Package 'DAISIEprep'

October 31, 2025

```
Type Package
Title Extracts Phylogenetic Island Community Data from Phylogenetic
Version 1.0.1
Description Extracts colonisation and branching times of island
     species to be used for analysis in the R package 'DAISIE'. It uses
     phylogenetic and endemicity data to extract the separate island colonists
     and store them.
URL https://github.com/joshwlambert/DAISIEprep,
     https://joshwlambert.github.io/DAISIEprep/
BugReports https://github.com/joshwlambert/DAISIEprep/issues
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.3
Depends R (>= 4.0)
Imports methods, ape, phylobase, ggplot2, scales, ggtree, DAISIE,
     castor, tibble, rlang
Suggests testthat (>= 3.0.0), knitr, rmarkdown, covr, diversitree,
     corHMM, tidyr, dplyr, ggimage
VignetteBuilder knitr
Config/testthat/edition 3
Collate 'DAISIEprep-package.R' 'add_asr_node_states.R'
     'add_island_colonist.R' 'add_missing_species.R'
     'add_multi_missing_species.R' 'add_outgroup.R'
     'all_descendants_conspecific.R' 'any_back_colonisation.R'
     'any_outgroup.R' 'any_polyphyly.R' 'as_daisie_datatable.R'
     'benchmark.R' 'bind_colonist_to_tbl.R' 'check_phylo_data.R'
     'count_missing_species.R' 'create_daisie_data.R'
     'create_endemicity_status.R' 'create_test_phylod.R' 'data.R'
```

2 Contents

'default_params_doc.R' 'endemicity_to_sse_states.R'
'extract_asr_clade.R' 'extract_clade_name.R'
'extract_endemic_clade.R' 'extract_endemic_singleton.R'
'extract_island_species.R' 'extract_multi_tip_species.R'
'extract_nonendemic.R' 'extract_species_asr.R'
'extract_species_min.R' 'extract_stem_age.R'
'extract_stem_age_asr.R' 'extract_stem_age_genus.R'
'extract_stem_age_min.R' 'get_endemic_species.R'
'is_back_colonisation.R' 'is_duplicate_colonist.R'
'is_identical_island_tbl.R' 'is_multi_tip_species.R'
'island_colonist-class.R' 'island_colonist-accessors.R'
'island_tbl-class.R' 'island_tbl-accessors.R'
'island_tbl-methods.R' 'multi_extract_island_species.R'
'multi_island_tbl-class.R' 'multi_island_tbl-methods.R'
'plot_colonisation.R' 'plot_performance.R' 'plot_phylod.R'
'plot_sensitivity.R' 'print-methods.R' 'read_performance.R'
'read_sensitivity.R' 'rm_duplicate_island_species.R'
'rm_island_colonist.R' 'rm_multi_missing_species.R'
'rm_nonendemic_in_clade.R' 'sensitivity.R' 'translate_status.R'
'unique_island_genera.R' 'utils.R' 'write_biogeobears_input.R'
NeedsCompilation no
Author Joshua W. Lambert [aut, cre] (ORCID:
https://orcid.org/0000-0001-5218-3046),
Luis Valente [aut] (ORCID: https://orcid.org/0000-0003-4247-8785),
Pedro Santos Neves [aut] (ORCID:
https://orcid.org/0000-0003-2561-4677),
Lizzie Roeble [aut] (ORCID: https://orcid.org/0000-0003-3664-4222),
Theo Pannetier [aut] (ORCID: https://orcid.org/0000-0002-8424-3573)
· · · · · · · · · · · · · · · · · · ·
Maintainer Joshua W. Lambert < joshua.lambert@lshtm.ac.uk>
Repository CRAN
Date/Publication 2025-10-30 23:50:22 UTC
Contents
add asr node states
add_island_colonist
add_nissing_species
add_multi_missing_species
auu_munu_mnoomg_opecieo

add_asr_node_states	4
add_island_colonist	5
add_missing_species	7
add_multi_missing_species	8
add_outgroup	9
all_descendants_conspecific	10
all_endemicity_status	
any_back_colonisation	11
any_outgroup	12
any_polyphyly	13
as_daisie_datatable	
benchmark	15

Contents 3

bind_colonist_to_tbl	16
check_island_colonist	17
check_island_tbl	18
check_multi_island_tbl	18
check_phylo_data	19
coccyzus_phylod	
columbiformes_phylod	20
count_missing_species	21
create_daisie_data	. 22
create_endemicity_status	24
create_test_phylod	
default_params_doc	26
endemicity_to_sse_states	
extract_asr_clade	
extract_biogeobears_ancestral_states_probs	
extract_clade_name	
extract_endemic_clade	
extract_endemic_singleton	
extract_island_species	
extract_multi_tip_species	
extract_nonendemic	
extract_species_asr	
extract_species_min	
extract_stem_age	
extract_stem_age_asr	
extract_stem_age_genus	
extract_stem_age_min	
finches_phylod	
GalapagosTrees	
get_clade_name	
get_island_tbl	
get_sse_tip_states	
island_colonist	
Island_colonist-class	
island_tbl	
Island_tbl-class	
is_back_colonisation	
is duplicate colonist	
is_identical_island_tbl	
mimus_phylod	
multi_extract_island_species	
multi_island_tbl	
Multi_island_tbl-class	
myiarchus_phylod	
plant_phylo	
plot_colonisation	
plot_performance	
plot_performance	64

4 add_asr_node_states

progne_phylod	65
pyrocephalus_phylod	65
rm_island_colonist	66
rm_multi_missing_species	66
$round_up $	68
select_endemicity_status	68
sensitivity	69
setophaga_phylod	70
sse_states_to_endemicity	71
translate_status	71
unique_island_genera	
write_biogeobears_input	73
write_newick_file	73
write_phylip_biogeo_file	74
	75

add_asr_node_states

Fits a model of ancestral state reconstruction of island presence

Description

Fits a model of ancestral state reconstruction of island presence

Usage

Index

```
add_asr_node_states(
  phylod,
  asr_method,
  tie_preference = "island",
  earliest_col = FALSE,
  rate_model = NULL,
)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

A character string, either "parsimony" or "mk" determines whether a maxiasr_method

mum parsimony or continuous-time markov model reconstructs the ancestral states at each node. See documentation in castor::asr_max_parsimony() or castor::asr_mk_model() in castor R package for details on the methods

used.

tie_preference Character string, either "island" or "mainland" to choose the most probable state at each node using the max.col() function. When a node has island presence

and absence equally probable we need to decide whether that species should

add_island_colonist 5

be considered on the island. To consider it on the island use ties.method = "last" in the max.col() function, if you consider it not on the island use ties.method = "first". Default is "island".

earliest_col

A boolean to determine whether to take the colonisation time as the most probable time (FALSE) or the earliest possible colonisation time (TRUE), where the probability of a species being on the island is non-zero. Default is FALSE.

rate_model

Rate model to be used for fitting the transition rate matrix. Can be "ER" (all rates equal), "SYM" (transition rate i—>j is equal to transition rate j—>i), "ARD" (all rates can be different), "SUEDE" (only stepwise transitions i—>i+1 and i—>i-1 allowed, all 'up' transitions are equal, all 'down' transitions are equal) or "SRD" (only stepwise transitions i—>i+1 and i—>i-1 allowed, and each rate can be different). Can also be an index matrix that maps entries of the transition matrix to the corresponding independent rate parameter to be fitted. Diagonal entries should map to 0, since diagonal entries are not treated as independent rate parameters but are calculated from the remaining entries in the transition matrix. All other entries that map to 0 represent a transition rate of zero. The format of this index matrix is similar to the format used by the ace function in the ape package. rate_model is only relevant if transition_matrix==NULL.

dots Allows arguments to be passed to castor::asr_mk_model() and castor::asr_max_parsimony(). These arguments must match by name exactly, see ?castor::asr_mk_model() and ?castor::asr_max_parsimony() for information on arguments.

Details

The rate_model argument documentation is inherited from castor::asr_mk_model(), therefore, the last sentence about the transition_matrix argument does not apply to add_asr_node_states().

Value

An object of phylo4d class with tip and node data

add_island_colonist

Adds an island colonists (can be either a singleton lineage or an island clade) to the island community (island_tbl).

Description

Adds an island colonists (can be either a singleton lineage or an island clade) to the island community (island_tbl).

Usage

```
add_island_colonist(
  island_tbl,
  clade_name,
  status,
```

6 add_island_colonist

```
missing_species,
col_time,
col_max_age,
branching_times,
min_age,
species,
clade_type
)
```

Arguments

island_tbl An instance of the Island_tbl class.

clade_name Character name of the colonising clade.

status Character endemicity status of the colonising clade. Either "endemic" or "nonendemic".

missing_species

Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is n-1, where n is the number of missing species in the clade. If the clade is an island singleton, the number of missing species is 0 because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is n-1 because adding the lineage already counts as one.

col_time Numeric with the colonisation time of the island colonist

col_max_age Boolean determining whether colonisation time should be considered a precise

time of colonisation or a maximum time of colonisation

branching_times

Numeric vector of one or more elements which are the branching times on the

island.

min_age Numeric minimum age (time before the present) that the species must have

colonised the island by. This is known when there is a branching on the island,

either in species or subspecies.

species Character vector of one or more elements containing the name of the species

included in the colonising clade.

clade_type Numeric determining which type of clade the island colonist is, this determines

which macroevolutionary regime (parameter set) the island colonist is in. After formatting the island_tbl to a DAISIE data list, the clade type can be used to conduct a 2-type analysis (see <a href="https://CRAN.R-project.org/package="https://cran.R-project.org/package="https://cra

DAISIE/vignettes/demo_optimize.html for more information)

Value

An object of Island_tbl class

```
# create an empty island_tbl to add to
island_tbl <- island_tbl()</pre>
```

add_missing_species 7

```
# add a new island colonist
island_tbl <- add_island_colonist(
    island_tbl,
    clade_name = "new_clade",
    status = "endemic",
    missing_species = 0,
    col_time = 1,
    col_max_age = FALSE,
    branching_times = NA,
    min_age = NA,
    species = "new_clade",
    clade_type = 1
)</pre>
```

add_missing_species

Adds a specified number of missing species to an existing island_tbl at the colonist specified by the species_to_add_to argument given. The species given is located within the island_tbl data and missing species are assigned. This is to be used after extract_island_species() to input missing species.

Description

Adds a specified number of missing species to an existing island_tbl at the colonist specified by the species_to_add_to argument given. The species given is located within the island_tbl data and missing species are assigned. This is to be used after extract_island_species() to input missing species.

Usage

```
add_missing_species(island_tbl, num_missing_species, species_to_add_to)
```

Arguments

```
island_tbl An instance of the Island_tbl class.

num_missing_species

Numeric for the number of missing species in the clade.

species_to_add_to

Character string with the name of the species to identify which clade to assign
```

missing species to.

Value

Object of Island_tbl class

Examples

```
set.seed(
  1,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion".
  sample.kind = "Rejection"
phylo <- ape::rcoal(5)</pre>
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e")</pre>
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- c(</pre>
  "not_present", "not_present", "endemic", "not_present", "not_present"
)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
island_tbl <- extract_island_species(phylod, extraction_method = "min")</pre>
island_tbl <- add_missing_species(</pre>
  island_tbl = island_tbl,
  num_missing_species = 1,
  species_to_add_to = "bird_c"
)
```

add_multi_missing_species

Calculates the number of missing species to be assigned to each island clade in the island_tbl object and assigns the missing species to them. In the case that multiple genera are in an island clade and each have missing species the number of missing species is summed. Currently the missing species are assigned to the genus that first matches with the missing species table, however a more biologically or stochastic assignment is in development.

Description

Calculates the number of missing species to be assigned to each island clade in the island_tbl object and assigns the missing species to them. In the case that multiple genera are in an island clade and each have missing species the number of missing species is summed. Currently the missing species are assigned to the genus that first matches with the missing species table, however a more biologically or stochastic assignment is in development.

Usage

```
add_multi_missing_species(missing_species, missing_genus, island_tbl)
```

Arguments

```
missing_species
```

Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is n-1, where n is

add_outgroup 9

the number of missing species in the clade. If the clade is an island singleton, the number of missing species is 0 because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is n-1 because adding the lineage already counts as one.

missing_genus

A list of character vectors containing the genera in each island clade

island_tbl

An instance of the Island_tbl class.

Value

Object of Island_tbl class

Examples

```
phylod <- create_test_phylod(test_scenario = 6)</pre>
island_tbl <- suppressWarnings(extract_island_species(</pre>
  phylod = phylod,
  extraction_method = "asr",
))
phylod <- create_test_phylod(test_scenario = 7)</pre>
island_tbl <- suppressWarnings(extract_island_species(</pre>
  phylod = phylod,
  extraction_method = "asr",
  island_tbl = island_tbl
))
missing_species <- data.frame(</pre>
  clade_name = "bird",
  missing_species = 1,
  endemicity_status = "endemic"
missing_genus <- list("bird", character(0))</pre>
island_tbl <- add_multi_missing_species(</pre>
  missing_species = missing_species,
  missing_genus = missing_genus,
  island_tbl = island_tbl
)
```

add_outgroup

Add an outgroup species to a given phylogeny.

Description

Add an outgroup species to a given phylogeny.

Usage

```
add_outgroup(phylo)
```

Arguments

phylo

A phylogeny either as a phylo (from the ape package) or phylo4 (from the phylobase package) object.

Value

A phylo object

Examples

```
phylo <- ape::rcoal(10)
phylo_with_outgroup <- add_outgroup(phylo)</pre>
```

all_descendants_conspecific

Checks whether all species given in the descendants vector are the same species.

Description

Checks whether all species given in the descendants vector are the same species.

Usage

```
all_descendants_conspecific(descendants)
```

Arguments

descendants

A vector character strings with the names of species to determine whether they are the same species.

Value

Boolean

```
# Example where species are not conspecific
descendants <- c("bird_a", "bird_b", "bird_c")
all_descendants_conspecific(descendants = descendants)
# Example where species are conspecific
descendants <- c("bird_a_1", "bird_a_2", "bird_a_3")
all_descendants_conspecific(descendants = descendants)</pre>
```

all_endemicity_status 11

all_endemicity_status All possible endemicity statuses

Description

All possible endemicity statuses

Usage

```
all_endemicity_status()
```

Value

A vector of character strings with all the endemicity status options

any_back_colonisation Detects any cases where a non-endemic species or species not present on the island has likely been on the island given its ancestral state reconstruction indicating ancestral presence on the island and so is likely a back colonisation from the island to the mainland (or potentially different island). This function is useful if using extraction_method = "min" in DAISIEprep::extract_island_species() as it may brake up a single colonist into multiple colonists because of back-colonisation.

Description

Detects any cases where a non-endemic species or species not present on the island has likely been on the island given its ancestral state reconstruction indicating ancestral presence on the island and so is likely a back colonisation from the island to the mainland (or potentially different island). This function is useful if using extraction_method = "min" in DAISIEprep::extract_island_species() as it may brake up a single colonist into multiple colonists because of back-colonisation.

Usage

```
any_back_colonisation(phylod, only_tips = FALSE)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

only_tips A boolean determing whether only the tips (i.e. terminal branches) are searched

for back colonisation events.

12 any_outgroup

Value

A single or vector of character strings. Character string is in the format ancestral_node -> fo-cal_node, where the ancestral node is not on mainland but the focal node is. In the case of no back colonisations a different message string is returned.

Examples

```
# Example with no back colonisation
phylod <- create_test_phylod(test_scenario = 15)</pre>
any_back_colonisation(phylod)
# Example with back colonisation
set.seed(
 3,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion",
 sample.kind = "Rejection"
phylo <- ape::rcoal(5)</pre>
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e")</pre>
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- c("endemic", "endemic", "not_present",</pre>
                         "endemic", "not_present")
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
phylod <- add_asr_node_states(phylod = phylod, asr_method = "parsimony")</pre>
# aritificially modify data to produce back-colonisation
phylobase::tdata(phylod)$island_status[8] <- "endemic"</pre>
any_back_colonisation(phylod = phylod)
```

any_outgroup

Checks whether the phylogeny has an outgroup that is not present on the island. This is critical when extracting data from the phylogeny so the stem age (colonisation time) is correct.

Description

Checks whether the phylogeny has an outgroup that is not present on the island. This is critical when extracting data from the phylogeny so the stem age (colonisation time) is correct.

Usage

```
any_outgroup(phylod)
```

Arguments

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

any_polyphyly 13

Value

Boolean

Examples

any_polyphyly

Checks whether there are any species in the phylogeny that have multiple tips (i.e. multiple subspecies per species) and whether any of those tips are paraphyletic (i.e. are their subspecies more distantly related to each other than to other subspecies or species).

Description

Checks whether there are any species in the phylogeny that have multiple tips (i.e. multiple subspecies per species) and whether any of those tips are paraphyletic (i.e. are their subspecies more distantly related to each other than to other subspecies or species).

Usage

```
any_polyphyly(phylod)
```

Arguments

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

Value

Boolean

```
phylod <- create_test_phylod(test_scenario = 1)
any_polyphyly(phylod)</pre>
```

14 as_daisie_datatable

as_daisie_datatable

Converts the Island_tbl class to a data frame in the format of a DAISIE data table (see DAISIE R package for details). This can then be input into DAISIEprep::create_daisie_data() function which creates the list input into the DAISIE ML models.

Description

Converts the Island_tbl class to a data frame in the format of a DAISIE data table (see DAISIE R package for details). This can then be input into DAISIEprep::create_daisie_data() function which creates the list input into the DAISIE ML models.

Usage

```
as_daisie_datatable(island_tbl, island_age, precise_col_time = TRUE)
```

Arguments

```
island_tbl An instance of the Island_tbl class.
island_age Age of the island in appropriate units.
precise_col_time
```

Boolean, TRUE uses the precise times of colonisation, FALSE makes every colonist a max age colonistion and uses minimum age of colonisation if available.

Value

A data frame in the format of a DAISIE data table

Author(s)

Joshua W. Lambert, Pedro Neves

```
phylod <- create_test_phylod(10)
island_tbl <- extract_island_species(
   phylod = phylod,
   extraction_method = "asr"
)

# Example where precise colonisation times are known
daisie_datatable <- as_daisie_datatable(
   island_tbl = island_tbl,
   island_age = 0.2,
   precise_col_time = TRUE
)</pre>
```

benchmark 15

```
# Example where colonisation times are uncertain and set to max ages
daisie_datatable <- as_daisie_datatable(
  island_tbl = island_tbl,
  island_age = 0.2,
  precise_col_time = FALSE
)</pre>
```

benchmark

Performance analysis of the extract_island_species() function Uses system.time() for timing for reasons explained here: https://radfordneal.wordpress.com/2014/02/02/inaccurate-results-from-microbenchmark/# nolint

Description

Performance analysis of the extract_island_species() function Uses system.time() for timing for reasons explained here: https://radfordneal.wordpress.com/2014/02/02/inaccurate-results-from-microbenchmark/# nolint

Usage

```
benchmark(
  phylod,
  tree_size_range,
  num_points,
  prob_on_island,
  prob_endemic,
  replicates,
  extraction_method,
  asr_method,
  tie_preference,
  log_scale = TRUE,
  parameter_index = NULL,
  verbose = FALSE
)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

tree_size_range

Numeric vector of two elements, the first is the smallest tree size (number of

tips) and the second is the largest tree size

largest tree size

prob_on_island Numeric vector of each probability on island to use in the parameter space

16 bind_colonist_to_tbl

prob_endemic Numeric vector of each probability of an island species being endemic to use in

the parameter space

replicates Numeric determining the number of replicates to use to account for the stochas-

ticity in sampling the species on the island and endemic species

extraction_method

A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral

state reconstruction (asr).

asr_method A character string, either "parsimony" or "mk" determines whether a maxi-

mum parsimony or continuous-time markov model reconstructs the ancestral states at each node. See documentation in castor::asr_max_parsimony() or castor::asr_mk_model() in castor R package for details on the methods

used.

tie_preference Character string, either "island" or "mainland" to choose the most probable state

at each node using the max.col() function. When a node has island presence and absence equally probable we need to decide whether that species should be considered on the island. To consider it on the island use ties.method = "last" in the max.col() function, if you consider it not on the island use

ties.method = "first". Default is "island".

log_scale A boolean determining whether the sequence of tree sizes are on a linear (FALSE)

or log (TRUE) scale

parameter_index

Numeric determining which parameter set to use (i.e which row in the parameter

space data frame), if this is NULL all parameter sets will be looped over

verbose Boolean. States if intermediate results should be printed to console. Defaults to

FALSE

Value

Data frame

bind_colonist_to_tbl Takes an existing instance of an Island_tbl class and bind the infor-

mation from the instance of an Island_colonist class to it

Description

Takes an existing instance of an Island_tbl class and bind the information from the instance of an Island_colonist class to it

Usage

bind_colonist_to_tbl(island_colonist, island_tbl)

check_island_colonist 17

Arguments

```
island_colonist

An instance of the Island_colonist class.
island_tbl An instance of the Island_tbl class.
```

Value

An object of Island_tbl class

Examples

```
island_colonist <- DAISIEprep::island_colonist(
  clade_name = "bird",
  status = "endemic",
  missing_species = 0,
  col_time = 1,
  col_max_age = FALSE,
  branching_times = 0.5,
  species = "bird_a",
  clade_type = 1
)
island_tbl <- island_tbl()
bind_colonist_to_tbl(
  island_colonist = island_colonist,
  island_tbl = island_tbl
)</pre>
```

check_island_colonist Checks the validity of the Island_colonist class

Description

Checks the validity of the Island_colonist class

Usage

```
check_island_colonist(object)
```

Arguments

object Instance of the island_colonist class

Value

Boolean or errors

```
island_colonist <- island_colonist()
check_island_colonist(island_colonist)</pre>
```

check_island_tbl

Checks the validity of the Island_tbl class

Description

Checks the validity of the Island_tbl class

Usage

```
check_island_tbl(object)
```

Arguments

object

Instance of the Island_tbl class

Value

Boolean or errors

Examples

```
island_tbl <- island_tbl()
check_island_tbl(island_tbl)</pre>
```

```
check_multi_island_tbl
```

Checks the validity of the Multi_island_tbl class

Description

Checks the validity of the Multi_island_tbl class

Usage

```
check_multi_island_tbl(object)
```

Arguments

object

Instance of the Multi_island_tbl class

Value

Boolean or errors

```
multi_island_tbl <- multi_island_tbl()
check_multi_island_tbl(multi_island_tbl)</pre>
```

check_phylo_data 19

check_phylo_data

Checks whether \linkS4class{phylo4d} object conforms to the requirements of the DAISIEprep package. If the function does not return anything the data is ready to be used, if an error is returned the data requires some pre-processing before DAISIEprep can be used

Description

Checks whether \linkS4class{phylo4d} object conforms to the requirements of the DAISIEprep package. If the function does not return anything the data is ready to be used, if an error is returned the data requires some pre-processing before DAISIEprep can be used

Usage

```
check_phylo_data(phylod)
```

Arguments

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

Value

Nothing or error message

coccyzus_phylod	A phylogenetic tree of coccyzus species with endemicity status as tip states.
coccyzus_phylod	

Description

A phylogenetic tree of coccyzus species with endemicity status as tip states.

Usage

coccyzus_phylod

Format

coccyzus_phylod:

A phylo4d object (from the **phylobase** package) with 20 tips and 19 internal nodes.

Source

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

columbiformes_phylod A phylogenetic tree of columbiformes species with endemicity status as tip states.

Description

A phylogenetic tree of columbiformes species with endemicity status as tip states.

Usage

columbiformes_phylod

Format

columbiformes_phylod:

A phylo4d object (from the **phylobase** package) with 242 tips and 241 internal nodes.

Source

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

21 count_missing_species

count_missing_species Reads in the checklist of all species on an island, including those that are not in the phylogeny (represented by NA) and counts the number of species missing from the phylogeny each genus

Description

Reads in the checklist of all species on an island, including those that are not in the phylogeny (represented by NA) and counts the number of species missing from the phylogeny each genus

Usage

```
count_missing_species(
  checklist.
  phylo_name_col,
  genus_name_col,
  in_phylo_col,
  endemicity_status_col,
  rm_species_col = NULL
)
```

Arguments

checklist data frame with information on species on the island

phylo_name_col A character string specifying the column name where the names in the phylogeny are in the checklist

genus_name_col A character string specifying the column name where the genus names are in the checklist

in_phylo_col A character string specifying the column name where the status of whether a species is in the phylogeny is in the checklist

endemicity_status_col

A character string specifying the column name where the endemicity status of the species are in the checklist

rm_species_col A character string specifying the column name where the information on whether to remove species from the checklist before counting the number of missing species is in the checklist. This can be NULL if no species are to be removed from the checklist. This is useful when species are in the checklist because they are on the island but need to be removed as they are not in the group of interest, e.g. a migratory bird amongst terrestrial birds

Value

Data frame

22 create_daisie_data

Examples

```
mock_checklist <- data.frame(</pre>
  genus = c("bird", "bird", "bird", "bird", "bird", "bird",
             "bird", "bird", "bird"),
  species = c("a", "b", "c", "d", "e", "f", "g", "h", "i", "j"),
  species_names = c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
  "bird_f", "bird_g", "bird_h", "bird_i", "bird_j"),
sampled = c(TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, FALSE),
  endemicity_status = c("endemic", "endemic", "endemic", "nonendemic",
                          "endemic", "nonendemic", "endemic", "endemic",
"endemic", "endemic"),
  remove_species = (rep(FALSE, 10))
)
missing_species <- count_missing_species(</pre>
  checklist = mock_checklist,
  phylo_name_col = "species_names",
  genus_name_col = "genus",
  in_phylo_col = "sampled",
  endemicity_status_col = "endemicity_status",
  rm_species_col = NULL
)
```

create_daisie_data

This is a wrapper function for DAISIE::DAISIE_dataprep(). It allows the final DAISIE data structure to be produced from within DAISIEprep. For detailed documentation see the help documentation in the DAISIE package (?DAISIE::DAISIE_dataprep).

Description

This is a wrapper function for DAISIE::DAISIE_dataprep(). It allows the final DAISIE data structure to be produced from within DAISIEprep. For detailed documentation see the help documentation in the DAISIE package (?DAISIE::DAISIE_dataprep).

Usage

```
create_daisie_data(
  data,
  island_age,
  num_mainland_species,
  num_clade_types = 1,
  list_type2_clades = NA,
  prop_type2_pool = "proportional",
  epss = 1e-05,
  verbose = FALSE,
  precise_col_time = TRUE
)
```

create_daisie_data 23

Arguments

data

Either an object of class Island_tbl or a DAISIE data table object (output from as_daisie_datatable()).

island_age

Age of the island in appropriate units.

num_mainland_species

The size of the mainland pool, i.e. the number of species that can potentially colonise the island.

num_clade_types

Number of clade types. Default num_clade_types = 1 all species are considered to belong to the same macroevolutionary process. If num_clade_types = 2, there are two types of clades with distinct macroevolutionary processes.

list_type2_clades

If num_clade_types = 2, list_type2_clades specifies the names of the clades that have a distinct macroevolutionary process. The names must match those in the "Clade_name" column of the source data table. If num_clade_types = 1, then list_type2_clades = NA should be specified (default).

prop_type2_pool

Specifies the fraction of potential mainland colonists that have a distinct macroevolutionary process. Applies only if number_clade_types = 2. Default "proportional" sets the fraction to be proportional to the number of clades of distinct macroevolutionary process that have colonised the island. Alternatively, the user can specify a value between 0 and 1 (e.g. if the mainland pool size is 1000 and prop_type2_pool = 0.02 then the number of type 2 species is 20).

epss

Default = 1e-5 should be appropriate in most cases. This value is used to set the maximum age of colonisation of "Non_endemic_MaxAge" and "Endemic_MaxAge" species to an age that is slightly younger than the island for cases when the age provided for that species is older than the island. The new maximum age is then used as an upper bound to integrate over all possible colonisation times.

verbose

Boolean. States if intermediate results should be printed to console. Defaults to FALSE

precise_col_time

Boolean, TRUE uses the precise times of colonisation, FALSE makes every colonist a max age colonistion and uses minimum age of colonisation if available.

Value

DAISIE data list

```
phylod <- create_test_phylod(3)
island_tbl <- extract_island_species(
  phylod = phylod,
   extraction_method = "min"
)</pre>
```

```
daisie_datatable <- as_daisie_datatable(island_tbl, island_age = 10)
daisie_data_list <- create_daisie_data(
    data = daisie_datatable,
    island_age = 10,
    num_mainland_species = 1000,
    num_clade_types = 1,
    list_type2_clades = NA,
    prop_type2_pool = NA,
    epss = 1e-5,
    verbose = FALSE
)</pre>
```

create_endemicity_status

Creates a data frame with the endemicity status (either 'endemic', 'nonendemic', 'not_present') of every species in the phylogeny using a phylogeny and a data frame of the island species and their endemicity (either 'endemic' or 'nonendemic') provided.

Description

Creates a data frame with the endemicity status (either 'endemic', 'nonendemic', 'not_present') of every species in the phylogeny using a phylogeny and a data frame of the island species and their endemicity (either 'endemic' or 'nonendemic') provided.

Usage

```
create_endemicity_status(phylo, island_species)
```

Arguments

phylo A phylogeny either as a phylo (from the ape package) or phylo4 (from the

phylobase package) object.

island_species Data frame with two columns. The first is a character string of the tip_labels with the tip names of the species on the island. The second column a character

with the tip names of the species on the island. The second column a characte string of the endemicity status of the species, either endemic or nonendemic.

Details

Species included in the island_species data frame but not included in the phylo will not be included in the output and warning will print all of the species that are in the island_species that are not found in the phylo.

Value

Data frame with single column of character strings and row names

create_test_phylod 25

Examples

```
set.seed(
    1,
    kind = "Mersenne-Twister",
    normal.kind = "Inversion",
    sample.kind = "Rejection"
)
phylo <- ape::rcoal(4)
phylo$tip.label <- c("species_a", "species_b", "species_c", "species_d")
phylo <- methods::as(phylo, "phylo4")
island_species <- data.frame(
    tip_labels = c("species_a", "species_b", "species_c", "species_d"),
        tip_endemicity_status = c("endemic", "endemic", "endemic", "nonendemic")
)
endemicity_status <- create_endemicity_status(
    phylo = phylo,
    island_species = island_species
)</pre>
```

create_test_phylod

Creates phylod objects.

Description

A helper function that is useful in tests and examples to easily create phylod objects (i.e. phylogenetic trees with data).

Usage

```
create_test_phylod(test_scenario)
```

Arguments

Value

A phylo4d object

```
create_test_phylod(test_scenario = 1)
```

default_params_doc

Documentation for function in the DAISIEprep package

Description

Documentation for function in the DAISIEprep package

Usage

```
default_params_doc(
  island_colonist,
  island_tbl,
  phylod,
  extraction_method,
  species_label,
  species_endemicity,
  Х,
  value,
  clade_name,
  status,
 missing_species,
  col_time,
  col_max_age,
  branching_times,
 min_age,
  species,
  clade_type,
  endemic_clade,
  phylo,
  island_species,
  descendants,
  clade,
  asr_method,
  tie_preference,
  earliest_col,
  include_not_present,
  nested_asr_species,
  num_missing_species,
  species_to_add_to,
  node_pies,
  test_scenario,
  data,
  island_age,
  num_mainland_species,
  num_clade_types,
  list_type2_clades,
  prop_type2_pool,
```

```
epss,
  verbose,
  precise_col_time,
 digits,
  include_crown_age,
  only_tips,
  node_label,
 multi_phylod,
  island_tbl_1,
  island_tbl_2,
  unique_clade_name,
  genus_name,
  stem,
  genus_in_tree,
 missing_genus,
  checklist,
  phylo_name_col,
  genus_name_col,
  in_phylo_col,
  endemicity_status_col,
  rm_species_col,
  tree_size_range,
  num_points,
  prob_on_island,
 prob_endemic,
  replicates,
  log_scale,
  parameter_index,
  sse_model,
  force_nonendemic_singleton,
)
```

Arguments

```
island_colonist
```

An instance of the Island_colonist class.

island_tbl An instance of the Island_tbl class.

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

extraction_method

A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).

The tip label of the species of interest. species_label

species_endemicity

A character string with the endemicity, either "endemic" or "nonendemic" of an

island species, or "not_present" if not on the island.

x An object whose class is determined by the signature.

value A value which can take several forms to be assigned to an object of a class.

clade_name Character name of the colonising clade.

status Character endemicity status of the colonising clade. Either "endemic" or "nonendemic".

missing_species

Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is n-1, where n is the number of missing species in the clade. If the clade is an island singleton, the number of missing species is 0 because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is n-1 because adding the lineage already counts as one.

col_time Numeric with the colonisation time of the island colonist

col_max_age Boolean determining whether colonisation time should be considered a precise

time of colonisation or a maximum time of colonisation

branching_times

Numeric vector of one or more elements which are the branching times on the

island.

min_age Numeric minimum age (time before the present) that the species must have

colonised the island by. This is known when there is a branching on the island,

either in species or subspecies.

species Character vector of one or more elements containing the name of the species

included in the colonising clade.

clade_type Numeric determining which type of clade the island colonist is, this determines

which macroevolutionary regime (parameter set) the island colonist is in. After formatting the island_tbl to a DAISIE data list, the clade type can be used to conduct a 2-type analysis (see https://CRAN.R-project.org/package=

DAISIE/vignettes/demo_optimize.html for more information)

endemic_clade Named vector with all the species from a clade.

phylo A phylogeny either as a phylo (from the ape package) or phylo4 (from the

phylobase package) object.

island_species Data frame with two columns. The first is a character string of the tip labels

with the tip names of the species on the island. The second column a character string of the endemicity status of the species, either endemic or nonendemic.

descendants A vector character strings with the names of species to determine whether they

are the same species.

clade A numeric vector which the indices of the species which are in the island clade.

asr_method A character string, either "parsimony" or "mk" determines whether a maxi-

mum parsimony or continuous-time markov model reconstructs the ancestral states at each node. See documentation in castor::asr_max_parsimony() or castor::asr_mk_model() in castor R package for details on the methods

used.

tie_preference

Character string, either "island" or "mainland" to choose the most probable state at each node using the max.col() function. When a node has island presence and absence equally probable we need to decide whether that species should be considered on the island. To consider it on the island use ties.method = "last" in the max.col() function, if you consider it not on the island use ties.method = "first". Default is "island".

earliest_col

A boolean to determine whether to take the colonisation time as the most probable time (FALSE) or the earliest possible colonisation time (TRUE), where the probability of a species being on the island is non-zero. Default is FALSE.

include_not_present

A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.

nested_asr_species

A character string which determines whether *nested island colonists* are split into separate colonists ("split"), or grouped into a single clade ("group"). Nested species are those whose tip state is on the island, and they have ancestral nodes on the island, but there are nodes in between these island state nodes that have the state not_present (i.e. not on the island). Therefore, the colonisation time can be extracted as the most recent node state on the island (this can be the branching time before the tip if the ancestor node of the tip is not on the island), or the older node state of the larger clade, for "split" or "group" respectively.

Note This argument only applies when extraction_method = "asr".

num_missing_species

Numeric for the number of missing species in the clade.

species_to_add_to

Character string with the name of the species to identify which clade to assign missing species to.

node_pies

Boolean determining if pie charts of the probabilities of a species being present on the island. If TRUE the correct data is required in the phylod object.

test_scenario

Integer specifying which test phylod object to create.

data

Either an object of class Island_tbl or a DAISIE data table object (output from as_daisie_datatable()).

island_age

Age of the island in appropriate units.

num_mainland_species

The size of the mainland pool, i.e. the number of species that can potentially colonise the island.

num_clade_types

Number of clade types. Default num_clade_types = 1 all species are considered to belong to the same macroevolutionary process. If num_clade_types = 2, there are two types of clades with distinct macroevolutionary processes.

list_type2_clades

If num_clade_types = 2, list_type2_clades specifies the names of the clades that have a distinct macroevolutionary process. The names must match those in the "Clade_name" column of the source data table. If num_clade_types = 1, then list_type2_clades = NA should be specified (default).

prop_type2_pool

Specifies the fraction of potential mainland colonists that have a distinct macroevolutionary process. Applies only if number_clade_types = 2. Default "proportional" sets the fraction to be proportional to the number of clades of distinct macroevolutionary process that have colonised the island. Alternatively, the user can specify a value between 0 and 1 (e.g. if the mainland pool size is 1000 and prop_type2_pool = 0.02 then the number of type 2 species is 20).

epss

Default = 1e-5 should be appropriate in most cases. This value is used to set the maximum age of colonisation of "Non_endemic_MaxAge" and "Endemic_MaxAge" species to an age that is slightly younger than the island for cases when the age provided for that species is older than the island. The new maximum age is then used as an upper bound to integrate over all possible colonisation times.

verbose

Boolean. States if intermediate results should be printed to console. Defaults to FALSE

precise_col_time

Boolean, TRUE uses the precise times of colonisation, FALSE makes every colonist a max age colonistion and uses minimum age of colonisation if available.

n A numeric to be rounded.

digits A numeric specifying which decimal places to round to

include_crown_age

A boolean determining whether the crown age gets plotted with the stem age.

only_tips A boolean determing whether only the tips (i.e. terminal branches) are searched

for back colonisation events.

node_label A numeric label for a node within a phylogeny.

multi_phylod A list of phylod objects.

island_tbl_1 An object of Island_tbl class to be comparedl island_tbl_2 An object of Island_tbl class to be compared

unique_clade_name

Boolean determining whether a unique species identifier is used as the clade name in the Island_tbl object or a genus name which may not be unique if that genus has several independent island colonisations

extract the stem age based on the ancestral presence on the island either based

genus_name Character string of genus name to be matched with a genus name from the tip

labels in the phylogeny

Character string, either "genus" or "island_presence". The former will extract the stem age of the genussbased on the genus name provided, the latter will

on the "min" or "asr" extraction algorithms.

genus_in_tree A numeric vector that indicates which species in the genus are in the tree

missing_genus A list of character vectors containing the genera in each island clade

checklist data frame with information on species on the island

phylo_name_col A character string specifying the column name where the names in the phy-

logeny are in the checklist

genus_name_col A character string specifying the column name where the genus names are in the checklist

in_phylo_col A character string specifying the column name where the status of whether a species is in the phylogeny is in the checklist

endemicity_status_col

A character string specifying the column name where the endemicity status of the species are in the checklist

rm_species_col A character string specifying the column name where the information on whether to remove species from the checklist before counting the number of missing species is in the checklist. This can be NULL if no species are to be removed from the checklist. This is useful when species are in the checklist because they are on the island but need to be removed as they are not in the group of interest, e.g. a migratory bird amongst terrestrial birds

tree_size_range

Numeric vector of two elements, the first is the smallest tree size (number of tips) and the second is the largest tree size

num_points Numeric determining how many points in the sequence of smallest tree size to largest tree size

prob_on_island Numeric vector of each probability on island to use in the parameter space

prob_endemic Numeric vector of each probability of an island species being endemic to use in the parameter space

replicates Numeric determining the number of replicates to use to account for the stochasticity in sampling the species on the island and endemic species

log_scale A boolean determining whether the sequence of tree sizes are on a linear (FALSE) or log (TRUE) scale

parameter_index

Numeric determining which parameter set to use (i.e which row in the parameter space data frame), if this is NULL all parameter sets will be looped over

either "musse" (default) or "geosse". MuSSE expects state values 1, 2, 3, which here we encode as "not_present", "endemic", "nonendemic", respectively. GeoSSE expects trait values 0, 1, 2, with 0 the widespread state (here, "nonendemic"), and 1 and 2 are "not_present" and "endemic", respectively.

force_nonendemic_singleton

A boolean that determines whether all species that are classified as "nonendemic" are forced to be extracted as singletons (i.e single species lineages). By default it is FALSE so non-endemics can be extracted either as singletons or part of an endemic clade. When set to TRUE all non-endemic species in the tree will be single species colonists, with the colonisation time extracted as the stem age for the tip in the phylogeny. There are some exceptions to this, please see vignette("Forcing_nonendemic_singleton", package = "DAISIEprep") for more details.

This argument is only active when extraction_method = "asr", when extraction_method = "min" this argument will be ignored with a warning, as the min method always extracts non-endemic species as singletons.

dots Allows arguments to be passed to castor::asr_mk_model() and castor::asr_max_parsimony(). These arguments must match by name exactly, see ?castor::asr_mk_model() and ?castor::asr_max_parsimony() for information on arguments.

Value

Nothing

Author(s)

Joshua W. Lambert

endemicity_to_sse_states

Convert endemicity to SSE states

Description

Convert endemicity to SSE states

Usage

```
endemicity_to_sse_states(endemicity_status, sse_model = "musse")
```

Arguments

endemicity_status

character vector with values "endemic", "nonendemic" and/or "not_present"

sse_model

either "musse" (default) or "geosse". MuSSE expects state values 1, 2, 3, which here we encode as "not_present", "endemic", "nonendemic", respectively. GeoSSE expects trait values 0, 1, 2, with 0 the widespread state (here, "nonendemic"), and 1 and 2 are "not_present" and "endemic", respectively.

Value

an integer vector of tip states, following the encoding expected by the MuSSE/GeoSSE

extract_asr_clade 33

extract_asr_clade	Extracts an island clade based on the ancestral state reconstruction of the species presence on the island, therefore this clade can contain non-endemic species as well as endemic species.

Description

Extracts an island clade based on the ancestral state reconstruction of the species presence on the island, therefore this clade can contain non-endemic species as well as endemic species.

Usage

```
extract_asr_clade(phylod, species_label, clade, include_not_present)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

species_label The tip label of the species of interest.

clade A numeric vector which the indices of the species which are in the island clade.

include_not_present

A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.

Value

An object of Island_colonist class

```
extract_biogeobears_ancestral_states_probs
```

Extract ancestral state probabilities from BioGeoBEARS output

Description

Extract the probabilities of each endemicity status for tip and internal node states from the output of an optimisation performed with BioGeoBEARS

Usage

```
extract_biogeobears_ancestral_states_probs(biogeobears_res)
```

Arguments

```
biogeobears_res
```

a list, the output of BioGeoBEARS::bears_optim_run()

Value

a data.frame with one row per node (tips and internals) and four columns: label | not present | endemic I nonendemic, the last three columns containing the probability of each endemicity status (and summing to 1).

extract_clade_name

Creates a name for a clade depending on whether all the species of the clade have the same genus name or whether the clade is composed of multiple genera, in which case it will create a unique clade name by concatinating the genus names

Description

Creates a name for a clade depending on whether all the species of the clade have the same genus name or whether the clade is composed of multiple genera, in which case it will create a unique clade name by concatinating the genus names

Usage

```
extract_clade_name(clade)
```

Arguments

clade

A numeric vector which the indices of the species which are in the island clade.

Value

Character

extract_endemic_clade Extracts the information for an endemic clade (i.e. more than one species on the island more closely related to each other than other mainland species) from a phylogeny (specifically phylo4d object from phylobase package) and stores it in an Island_colonist class

Description

Extracts the information for an endemic clade (i.e. more than one species on the island more closely related to each other than other mainland species) from a phylogeny (specifically phylo4d object from phylobase package) and stores it in an Island_colonist class

Usage

```
extract_endemic_clade(phylod, species_label, unique_clade_name)
```

Arguments

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

species_label

The tip label of the species of interest.

unique_clade_name

Boolean determining whether a unique species identifier is used as the clade name in the Island_tbl object or a genus name which may not be unique if that genus has several independent island colonisations

Value

An object of Island_colonist class

Examples

```
set.seed(
  3,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)</pre>
\label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e", "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")\\
phylo <- methods::as(phylo, "phylo4")</pre>
endemicity_status <- sample(</pre>
  x = c("not_present", "endemic", "nonendemic"),
  size = length(phylobase::tipLabels(phylo)),
  replace = TRUE,
  prob = c(0.7, 0.3, 0)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
island_colonist <- extract_endemic_clade(</pre>
  phylod = phylod,
  species_label = "bird_i",
  unique_clade_name = TRUE
```

extract_endemic_singleton

Extracts the information for an endemic species from a phylogeny (specifically phylo4d object from phylobase package) and stores it in in an Island_colonist class

Description

Extracts the information for an endemic species from a phylogeny (specifically phylo4d object from phylobase package) and stores it in in an Island_colonist class

Usage

```
extract_endemic_singleton(phylod, species_label)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

species_label The tip label of the species of interest.

Value

An object of Island_colonist class

Examples

```
set.seed(
 1,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion",
 sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)</pre>
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",</pre>
                      "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- sample(</pre>
 x = c("not_present", "endemic", "nonendemic"),
 size = length(phylobase::tipLabels(phylo)),
 replace = TRUE,
 prob = c(0.6, 0.2, 0.2)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
extract_endemic_singleton(phylod = phylod, species_label = "bird_i")
```

extract_island_species

Extracts the colonisation, diversification, and endemicty data from phylogenetic and endemicity data and stores it in an Island_tbl object

Description

Extracts the colonisation, diversification, and endemicty data from phylogenetic and endemicity data and stores it in an Island_tbl object

extract_island_species

Usage

```
extract_island_species(
  phylod,
  extraction_method,
  island_tbl = NULL,
  include_not_present = FALSE,
  nested_asr_species = c("split", "group"),
  force_nonendemic_singleton = FALSE,
  unique_clade_name = TRUE
)
```

Arguments

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

extraction_method

A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).

island_tbl An instance of the Island_tbl class. include_not_present

A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.

nested_asr_species

A character string which determines whether *nested island colonists* are split into separate colonists ("split"), or grouped into a single clade ("group"). Nested species are those whose tip state is on the island, and they have ancestral nodes on the island, but there are nodes in between these island state nodes that have the state not_present (i.e. not on the island). Therefore, the colonisation time can be extracted as the most recent node state on the island (this can be the branching time before the tip if the ancestor node of the tip is not on the island), or the older node state of the larger clade, for "split" or "group" respectively. **Note** This argument only applies when extraction_method = "asr".

force_nonendemic_singleton

A boolean that determines whether all species that are classified as "nonendemic" are forced to be extracted as singletons (i.e single species lineages). By default it is FALSE so non-endemics can be extracted either as singletons or part of an endemic clade. When set to TRUE all non-endemic species in the tree will be single species colonists, with the colonisation time extracted as the stem age for the tip in the phylogeny. There are some exceptions to this, please see vignette("Forcing_nonendemic_singleton", package = "DAISIEprep") for more details.

This argument is only active when extraction_method = "asr", when extraction_method = "min" this argument will be ignored with a warning, as the min method always extracts non-endemic species as singletons.

```
unique_clade_name
```

Boolean determining whether a unique species identifier is used as the clade name in the Island_tbl object or a genus name which may not be unique if that genus has several independent island colonisations

Value

An object of Island_tbl class

Examples

```
set.seed(
  1,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion".
  sample.kind = "Rejection"
phylo <- ape::rcoal(10)</pre>
\label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e", "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")\\
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- sample(</pre>
  c("not_present", "endemic", "nonendemic"),
  size = length(phylobase::tipLabels(phylo)),
  replace = TRUE,
  prob = c(0.6, 0.2, 0.2)
)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
extract_island_species(phylod, extraction_method = "min")
```

extract_multi_tip_species

Extracts the information for a species (endemic or non-endemic) which has multiple tips in the phylogeny (i.e. more than one sample per species) from a phylogeny (specifically phylo4d object from phylobase package) and stores it in an Island_colonist class

Description

Extracts the information for a species (endemic or non-endemic) which has multiple tips in the phylogeny (i.e. more than one sample per species) from a phylogeny (specifically phylo4d object from phylobase package) and stores it in an Island_colonist class

```
extract_multi_tip_species(phylod, species_label, species_endemicity)
```

extract_nonendemic 39

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

species_label The tip label of the species of interest.

species_endemicity

A character string with the endemicity, either "endemic" or "nonendemic" of an island species, or "not_present" if not on the island.

Value

An object of Island_colonist class

Examples

```
set.seed(
 1,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion",
 sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)</pre>
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",</pre>
                      "bird_f", "bird_g", "bird_h_1", "bird_h_2", "bird_i")
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- c("not_present", "not_present", "not_present",</pre>
                        "not_present", "not_present", "not_present",
                        "not_present", "endemic", "endemic", "not_present")
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
extract_multi_tip_species(
 phylod = phylod,
 species_label = "bird_h_1",
 species_endemicity = "endemic"
)
```

extract_nonendemic

Extracts the information for a non-endemic species from a phylogeny (specifically phylo4d object from phylobase package) and stores it in in an island_colonist class

Description

Extracts the information for a non-endemic species from a phylogeny (specifically phylo4d object from phylobase package) and stores it in in an island_colonist class

```
extract_nonendemic(phylod, species_label)
```

40 extract_species_asr

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

species_label The tip label of the species of interest.

Value

An object of island_colonist class

Examples

```
set.seed(
 1,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion";
 sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)</pre>
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",</pre>
                      "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- sample(</pre>
 x = c("not_present", "endemic", "nonendemic"),
 size = length(phylobase::tipLabels(phylo)),
 replace = TRUE,
 prob = c(0.6, 0.2, 0.2)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
extract_nonendemic(phylod = phylod, species_label = "bird_g")
```

extract_species_asr

Extracts the colonisation, diversification, and endemicty data from phylogenetic and endemicity data and stores it in an Island_tbl object using the "asr" algorithm that extract island species given their ancestral states of either island presence or absence.

Description

Extracts the colonisation, diversification, and endemicty data from phylogenetic and endemicity data and stores it in an Island_tbl object using the "asr" algorithm that extract island species given their ancestral states of either island presence or absence.

```
extract_species_asr(
  phylod,
  species_label,
  species_endemicity,
```

extract_species_asr 41

```
island_tbl,
include_not_present
)
```

Arguments

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

 ${\tt species_label} \quad \text{The tip label of the species of interest.}$

species_endemicity

A character string with the endemicity, either "endemic" or "nonendemic" of an island species, or "not_present" if not on the island.

island_tbl An instance of the Island_tbl class. include_not_present

A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.

Value

An object of island_tbl class

```
set.seed(
 1,
 kind = "Mersenne-Twister".
 normal.kind = "Inversion",
 sample.kind = "Rejection"
phylo <- ape::rcoal(10)</pre>
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- sample(c("not_present", "endemic", "nonendemic"),</pre>
                           size = length(phylobase::tipLabels(phylo)),
                           replace = TRUE, prob = c(0.8, 0.1, 0.1)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
phylod <- add_asr_node_states(</pre>
 phylod = phylod,
 asr_method = "parsimony"
island_tbl <- island_tbl()</pre>
extract_species_asr(
 phylod = phylod,
 species_label = "bird_i",
 species_endemicity = "endemic",
 island_tbl = island_tbl,
 include_not_present = FALSE
)
```

42 extract_species_min

extract_species_min

Extracts the colonisation, diversification, and endemicty data from phylogenetic and endemicity data and stores it in an Island_tbl object using the "min" algorithm that extract island species as the shortest time to the present.

Description

Extracts the colonisation, diversification, and endemicty data from phylogenetic and endemicity data and stores it in an Island_tbl object using the "min" algorithm that extract island species as the shortest time to the present.

Usage

```
extract_species_min(
  phylod,
  species_label,
  species_endemicity,
  island_tbl,
  unique_clade_name
)
```

Arguments

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

species_label The tip label of the species of interest.

species_endemicity

A character string with the endemicity, either "endemic" or "nonendemic" of an island species, or "not_present" if not on the island.

island_tbl An instance of the Island_tbl class. unique_clade_name

Boolean determining whether a unique species identifier is used as the clade name in the Island_tbl object or a genus name which may not be unique if that genus has several independent island colonisations

Value

An object of island_tbl class

```
set.seed(
  1,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
```

extract_stem_age 43

```
phylo <- ape::rcoal(10)</pre>
phylo\$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e",
                      "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- sample(</pre>
 c("not_present", "endemic", "nonendemic"),
 size = length(phylobase::tipLabels(phylo)),
 replace = TRUE,
 prob = c(0.6, 0.2, 0.2)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
island_tbl <- island_tbl()</pre>
extract_species_min(
 phylod = phylod,
 species_label = "bird_g",
 species_endemicity = "nonendemic",
 island_tbl = island_tbl,
 unique_clade_name = TRUE
```

extract_stem_age

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny. The stem age can either be for the genus (or several genera) in the tree (stem = "genus") or use an extraction algorithm to find the stem of when the species colonised the island (stem = "island_presence), either 'min' or 'asr' as in extract_island_species(). When stem = "island_presence" the reconstructed node states are used to determine the stem age.

Description

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny. The stem age can either be for the genus (or several genera) in the tree (stem = "genus") or use an extraction algorithm to find the stem of when the species colonised the island (stem = "island_presence", either 'min' or 'asr' as in extract_island_species(). When stem = "island_presence" the reconstructed node states are used to determine the stem age.

Usage

```
extract_stem_age(genus_name, phylod, stem, extraction_method = NULL)
```

Arguments

genus_name

Character string of genus name to be matched with a genus name from the tip labels in the phylogeny

44 extract_stem_age

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

stem

Character string, either "genus" or "island_presence". The former will extract the stem age of the genussbased on the genus name provided, the latter will extract the stem age based on the ancestral presence on the island either based on the "min" or "asr" extraction algorithms.

extraction_method

A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).

Value

Numeric

```
# In this example the parrot clade is the genus of interest only the parrots
# are endemic to the island and all the passerines are not on the island
set.seed(1)
tree <- ape::rcoal(10)</pre>
tree$tip.label <- c(</pre>
  "passerine_a", "passerine_b", "passerine_c", "passerine_d", "passerine_e",
  "passerine_f", "parrot_a", "parrot_b", "parrot_c", "passerine_j")
tree <- phylobase::phylo4(tree)</pre>
endemicity_status <- c(</pre>
  "not_present", "not_present", "not_present", "not_present", "not_present",
  "not_present", "endemic", "endemic", "endemic", "not_present")
phylod <- phylobase::phylo4d(tree, as.data.frame(endemicity_status))</pre>
DAISIEprep::plot_phylod(phylod)
# the species 'parrot_a' is removed and becomes the missing species we want
# to the know the stem age for
phylod <- phylobase::subset(x = phylod, tips.exclude = "parrot_a")</pre>
DAISIEprep::plot_phylod(phylod)
extract_stem_age(
 genus_name = "parrot",
 phylod = phylod,
 stem = "island_presence",
 extraction_method = "min"
)
# here we use the extraction_method = "asr" which requires ancestral node
# states in the tree.
phylod <- add_asr_node_states(</pre>
 phylod = phylod,
 asr_method = "parsimony",
 tie_preference = "mainland"
DAISIEprep::plot_phylod(phylod)
extract_stem_age(
 genus_name = "parrot",
 phylod = phylod,
```

extract_stem_age_asr 45

```
stem = "island_presence",
  extraction_method = "asr"
)
# lastly we extract the stem age based on the genus name
extract_stem_age(
  genus_name = "parrot",
  phylod = phylod,
  stem = "genus",
  extraction_method = NULL
)
```

extract_stem_age_asr

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny using the 'asr' extraction method

Description

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny using the 'asr' extraction method

Usage

```
extract_stem_age_asr(genus_in_tree, phylod)
```

Arguments

genus_in_tree

A numeric vector that indicates which species in the genus are in the tree

phylod

A phylo4d object from the package phylobase containing phylogenetic and endemicity data for each species.

Value

Numeric

```
extract_stem_age_genus
```

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny

Description

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny

Usage

```
extract_stem_age_genus(genus_in_tree, phylod)
```

Arguments

genus_in_tree A numeric vector that indicates which species in the genus are in the tree

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

Value

Numeric

to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny using the 'min' ex-

traction method

Description

Extracts the stem age from the phylogeny when the a species is known to belong to a genus but is not itself in the phylogeny and there are members of the same genus are in the phylogeny using the 'min' extraction method

Usage

```
extract_stem_age_min(genus_in_tree, phylod)
```

Arguments

genus_in_tree A numeric vector that indicates which species in the genus are in the tree

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

Value

Numeric

finches_phylod 47

states. A phylogenetic tree of finches species with endemicity status as tip	finches_phylod	A phylogenetic tree of finches species with endemicity status as tip states.
---	----------------	--

Description

A phylogenetic tree of finches species with endemicity status as tip states.

Usage

```
finches_phylod
```

Format

```
finches_phylod:
```

A phylo4d object (from the **phylobase** package) with 16 tips and 15 internal nodes.

Source

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

GalapagosTrees Phylogenetic trees of the Galapagos bird lineages and sister spon the mainland.	pecies
--	--------

Description

Each dataset is a phylogenetic tree used to extract the Galapagos avifaunal lineages.

```
coccyzus_tree

columbiformes_tree

finches_tree

mimus_tree

myiarchus_tree

progne_tree

pyrocephalus_tree

setophaga_tree
```

48 get_clade_name

Format

```
A phylo object (from the ape package)
An object of class phylo of length 5.
An object of class phylo of length 4.
An object of class phylo of length 5.
An object of class phylo of length 4.
An object of class phylo of length 5.
```

Source

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

Description

Accessor functions for the data (slots) in objects of the Island_colonist class

```
get_clade_name(x)

## S4 method for signature 'Island_colonist'
get_clade_name(x)

set_clade_name(x) <- value

## S4 replacement method for signature 'Island_colonist'
set_clade_name(x) <- value

get_status(x)

## S4 method for signature 'Island_colonist'
get_status(x)

set_status(x) <- value

## S4 replacement method for signature 'Island_colonist'
set_status(x) <- value</pre>
```

get_clade_name 49

```
get_missing_species(x)
## S4 method for signature 'Island_colonist'
get_missing_species(x)
set_missing_species(x) <- value</pre>
## S4 replacement method for signature 'Island_colonist'
set_missing_species(x) <- value</pre>
get_col_time(x)
## S4 method for signature 'Island_colonist'
get_col_time(x)
set_col_time(x) <- value</pre>
## S4 replacement method for signature 'Island_colonist'
set_col_time(x) <- value</pre>
get_col_max_age(x)
## S4 method for signature 'Island_colonist'
get_col_max_age(x)
set_col_max_age(x) <- value</pre>
## S4 replacement method for signature 'Island_colonist'
set_col_max_age(x) \leftarrow value
get_branching_times(x)
## S4 method for signature 'Island_colonist'
get_branching_times(x)
set_branching_times(x) <- value</pre>
## S4 replacement method for signature 'Island_colonist'
set_branching_times(x) <- value</pre>
get_min_age(x)
## S4 method for signature 'Island_colonist'
get_min_age(x)
set_min_age(x) \leftarrow value
```

get_clade_name

```
## S4 replacement method for signature 'Island_colonist'
set_min_age(x) <- value

get_species(x)

## S4 method for signature 'Island_colonist'
get_species(x)

set_species(x) <- value

## S4 replacement method for signature 'Island_colonist'
set_species(x) <- value

get_clade_type(x)

## S4 method for signature 'Island_colonist'
get_clade_type(x)

set_clade_type(x) <- value

## S4 replacement method for signature 'Island_colonist'
set_clade_type(x) <- value</pre>
```

Arguments

x An object whose class is determined by the signature.

value A value which can take several forms to be assigned to an object of a class.

Value

Getter functions (get_) return a variable from the Island_colonist class, the setter functions (set_) return the modified Island_colonist class.

Author(s)

Joshua W. Lambert

```
colonist <- island_colonist()
get_clade_name(colonist)
set_clade_name(colonist) <- "abc"
get_status(colonist)
set_status(colonist) <- "abc"
get_missing_species(colonist)
set_missing_species(colonist) <- 0
get_col_time(colonist)
set_col_time(colonist) <- 1
get_col_max_age(colonist) <- FALSE</pre>
```

get_island_tbl 51

```
get_branching_times(colonist)
set_branching_times(colonist) <- 0
get_min_age(colonist)
set_min_age(colonist) <- 0.1
get_species(colonist)
set_species(colonist) <- "abc_a"
get_clade_type(colonist)
set_clade_type(colonist) <- 1</pre>
```

get_island_tbl

Accessor functions for the data (slots) in objects of the Island_tbl class

Description

Accessor functions for the data (slots) in objects of the Island_tbl class

```
get_island_tbl(x)
## S4 method for signature 'Island_tbl'
get_island_tbl(x)
set_island_tbl(x) <- value</pre>
## S4 replacement method for signature 'Island_tbl'
set_island_tbl(x) <- value</pre>
get_extracted_species(x)
## S4 method for signature 'Island_tbl'
get_extracted_species(x)
set_extracted_species(x) <- value</pre>
## S4 replacement method for signature 'Island_tbl'
set_extracted_species(x) <- value</pre>
get_num_phylo_used(x)
## S4 method for signature 'Island_tbl'
get_num_phylo_used(x)
set_num_phylo_used(x) <- value</pre>
## S4 replacement method for signature 'Island_tbl'
set_num_phylo_used(x) <- value
```

52 get_sse_tip_states

Arguments

x An object whose class is determined by the signature.

value A value which can take several forms to be assigned to an object of a class.

Value

Getter function (get_) returns a data frame, the setter function (set_) returns the modified Island_tbl class.

Author(s)

Joshua W. Lambert

Examples

```
island_tbl <- island_tbl()
get_island_tbl(island_tbl)
set_island_tbl(island_tbl) <- data.frame(
   clade_name = "birds",
   status = "endemic",
   missing_species = 0,
   branching_times = I(list(c(1.0, 0.5)))
)</pre>
```

get_sse_tip_states

Extract tip states from a phylod object

Description

Extract tip states from a phylod object

Usage

```
get_sse_tip_states(phylod, sse_model = "musse")
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

sse_model either "musse" (default) or "geosse". MuSSE expects state values 1, 2, 3, which

here we encode as "not_present", "endemic", "nonendemic", respectively. GeoSSE expects trait values 0, 1, 2, with 0 the widespread state (here, "nonendemic"),

and 1 and 2 are "not_present" and "endemic", respectively.

Value

an integer vector of tip states, as expected by SSE models

island_colonist 53

island_colonist

Constructor for Island_colonist

Description

Constructor for Island_colonist

Usage

```
island_colonist(
  clade_name = NA_character_,
  status = NA_character_,
  missing_species = NA_real_,
  col_time = NA_real_,
  col_max_age = NA,
  branching_times = NA_real_,
  min_age = NA_real_,
  species = NA_character_,
  clade_type = NA_integer_
```

Arguments

clade_name Character name of the colonising clade.

status Character endemicity status of the colonising clade. Either "endemic" or "nonendemic".

missing_species

Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is n-1, where n is the number of missing species in the clade. If the clade is an island singleton, the number of missing species is 0 because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is n-1 because adding the lineage already counts as one.

col_time Numeric with the colonisation time of the island colonist

col_max_age Boolean determining whether colonisation time should be considered a precise

time of colonisation or a maximum time of colonisation

branching_times

Numeric vector of one or more elements which are the branching times on the

island.

min_age Numeric minimum age (time before the present) that the species must have

colonised the island by. This is known when there is a branching on the island,

either in species or subspecies.

species Character vector of one or more elements containing the name of the species

included in the colonising clade.

54 Island_colonist-class

clade_type

Numeric determining which type of clade the island colonist is, this determines which macroevolutionary regime (parameter set) the island colonist is in. After formatting the island_tbl to a DAISIE data list, the clade type can be used to conduct a 2-type analysis (see https://CRAN.R-project.org/package=DAISIE/vignettes/demo_optimize.html for more information)

Value

Object of Island_colonist class.

Examples

```
# Without initial values
colonist <- island_colonist()

# With initial values
colonist <- island_colonist(
    clade_name = "bird",
    status = "endemic",
    missing_species = 0,
    col_time = 0.5,
    col_max_age = FALSE,
    branching_times = 0.5,
    min_age = NA_real_,
    species = "bird_a",
    clade_type = 1
)</pre>
```

Island_colonist-class $Defines\ the\ island_tbl\ class\ which\ is\ used\ when\ extracting\ information\ from\ the\ phylogenetic\ and\ island\ data\ to\ be\ used\ for\ constructing\ a\ daisie_data_tbl$

Description

Defines the island_tbl class which is used when extracting information from the phylogenetic and island data to be used for constructing a daisie_data_tbl

Slots

```
clade_name character.
status character.
missing_species character.
col_time numeric.
col_max_age logical.
branching_times numeric.
min_age numeric.
```

island_tbl 55

```
species character.
clade_type numeric.
```

island_tbl

Constructor function for Island_tbl class

Description

Constructor function for Island_tbl class

Usage

```
island_tbl()
```

Value

An Island_tbl object.

Island_tbl-class

Defines the island_tbl class which is used when extracting information from the phylogenetic and island data to be used for constructing a daisie_data_tbl

Description

Defines the island_tbl class which is used when extracting information from the phylogenetic and island data to be used for constructing a daisie_data_tbl

Slots

```
island_tbl data frame.
metadata list.
```

56 is_back_colonisation

is_back_colonisation Checks whether species has undergone back-colonisation from

Description

Checks whether species has undergone back-colonisation from

Usage

```
is_back_colonisation(phylod, node_label)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

node_label A numeric label for a node within a phylogeny.

Value

A character string or FALSE. Character string is in the format ancestral_node -> focal_node, where the ancestral node is not on mainland but the focal node is.

```
set.seed(
kind = "Mersenne-Twister",
normal.kind = "Inversion"
sample.kind = "Rejection"
phylo <- ape::rcoal(5)</pre>
phylo$tip.label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e")</pre>
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- c("endemic", "endemic", "not_present",</pre>
                        "endemic", "not_present")
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
phylod <- add_asr_node_states(phylod = phylod, asr_method = "parsimony")</pre>
# aritificially modify data to produce back-colonisation
phylobase::tdata(phylod)$island_status[8] <- "endemic"</pre>
# Example without back colonisation
is_back_colonisation(phylod = phylod, node_label = 2)
# Example with back colonisation
is_back_colonisation(phylod = phylod, node_label = 3)
```

is_duplicate_colonist 57

is_duplicate_colonist Determines if colonist has already been stored in Island_tbl class. This is used to stop endemic clades from being stored multiple times in the island table by checking if the endemicity status and branching times are identical.

Description

Determines if colonist has already been stored in Island_tbl class. This is used to stop endemic clades from being stored multiple times in the island table by checking if the endemicity status and branching times are identical.

Usage

```
is_duplicate_colonist(island_colonist, island_tbl)
```

Arguments

island_colonist

An instance of the Island_colonist class.

island_tbl An instance of the Island_tbl class.

Value

Boolean

```
# with empty island_tbl
island_colonist <- island_colonist(</pre>
 clade_name = "bird",
 status = "endemic",
 missing\_species = 0,
 col\_time = 1.0,
 col_max_age = FALSE,
 branching_times = 0.5,
 species = "bird_a",
 clade_type = 1
)
island_tbl <- island_tbl()</pre>
is_duplicate_colonist(
 island_colonist = island_colonist,
 island_tbl = island_tbl
# with non-empty island_tbl
island_colonist <- island_colonist(</pre>
 clade_name = "bird",
 status = "endemic",
```

is_identical_island_tbl

```
missing_species = 0,
 col\_time = 1.0,
 col_max_age = FALSE,
 branching_times = 0.5,
 species = c("bird_a", "bird_b"),
 clade_type = 1
)
island_tbl <- island_tbl()</pre>
island_tbl <- bind_colonist_to_tbl(</pre>
 island_colonist = island_colonist,
 island_tbl = island_tbl
)
island_colonist <- island_colonist(</pre>
 clade_name = "bird",
 status = "endemic",
 missing\_species = 0,
 col\_time = 1.0,
 col_max_age = FALSE,
 branching_times = 0.5,
 species = c("bird_a", "bird_b"),
 clade_type = 1
)
is_duplicate_colonist(
 island_colonist = island_colonist,
 island_tbl = island_tbl
)
```

is_identical_island_tbl

Checks whether two Island_tbl objects are identical. If they are different comparisons are made to report which components of the Island_tbls are different.

Description

Checks whether two Island_tbl objects are identical. If they are different comparisons are made to report which components of the Island_tbls are different.

Usage

```
is_identical_island_tbl(island_tbl_1, island_tbl_2)
```

Arguments

```
island_tbl_1 An object of Island_tbl class to be comparedl island_tbl_2 An object of Island_tbl class to be compared
```

Value

Either TRUE or a character string with the differences

mimus_phylod 59

Examples

```
multi_island_tbl <- multi_extract_island_species(
   multi_phylod = list(
     create_test_phylod(test_scenario = 1),
     create_test_phylod(test_scenario = 1)),
   extraction_method = "min")
is_identical_island_tbl(multi_island_tbl[[1]], multi_island_tbl[[2]])</pre>
```

mimus_phylod

A phylogenetic tree of mimus species with endemicity status as tip states.

Description

A phylogenetic tree of mimus species with endemicity status as tip states.

Usage

mimus_phylod

Format

mimus_phylod:

A phylo4d object (from the **phylobase** package) with 29 tips and 28 internal nodes.

Source

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

```
multi_extract_island_species
```

Extracts the colonisation, diversification, and endemicty data from multiple phylod (phylo4d class from phylobase) objects (composed of phylogenetic and endemicity data) and stores each in an Island_tbl object which are stored in a Multi_island_tbl object.

Description

Extracts the colonisation, diversification, and endemicty data from multiple phylod (phylo4d class from phylobase) objects (composed of phylogenetic and endemicity data) and stores each in an Island_tbl object which are stored in a Multi_island_tbl object.

Usage

```
multi_extract_island_species(
   multi_phylod,
   extraction_method,
   island_tbl = NULL,
   include_not_present = FALSE,
   verbose = FALSE,
   unique_clade_name = TRUE
)
```

Arguments

multi_phylod A list of phylod objects.

extraction_method

A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).

island_tbl

An instance of the Island_tbl class.

include_not_present

A boolean determining whether species not present on the island should be included in island colonist when embedded within an island clade. Default is FALSE.

verbose

Boolean. States if intermediate results should be printed to console. Defaults to FALSE

unique_clade_name

Boolean determining whether a unique species identifier is used as the clade name in the Island_tbl object or a genus name which may not be unique if that genus has several independent island colonisations

Value

An object of Multi_island_tbl class

```
multi_phylod <- list()
multi_phylod[[1]] <- create_test_phylod(test_scenario = 1)
multi_phylod[[2]] <- create_test_phylod(test_scenario = 2)
multi_island_tbl <- multi_extract_island_species(
    multi_phylod = multi_phylod,
    extraction_method = "min",
    island_tbl = NULL,
    include_not_present = FALSE
)</pre>
```

multi_island_tbl 61

 $multi_island_tbl$

Constructor function for Multi_island_tbl class

Description

Constructor function for Multi_island_tbl class

Usage

```
multi_island_tbl()
```

Value

A Multi_island_tbl object.

Multi_island_tbl-class

Defines the Multi_island_tbl class which is multiple Island_tbls.

Description

Defines the Multi_island_tbl class which is multiple Island_tbls.

Slots

.Data a list of Island_tbl.

myiarchus_phylod

A phylogenetic tree of myiarchus species with endemicity status as tip states.

Description

A phylogenetic tree of myiarchus species with endemicity status as tip states.

Usage

```
myiarchus_phylod
```

Format

```
myiarchus_phylod:
```

A phylo4d object (from the **phylobase** package) with 13 tips and 12 internal nodes.

62 plot_colonisation

Source

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

plant_phylo

A phylogenetic tree of plant species.

Description

This is a mock dataset for demonstrating the **DAISIEprep** package.

Usage

```
plant_phylo
```

Format

plant_phylo:

A phylo object (from the **ape** package) with 10 tips and 9 internal nodes. Each tip label is formatted "Plant_*" with the letters a, b, etc. used as species names.

plot_colonisation

Plots a dot plot (cleveland dot plot when include_crown_age = TRUE) of the stem and potentially crown ages of a community of island colonists.

Description

Plots a dot plot (cleveland dot plot when include_crown_age = TRUE) of the stem and potentially crown ages of a community of island colonists.

Usage

```
plot_colonisation(island_tbl, island_age, include_crown_age = TRUE)
```

Arguments

island_tbl An instance of the Island_tbl class.
island_age Age of the island in appropriate units.
include_crown_age

A boolean determining whether the crown age gets plotted with the stem age.

Value

```
ggplot object
```

plot_performance 63

Examples

```
set.seed(
 1,
 kind = "Mersenne-Twister",
 normal.kind = "Inversion",
 sample.kind = "Rejection"
phylo <- ape::rcoal(10)</pre>
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- sample(</pre>
 c("not_present", "endemic", "nonendemic"),
 size = length(phylobase::tipLabels(phylo)),
 replace = TRUE,
 prob = c(0.6, 0.2, 0.2)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
island_tbl <- extract_island_species(phylod, extraction_method = "min")</pre>
plot_colonisation(island_tbl, island_age = 2)
```

plot_performance

Plots performance results for a grouping variable (prob_on_island or prob_endemic).

Description

Plots performance results for a grouping variable (prob_on_island or prob_endemic).

Usage

```
plot_performance(performance_data, group_by)
```

Arguments

```
performance_data
```

Tibble of collated performance results

group_by

A variable to partition by for plotting. Uses data masking so variable does not need to be quoted.

Value

```
ggplot2 object
```

plot_phylod

plot_phylod

Plots the phylogenetic tree and its associated tip and/or node data

Description

Plots the phylogenetic tree and its associated tip and/or node data

Usage

```
plot_phylod(phylod, node_pies = FALSE)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

node_pies Boolean determining if pie charts of the probabilities of a species being present

on the island. If TRUE the correct data is required in the phylod object.

Value

ggplot object

```
set.seed(
  1,
  kind = "Mersenne-Twister",
  normal.kind = "Inversion",
  sample.kind = "Rejection"
)
phylo <- ape::rcoal(10)</pre>
\label <- c("bird_a", "bird_b", "bird_c", "bird_d", "bird_e", "bird_f", "bird_g", "bird_h", "bird_i", "bird_j")\\
phylo <- phylobase::phylo4(phylo)</pre>
endemicity_status <- sample(</pre>
  c("not_present", "endemic", "nonendemic"),
  size = length(phylobase::tipLabels(phylo)),
  replace = TRUE,
  prob = c(0.6, 0.2, 0.2)
)
phylod <- phylobase::phylo4d(phylo, as.data.frame(endemicity_status))</pre>
plot_phylod(phylod)
```

progne_phylod 65

progne_phylod	A phylogenetic tree of progne species with endemicity status as tip states.
---------------	---

Description

A phylogenetic tree of progne species with endemicity status as tip states.

Usage

```
progne_phylod
```

Format

```
progne_phylod:
```

A phylo4d object (from the **phylobase** package) with 19 tips and 18 internal nodes.

Source

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

pyrocephalus_phylod	A phylogenetic tree of pyrocephalus species with endemicity status as
	tip states.

Description

A phylogenetic tree of pyrocephalus species with endemicity status as tip states.

Usage

```
pyrocephalus_phylod
```

Format

```
pyrocephalus_phylod:
```

A phylo4d object (from the **phylobase** package) with 66 tips and 65 internal nodes.

Source

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

rm_island_colonist

Removes an island colonist from an Island_tbl object

Description

Removes an island colonist from an Island_tbl object

Usage

```
rm_island_colonist(island_tbl, clade_name)
```

Arguments

island_tbl An instance of the Island_tbl class.
clade_name Character name of the colonising clade.

Value

Object of Island_tbl class

Examples

```
phylod <- create_test_phylod(test_scenario = 1)
island_tbl <- extract_island_species(
   phylod = phylod,
   extraction_method = "min"
)
island_tbl <- rm_island_colonist(
   island_tbl = island_tbl,
   clade_name = "bird_b"
)</pre>
```

rm_multi_missing_species

Loops through the genera that have missing species and removes the ones that are found in the missing genus list which have phylogenetic data. This is useful when wanting to know which missing species have not been assigned to the island_tbl using add_multi_missing_species().

Description

Loops through the genera that have missing species and removes the ones that are found in the missing genus list which have phylogenetic data. This is useful when wanting to know which missing species have not been assigned to the island_tbl using add_multi_missing_species().

Usage

```
rm_multi_missing_species(missing_species, missing_genus, island_tbl)
```

Arguments

missing_species

Numeric number of missing species from the phylogeny that belong to the colonising clade. For a clade with missing species this is n-1, where n is the number of missing species in the clade. If the clade is an island singleton, the number of missing species is \emptyset because by adding the colonist it already counts as one automatically. If the clade has more than one species, the missing_species is n-1 because adding the lineage already counts as one.

missing_genus

A list of character vectors containing the genera in each island clade

island_tbl

An instance of the Island_tbl class.

Value

Data frame

```
phylod <- create_test_phylod(test_scenario = 6)</pre>
island_tbl <- suppressWarnings(extract_island_species(</pre>
 phylod = phylod,
 extraction_method = "asr",
phylod <- create_test_phylod(test_scenario = 7)</pre>
island_tbl <- suppressWarnings(extract_island_species(</pre>
 phylod = phylod,
 extraction_method = "asr",
island_tbl = island_tbl
))
missing_species <- data.frame(</pre>
  clade_name = "bird",
  missing_species = 1,
  endemicity_status = "endemic"
)
missing_genus <- list("bird", character(0))</pre>
rm_missing_species <- rm_multi_missing_species(</pre>
  missing_species = missing_species,
  missing_genus = missing_genus,
  island_tbl = island_tbl
)
```

round_up Rounds numbers using the round up method, rather than the round to the nearest even number method used by the base function round.

Description

Rounds numbers using the round up method, rather than the round to the nearest even number method used by the base function round.

Usage

```
round_up(n, digits = 0)
```

Arguments

n A numeric to be rounded.

digits A numeric specifying which decimal places to round to

Value

Numeric

```
select_endemicity_status
```

Select endemicity status from ancestral states probabilities

Description

Selects a state for each node (both internal nodes, i.e. ancestral states, and tips, if included) from a table of probabilities.

Usage

```
select_endemicity_status(asr_df, method = "max")
```

Arguments

asr_df a data frame containing at least these three columns: not_present_prob | en-

demic_prob | nonendemic_prob (in any order). Each column should contain the estimated probability of the state for each node (rows) and these columns should

sum to 1.

method "max" or "random". "max" will select the state with highest probability (select-

ing last state in event of a tie), while "random" will sample the states randomly

with the probabilities as weight for each state.

69 sensitivity

Value

a character vector, with the selected endemicity status for each node.

sensitivity Runs a sensitivity analysis to test the influences of changing the data on the parameter estimates for the DAISIE maximum likelihood inference model

Description

Runs a sensitivity analysis to test the influences of changing the data on the parameter estimates for the DAISIE maximum likelihood inference model

Usage

```
sensitivity(
  phylo,
  island_species,
  extraction_method,
  asr_method,
  tie_preference,
  island_age,
  num_mainland_species,
  verbose = FALSE
)
```

Arguments

phylo

A phylogeny either as a phylo (from the ape package) or phylo4 (from the phylobase package) object.

island_species Data frame with two columns. The first is a character string of the tip labels with the tip names of the species on the island. The second column a character string of the endemicity status of the species, either endemic or nonendemic.

extraction_method

A character string specifying whether the colonisation time extracted is the minimum time (min) (before the present), or the most probable time under ancestral state reconstruction (asr).

asr_method

A character string, either "parsimony" or "mk" determines whether a maximum parsimony or continuous-time markov model reconstructs the ancestral states at each node. See documentation in castor::asr_max_parsimony() or castor::asr_mk_model() in castor R package for details on the methods

tie_preference

Character string, either "island" or "mainland" to choose the most probable state at each node using the max.col() function. When a node has island presence and absence equally probable we need to decide whether that species should be considered on the island. To consider it on the island use ties.method

70 setophaga_phylod

= "last" in the max.col() function, if you consider it not on the island use

ties.method = "first". Default is "island".

island_age Age of the island in appropriate units.

num_mainland_species

The size of the mainland pool, i.e. the number of species that can potentially

colonise the island.

verbose Boolean. States if intermediate results should be printed to console. Defaults to

FALSE

Value

Data frame of parameter estimates and the parameter setting used when inferring them

setophaga_phylod A phylogenetic tree of setophaga species with endemicity status as tip states.

Description

A phylogenetic tree of setophaga species with endemicity status as tip states.

Usage

setophaga_phylod

Format

setophaga_phylod:

A phylo4d object (from the **phylobase** package) with 19 tips and 18 internal nodes.

Source

Valente, L.M., A.B. Phillimore and R.S. Etienne (2015). Equilibrium and non-equilibrium dynamics simultaneously operate in the Galapagos islands. Ecology Letters 18: 844-852.

sse_states_to_endemicity

sse_states_to_endemicity

Convert SSE states back to endemicity status

Description

Convert SSE states back to endemicity status

Usage

```
sse_states_to_endemicity(states, sse_model = "musse")
```

Arguments

states integer vector of tip states, as expected by SSE models

sse_model either "musse" (default) or "geosse". MuSSE expects state values 1, 2, 3, which

here we encode as "not_present", "endemic", "nonendemic", respectively. GeoSSE expects trait values 0, 1, 2, with 0 the widespread state (here, "nonendemic"),

71

and 1 and 2 are "not_present" and "endemic", respectively.

Value

character vector with values "endemic", "nonendemic" and/or "not_present"

translate_status

Takes a string of the various ways the island species status can be and returns a uniform all lower-case string of the same status to make handling statuses easier in other function

Description

Takes a string of the various ways the island species status can be and returns a uniform all lower-case string of the same status to make handling statuses easier in other function

Usage

translate_status(status)

Arguments

status

Character endemicity status of the colonising clade. Either "endemic" or "nonendemic".

Value

Character string

72 unique_island_genera

Examples

```
translate_status("Endemic")
```

unique_island_genera

Determines the unique endemic genera that are included in the island clades contained within the island_tbl object and stores them as a list with each genus only occuring once in the first island clade it appears in

Description

Determines the unique endemic genera that are included in the island clades contained within the island_tbl object and stores them as a list with each genus only occuring once in the first island clade it appears in

Usage

```
unique_island_genera(island_tbl)
```

Arguments

island_tbl An instance of the Island_tbl class.

Value

list of character vectors

```
phylod <- create_test_phylod(test_scenario = 6)
island_tbl <- suppressWarnings(extract_island_species(
   phylod = phylod,
    extraction_method = "asr",
))
phylod <- create_test_phylod(test_scenario = 7)
island_tbl <- suppressWarnings(extract_island_species(
   phylod = phylod,
   extraction_method = "asr",
   island_tbl = island_tbl
))
unique_genera <- unique_island_genera(island_tbl = island_tbl)</pre>
```

write_biogeobears_input

Write input files for BioGeoBEARS

Description

Write input files for a BioGeoBEARS analysis, i.e. a phlyogenetic tree in Newick format and occurrence data in PHYLIP format.

Usage

```
write_biogeobears_input(phylod, path_to_phylo, path_to_biogeo)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

path_to_phylo string specifying the path and name to write the phylogeny file to.

path_to_biogeo string specifying the path and name to write the biogeography file to.

Value

Nothing, called for side-effects

write_newick_file

Write tree input file for BioGeoBEARS

Description

Write a text file containing a phylogenetic tree in the Newick format expected by BioGeoBEARS

Usage

```
write_newick_file(phylod, path_to_phylo)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

path_to_phylo string specifying the path and name to write the file to.

Value

Nothing, called for side-effects.

write_phylip_biogeo_file

Write biogeography input file for BioGeoBEARS

Description

Write a text file containing occurrence data for all tips in the PHYLIP format expected by Bio-GeoBEARS

Usage

```
write_phylip_biogeo_file(phylod, path_to_biogeo)
```

Arguments

phylod A phylo4d object from the package phylobase containing phylogenetic and

endemicity data for each species.

path_to_biogeo string specifying the path and name to write the file to.

Value

Nothing, called for side-effects.

Index

* datasets	create_endemicity_status, 24
coccyzus_phylod, 20	create_test_phylod, 25
columbiformes_phylod, 20	, <i>,</i>
finches_phylod, 47	<pre>default_params_doc, 26</pre>
GalapagosTrees, 47	dots, 5, 32
mimus_phylod, 59	, ,
myiarchus_phylod, 61	<pre>endemicity_to_sse_states, 32</pre>
plant_phylo, 62	extract_asr_clade, 33
progne_phylod, 65	<pre>extract_biogeobears_ancestral_states_probs,</pre>
pyrocephalus_phylod, 65	33
setophaga_phylod, 70	extract_clade_name, 34
octophaga_phytou, /o	extract_endemic_clade, 34
add_asr_node_states, 4	extract_endemic_singleton, 35
add_island_colonist, 5	extract_island_species, 36
add_missing_species, 7	extract_multi_tip_species, 38
add_multi_missing_species, 8	extract_nonendemic, 39
add_outgroup, 9	extract_species_asr, 40
all_descendants_conspecific, 10	extract_species_min, 42
all_endemicity_status, 11	extract_stem_age, 43
any_back_colonisation, 11	extract_stem_age_asr, 45
any_outgroup, 12	extract_stem_age_genus, 45
any_polyphyly, 13	extract_stem_age_min, 46
as_daisie_datatable, 14	
	finches_phylod, 47
benchmark, 15	<pre>finches_tree (GalapagosTrees), 47</pre>
bind_colonist_to_tbl, 16	
	GalapagosTrees, 47
castor::asr_max_parsimony(), 4, 5, 16, 28,	<pre>get_branching_times (get_clade_name), 48</pre>
32, 69	<pre>get_branching_times,Island_colonist-method</pre>
castor::asr_mk_model(), 4, 5, 16, 28, 32, 69	(get_clade_name),48
<pre>check_island_colonist, 17</pre>	<pre>get_clade_name, 48</pre>
check_island_tbl, 18	<pre>get_clade_name,Island_colonist-method</pre>
<pre>check_multi_island_tbl, 18</pre>	(get_clade_name),48
check_phylo_data, 19	<pre>get_clade_type (get_clade_name), 48</pre>
coccyzus_phylod, 20	<pre>get_clade_type,Island_colonist-method</pre>
coccyzus_tree (GalapagosTrees), 47	(get_clade_name),48
columbiformes_phylod, 20	<pre>get_col_max_age (get_clade_name), 48</pre>
columbiformes_tree(GalapagosTrees),47	<pre>get_col_max_age,Island_colonist-method</pre>
<pre>count_missing_species, 21</pre>	(get_clade_name), 48
create_daisie_data,22	<pre>get_col_time(get_clade_name), 48</pre>

76 INDEX

get_col_time,Island_colonist-method	<pre>progne_tree (GalapagosTrees), 47</pre>
(get_clade_name), 48	pyrocephalus_phylod, 65
<pre>get_extracted_species (get_island_tbl),</pre>	<pre>pyrocephalus_tree (GalapagosTrees), 47</pre>
51	
get_extracted_species,Island_tbl-method	rm_island_colonist,66
(get_island_tbl), 51	rm_multi_missing_species, 66
get_island_tbl, 51	round_up, 68
get_island_tbl,Island_tbl-method	
(get_island_tbl), 51	select_endemicity_status, 68
get_min_age(get_clade_name),48	sensitivity, 69
get_min_age,Island_colonist-method	set_branching_times<- (get_clade_name),
(get_clade_name), 48	48
<pre>get_missing_species(get_clade_name), 48</pre>	set_branching_times<-,Island_colonist-method
<pre>get_missing_species,Island_colonist-method</pre>	(get_clade_name), 48
(get_clade_name), 48	set_clade_name<- (get_clade_name), 48
<pre>get_num_phylo_used(get_island_tbl), 51</pre>	set_clade_name<-,Island_colonist-method
get_num_phylo_used,Island_tbl-method	(get_clade_name), 48
(get_island_tbl), 51	set_clade_type<- (get_clade_name), 48
get_species(get_clade_name),48	set_clade_type<-,Island_colonist-method
get_species,Island_colonist-method	(get_clade_name), 48
(get_clade_name), 48	set_col_max_age<- (get_clade_name), 48
get_sse_tip_states, 52	set_col_max_age< (get_clade_name), 46 set_col_max_age<-, Island_colonist-method
get_status(get_clade_name),48	(get_clade_name), 48
get_status,Island_colonist-method	set_col_time<- (get_clade_name), 48
(get_clade_name), 48	set_col_time<-(get_crade_name),46 set_col_time<-,Island_colonist-method
	(get_clade_name), 48
is_back_colonisation, 56	set_extracted_species<-
is_duplicate_colonist, 57	(get_island_tbl), 51
is_identical_island_tbl,58	set_extracted_species<-,Island_tbl-method
Island_colonist, 48	(get_island_tbl), 51
island_colonist, 53	set_island_tbl<- (get_island_tbl), 51
Island_colonist-class, 54	set_island_tbl<-,Island_tbl-method
Island_tbl, 51	(get_island_tbl), 51
island_tbl, 55	set_min_age<- (get_clade_name), 48
Island_tbl-class, 55	set_min_age<-(get_clade_name), 46 set_min_age<-,Island_colonist-method
	(get_clade_name), 48
mimus_phylod, 59	set_missing_species<- (get_clade_name),
mimus_tree (GalapagosTrees), 47	48
multi_extract_island_species, 59	set_missing_species<-,Island_colonist-method
multi_island_tbl, 61	(get_clade_name), 48
Multi_island_tbl-class, 61	set_num_phylo_used<- (get_island_tbl),
myiarchus_phylod, 61	51
myiarchus_tree(GalapagosTrees),47	set_num_phylo_used<-,Island_tbl-method
nlant nhula 62	(get_island_tbl), 51
plant_phylo, 62	<pre>(get_island_tbl), 51 set_species<- (get_clade_name), 48</pre>
plot_colonisation, 62 plot_performance, 63	set_species<- (get_clade_name), 48 set_species<- ,Island_colonist-method
plot_performance, 63 plot_phylod, 64	(get_clade_name), 48
	set_status<- (get_clade_name), 48
progne_phylod, 65	set_status>- (get_ctaue_Halle), 40

INDEX 77