IDSgrep, version 0.2

Matthew Skala

March 17, 2012

Contents

Quick start

Introduction
What’snew
Download, build, test, and install
Interface to KanjivG
Interface to EDICT2
Interface to Tsukurimashou . . .
Unicode IDSes

Invoking idsgrep
Command-line options
Environment variables

Technical details
The data structure
EIDS syntax
Matching
Match anything
Match anywhere
Match children in any order
NOT.............

OR......
Literal tree matching
Associative matching
Regular expression matching

Bibliography

~ N

co co @

11
11
11
11
11
11
11
12
12

13

Quick start

Use idsgrep much as you would use grep:

idsgrep [(options)] (pattern) [(file)...]

Its general function is to search one or more files
for items matching a pattern, like grep [5] but with a
different pattern syntax. Although potentially usable
for an unlimited range of tasks, idsgrep’s motivating
application is to searching databases of Han script
(Chinese, Japanese, etc.) character descriptions. It
provides a much more powerful replacement for the
“radical search” feature of dictionaries like Kiten [6]
and WWWJDIC [3].

The syntax for matching patterns, and the range
of command-line options available, are complicated.
Later sections of this document explain those things
in detail; for now, here are some examples.

idsgrep @A dictionary
A literal character searches for the decomposi-
tion of that character, exact match only.

idsgrep -d A
The -d option with empty argument searches a
default collection of dictionaries.

idsgrep -dtsuku &

The -d option can be given an argument to
choose a specific default dictionary. Note the ar-
gument must be given in the same argv-element
with the -d; the syntax -d tsuku with a space
would mean “Use the default dictionaries and
search for the (syntactically invalid) pattern
“tsuku.’”

othersoft | idsgrep A
Standard input will be used if no other input
source is specified.

idsgrep -d ... H
Three dots match their argument anywhere, so
this will match H, ¥, and #.

idsgrep -d ¥’
A question mark, which will probably require
shell escaping, matches anything. This is most
useful as part of a more complex pattern.

Unicode Ideographic Description Characters can
be used to build up sequences that also incorpo-
rate the wildcards; this example matches char-
acters consisting of something above /@, such as
& and X but not Ji&.

idsgrep -d "[tb](anything)»’
There are ASCII aliases for operators that may
be inconvenient to type; this query is function-
ally the same as the previous one.

Introduction

The Han character set is open-ended. Although
a few thousand characters suffice to write the lan-
guages most commonly written in Han script lan-
guages (namely Chinese and Japanese) most of the
time, popular standards define tens of thousands of
less-popular characters, and there are at least hun-
dreds of thousands of rare characters known to occur
in names, historical contexts, and in languages like
Korean and Vietnamese that may still use Han script
occasionally despite now being written primarily in
other scripts.

Computer text processing systems that use fixed
lists of characters will inevitably find themselves un-
able to represent some text. As a result, there is a
need to describe characters in a standard way that
may have no standard code points of their own. A
similar need for descriptions of characters arises when
looking up characters in a dictionary; a user may rec-
ognize some or all the visual features of a character
(such as its parts and the way they are laid out) with-
out knowing how to enter the character as a whole.

IDSgrep’s main function is to query character de-
scription databases in a flexible way. This need was
identified during development of the Tsukurimashou
font family [8]; there, the visual appearance of Han
character glyphs corresponds directly to the Meta-
Post code implementing them, and the desire for code
re-use and consistency often motivates a close exam-
ination of the existing work to answer questions like
“What other characters contain this shape, and how
did we implement it last time?” Standard tools like
grep [5] can sometimes be applied to answer such ques-
tions by searching for subroutine names in the source
code, but the related question of “What other charac-
ters, not yet implemented, could we build that would
use this shape?” requires comparing with some exter-
nal database of the characters commonly used in the
language. How can we run grep on the writing system
itself?

Someone confronted with an unknown character
and wanting to look it up in a more ordinary dic-
tionary to find the meaning may, similarly, want to
search for characters based on specific features while

leaving others unspecified, with questions like “What
characters exist that have the common /& shape at
the bottom, with the upper part divided into two
things side by side? The two things at the top are
shapes I don’t recognize, printed too small for me to
identify them more precisely.” Existing dictionary-
query methods are not adequate for some reasonable
queries of this nature.

For instance, the radical-and-stroke-count
method of traditional character dictionaries requires
identifying the head radical and counting strokes,
both of which may be difficult; dictionary codes
like SKIP and Four Corners key on some layout
attributes but not all; multi-radical search allows the
user to choose whichever radicals they recognize, but
it ignores layout entirely; and computer handwriting
recognition generally works well if and only if the user
is sure of the writing of the first few strokes in the
character. Furthermore, these search schemes often
are implemented only in heavy, non-portable, GUI
software that cannot be automated and mixes poorly
with standard computing environments. IDSgrep
can answer the example query correctly with a single,
simple command line (idsgrep -d "[tb]1[1r]1?2:5:"). This
software is intended to bring the user-friendliness of
grep to Han character dictionaries.

What's new
The main new features in version 0.2 are:

e implementations of all the planned matching op-
erators except @ (associative) and / (regular ex-
pression);

e a full test suite and some fixes for bugs found
while creating it; and

e the EDICT2-derived dictionary, and the binary
comma sugar character to support it.

Download, build, test, and install

IDSgrep is distributed under the umbrella of the
Tsukurimashou project on Sourceforge.JP [8], http:
//en.sourceforge. jp/projects/tsukurimashou/. Releases

of IDSgrep will appear on the project download page;
development versions are available by SVIN checkout
from the trunk/idsgrep subdirectory of the repository.
For the convenience of Github users, the Tsukuri-
mashou (and thus IDSgrep) repository is also mir-
rored into a Github repository [9], but the project on
Sourceforge.JP and its SVN repository remain the
main public locations for IDSgrep development and
all bug-tracker items should be filed there.

A minimal default build and install could run
something like this:

tar -xzvf idsgrep-0.2.tar.gz
cd idsgrep-0.2

./configure

make

su -¢ 'make install’

IDSgrep as such does not include a dictionary, but
it can build dictionaries from the Tsukurimashou font
package, which is available through the same Source-
forge.JP project as IDSgrep, from the KanjiVG
database available at http://kanjivg.tagaini.net/ [1],
or (only if KanjiVG is also available) from the
EDICT2 database available at http://www. csse.monash.
edu.au/~jwb/edict.html [2]. For an ideal complete in-
stallation of IDSgrep, one would download all those
packages, build Tsukurimashou first, and make it and
the dictionaries available to the IDSgrep configure
script. The configure script will by default make a
reasonable effort to find the dependencies; in many
common cases it is not necessary to specify them on
the command line. Here is a more complete installa-
tion process relying on configure to find KanjiVG and
EDICT?2 in the current directory and Tsukurimashou
in a sibling directory:

unzip tsukurimashou-0.6.zip

cd tsukurimashou-0.6

./configure

make

I install of Tsukurimashou not needed by IDSgrep
cd ..

tar -xzvf idsgrep-0.2.tar.gz

cd idsgrep-0.2

(n -s /some/where/else/kanjivg-20120219.xml.gz .
[n -s /some/where/else/edictl.gz .

./configure

make

make check

su -¢ 'make install’

If the default search fails, the filenames of Kan-
jiVG (.xml or .xml.gz), EDICT2 (.gz), and the top

directory of Tsukurimashou can be specified on
the configure command line with the --with-kanjivg,
--with-edict?, and --with-tsuku-build options. For
other options, run configure --help. It’s a reasonably
standard GNU Autotools [4] configuration script, al-
beit with a lot of options for inapplicable installation
directories removed to simplify the help message.

The “check” Makefile target runs the IDSgrep test
suite. Some tests require the dictionary files and will
be skipped if those are not present. There is also a
test that will use Valgrind [7] if available, to check for
memory-related problems; if Valgrind is not found in
the PATH, this test will be skipped.

The configure script supports an --enable-gcov
switch to enable meta-testing of the test suite’s cov-
erage. This feature requires that the Gcov coverage
analyser be installed. To do a coverage analysis, run
configure with --enable-gcov and any other desired op-
tions, then do make clean (necessary to be sure all
object files are rebuilt with the coverage instrumen-
tation) followed by make check. Most people would not
want to install an IDSgrep binary built under this op-
tion.

Interface to KanjivG
The KanjiVG project [1] maintains a database of
kanji (Han characters as used by Japanese) in an ex-
tended SVG format, which implies that it is XML.
The kvgleids Perl script, included as part of IDSgrep,
is capable of reading this database and converting it
to Extended Ideographic Description Sequences (EI-
DSes). As described above, if a reasonably recent ver-
sion of KanjiVG’s compressed XML file is available
to configure, then IDSgrep’s build will create such a
dictionary and make install will install it.

KanjiVG describes characters primarily in terms
of strokes, not radicals, and it attempts to follow the
official stroke order and etymological radical break-
down. That approach results in some peculiarities
from the point of view of dictionary searching. For
instance, in the kanji [, the official stroke order is
to write two strokes of the enclosing box, then the
central glyph, then the bottom of the box. Kan-
jiVG’s XML file lists two “elements” identified with
the kanji [], one for the first two strokes and one for
the final stroke, with additional attributes specifying
that they are actually two parts of the same element.
KanjiVG has changed its own standard for how to
represent this information in the recent past, and not
all entries have been updated to the latest standard
yet. The current version of kvgleids does not correctly

process [® nor some other characters with parts writ-
ten in nonsequential order. On that particular one it
generates a special functor containing debugging in-
formation; for some others, it may actually generate
an EIDS with the same radical appearing multiple
times, following the structure described in KanjiVG
whether it’s what was intended or not. As a result,
not all entries in the dictionary will be right. How-
ever, only a few are affected by this issue.

As of March 2012, I (Matthew Skala, the author
of IDSgrep) have become a member of the KanjivVG
project and there is some possibility that KanjiVG’s
database design will change in a way that makes it
easier to recover spatial organization for searching
with IDSgrep.

With the current versions of IDSgrep and Kan-
jiVG, the KanjiVG-derived dictionary contains 6660
entries covering all the popularly-used Japanese
kanji. Note that the KanjiVG input file, and
presumably the resulting format-converted dictio-
nary, are covered by a Creative Commons Attribu-
tion—ShareAlike license, distinct from the GNU GPL
applicable to IDSgrep itself.

Interface to EDICT2
Jim Breen’s JMdict/EDICT project maintains a file
called EDICT? [2] which is more like a traditional dic-
tionary, with words and meanings, than a database of
kanji. Such dictionaries are not the primary target of
IDSgrep and IDSgrep’s query syntax is not perfectly
suited to them. However, planned future regular-
expression matching features may make it more prac-
tical to search EDICT?2 with IDSgrep, and even in the
current version, there is some value in being able to do
sub-character structural searches on multi-character
words.

If both EDICT2 and KanjiVG are available to
the IDSgrep build system, it will invoke the ed22eids
script and generate and install a dictionary file called
edict.eids, which represents a database join of the two
dictionaries. A sample entry might look like this:

The head for the entire entry is the head from the
EDICT?2 entry. Then the tree is a binary tree with
a comma as the functor and the first child being the
entire kanjivg.eids entry for the first character. The
second child represents the rest of the entry. With
a two-character or longer head, this child would also
be a binary comma with the second character of the
entry head as its first child. In this way the characters

of the entry head are all represented as left children of
commas, forming a linked-list structure (much like a
Prolog linked-list with commas instead of dots as the
functors). The final child at the bottom is a nullary
node containing as its functor simply the rest of the
EDICT?2 entry.

The rationale for this syntax is that it allows
a relatively simple way of querying multi-character
words in EDICT2 using the existing IDSgrep query
types. To find an exact match, just query the head
(which will require head brackets and a semicolon
if the query is more than one character long), as
in idsgrep -ded "<##E>;". To search for the first
few characters, commas can be imagined as separa-
tors (though their actual function is quite different)
with a comma at the start and a question mark at
the end, as in idsgrep -ded ",#,&?’. These queries
can be combined with the sub-character breakdown
queries already supported by the KanjiVG-based dic-
tionary. For instance, idsgrep -ded *,#,...[HAY,??’
will search for, and give definitions of, words of ex-
actly two characters in which the first is # and the
second character contains H or A anywhere. The re-
striction to exactly two characters is accomplished by
the sub-query “!,??”, which fails to match on the bi-
nary comma that would be present at that point in a
longer word.

Since both EDICT2 and KanjiVG are under the
Creative Commons Attribution—ShareAlike license,
that license presumably also applies to the combined
dictionary made from them.

Interface to Tsukurimashou
IDSgrep is closely connected with the Tsukuimashou
font family [8]. They have the same author; it was
largely for use in Tsukurimashou development that
IDSgrep was developed at all; and IDSgrep’s source
control system is a subdirectory within Tsukuri-
mashou’s. Building IDSgrep in conjunction with
Tsukurimashou allows IDSgrep to extract from the
Tsukurimashou build system a dictionary of charac-
ter decompositions as they appear in Tsukurimashou.
The Tsukurimashou fonts are also necessary to build
this IDSgrep user manual. However, IDSgrep and
Tsukurimashou are distributed as separate packages,
because they have very different audiences and build
prerequisites. Many people who can use one will be
unable to use the other, so it seems inappropriate to
force all users to download both.

When IDSgrep’s configure script runs, it looks for
a valid Tsukurimashou build directory. Ideally, that

would be one in which Tsukurimashou has actually
been fully built; but a directory where the Tsukuri-
mashou configure script has been executed is enough.
If a valid Tsukurimashou build directory is found au-
tomatically or specified with the --with-tsuku-build
option to configure, then when make is run on IDSgrep,
it will recursively go call make eids in the Tsukuri-
mashou build. That is a hook that causes Tsukuri-
mashou’s build system to generate the EIDS decom-
position dictionary, which is then copied or linked
back into IDSgrep’s build directory and can be in-
stalled with IDSgrep’s make install. IDSgrep’s build
will also look in Tsukurimashou’s build directory for
the font “Tsukurimashou Mincho” which is needed to
build this user manual, and will make recursive calls
to make for Tsukurimashou to build that if necessary.

Note that neither Tsukurimashou nor IDSgrep is
a true “sub-package” of the other in the sense of Au-
totools [4], as mediated by the SUBDIRS Automake vari-
able and so on, notwithstanding that a checked-out
SVN working copy of Tsukurimashou will contain a
working copy of IDSgrep in a subdirectory. Running
the Tsukurimashou build will not invoke the IDSgrep
build at all; and running the IDSgrep build is not a
good way to trigger a full Tsukurimashou build, be-
cause it won’t use the preferred -j option, track all
dependencies in detail, nor generate anything that
doesn’t happen to be a prerequisite for the files IDS-
grep needs. If you want to build both systems, it’s
best to build Tsukurimashou first and then build IDS-
grep pointing at Tsukurimashou. Also, these two
packages do not necessarily have the same portability
considerations, and it’s possible that the link between
them may fail even on systems where each package
builds correctly by itself (for instance, possibly on
some systems where GNU Make is installed but non-
default). The link between Tsukurimashou and IDS-
grep provides some convenience for my own frequent
case of making changes to both packages at once.

In order for IDSgrep to work together with
Tsukurimashou, it is necessary that the Tsukuri-
mashou build be one that supports the make eids
target in the first place. No released version con-
tains such support yet, but it is planned for Tsukuri-
mashou 0.6. Development versions of Tsukurimashou
in the SVN repository have included EIDS support
since early January 2012.

Unicode IDSes

Although idsgrep uses a more elaborate syntax, it is
well to know about the Unicode Consortium’s “Ideo-

graphic Description Sequences” (IDSes), which are a
subset of idsgrep’s. These are documented more fully
in the Unicode standard [10].

e A character from one of the Unified Han or CJK
Radical ranges is a complete IDS and simply rep-
resents itself. For instance, “X” is a complete
IDS.

o The Ideographic Description Characer (IDC)
code points U+2FF0, U+2FF1, and U+42FF4
through U+2FFB, whose graphic images look
like {1 1, are prefix binary op-
erators. One of these characters followed by
two complete IDSes forms another complete IDS,
representing a character formed by joining the
two smaller characters in a way suggested by
the name and graphical image of the IDC. For
instance, “[TIHA” describes the character Bj.
These structures may be nested; for instance,
“TISE#A 07 describes the character 5.

e The IDC code points U4+2FF2 and U+2FF3,
which look lik are prefix ternary operators.
(Unicode uses the less-standard word “trinary”
to describe them.) One of them can be followed
by three complete IDSes to form an IDS that de-
scribes a character made of three parts, much in
the same manner as the binary operators. For

instance, v 54 X" describes the character
Kek
=2 .

e An IDS may not be more than 16 code points
long overall nor contain more than six consecu-
tive non-operator characters. This rule appears
to be intended to make things easier for systems
that need to be able to jump into the middle
of text and quickly find the starts and ends of
IDSes.

e IDSes non-bindingly “should” be as short as pos-
sible.

Invoking idsgrep

The command-line idsgrep utility works much like
most other command-line programs, and like grep [5]
in particular. It takes options and other arguments.
The first non-option argument is an EIDS represent-
ing the matching pattern, and any remaining non-
option arguments are taken as filenames to read. If
there are no filenames, idsgrep will read from standard
input. Output always goes to standard output.

When there is more than one file being read (ei-
ther by direct specification or indirectly with the -d
dictionary option), idsgrep will preface each EIDS in
its output with “:(filename):” to indicate in which
file the EIDS was found. Note that under the EIDS
syntax rules, that creates a unary node senior to the
entire tree, so that the output remains in valid EIDS
format, except in the case of filenames containing
colons, which will be handled via backslash escapes
in the future when those are implemented.

Command-line options

-d, --dictionary Read a dictionary from the standard
location. There is a pathname for dictionar-
ies hardcoded into the idsgrep binary, generally
{prefiz}/share/dict, and if this option is given,
its argument (which may be empty) will be ap-
pended to the dictionary directory path, followed
by “x.eids,” and then treated as a shell glob
pattern. Any matching files are then searched
in addition to those otherwise specified on the
command line. A small added wrinkle is that
when more than one file is searched (resulting
in :filename: tags on the output lines), any of
them that came from the -d option will be ab-
breviated by omitting the hardcoded path name.
The purpose of this option is to cover the com-
mon case of searching the installed dictionaries.
Just specifying “-d” will search all the installed
dictionaries; specifying an abbreviation of the
dictionary name, as “-dt” or “-dk,” will search
just the matching one; and it remains possible
to specify a file exactly or use standard input in
the usual grep-like way.

-V, --version Display the version and license informa-
tion for IDSgrep.

-h, --help Display a short summary of these options.

Environment variables
The idsgrep utility recognizes just one environment
variable, IDSGREP_DICIDIR, which if present specifies a
directory for the -d option to search instead of its
hardcoded default.

Note that idsgrep does not pay attention to any
other environment variables, and in particular, not
IC_AllL and company. The input and output of this
program are always UTF-8 encoded Unicode regard-
less of locale settings. Since the basic function of this
program is closely tied to the Unicode-specific “ideo-
graphic description characters,” it would be difficult
if not impossible for it to work in any non-Unicode
locale. Predictability is also important because of
the likely usefulness of this software in automated
contexts; if it followed locale environment variables,
many users would have to carefully override those all
the time to be sure of portability. Instead of creating
that situation, idsgrep by design has a consistent in-
put and output format on all systems and users are
welcome to pipe things through a conversion program
if necessary.

Technical details

This section is intended to describe IDSgrep’s syn-
tax and matching procedure in complete detail; and
those things are, in turn, designed to be powerful
rather than easy. As a result, the description may
be confusing for some users. See the examples in the
“Quick start” section for a more accessible introduc-
tion to how to use the utility.

The system is best understood in terms of three
interconnected major concepts:

e an abstract data structure;

e a syntax for expressing instances of the data
structure as “Extended Ideographic Description
Sequences” (EIDSes);

¢ a function for determining whether two instances
of the data structure “match.”

Then the basic function of idsgrep is to take one
EIDS as a matching pattern, scan a file containing
many more, and write out the ones that match the
matching pattern. The three major concepts are de-
scribed, one each, in the following sections.

The data structure
An FEIDS tree consists of the following:

e An optional head, which if present consists of a
nonempty string of Unicode characters.

e A required functor, which is a nonempty string
of Unicode characters.

e A required arity, which is an integer from 0 to 3
inclusive.

e A sequence of children, of length equal to the
arity (no children if arity is zero). Each child is,
recursively, an EIDS tree.

Trees with arity zero, one, two, and three are
called, respectively, nullary, unary, binary, and
ternary.

Note that these “nonempty strings of Unicode
characters” will very often tend to be of length one

(single characters) but that is not a requirement.
They cannot be empty (length zero); the case of a
tree without a head is properly described by “there
is no head,” not by “the head is the empty string.”
At present no Unicode canonicalization is performed,
that being left to the user, but this may change in the
future. Zero bytes (U40000) are in principle permit-
ted to occur in EIDS trees, but at present there is no
way to enter them in matching patterns because Unix
passes command-line arguments as null-terminated C
strings.

Typically, these trees are used to describe kanji
characters. The literal Unicode character being de-
scribed will be the head, if there is a code point for it;
the functor will be either an ideographic description
character like =1 if the character can be subdivided,
or else nullary ; if not. Then the children will corre-
spond to the parts into which it can be decomposed.
Some parts of the character may also be available
as characters with Unicode code points in their own
right; in that case, they will have heads of their own.

EIDS syntax
Unicode’s IDS syntax serves a similar purpose to IDS-
grep’s extended IDS syntax, but it lacks sufficient
expressive power to cover some of IDSgrep’s needs.
Nonetheless, EIDS syntax is noticeably derived from
that of Unicode IDSes. Broadly speaking, EIDSes are
IDSes extended to include heads (which we need for
partial-character lookup); bracketed strings as func-
tors (which we need for capturing arbitrary data);
and with arbitrary limits on allowed characters and
length relaxed (needed for complex characters and so
that matching patterns can be expressed in the same
syntax).
Here are some sample EIDSes:

[tbI+[orl[(r1?B[Ir]18?

The first three of these examples are valid in the
Unicode IDS syntax. The next two contain heads,
and are typical of what might exist in a dictionary
designed to be searched by the idsgrep command-line
utility. The last three might be matching patterns a
user would enter.

EIDS trees are written in a simple prefix notation
that could be called “Polish notation” inasmuch as it
is the reverse of “reverse Polish notation.” To write a
tree, simply write the head if there is one, the functor,
and then if the tree is not nullary, write each of the
children. Heads and the functors of trees of different
arity are (unless otherwise specified below) written
enclosed in different kinds of brackets that indicate
the difference between heads and functors, and the
arity of the tree when writing a functor.

The basic ASCII brackets for heads and functors
are as follows:

head < > <example>
nullary functor (0) () (example)
unary functor (1) .examp le.
binary functor (2) [1 [examplel
ternary functor (3) { } {example}

Note that the opening and closing brackets for
unary functors are both equal to the ASCII period,
U+-002E.

Parsing of bracketed strings has a few features
worth noting. First, there is no special treatment of
nested brackets. After the “<” that begins a head,
for instance, the next “>” will end the head, regard-
less of how many other instances of “<” have been
seen. However, because no head or functor can be
less than one character long, a closing bracket imme-
diately after the opening bracket (which would other-
wise create an illegal empty string) is specially treated
as the first character of the string and not as a clos-
ing bracket. Thus, “())” is legal syntax for a functor
equal to a closing parenthesis, in a nullary tree; and
“...”7 is a functor equal to a single ASCII period in
a unary tree, an important example because it is the
commonly-used match-anywhere operator.

Each pair of ASCII brackets also has two pairs of
generally non-ASCII synonyms, as follows:

< > [1 «
C) «)
[1 € 1 [
{1} Q! 1

The closing synonymous brackets for functors of

unary trees are always identical to the opening brack-

ets. A string may be opened by any of the three
opening bracket characters for its type of string; but
then it must be closed by the closing bracket char-
acter that goes with the opening bracket. Brackets
from other pairs are taken literally and do not end the
string. For instance, “ [<example>] ” is a head whose
value consists of “<example>” including the ASCII an-
gle brackets. There are several reasons for the exis-
tence of the synonyms:

e They look cool.

e There is an established tradition of using
[lenticular bracketsl for heads in printed dic-
tionaries, which is exactly their meaning here.

o Allowing ASCII colons to bracket unary-node
functors makes possible a more appealing and
grep-like syntax for idsgrep’s output in the case
of processing multiple input files.

¢ Allowing more than one way to bracket each kind
of string makes it easier to express bracket char-
acters that may occur literally in a string.

e The non-ASCII brackets may be easier to type
without switching modes in some input methods.

e On the other hand, keeping an ASCII option for
every bracket type allows matching patterns to
be entered on ASCII-only terminals.

o Multiple bracket types allow for creating human-
visible computer-invisible distinctions in dictio-
nary files, for instance to flag pseudo-entries that
contain metadata, without needing to create a
special syntax for comments.

If a character other than an opening bracket oc-
curs in an EIDS where an opening bracket would be
expected, it is treated in one of three ways.

e ASCII whitespace and control characters,
U+-0000 to U4-0020 inclusive, are ignored. In the
future, this treatment might be extended to non-
ASCII Unicode whitespace characters, which are
best avoided because of the uncertainty.

ary implicit brackets.” If one of these characters
appears outside of brackets, it will be interpreted
as a functor whose value is a single-character
string equal to the literal character, and a fixed
arity that depends on which character it is. For

«

instance,
cally. A list of characters getting this treatment
is below.

Any other non-bracket character has a “syrupy
implicit semicolon.” That means it will be inter-
preted as a complete nullary tree with a single-
character head equal to the literal character, and
a single semicolon as the functor. For instance,
“x” and “<x>(;)” will be parsed identically. Be-
cause semicolon itself has sugary implicit nullary
brackets, we could also write “<x>;” for the same
effect.

Here are all the characters that have sugary im-
plicit brackets, with the brackets they imply: (;) (?)

Joo= (&1 L1 001 [
’ 1 ['
Note that the sugary and syrupy implications of a

character are only relevant when the character occurs
where an opening bracket of some type would other-
wise be required; inside a bracketed string, characters
behave normally.

It is planned that in the future, idsgrep’s parser
will also recognize some backslash escape sequences.
This is not yet implemented.

It is a consequence of these rules that all syn-
tactically valid Unicode IDSes are syntactically valid
EIDSes, but the converse is not true.

Although it is technically not a parsing issue but
rather a transformation applied to the tree after pars-
ing, there is one more issue to mention: some functors
have aliases. If a functor and arity matches one of the
aliases on the following list, it will be replaced with
the indicated single-character functor. The idea is
to provide verbose ASCII names for single-character
functors of special importance to the matching al-
gorithm. Note that the single-character versions are
always the canonical ones, and although the brackets
are shown explicitly for clarity, they are nearly all
characters from the “sugary implicit” list.

(anything) = () .anywhere. = ...
.not. = .. .Tegex. = ./
.equal. = = .unord. = Lk
.assoc. = .0 [and] =
[or] = [l [ir] =
[tb] = [enclose] =
[wrapul = [wrapd] =
[wrapll = [wrapull =
[wrapurl = [wraplll =
[overlap] = {ler} =
{tcb} =

10

Matching
The basic function of the idsgrep command-line util-
ity is to evaluate each item in the database against a
matching pattern. The matching patterns are sim-
ilar in spirit to the “regular expressions” common
throughout the Unix world; however, for theoreti-
cal and practical reasons standard regular expressions
would be unsuitable for the applications considered
by IDSgrep.

The main theoretical issue is that IDSes, whether
IDSgrep-style “extended” or Unicode-style tradi-
tional ones, belong to the class of context-free lan-
guages. They describe tree-like structures nested to
arbitrary depth, similar in nature to programming-
language expressions containing balanced parenthe-
ses although balanced parantheses as such are not ac-
tually part of EIDS syntax. The natural way to parse
these involves an abstract machine with a stack-like
memory that can assume an infinite number of dif-
ferent states. Regular expressions can only be used
to recognize the smaller, simpler class of regular lan-
guages, parsable by an abstract machine with a finite-
state memory. It is not possible to write a correct
regular expression that will match balanced paren-
theses. Some advanced software implementations of
so-called “regular expressions” (for instance, Perl’s)
contain special features that make them more pow-
erful than the standard theoretical model, so that
they are capable of recognizing some languages that
are non-regular, including balanced parentheses. It is
also possible to fake a stack with a finite depth limit
by writing a complicated regular expression, and that
may be good enough in some practical cases. Some
users may also settle for just doing a substring query
with grep and calling the result close enough. But
IDSgrep tries to do it in a way that is really right,
and that is described precisely in this section.

We will define a function match(z,y) which takes
two EIDS trees as input and returns a Boolean value
of true or false. We call x the pattern or needle and
y the subject or haystack. The idsgrep command-line
utility generally takes x from its command line and
repeatedly evaluates this function for each EIDS it
reads from its input; it then writes out all the values
of y for which match(z,y) is true.

The match(z,y) function is defined as follows:

o If z and y both have heads, then match(z,y)
is true if and only if their heads are identical.
Nothing else is examined (in particular, not the
children). Then the two cases below do not ap-
ply.

e If and y do not both have heads, then
match(z,y) = match'(z,y), whose value gener-
ally depends on the functor and arity of . The
match’ function has many special cases described
in the subsections below, expressing different
kinds of special matching operations. These op-
erations roughly correspond to the ASCII char-
acters with sugary implicit brackets in EIDS syn-
tax. They are shown with brackets for clarity in
the discussion below, but users would generally
type them without the brackets and depend on
the sugar in actual use.

If none of the subsections below applies, then
match'(z,y) is true if and only if x and y
have identical functors, identical arities, and
match(x;,y;) is true recursively for all their cor-
responding children z;,y;. Note that match’ re-
curses to match, not itself, so there is a chance
for head matching on the children even if it was
not relevant to the parent nodes.

Very few of the features below actually exist in the
alpha version 0.2. The others are documented to give
readers some idea of planned future development.

Match anything The value of match’((?),y) is al-
ways true. Thus, ? can be used as a wildcard in
idsgrep patterns to match an entire subtree regard-
less of its structure. Mnemonic: question mark is a
shell wildcard for matching a single character. The
verbose ASCII name for “(?)” is “(anything).”

Match anywhere The value of match(...x,y) is
true if and only if there exists any subtree of y (in-
cluding the entirety of y) for which match'(x,y) is
true. In other words, this will look for an instance
of z anywhere inside y regardless of nesting level.
Mnemonic: three dots suggest omitting a variable-
length sequence, in this case the variable-length chain
of ancestors above x. The verbose ASCII name for
“...7 is “Lanywhere..”

Match children in any order The value of
match’(.*.x,y) is true if and only if there exists a per-
mutation of the children of y such that match(z,y’) is
true of the resulting modified y’. For instance, *[albc
matches both [albc and [alch. This is obviously a no-
operation (matches simply if x matches y, as if the
asterisk were not applied) for trees of arity less than
two. Mnemonic: asterisk is a general wildcard, and
this is a general matching operation. The verbose

11

ASCII name for “.*.” is “.unord..”

NOT The value of match/(.!.z,y) is true if and
only if match(z,y) is false. It matches any tree not
matched by x alone. Mnemonic: prefix exclama-
tion point is logical NOT in many programming lan-
guages. The verbose ASCII name for “.!.” is “.not..”

AND The value of match'([&]lzy,2) is true if and
only if match(zx, z) A match(y,z). In other words, it
matches all trees that are matched by both x and y;
the set of strings matched by [&lzy is the intersec-
tion of the sets matched by = and by y. Mnemonic:
ampersand is logical or bitwise AND in many pro-
gramming languages. The verbose ASCII name for

“[&17 is “[and]”

OR The value of match/([llzy,z) is true if and
only if match(z,z) V match(y, z). In other words, it
matches all trees that are matched by at least one
of x or y; the set of strings matched by [l]zy is the
union of the sets matched by x and by y. Mnemonic:
ASCII vertical bar is logical or bitwise OR in many
programming languages. The verbose ASCII name
for “[117 is “[or].

Literal tree matching If = and y both have heads,
then the value of match'(.=.z,y) is true if and only
if those heads are identical. Otherwise, it is true if
and only if z and y have identical functors, identi-
cal arity, and match(z;,y;) is true for each of their
corresponding children.

The effect of this operation is to ignore any special
match'() semantics of x’s functor; the trees are com-
pared as if that functor were just an ordinary string,
regardless of whether it might normally be special.
Note that the full match() is still done on the children
with only the root taken literally; to do a completely
literal match of the entire trees it is necessary to in-
sert an additional copy of .=. above every node in the
matching pattern, or at least every node that would
otherwise have a special meaning for match’(), and
even then heads will continue to have their usual ef-
fect of overriding recursion.” Mnemonic: equals sign
suggests the literal equality that is being tested rather
than the more complicated comparisons that might

*It may be interesting to consider how one could write a pat-
tern to test absolute identity of trees, with each node matching
if and only if its head or lack thereof is identical to the desired
target as well as the functors and arities matching and the
same being true of all children.

)

otherwise be used. The verbose ASCII name for “.=.’
is “.equal.”

For instance, this feature could allow searching for
a unary tree whose functor actually is !, where just
specifying such a tree directly as the matching pat-
tern would instead (under the rule for “NOT” above)
search for trees that do not match the only child of
!. In the original application of searching kanji de-
composition databases this operation is unlikely to
be used because the special functors do not occur
anyway, but it seems important for potential appli-
cations of IDSgrep to more general tree-querying, be-
cause otherwise some reasonable things people might
want to look for could not be found at all.

Associative matching The value of match'(.0.x,y)
is calculated as follows. Create a new EIDS tree
Z', initially equal to x, which has the property that
its root may be of unlimited arity. Then for every
child of ' whose functor and arity are identical to
the functor and arity of x, replace that child in 2’
with its children, in order. Repeat that operation
until no more children of z’ have functor and arity
identical to the functor and arity of z. Compute 3’
from y by the same process. Then match’(.8.z,y) =
match(.=.2',y').

This matching operator is intended for the case
of three or more things combined using a binary op-
erator that has, or can be said to sometimes have,
an associative law. For instance, the kanji & could
be described by ° ML (410 over 1) or by
A6 (L over E4M4y). Unicode might encour-
age use of the ternary operator = for this particular
case instead, but that does not cover all reasonably-
occurring cases, and the default databases seldom if
ever use the Unicode ternary operators.

The difference between the representations is
sometimes useful information that the database
should retain; for instance, in the case of Tsukuri-
mashou, “EHHAMN,” “HHAH "

HL A,
would correspond to three very different stanzas of
MetaPost source code, and the user might want a
query that separates them. On the other hand, the
user might instead have a more general query along
the lines of “find three things stacked vertically with
M at the bottom” and intend that that should match
both cases of binary decomposition. The at-sign
matching operation is meant for queries that don’t
care about the order of binary operators; without
it, matching will by default follow the tree structure
strictly.

12

Note that even with .@., IDSgrep will not con-
sider binary operators in any way interchangeable
with ternary ones; users must still use . |. to achieve
such an effect if desired. Although the at-sign is fully
defined for all arities, it is only intended for use with
binary trees. Note also that .8. and .*. behave
according to their definitions. Incautious attempts
to use them together will often fail to have the de-
sired effects, because the definitions do not include
special exceptions that some users might intuitively
expect for these two operators happening to occur
near each other. In a pattern like “+#@[a][albcd,” .*.
will recognize .8. as the functor of a unary tree and
expand the single permutation of its one child, and so
that pattern will match the same things as if the as-
terisk had not been present, namely “[al[albcd” and
“[alblalcd]l” but not, for instance, “[allaldcb.” In a
pattern like “@[albx[alcd,” .. will recognize .*. as
a different arity and functor from [a] and choose not
to expand it in z’, with the result that that pattern
matches the same things as if the at-sign had not
been present, namely “[alblalcd” and “[alblaldc” but
not “[a] [albcd” nor “[al [albdc.”

When considered as an operation on trees, what
.0, does is fundamentally the same thing as the alge-
braic operation that considers (a + b) + ¢ equivalent
to a + (b + ¢), and for that reason it is called “asso-
ciative” matching. The mnemonic for at-sign is that
it is a fancy “a” for “associative.” The verbose ASCII
name for “.0.” is “.assoc..”

This feature is not yet implemented in version 0.2.

Regular expression matching It is planned that
some future version (likely version 0.3) will support
special behaviour for match/(./.xz,y) to call a regu-
lar expression library and do string matching within
heads or functors, but the detailed semantics of how
that will work are not yet decided. The mnemonic
is that slash is Perl’s regular-expression match oper-
ator; the motivating application is to further devel-
opment of IDSgrep’s own dictionary-generating pro-
grams, which tend to create long nullary functors full
of debugging information when they encounter con-
structs they don’t understand in the other-format dic-
tionaries they read.

Bibliography

[1]

2]

[10]

Ulrich Apel. KanjiVG. Online http://kanjivg.
tagaini.net/.

Jim Breen. The EDICT dictionary file. Online
http://www. csse.monash. edu. au/~jwb/edict. html.

Jim Breen. WWWJDIC: Online Japanese Dic-
tionary Service. Online http://www.csse.monash.
edu. au/~jwb/cgi-bin/wwwjdic. cgi.

Alexandre Duret-Lutz. Using GNU Auto-
tools. Online http://www. [rde.epita.fr/~adl/dl/
autotools.pdf.

Free Software Foundation. GNU Grep 2.9. On-
line http://www.gnu.org/software/grep/manual/grep.
html.

Jason Katz-Brown. The Kiten Handbook, revi-
sion 1.2. Online http://docs.kde.org/development/
en/kdeedu/kiten/index. html.

Julian Seward and Nicholas Nethercote. Us-
ing Valgrind to detect undefined value errors
with bit-precision. In USENIX Annual Tech-
nical Conference, General Track, pages 17-30.
USENIX, 2005.

Matthew Skala. Tsukurimashou Font Family
and IDSgrep. Online http://en.sourceforge.jp/
projects/tsukurimashou/.

Matthew Skala. Tsukurimashou github
repository. Online http://github. com/mskala/
Tsukurimashou.

Unicode Consortium. Ideographic description
characters. In The Unicode Standard, Version
6.0.0, section 12.2. The Unicode Consortium,
Mountain View, USA, 2011. Online http://www.
unicode.org/versions/Unicode6.0.0/ch12.pdf.

13

