Sources for drawing
	Regions - Representing a pixel-aligned area
	Transformations - Manipulating the current transformation matrix
	text - Rendering text and glyphs
	Raster Sources - Supplying arbitary image data

	Fonts
	cairo.font_face - Base class for font faces
	cairo.scaled_font - Font face at particular size and options
	cairo_font_options_t - How a font should be rendered
	FreeType Fonts - Font support for FreeType
	Win32 Fonts - Font support for Microsoft Windows
	Quartz (CGFont) Fonts - Font support via CGFont on OS X
	User Fonts - Font support with font data provided by the user

	Surfaces
	cairo.device - interface to underlying rendering system
	cairo.surface - Base class for surfaces
	Image Surfaces - Rendering to memory buffers
	PDF Surfaces - Rendering PDF documents
	PNG Support - Reading and writing PNG images
	PostScript Surfaces - Rendering PostScript documents
	Recording Surfaces - Records all drawing operations
	Win32 Surfaces - Microsoft Windows surface support
	SVG Surfaces - Rendering SVG documents
	Quartz Surfaces - Rendering to Quartz surfaces
	XCB Surfaces - X Window System rendering using the XCB library
	XLib Surfaces - X Window System rendering using XLib
	XLib-XRender Backend - X Window System rendering using XLib and the X Render extension
	Script Surfaces - Rendering to replayable scripts

	Utilities
	cairo.matrix - Generic matrix operations

	Thanks

	calendar Module
	Module Function

	cbridge Module
	Module Function

	conio Module
	Module Function

	csv Module
	Module Function
	csv.writer Class
	Constructor
	Method

	Extension of stream Class

	curl Module
	Module Function
	curl.easy_handle Class
	Thanks

	diff Module
	Module Function
	diff.diff@line Class
	Property
	Method

	diff.hunk@line Class
	Property
	Method

	diff.edit@line Class
	Property
	Method

	diff.diff@char Class
	Property

	diff.edit@char Class
	Property

	Thanks

	doxygen Module
	doxygen.document Class
	Constructor
	Method

	doxygen.structure Class
	Property
	Method

	doxygen.elem Class
	Method

	doxygen.configuration Class
	Property
	Constructor
	Method

	doxygen.aliases Class
	Method

	doxygen.renderer Class
	Constructor

	example Module
	freetype Module
	Module Function
	freetype.BBox Class
	freetype.BDF_Property Class
	freetype.Bitmap Class
	Method

	freetype.CharMap Class
	Method

	freetype.FTC_CMapCache Class
	freetype.FTC_ImageCache Class
	freetype.FTC_ImageType Class
	freetype.FTC_Manager Class
	freetype.FTC_Node Class
	freetype.FTC_SBit Class
	freetype.FTC_SBitCache Class
	freetype.FTC_Scaler Class
	freetype.Face Class
	Constructor
	Method

	freetype.Glyph Class
	Method

	freetype.GlyphSlot Class
	Method

	freetype.Matrix Class
	Constructor
	Method

	freetype.Outline Class
	Method

	freetype.Raster Class
	freetype.Span Class
	freetype.Stroker Class
	Constructor
	Method

	freetype.Vector Class
	Constructor
	Method

	freetype.font Class
	Constructor
	Method

	Extension to image Class
	Thanks

	fs Module
	Module Function
	fs.stat Class
	Constructor
	Property

	gif Module
	Exntension to Function's Capability
	gif.content Class
	Constructor
	Property
	Method

	gif.Header Class
	Property

	gif.LogicalScreenDescriptor Class
	Property

	gif.CommentExtension Class
	Property

	gif.PlainTextExtension Class
	Property

	gif.ApplicationExtension Class
	Property

	gif.GraphicControl Class
	Property

	gif.ImageDescriptor Class
	Property

	gif.imgprop Class
	Property

	Extension to image Class

	glu Module
	Module Function

	glut Module
	Module Function
	Thanks

	gmp Module
	Operator
	Module Function
	gmp.mpf Class
	Constructor
	Method

	gmp.mpq Class
	Constructor
	Method

	gmp.mpz Class
	Constructor

	Extention to string Class
	Thanks

	gurcbuild Module
	Module Function

	gzip Module
	Module Function
	Extension to stream Class
	Thanks

	hash Module
	hash.accumulator Class
	Property
	Constructor
	Method

	http Module
	Module Function

	jpeg Module
	Exntension to Function's Capability
	jpeg.exif Class
	Property
	Constructor
	Method

	jpeg.ifd Class
	Property
	Method

	jpeg.tag Class
	Property

	Extension to image Class
	Thanks

	lexer Module
	Module Function

	markdown Module
	Operator
	markdown.document Class
	Property
	Constructor
	Method

	markdown.item Class
	Property
	Method

	math Module
	Module Function

	midi Module
	Module Function
	midi.event Class
	midi.track Class
	midi.sequence Class
	midi.port Class
	midi.controller Class
	midi.program Class
	midi.soundfont Class
	midi.synthesizer Class

	modbuild Module
	Module Function

	model.obj Module
	model.stl Module
	model.stl.face Class
	Property

	model.stl.solid Class
	Property
	Constructor

	msico Module
	Exntension to Function's Capability
	msico.content Class
	Constructor
	Method

	Extension to image Class

	opengl Module
	Module Function

	os Module
	Module Function

	path Module
	Module Function

	png Module
	Exntension to Function's Capability
	Module Function
	Extension to image Class
	Thanks

	ppm Module
	Exntension to Function's Capability
	Extension to image Class

	re Module
	Regular Expression
	re.match Class
	Property
	Index Access
	Method

	re.group Class
	Property

	re.pattern Class
	Cast Operation
	Constructor
	Method

	Extension to string Class
	Extension to iterable Classes
	Module Function
	Thanks

	show Module
	Extension to image Class

	sdl2 Module
	Module Function
	sdl2.Window Class
	sdl2.Renderer Class
	sdl2.Texture Class
	sdl2.Event Class
	sdl2.Point Class
	sdl2.Rect Class
	sdl2.Color Class
	sdl2.Palette Class
	sdl2.PixelFormat Class
	sdl2.Keysym Class
	sdl2.Cursor Class
	sdl2.Joystick Class
	sdl2.JoystickGUID Class
	sdl2.GameController Class
	sdl2.GameControllerButtonBind Class
	sdl2.AudioCVT Class
	sdl2.AudioSpec Class
	sdl2.Wav Class
	sdl2.RendererInfo Class
	sdl2.DisplayMode Class
	sdl2.GLContext Class
	sdl2.HapticEffect Class
	sdl2.Surface Class
	sdl2.Finger Class
	Thanks

	sqlite3 Module
	sqlite3.db Class
	Constructor
	Method

	Thanks

	sys Module
	Module Variable
	Module Function

	tar Module
	tar.reader Class
	Function To Create Instance
	Method

	tar.writer Class
	Function To Create Instance
	Method

	Thanks

	tiff Module
	Exntension to Function's Capability
	Extension to image Class
	Thanks

	tokenizer Module
	Module Function

	units Module
	Module Function

	uuid Module
	Module Function

	wav Module
	Module Function
	Extension to audio Class

	wx Module
	Module Function
	Thanks

	xml Module
	xml.attribute Class
	Property

	xml.document Class
	Constructor
	Property
	Method

	xml.element Class
	Constructor
	Property
	Method

	xml.parser Class
	Constructor
	Method

	Thanks

	xpm Module
	Extension to image Class

	yaml Module
	Correspondance of Data Object
	Module Function
	Thanks

	zip Module
	zip.reader Class
	Constructor
	Method

	zip.writer Class
	Constructor
	Method

	zip.stat Class
	Property

	Thanks

