Package ‘Cubist’

October 25, 2025

Type Package

Title Rule- And Instance-Based Regression Modeling
Version 0.5.1

Maintainer Max Kuhn <mxkuhn@gmail.com>

Description Regression modeling using rules with added instance-based
corrections.

License GPL-3
URL https://topepo.github.io/Cubist/, https://github.com/topepo/Cubist

BugReports https://github.com/topepo/Cubist/issues
Depends lattice
Imports reshape2, utils

Suggests covr, dplyr (>= 0.7.4), knitr, mlbench, modeldata, rlang,
rmarkdown, rules, testthat (>= 3.0.0)

VignetteBuilder knitr

Biarch true

Config/Needs/website pkgdown, caret, tidymodels, rules
Config/testthat/edition 3

Encoding UTF-8

LazyLoad yes

RoxygenNote 7.3.2

NeedsCompilation yes

Author Max Kuhn [aut, cre],
Steve Weston [ctb],
Chris Keefer [ctb],
Nathan Coulter [ctb],
Ross Quinlan [aut] (Author of imported C code),
Rulequest Research Pty Ltd. [cph] (Copyright holder of imported C code)

Repository CRAN
Date/Publication 2025-10-25 05:10:18 UTC

https://topepo.github.io/Cubist/
https://github.com/topepo/Cubist
https://github.com/topepo/Cubist/issues

2 cubist.default

Contents
cubist.default L 2
cubistControl e e e e 4
dotplot.cubist 5
exportCubistFiles 7
predict.cubist e e e e e 8
summary.cubist e e e e e e 10

Index 13

cubist.default Fit a Cubist model
Description

This function fits the rule-based model described in Quinlan (1992) (aka M5) with additional cor-
rections based on nearest neighbors in the training set, as described in Quinlan (1993a).

Usage

Default S3 method:

cubist(x, y, committees = 1, control = cubistControl(), weights = NULL, ...)
Arguments

X a matrix or data frame of predictor variables. Missing data are allowed but (at

this time) only numeric, character and factor values are allowed. Must have
column names.

y a numeric vector of outcome

committees an integer: how many committee models (e.g.. boosting iterations) should be
used?

control options that control details of the cubist algorithm. See cubistControl()

weights an optional vector of case weights (the same length as y) for how much each

instance should contribute to the model fit. From the RuleQuest website: "The
relative weight assigned to each case is its value of this attribute divided by the
average value; if the value is undefined, not applicable, or is less than or equal
to zero, the case’s relative weight is set to 1."

optional arguments to pass (not currently used)

Details

Cubist is a prediction-oriented regression model that combines the ideas in Quinlan (1992) and
Quinlan (1993).

Although it initially creates a tree structure, it collapses each path through the tree into a rule. A
regression model is fit for each rule based on the data subset defined by the rules. The set of rules are
pruned or possibly combined. and the candidate variables for the linear regression models are the

cubist.default 3

predictors that were used in the parts of the rule that were pruned away. This part of the algorithm
is consistent with the "MS5" or Model Tree approach.

Cubist generalizes this model to add boosting (when committees > 1) and instance based correc-
tions (see predict.cubist()). The number of instances is set at prediction time by the user and is
not needed for model building.

This function links R to the GPL version of the C code given on the RuleQuest website.

The RuleQuest code differentiates missing values from values that are not applicable. Currently,
this packages does not make such a distinction (all values are treated as missing). This will produce
slightly different results.

To tune the cubist model over the number of committees and neighbors, the caret: :train() func-
tion in the caret package has bindings to find appropriate settings of these parameters.

Value
an object of class cubist with elements:

data, names, model
character strings that correspond to their counterparts for the command-line pro-
gram available from RuleQuest

output basic cubist output captured from the C code, including the rules, their terminal
models and variable usage statistics

control a list of control parameters passed in by the user

composite, neighbors, committees
mirrors of the values to these arguments that were passed in by the user

dims the output if dim(x)

splits information about the variables and values used in the rule conditions

call the function call

coef's a data frame of regression coefficients for each rule within each committee
vars a list with elements all and used listing the predictors passed into the function

and used by any rule or model
fitted.values anumeric vector of predictions on the training set.

usage a data frame with the percent of models where each variable was used. See
summary.cubist () for a discussion.
Author(s)

R code by Max Kuhn, original C sources by R Quinlan and modifications be Steve Weston

References

Quinlan. Learning with continuous classes. Proceedings of the 5th Australian Joint Conference On
Artificial Intelligence (1992) pp. 343-348

Quinlan. Combining instance-based and model-based learning. Proceedings of the Tenth Interna-
tional Conference on Machine Learning (1993a) pp. 236-243

4 cubistControl

Quinlan. C4.5: Programs For Machine Learning (1993b) Morgan Kaufmann Publishers Inc. San
Francisco, CA

Wang and Witten. Inducing model trees for continuous classes. Proceedings of the Ninth European
Conference on Machine Learning (1997) pp. 128-137

http://rulequest.com/cubist-info.html

See Also

cubistControl(), predict.cubist(), summary.cubist(), dotplot.cubist(), caret::train()

Examples

library(mlbench)
data(BostonHousing)

1 committee, so just an M5 fit:
mod1 <- cubist(x = BostonHousing[, -14], y = BostonHousing$medv)
mod1

Now with 10 committees
mod2 <- cubist(x = BostonHousing[, -14], y = BostonHousing$medv, committees = 10)
mod2

cubistControl Various parameters that control aspects of the Cubist fit.

Description

Most of these values are discussed at length in http://rulequest.com/cubist-unix.html

Usage
cubistControl(
unbiased = FALSE,
rules = 100,
extrapolation = 100,
sample = 0,
seed = sample.int(4096, size = 1) - 1L,
label = "outcome”
)
Arguments
unbiased a logical: should unbiased rules be used?
rules an integer (or NA): define an explicit limit to the number of rules used (NA let’s

Cubist decide).

http://rulequest.com/cubist-info.html
http://rulequest.com/cubist-unix.html

dotplot.cubist 5

extrapolation anumber between O and 100: since Cubist uses linear models, predictions can be
outside of the outside of the range seen the training set. This parameter controls
how much rule predictions are adjusted to be consistent with the training set.

sample a number between 0 and 99.9: this is the percentage of the data set to be ran-
domly selected for model building (not for out-of-bag type evaluation).
seed an integer for the random seed (in the C code)
label a label for the outcome (when printing rules)
Value

A list containing the options.

Author(s)
Max Kuhn

References

Quinlan. Learning with continuous classes. Proceedings of the 5th Australian Joint Conference On
Artificial Intelligence (1992) pp. 343-348

Quinlan. Combining instance-based and model-based learning. Proceedings of the Tenth Interna-
tional Conference on Machine Learning (1993) pp. 236-243

Quinlan. C4.5: Programs For Machine Learning (1993) Morgan Kaufmann Publishers Inc. San
Francisco, CA

http://rulequest.com/cubist-info.html

See Also

cubist(), predict.cubist(), summary.cubist(), predict.cubist(), dotplot.cubist()

Examples

cubistControl()

dotplot.cubist Visualization of Cubist Rules and Equations

Description

Lattice dotplots of the rule conditions or the linear model coefficients produced by cubist () objects

Usage

S3 method for class 'cubist'
dotplot(x, data = NULL, what = "splits"”, committee = NULL, rule = NULL, ...)

http://rulequest.com/cubist-info.html

6 dotplot.cubist

Arguments
X a cubist() object
data not currently used (here for lattice compatibility)
what either "splits" or "coefs"
committee which committees to plot
rule which rules to plot
options to pass to lattice: :dotplot()
Details

For the splits, a panel is created for each predictor. The x-axis is the range of the predictor scaled
to be between zero and one and the y-axis has a line for each rule (within each committee). Areas
are colored as based on their region. For example, if one rule has var1 <10, the linear for this
rule would be colored. If another rule had the complementary region of var1 <= 10, it would be on
another line and shaded a different color.

For the coefficient plot, another dotplot is made. The layout is the same except the the x-axis is in
the original units and has a dot if the rule used that variable in a linear model.

Value

alattice::dotplot() object

Author(s)

R code by Max Kuhn, original C sources by R Quinlan and modifications be Steve Weston

References

Quinlan. Learning with continuous classes. Proceedings of the 5th Australian Joint Conference On
Artificial Intelligence (1992) pp. 343-348

Quinlan. Combining instance-based and model-based learning. Proceedings of the Tenth Interna-
tional Conference on Machine Learning (1993) pp. 236-243

Quinlan. C4.5: Programs For Machine Learning (1993) Morgan Kaufmann Publishers Inc. San
Francisco, CA

http://rulequest.com/cubist-info.html

See Also

cubist(), cubistControl(), predict.cubist(), summary.cubist(), predict.cubist(), lattice: :dotplot()

Examples
library(mlbench)

data(BostonHousing)

1 committee and no instance-based correction, so just an M5 fit:
mod1 <- cubist(x = BostonHousing[, -14], y = BostonHousing$medv)

http://rulequest.com/cubist-info.html

exportCubistFiles 7

dotplot(modl, what = "splits")
dotplot(modl, what "coefs")

Now with 10 committees
mod2 <- cubist(x = BostonHousing[, -1417,
y = BostonHousing$medv,
committees = 10)
dotplot(mod2, scales = list(y = list(cex = .25)))
dotplot(mod2, what = "coefs”,
between = list(x =1, y = 1),
scales = list(x = list(relation = "free"),
y = list(cex = .25)))

exportCubistFiles Export Cubist Information To the File System

Description

For a fitted cubist object, text files consistent with the RuleQuest command-line version can be
exported.

Usage

exportCubistFiles(x, neighbors = @, path = getwd(), prefix = NULL)

Arguments
X a cubist() object
neighbors how many, if any, neighbors should be used to correct the model predictions
path the path to put the files
prefix a prefix (or "filestem") for creating files
Details

Using the RuleQuest specifications, model, names and data files are created for use with the
command-line version of the program.

Value

No value is returned. Three files are written out.

Author(s)
Max Kuhn

8 predict.cubist

References

Quinlan. Learning with continuous classes. Proceedings of the 5th Australian Joint Conference On
Artificial Intelligence (1992) pp. 343-348

Quinlan. Combining instance-based and model-based learning. Proceedings of the Tenth Interna-
tional Conference on Machine Learning (1993) pp. 236-243

Quinlan. C4.5: Programs For Machine Learning (1993) Morgan Kaufmann Publishers Inc. San
Francisco, CA

http://rulequest.com/cubist-info.html

See Also

cubist(), predict.cubist(), summary.cubist(), predict.cubist()

Examples

library(mlbench)
data(BostonHousing)

mod] <- cubist(x = BostonHousing[, -14], y = BostonHousing$medv)
exportCubistFiles(mod1, neighbors = 8, path = tempdir(), prefix = "BostonHousing")

predict.cubist Predict method for cubist fits

Description

Prediction using the parametric model are calculated using the method of Quinlan (1992). If
neighbors is greater than zero, these predictions are adjusted by training set instances nearby using
the approach of Quinlan (1993).

Usage
S3 method for class 'cubist'
predict(object, newdata = NULL, neighbors = 0, ...)
Arguments
object an object of class cubist
newdata a data frame of predictors (in the same order as the original training data). Must
have column names.
neighbors an integer from 0 to 9: how many instances to use to correct the rule-based
prediction?

other options to pass through the function (not currently used)

http://rulequest.com/cubist-info.html

predict.cubist 9

Details

Note that the predictions can fail for various reasons. For example, as shown in the examples, if
the model uses a qualitative predictor and the prediction data has a new level of that predictor, the
function will throw an error.

Value

a numeric vector is returned

Author(s)

R code by Max Kuhn, original C sources by R Quinlan and modifications be Steve Weston

References
Quinlan. Learning with continuous classes. Proceedings of the 5th Australian Joint Conference On
Artificial Intelligence (1992) pp. 343-348

Quinlan. Combining instance-based and model-based learning. Proceedings of the Tenth Interna-
tional Conference on Machine Learning (1993) pp. 236-243

Quinlan. C4.5: Programs For Machine Learning (1993) Morgan Kaufmann Publishers Inc. San
Francisco, CA

http://rulequest.com/cubist-info.html

See Also

cubist(), cubistControl(), summary.cubist(), predict.cubist(), dotplot.cubist()

Examples

library(mlbench)
data(BostonHousing)

1 committee and no instance-based correction, so just an M5 fit:
mod1 <- cubist(x = BostonHousing[, -14], y = BostonHousing$medv)
predict(mod1, BostonHousing[1:4, -141])

now add instances
predict(mod1, BostonHousing[1:4, -14], neighbors = 5)

Example error
iris_test <- iris
iris_test$Species <- as.character(iris_test$Species)

mod <- cubist(x = iris_test[1:99, 2:5],
y = iris_test$Sepal.Length[1:99])

predict(mod, iris_test[100:151, 2:5])

Error:

*xx line 2 of “undefined.cases':

bad value of 'virginica' for attribute 'Species'

http://rulequest.com/cubist-info.html

10 summary.cubist

summary.cubist Summarizing Cubist Fits

Description

This function echoes the output of the RuleQuest C code, including the rules, the resulting linear
models as well as the variable usage summaries.

Usage
S3 method for class 'cubist'
summary (object, ...)

Arguments
object a cubist() object

other options (not currently used)

Details

The Cubist output contains variable usage statistics. It gives the percentage of times where each
variable was used in a condition and/or a linear model. Note that this output will probably be
inconsistent with the rules shown above. At each split of the tree, Cubist saves a linear model (after
feature selection) that is allowed to have terms for each variable used in the current split or any
split above it. Quinlan (1992) discusses a smoothing algorithm where each model prediction is a
linear combination of the parent and child model along the tree. As such, the final prediction is a
function of all the linear models from the initial node to the terminal node. The percentages shown
in the Cubist output reflects all the models involved in prediction (as opposed to the terminal models
shown in the output).

Value

an object of class summary.cubist with elements

output a text string of the output
call the original call to cubist()
Author(s)

R code by Max Kuhn, original C sources by R Quinlan and modifications be Steve Weston

References

Quinlan. Learning with continuous classes. Proceedings of the 5th Australian Joint Conference On
Artificial Intelligence (1992) pp. 343-348

Quinlan. Combining instance-based and model-based learning. Proceedings of the Tenth Interna-
tional Conference on Machine Learning (1993) pp. 236-243

summary.cubist 11

Quinlan. C4.5: Programs For Machine Learning (1993) Morgan Kaufmann Publishers Inc. San
Francisco, CA

http://rulequest.com/cubist-info.html

See Also

cubist(), cubistControl (), predict.cubist(), dotplot.cubist()

Examples

library(mlbench)
data(BostonHousing)

1 committee and no instance-based correction, so just an M5 fit:
mod1 <- cubist(x = BostonHousing[, -14], y = BostonHousing$medv)
summary (mod1)

example output:

Cubist [Release 2.07 GPL Edition] Sun Apr 10 17:36:56 2011

#H# -

#H#

#it Target attribute ~outcome'

##

Read 506 cases (14 attributes) from undefined.data

#H#

Model:

H#H#

Rule 1: [101 cases, mean 13.84, range 5 to 27.5, est err 1.98]
#H#

#it if

nox > 0.668

#it then

#it outcome = -1.11 + 2.93 dis + 21.4 nox - 0.33 lstat + 0.008 b
#it - 0.13 ptratio - 0.02 crim - 0.003 age + 0.1 rm
##

Rule 2: [203 cases, mean 19.42, range 7 to 31, est err 2.10]
##

if

#H# nox <= 0.668

#i lstat > 9.59

#it then

#it outcome = 23.57 + 3.1 rm - 0.81 dis - 0.71 ptratio - 0.048 age
- 0.15 1stat + 0.01 b - 0.0041 tax - 5.2 nox + 0.05 crim
#it + 0.02 rad

#H#

Rule 3: [43 cases, mean 24.00, range 11.9 to 50, est err 2.56]
##

#it if

rm <= 6.226

#H# lstat <= 9.59

then

http://rulequest.com/cubist-info.html

12

#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
##
#it
#it
##
#i
#it
##
#it
#it
##
#i
#it
##
#it
#it
#it

summary.cubist

outcome = 1.18 + 3.83 crim + 4.3 rm - 0.06 age - 0.11 lstat - 0.003 tax

- 0.09 dis - 0.08 ptratio

Rule 4: [163 cases, mean 31.46, range 16.5 to 50, est err 2.78]

if

rm > 6.226
lstat <= 9.59
then

outcome = -4.71 + 2.22 crim + 9.2 rm - 0.83 lstat - 0.0182 tax

- 0.72 ptratio - 0.71 dis - 0.04 age + 0.03 rad - 1.7 nox

+ 0.008 zn

Evaluation on training data (506 cases):

Average |error| 2.07
Relative |error| 0.31
Correlation coefficient 0.94

Attribute usage:
Conds Model

80% 100% 1stat

60% 92% nox

40% 100% rm
100% crim

100% age
100% dis
100% ptratio
80% tax

72% rad

607% b

32% zn

Time: 0.0 secs

Index

* hplot
dotplot.cubist, 5

+ models
cubist.default, 2
exportCubistFiles, 7
predict.cubist, 8
summary.cubist, 10

« utilities
cubistControl, 4

caret::train(), 3, 4

cubist (cubist.default), 2
cubist(), 5-11
cubist.default, 2
cubistControl, 4
cubistControl(), 2,4,6,9, 11

dotplot.cubist, 5
dotplot.cubist(), 4, 5,9, 11

exportCubistFiles, 7
lattice::dotplot(), 6

predict.cubist, 8
predict.cubist(), 3-6,8, 9, 11

summary.cubist, 10
summary.cubist(), 3-6, 8, 9

13

	cubist.default
	cubistControl
	dotplot.cubist
	exportCubistFiles
	predict.cubist
	summary.cubist
	Index

