Package ‘NMsim’

November 3, 2025
Type Package

Title Seamless 'Nonmem' Simulation Platform
Version 0.2.6
Maintainer Philip Delff <philip@delff.dk>

Description A complete and seamless 'Nonmem' simulation interface within R. Turns 'Nonmem' con-
trol streams into simulation control streams, executes them with specified simulation in-
put data and returns the results. The simulation is performed by 'Nonmem', eliminating man-
ual work and risks of re-implementation of models in other tools.

License MIT + file LICENSE

RoxygenNote 7.3.3

Depends R (>=3.5.0)

Imports data.table, NMdata (>= 0.2.1), R.utils, MASS, fst, xfun

Suggests testthat, knitr, rmarkdown, ggplot2, ggstance, patchwork,
stringr, tracee, tidyvpc, kableExtra, coveffectsplot, NMcalc,
waldo

Enhances simpar
Encoding UTF-8

Additional_repositories https://mpn.metworx.com/snapshots/stable/2024-09-23

BugReports https://github.com/nmautoverse/NMsim/issues
Language en-US

URL https://nmautoverse.github.io/NMsim/
NeedsCompilation no

Author Philip Delff [aut, cre],
Brian Reilly [ctb],
Sanaya Shroff [ctb],
Boris Grinshpun [ctb]

Repository CRAN
Date/Publication 2025-11-03 17:40:02 UTC

https://mpn.metworx.com/snapshots/stable/2024-09-23
https://github.com/nmautoverse/NMsim/issues
https://nmautoverse.github.io/NMsim/

2

Contents

Index

Contents

add e e 3
addEVID2 e e e 3
addResVar e e e 6
deleteTmpDirs e e e e 8
expandCovs e e 9
forestDefineCovs e e 9
forestSummarize e e 11
genPhiFile e 12
inputArchiveDefault L 12
modTab e e 13
NMaddSamples e 14
NMcreateDoses o o e e e e e e 17
NMEXEC . . . v o e e e e e e e e 19
NMreadFilters e e e e e e 22
NMreadInits o o e e e e e e e e 22
NMreadSim o e e e e 23
NMSImM . .. e e e e e e e e e e 24
NMsimTestConf e e e e 32
NMSIM_ASIS . . . v v v v o o e e e e e e e e e 33
NMsim_default e 33
NMsim_EBE e e e 34
NMsim_NWPRI o e 35
NMsim_typical o e e e 36
NMsim_VarCov e e e e e 37
NMwriteInits o o e e e e e e 38
NMWrIteSiZes o o o e e e e e e e e e e 39
OVEIWIILE . . . o v v v vt e it e e e e e e e e e e e e e e e 41
print.summary_NMsimRes 42
readParsWide e 42
SampleCovSs L e e e e e e e 44
samplePars 45
sampleParsSimpar 46
simPopEtas 47
sSumMmarizeCOVS e e e e e e e e e e e e 48
summary.NMsimRes 48
triagSize e 49
unNMsimModTab e 49
unNMsimRes L 50
52

add 3

add Create function that adds text elements to vector

Description

Namely used to feed functions to modify control streams using ‘NMsim() arguments such as ‘mod-
ify‘. Those functions are often onveniently passed a function. ‘add‘ and ‘overwrite‘ are simple
shortcuts to creating such functions. Make sure to see examples.

Usage
add(..., .pos = "bottom")
Arguments
Elements to add.
.pos Either "top" or "bottom". Decides if new text is prepended or appended to exist-
ing text.
Value

A function that adds the specified text to character vectors

Examples

myfun <- add("b","d")

myfun(”a")

If more convenient, you can add a vector instead.
myfun2 <- add(c("b","d"))

myfun2(”a")
myfun3 <- add("b","d",.pos="top")
myfun3("a")
addEVID2 Add simulation records to dosing records
Description

Deprecated, use ‘NMaddSampples()‘. Adds simulation events to all subjects in a data set. Copies
over columns that are not varying at subject level (i.e. non-variying covariates). Can add simulation
events relative to previous dosing time.

Usage

addEVID2(
data,
TIME,
TAPD,
CMT,
EVID,
DV,

addEVID?2

col.id = "ID",
args.NMexpandDoses,

unique =

TRUE,

extras.are.covs = TRUE,

as.fun,
doses,
time.sim

Arguments

data

TIME

TAPD

CMT

EVID

DV

col.id

Nonmem-style data set. If using “TAPD® an ‘EVID® column must contain 1 for
dosing records.

A numerical vector with simulation times. Can also be a data.frame in which
case it must contain a ‘TIME® column and is merged with ‘data‘.

A numerical vector with simulation times, relative to previous dose. When this
is used, ‘data‘ must contain rows with ‘EVID=1° events and a ‘“TIME‘ column.
“TAPD‘ can also be a data.frame in which case it must contain a ‘“TAPD‘ column
and is merged with ‘data‘.

The compartment in which to insert the EVID=2 records. Required if ‘CMT*
is a column in ‘data‘. If longer than one, the records will be repeated in all the
specified compartments. If a data.frame, covariates can be specified.

The value to put in the ‘EVID‘ column for the created rows. Default is 2 but 0
may be prefered even for simulation.

Optionally provide a single value to be assigned to the ‘DV* column. The default
is to assign nothing which will result in ‘NA* as samples are stacked (‘rbind®)
with ‘data‘. If you assign a different value in ‘DV", the default value of ‘EVID*
changes to ‘0°, and ‘MDV* will be ‘0 instead of ‘1‘. An example where this is
useful is when generating datasets for ‘SDESIGN‘ where ‘DV=0°‘ is often used.

The name of the column in ‘data‘ that holds the unique subject identifier.

args.NMexpandDoses

Only relevant - and likely not needed - if data contains ADDL and II columns. If
those columns are included, ‘addEVID2()‘ will use ‘NMdata::NMexpanDoses()*
to evaluate the time of each dose. Other than the ‘data‘ argument, ‘addEVID2()*
relies on the default ‘NMexpanDoses()‘ argument values. If this is insuffi-
cient, you can specify other argument values in a list, or you can call ‘NM-
data::NMexpanDoses()‘ manually before calling ‘addEVID2()".

addEVID?2 5

unique If ‘TRUE* (default), events are reduced to unique time points before insertion.
Sometimes, it’s easier to combine sequences of time points that overlap (maybe
across ‘TIME* and ‘TAPD), and let ‘addEVID2()‘ clean them. If you want to
keep your duplicated events, use ‘unique=FALSE".

extras.are.covs
If ‘TIME® and/or ‘TAPD® are ‘data.frame‘s and contain other columns than
‘TIME*® and/or ‘TAPD®, those are by default assumed to be covariates to be
merged with data. More specifically, they will be merged by when the sample
times are added. If ‘extras.are.covs=FALSE", they will not be merged by. In-
stead, they will just be kept as additional columns with specified values, aligned
with the sample times.

as.fun The default is to return data as a ‘data.frame‘. Pass a function (say ‘tibble::as_tibble*)
in as.fun to convert to something else. If data.tables are wanted, use ‘as.fun="data.table"*.
The default can be configured using ‘NMdataConf()‘.

doses Deprecated. Use ‘data‘.
time.sim Deprecated. Use ‘TIME"‘.
Details
The resulting data set is ordered by ID, TIME, and EVID. You may have to reorder for your specific
needs.
Value

A data.frame with dosing records

Examples

(doses1 <- NMcreateDoses(TIME=c(@,12,24,36),AMT=c(2,1)))
addEVID2(doses1,TIME=seq(@, 28,by=4),CMT=2)

two named compartments

dt.doses <- NMcreateDoses(TIME=c(0,12),AMT=10,CMT=1)

seq.time <- c(0,4,12,24)

dt.cmt <- data.frame(CMT=c(2,3),analyte=c("parent”, "metabolite"))
res <- addeEVID2(dt.doses,TIME=seq.time,CMT=dt.cmt)

Separate sampling schemes depending on covariate values
dt.doses <- NMcreateDoses(TIME=data.frame(regimen=c("SD","MD","MD"),TIME=c(0,0,12)),AMT=10,CMT=1)

seq.time.sd <- data.frame(regimen="SD",TIME=seq(@,6))
seq.time.md <- data.frame(regimen="MD",6 TIME=c(0,4,12,24))
seq.time <- rbind(seq.time.sd,seq.time.md)
addEVID2(dt.doses, TIME=seq. time,CMT=2)

an observed sample scheme and additional simulation times
df.doses <- NMcreateDoses(TIME=0,AMT=50,addl=1ist(ADDL=2,11=24))
dense <- c(seq(1,3,by=.1),4:6,seq(8,12,by=4),18,24)

trough <- seq(@,3%24,by=24)

sim.extra <- seq(9@, (24*3),by=2)

time.all <- c(dense,dense+24*3,trough,sim.extra)

time.all <- sort(unique(time.all))

dt.sample <- data.frame(TIME=time.all)

dt.sample$isobs <- as.numeric(dt.sample$TIME%in%c(dense,trough))
dat.sim <- addEVID2(dt.doses,TIME=dt.sample,CMT=2)

TAPD - time after previous dose
df.doses <- NMcreateDoses(TIME=c(0,12),AMT=10,CMT=1)

seq.time <- ¢(0,4,12,24)

addEVID2(df.doses, TAPD=seq. time,CMT=2)

TIME and TAPD

df.doses <- NMcreateDoses(TIME=c(@,12),AMT=10,CMT=1)

seq.time <- c(0,4,12,24)

addEVID2(df.doses, TIME=seq. time, TAPD=3,CMT=2)

Using a custom DV value affects EVID and MDV
df.doses <- NMcreateDoses(TIME=c(@,12),AMT=10,CMT=1)

seq.time <- c(4)

addEVID2(df.doses, TAPD=seq. time,CMT=2,DV=0)

addRes Var

addResVar Add residual variability based on parameter estimates

Description

Add residual variability based on parameter estimates

Usage

addResVar(
data,
path.ext,
prop = NULL,
add = NULL,
log = FALSE,
par.type = "SIGMA",
trunc@ = TRUE,
scale.par,
subset,
seed,
col.ipred = "IPRED",

col.ipredvar = "IPREDVAR",

as.fun

addRes Var 7

Arguments

data A data set containing indiviudual predictions. Often a result of NMsim.

path.ext Path to the ext file to take the parameter estimates from.

prop Parameter number of parameter holding variance of the proportional error com-
ponent. If ERR(1) is used for proportional error, use prop=1. Can also refer to a
theta number.

add Parameter number of parameter holding variance of the additive error compo-
nent. If ERR(1) is used for additive error, use add=1. Can also refer to a theta
number.

log Should the error be added on log scale? This is used to obtain an exponential
error distribution.

par.type Use "sigma" if variances are estimated with the SIGMA matrix. Use "theta" if
THETA parameters are used. See ‘scale.par’ too.

trunce If log=FALSE, truncate simulated values at 0? If trunc0, returned predictions
can be negative.

scale.par Denotes if parmeter represents a variance or a standard deviation. Allowed val-
ues and default value depends on ‘par.type°.

* if par.type="sigma" only "var" is allowed.
* if par.type="theta" allowed values are "sd" and "var". Default is "sd".

subset A character string with an expression denoting a subset in which to add the
residual error. Example: subset="DVID=="A""

seed A number to pass to set.seed() before simulating. Default is to generate a seed
and report it in the console. Use seed=FALSE to avoid setting the seed (if you
prefer doing it otherwise).

col.ipred The name of the column containing individual predictions.

col.ipredvar The name of the column to be created by addResVar to contain the simulated
observations (individual predictions plus residual error).

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble®)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Value

An updated data.frame

Examples

Not run:
based on SIGMA
simres.var <- addResVar(data=simres,
path.ext = "path/to/model.ext"”,
prop = 1,
add = 2,
par.type = "SIGMA",
log = FALSE)

8 deleteTmpDirs

If implemented using THETAs

simres.var <- addResVar(data=simres,
path.ext = "path/to/model.ext”,
prop = 8, ## point to elements in THETA
add = 9, ## point to elements in THETA
par.type = "THETA",
log = FALSE)

End(Not run)

deleteTmpDirs clean up temporary directories left by PSN and NMsim.

Description

clean up temporary directories left by PSN and NMsim.

Usage

deleteTmpDirs(dir, methods, recursive = FALSE, delete = TRUE)

Arguments
dir The directory in which to look for contents to clean
methods The sources to delete temporary content from. This is a character vector, and
the defailt is ‘c("nmsim","psn","psnfit","backup")‘. Each of these correspond to
a preconfigured pattern.
recursive Look recursively in folder? Notice, matches will be deleted recursively (they are
often directories). ‘recursive‘ controls whether they are searched for recursively.
delete Delete the found matches? If not, the matches are just reported, but nothing
deleted.
Value

data.table with identified items for deletion

expandCovs 9

expandCovs Create data set where each covariate is univariately varied (see
‘forestDefineCovs()°)

Description

Create data set where each covariate is univariately varied (see ‘forestDefineCovs()®)

Usage

expandCovs(...)

Arguments

Passed to ‘forestDefineCovs()*

Value

A data.frame

forestDefineCovs Create data set where each covariate is univariately varied

Description

Each covariate is univariately varied while other covariates are kept at reference values. This struc-
ture is often used for forest-plot type simulations.

Usage
forestDefineCovs(
data,
col.id = "ID",
sigdigs = 2,
reduce.ref = TRUE,
as.fun

10 forestDefineCovs

Arguments

Covariates provided as lists - see examples. The name of the arguement must
match columns in data set. An element called ref must contain either a reference
value or a function to use to derive the reference value from data (e.g. ‘me-
dian‘). Provide either ‘values‘ or ‘quantiles‘ to define the covariate values of
interest (typically, the values that should later be simulated and maybe shown in
a forest plot). ‘label” is optional - if missing, the argument name will be used. If
quantiles are requested, they are derived after requiring unique values for each
subject.

data A data set needed if the reference(s) value of one or more covariates is/are pro-
vided as functions (like median), or if covariate values are provided as quantiles.

col.id The subject ID column name. Necessary because quantiles sould be quantiles
of distribution of covariate on subjects, not on observations (each subject con-
tributes once).

sigdigs Used for rounding of covariate values if using quantiles or if using a function to
find reference.

reduce.ref If ‘TRUE* (default), only return one row with all reference values. If ‘FALSE®
there will be one such row for each covariate. When reduced to one line, all
columns related to covariate-level information such as covariate name will con-
tain ‘NA‘ for the reference.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble®)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Value

A data.frame

Examples

Not run:
file.mod <- system.file("examples/nonmem/xgxri134.mod", package="NMdata")
res <- NMdata::NMscanData(file.mod)
forestDefineCovs(
WEIGHTB=1list(ref=70,values=c(40,60,80,100),label="Bodyweight (kg)"),
notice, values OR quantiles can be provided
AGE=list(ref=median, quantiles=c(10,25,75,90)/100, label="Age (years)"”
),
data=res

)

End(Not run)

forestSummarize 11

forestSummarize Summarize simulated exposures relative to reference subject

Description

Summarize simulated exposures relative to reference subject

Usage

forestSummarize(data, funs.exposure, cover.ci = 0.95, by, as.fun)

Arguments
data Simulated data to process. This data.frame must contain must contain multiple
columns, as defined by ‘NMsim::forestDefineCovs()‘.
funs.exposure A named list of functions to apply for derivation of exposure metrics.
cover.ci The coverage of the confidence intervals. Default is 0.95.

by a character vector of column names to perform all calculations by. This could
be sampling subsets or analyte.

as.fun The default is to return data as a ‘data.frame‘. Pass a function (say ‘tibble::as_tibble*)
in as.fun to convert to something else. If data.tables are wanted, use ‘as.fun="data.table"*.
The default can be configured using ‘NMdataConf()*.

Details

This function is part of the workflow provided by NMsim to generate forest plots - a graphi-
cal representation of the estimated covariate effects and the uncertainty of those effect estimates.
‘forestDefineCovs()‘ helps construct a set of simulations to perform, simulation methods like ‘NM-
sim_VarCov*‘ and ‘NMsim_NWPRI‘ can perform siulations with parameter uncertainty, and ‘forest-
Summarize()‘ can then summarize those simulation results into the numbers to plot in a forest plot.
See the NMsim vignette on forest plot generation available on the NMsim website for a step-by-step
demonstration.

The following columns are generated by ‘forestDefineCovs()‘ and are expected to be present. Dif-
ferences within any of them will lead to separate summarizing (say for as covariate value to be
plotted):

* ‘model‘: A model identifier - generated by ‘NMsim()‘.

* ‘type‘: The simulation type. "ref" for reference subject, "value" for any other. This is gener-
ated by ‘forestDefineCovs()‘.

e ‘covvar‘: The covariate (of interest) that is different from the reference value in the specific
simulation. Example: "WT"

* ‘covlabel‘: Label of the covariate of interest. Example: "Bodyweight (kg)"
» ‘covref*: Reference value of the covariate of interest. Example: 80

* ‘covval‘: Value of the covariate of interest (not reference). Example 110.

12 inputArchiveDefault

Value

A data.frame

genPhiFile Generate a .phi file for further simulation with Nonmem

Description

This will typically be used in a couple of different situations. One is if a number of new sub-
jects have been simulated and their ETAs should be reused in subsequent simulations. Another is
internally by NMsim when simulating new subjects from models estimated with SAEM.

Usage
genPhiFile(data, file, overwrite = FALSE)

Arguments
data A dataset that contains "ID" and all ‘ETA‘s. This can be obtained by ‘NM-
data::NMscanData“.
file Path to the .phi file to be written.
overwrite If “file’ exists already, overwrite it? Default is ‘FALSE‘.
Value

Invisibly, character lines (strings) optionally written to file

See Also

simPopEtas

inputArchiveDefault Default location of input archive file

Description

Default location of input archive file

Usage
inputArchiveDefault(file)

Arguments

file Path to input or output control stream.

modTab 13

Value

A file name (character)

modTab Get NMsim model metadata

Description

Get NMsim model metadata

Usage

modTab(res)

Arguments

res NMsim results (class ‘NMsimRes*).

Details
* ROWMODEL (integer): A unique row identifier

* file.mod (character): Path to the originally provided input control stream, relative to current
working directory.

* path.sim (character): Path to the simulation input control stream, relative to current working
directory.

* path.rds (character): Path to the results meta data file (_path.rds0)

* model (character): The name of the original model, no extension. Derived from file.mod. If
file.mod is named, the provided name is used.;

* model.sim (character): A unique and cleaned (no special characters) name for the derived
model, without extension. Notice if a simulation method generates multiple models, model.sim
will be distinct for those. This is unlike model and name.sim.

* name.sim (character): The value of the NMsim() argument of the same name at function call.

e fn.sim (character): Name of the mod file to be simulated. Has .mod extension. It will differ
from file mod in being derived from model.sim so it is unique and cleaned.

* dir.sim (character): Relative path from point of execution to simulation directory. Cleaned.

* path.mod.exec (character): Path to the control stream executed by Nonmem, relative to current
working directory.

Value

A table with model details

14

NMaddSamples

NMaddSamples

Add simulation (sample) records to dosing records

Description

Adds simulation events to all subjects in a data set. Copies over columns that are not varying at
subject level (i.e. non-variying covariates). Can add simulation events relative to previous dosing
time. This function was previously called ‘addEVID2()‘.

Usage

NMaddSamples(

data,
TIME,
TAPD,
CMT,
EVID,
DV,

col.id = "ID",
args.NMexpandDoses,
unique = TRUE,

by,

quiet = FALSE,
as.fun,

doses,
time.sim,
extras.are.covs

)

Arguments

data Nonmem-style data set. If using “TAPD* an ‘EVID* column must contain 1 for
dosing records.

TIME A numerical vector with simulation times. Can also be a data.frame in which
case it must contain a ‘“TIME® column and is merged with ‘data‘.

TAPD A numerical vector with simulation times, relative to previous dose. When this
is used, ‘data‘ must contain rows with ‘EVID=1° events and a ‘TIME* column.
‘TAPD® can also be a data.frame in which case it must contain a “TAPD* column
and is merged with ‘data“.

CMT The compartment in which to insert the EVID=2 records. Required if ‘CMT"
is a column in ‘data‘. If longer than one, the records will be repeated in all the
specified compartments. If a data.frame, covariates can be specified.

EVID The value to put in the ‘EVID® column for the created rows. Default is 2 but 0

may be prefered even for simulation.

NMaddSamples 15

DV Optionally provide a single value to be assigned to the ‘DV* column. The default
is to assign nothing which will result in ‘NA* as samples are stacked (‘rbind‘)
with ‘data‘. If you assign a different value in ‘DV*, the default value of ‘EVID*
changes to ‘0°, and ‘MDV* will be ‘0 instead of ‘1‘. An example where this is
useful is when generating datasets for ‘SDESIGN‘ where ‘DV=0° is often used.

col.id The name of the column in ‘data‘ that holds the unique subject identifier. Cur-
rently, this is needed to be non-‘NULL".

args.NMexpandDoses
Only relevant - and likely not needed - if data contains ADDL and II columns. If
those columns are included, ‘NMaddSamples()‘ will use ‘NMdata::NMexpanDoses()*
to evaluate the time of each dose. Other than the ‘data‘ argument, ‘NMaddSam-
ples()‘ relies on the default ‘NMexpanDoses()‘ argument values. If this is in-
sufficient, you can specify other argument values in a list, or you can call ‘NM-
data::NMexpanDoses()* manually before calling ‘NMaddSamples()°.

unique If “‘TRUE® (default), events are reduced to unique time points before insertion.
Sometimes, it’s easier to combine sequences of time points that overlap (maybe
across ‘TIME* and ‘TAPD), and let ‘NMaddSamples()‘ clean them. If you want
to keep your duplicated events, use ‘unique=FALSE‘.

by If TIME and/or ‘“TAPD* are ‘data.frame‘s and contain other columns than ‘TIME®
and/or “TAPD®, those will by default follow the ‘TIME‘/‘TAPD‘ records. Think
of them as record-level variables, like ‘“VISIT‘. The exception is ‘col.id® - if the
subject identifier is present, it will be merged by. If additional columns should
be used to merge by, you can use the ‘by‘ argument. This is useful to generate
differentiated sampling schemes for subsets of subjects (like regimen="SAD"
and regimen="MAD"). If no columns in ‘“TIME® and/or ‘“TAPD" should not be
merged by, use ‘by=FALSE°‘. You can also specify selected ‘by* variables like
‘by="ID"* or ‘by=c("ID","regimen")‘ See examples.

quiet Suppress messages? Default is ‘FALSE*.

as.fun The default is to return data as a ‘data.frame‘. Pass a function (say ‘tibble::as_tibble*)
in as.fun to convert to something else. If data.tables are wanted, use ‘as.fun="data.table"".
The default can be configured using ‘NMdataConf()‘.

doses Deprecated. Use ‘data‘.

time.sim Deprecated. Use ‘TIME".
extras.are.covs
Deprecated. Use ‘by".

Details
The resulting data set is ordered by ID, TIME, and EVID. You may have to reorder for your specific
needs.

Value

A data.frame with dosing records only using column names in covs.data (from data) that are not in
TIME.

16 NMaddSamples

All rows in TIME get reused for all matches by column names common with covs.data - the iden-
tified subject-level covariates (and col.id). This is with the exception of the TIME column itself,
because in case of single dose, TIME would be carried over.

Examples

(doses1 <- NMcreateDoses(TIME=c(0@,12,24,36),AMT=c(2,1)))
NMaddSamples(doses1,TIME=seq(@,28,by=4),CMT=2)

two named compartments

dt.doses <- NMcreateDoses(TIME=c(0,12),AMT=10,CMT=1)

seq.time <- c(0,4,12,24)

dt.cmt <- data.frame(CMT=c(2,3),analyte=c("parent”, "metabolite”))
res <- NMaddSamples(dt.doses,TIME=seq.time,CMT=dt.cmt)

Separate sampling schemes depending on covariate values
dt.doses <- NMcreateDoses(TIME=data.frame(regimen=c("SD", "MD", "MD"),TIME=c(0,0,12)),AMT=10,CMT=1)

seq.time.sd <- data.frame(regimen="SD",TIME=seq(@,3))
seq.time.md <- data.frame(regimen="MD",TIME=c(0,12,24))
seq.time <- rbind(seq.time.sd,seq.time.md)
NMaddSamples(dt.doses, TIME=seq. time,CMT=2,by="regimen")

All subjects get all samples
NMaddSamples(dt.doses, TIME=seq. time, by=FALSE,CMT=2)

an observed sample scheme and additional simulation times
df.doses <- NMcreateDoses(TIME=0,AMT=50,addl=1ist(ADDL=2,11=24))
dense <- c(seq(1,3,by=.1),4:6,seq(8,12,by=4),18,24)

trough <- seq(@,3%24,by=24)

sim.extra <- seq(9@, (24*3),by=2)

time.all <- c(dense,dense+24*3,trough,sim.extra)

time.all <- sort(unique(time.all))

dt.sample <- data.frame(TIME=time.all)

dt.sample$isobs <- as.numeric(dt.sample$TIME%in%c(dense,trough))
dat.sim <- NMaddSamples(dt.doses,TIME=dt.sample,CMT=2)

TAPD - time after previous dose

df.doses <- NMcreateDoses(TIME=c(0,12),AMT=10,CMT=1)
seq.time <- c(0,4,12,24)
NMaddSamples(df.doses, TAPD=seq. time,CMT=2)

TIME and TAPD

df.doses <- NMcreateDoses(TIME=c(@,12),AMT=10,CMT=1)
seq.time <- c(0,4,12,24)
NMaddSamples(df.doses, TIME=seq. time, TAPD=3,CMT=2)

Using a custom DV value affects EVID and MDV
df.doses <- NMcreateDoses(TIME=c(@,12),AMT=10,CMT=1)
seq.time <- c(4)
NMaddSamples(df.doses, TAPD=seq. time,CMT=2,DV=0)

NDMcreateDoses

17

NMcreateDoses

Easily and flexibly generate dosing records

Description

Columns will be extended by repeating last value of the column if needed in order to match length
of other columns. Combinations of different columns can be generated by specifying covariates on
the columns where the regimens differ.

Usage

NMcreateDoses(
TIME,
AMT,
EVID = 1,
CMT =1,
ADDL = NULL,
IT = NULL,
RATE = NULL,
SS = NULL,
addl = NULL,
N,
addl.lastonly
col.id = "ID"
as.fun

Arguments
TIME

AMT
EVID

CMT

ADDL

II
RATE
SS
addl

= TRUE,

’

The time of the dosing events. Required.
vector or data.frame with amounts amount. Required.

The event ID to use for doses. Default is to use EVID=1, but EVID might also
be wanted.

Compartment number. Default is to dose into CMT=1. Use ‘CMT=NA* or
‘CMT=NULL" to omit in result.

Number of additional dose events. Must be in combination with and consistent
with II. Notice if of length 1, only applied to last event in each regimen.

Dosing frequency of additional events specified in ‘ADDL*. See ‘ADDL" too.
Infusion rate. Optional.
steady-state flag. Optional.

A list of ADDL and II that will be applied to last dose. This may be prefered if
IT and ADDL depend on covariates - see examples. Optional.

Number of replications. Default is 1. If ‘N=1° results in two distinct subjects,
‘N=100° will result i 200 distinct subjects. The ID column will automatically be
recoded to contain distinct ID’s.

18 NDMcreateDoses

addl.lastonly If ADDL and II are of length 1, apply only to last event of a regimen? The
default is “TRUE®.

col.id Default is to denote the dosing regimens by an ID column. The name of the col-
umn can be modified using this argument. Use ‘col.id=NA° to omit the column
altogether. The latter may be wanted if repeating the regimen for a number of
subjects after running ‘NMcreateDoses()‘.

as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble®)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Details

Only TIME and AMT are required. AMT, RATE, SS, II, ADDL, CMT are of length 1 or longer.
Those not of max length 1 are repeated. If TIME is longer than those, they are extended to match
length of TIME. All these arguments can be data.frames with additional columns that define distinct
dosing regimens - with distinct subject ids. However, if covariates are applied to ADDL+II, see the
addl argument and see examples.

Allowed combinations of AMT, RATE, SS, Il here: https://ascpt.onlinelibrary.wiley.com/
doi/10.1002/psp4. 12404

Value

A data.frame with dosing events

Examples

library(data.table)

Users should not use setDTthreads. This is for CRAN to only use 1 core.
data.table::setDTthreads(1)

arguments are expanded - makes loading easy
NMcreateDoses(TIME=c(0,12,24,36),AMT=c(2,1))

Different doses by covariate

NMcreateDoses(TIME=c(0,12,24),AMT=data. table(AMT=c(2,1,4,2),D0SE=c(1,2)))
Make Nonmem repeat the last dose. This is a total of 20 dosing events.
The default, addl.lastonly=TRUE means if ADDL and II are of

length 1, they only apply to last event.
NMcreateDoses(TIME=c(0,12),AMT=c(2,1),ADDL=9%2,1I=12)

dt.amt <- data.table(DOSE=c(100,400))

multiple dose regimens.

Specifying the time points explicitly

dt.amt <- data.table(AMT=c(200,100,800,400)*1000,D0SE=c(100,100,400,400))
doses.md.1 <- NMcreateDoses(TIME=seq(@,by=24,length.out=7),AMT=dt.amt)
doses.md.1$dose <- paste(doses.md.1$DOSE, "mg")

doses.md.1$regimen <- "QD"

doses.md. 1

or using ADDL+II

dt.amt <- data.table(AMT=c(200,100,800,400)*1000,DOSE=c(100,100,400,400))
doses.md.2 <- NMcreateDoses(TIME=c(Q,24),AMT=dt.amt,addl=data.table(ADDL=c(@,5),II=c(@,24)))
doses.md.2$dose <- paste(doses.md.2$DOSE, "mg")

doses.md.2$regimen <- "QD"

https://ascpt.onlinelibrary.wiley.com/doi/10.1002/psp4.12404
https://ascpt.onlinelibrary.wiley.com/doi/10.1002/psp4.12404

NMexec 19

doses.md. 2
ADDL and II can be wrapped in a data.frame. This allows including covariates
NMcreateDoses(TIME=c(@,12),AMT=c(2,1),addl=data.frame(ADDL=c(NA,9%2),II=c(NA,12),trt=c("A","B")))

NMexec Execute Nonmem and archive input data with model files

Description

Execute Nonmem from within R - optionally but by default in parallel. Archiving the input data
ensures that postprocessing can still be reproduced if the input data files should be updated.

Usage

NMexec (
files,
file.pattern,
dir,
sge = TRUE,
input.archive,
nc,
dir.data = NULL,
wait = FALSE,

path.nonmem,
update.only = FALSE,
fun.post,
method.execute,
nmfe.options,
dir.psn,
args.psn.execute,
files.needed,
clean = 1,

backup = TRUE,
quiet = FALSE,
nmquiet = FALSE,
system. type

Arguments

files File paths to the models (control streams) to run nonmem on. See file.pattern
too.

file.pattern Alternatively to files, you can supply a regular expression which will be passed
to list.files as the pattern argument. If this is used, use dir argument as well.
Also see data.file to only process models that use a specific data file.

dir If file.pattern is used, dir is the directory to search for control streams in.

20

sge

input.archive

nc

dir.data

wait

path.nonmem

update.only

fun.post

method.execute

nmfe.options

dir.psn

NMexec

Use the sge queing system. Default is TRUE. Disable for quick models not to
wait for the queue to run the job.

A function of the model file path to generate the path in which to archive the
input data as RDS. Set to FALSE not to archive the data.

Number of cores to use if sending to the cluster. This will only be used if
method.execute="psn”, and sge=TRUE. Default is 64.

The directory in which the data file is stored. This is normally not needed as
data will be found using the path in the control stream. This argument may be
removed in the future since it should not be needed.

Wait for process to finish before making R console available again? This is
useful if calling NMexec from a function that needs to wait for the output of the
Nonmem run to be available for further processing.

The path to the nonmem executable. Only used if method. execute="direct"
or method. execute="nmsim" (which is not default). If this argument is not sup-
plied, NMexec will try to run nmfe75, i.e. this has to be available in the path of

the underlying shell. The default value can be modified using NMdata: :NMdataConf,

like NMdataConf (path.nonmem="/path/to/nonmem")
Only run model(s) if control stream or data updated since last run?

A function of the path to the control stream (‘file.mod‘) that generates bash code
to be evaluated once Nonmem is done. This can be used to automatically run a
goodness-of-fit script or a simulation script after model estimation.

How to run Nonmem. Must be one of ’psn’, 'nmsim’, or ’direct’.

* psn PSN’s execute is used. This supports parallel Nonmem runs. Use the
nc argument to control how many cores to use for each job. For estimation
runs, this is most likely the better choice, if you have PSN installed. See
dir.psn argument too.

* nmsim Creates a temporary directory and runs Nonmem inside that direc-
tory before copying relevant results files back to the folder where the input
control stream was. If sge=TRUE, the job will be submitted to a cluster,
but parallel execution of the job itself is not supported. See path.nonmem
argument too.

¢ direct Nonmem is called directly on the control stream. This is the simplest
method and is the least convenient in most cases. It does not offer parallel
runs and leaves all the Nonmem output files next to the control streams.

See ‘sge‘ as well.

additional options that will be passed to nmfe. It is only used when path.nonmem
is available (directly or using ‘NMdataConf()). Default is "-maxlim=2" For
PSN, see ‘args.psn.execute’.

The directory in which to find PSN executables. This is only needed if these are
not searchable in the system path, or if the user should want to be explicit about
where to find them (i.e. want to use a specific installed version of PSN).

args.psn.execute

A character string with arguments passed to execute. Default is "-model_dir_name
-nm_output=coi,cor,cov,ext,phi,shk,xml".

NMexec 21

files.needed In case method.execute="nmsim", this argument specifies files to be copied into
the temporary directory before Nonmem is run. Input control stream and simu-
lation input data does not need to be specified.

clean The degree of cleaning (file removal) to do after Nonmem execution. If ‘method.execute=="psn"*,
this is passed to PSN’s ‘execute‘. If ‘method.execute=="nmsim"‘ a similar be-
havior is applied, even though not as granular. NMsim’s internal method only
distinguishes between 0 (no cleaning), any integer 1-4 (default, quite a bit of
cleaning) and 5 (remove temporary dir completely).

backup Before running, should existing results files be backed up in a sub directory? If
not, the files will be deleted before running.

quiet Suppress messages on what NMexec is doing? Default is FALSE.

nmquiet Suppress terminal output from ‘Nonmem*. This is likely to only work on linux/unix
systems.

system. type A charachter string, either \"windows\" or \"linux\" - case insensitive. Windows

is only experimentally supported. Default is to use Sys.info() [["sysname"]].

Details

Use this to read the archived input data when retrieving the nonmem results: NMdataConf (file.data=inputArchiveDefaul

Since ‘NMexec‘ will typically not be used for simulations directly (‘NMsim* is the natural interface
for that purpose), the default method for ‘NMexec* is currently to use ‘method.execute="psn"*
which is at this point the only of the methods that allow for multi-core execution of a single Nonmem
job (NB: ‘method.execute="NMsim"‘ can run multiple jobs in parallel which is normally sufficient
for simulations).

Value

NULL (invisibly)

Examples

file.mod <- "run@@1.mod"

Not run:

run locally - not on cluster

NMexec(file.mod, sge=FALSE)

run on cluster with 16 cores. 64 cores is default
NMexec(file.mod,nc=16)

submit multiple models to cluster

multiple.models <- c("run@@1.mod”,"run@@2.mod")
NMexec(multiple.models,nc=16)

run all models called run@@1.mod - run@99.mod if updated. 64 cores to each.
NMexec(file.pattern="run®@..\\.mod",dir="models",nc=16,update.only=TRUE)

End(Not run)

22 NMreadlnits

NMreadFilters Read data filters from a NONMEM model

Description

Read data filters from a NONMEM model

Usage
NMreadFilters(file, lines, filters.only = TRUE, as.fun)

Arguments
file Control stream path
lines Control stream lines if already read from file

filters.only Return the filters only or also return the remaining text in a separate object? If
‘FALSE", a list with the two objects is returned.

as.fun Function to run on the tables with filters.

Value

A ‘data.frame‘ with filters

NMreadInits Tabulate information from parameter sections in control streams

Description

Tabulate information from parameter sections in control streams

Usage
NMreadInits(file, lines, section, return = "pars”, as.fun)
Arguments
file Path to a control stream. See ‘lines‘ too.
lines A control stream as text lines. Use this or ‘file°.
section The section to read. Typically, "theta", "omega", or "sigma". Default is those
three.
return By default (when return="pars", a parameter table with initial values, FIX,

lower and upper bounds etc. In most cases, that is what is needed to derive
information about parameter definitions. If return="all", two additional tables
are returned which can be used if the aim is to modify and write the resulting
parameters to a control stream.

as.fun See ?NMscanData

NMreadSim

Value

23

A ‘data.frame’ with parameter values. If ‘return="all"‘, a list of three tables.

NMreadSim

Read simulation results based on NMsim’s track of model runs

Description

Read simulation results based on NMsim’s track of model runs

Usage

NMreadSim(
X,

check.time = FALSE,

dir.sims,
wait = FALSE,

quiet = FALSE,

progress,
skip.missing

= FALSE,

rm.tmp = FALSE,

as.fun

Arguments

X

check.time

dir.sims

wait

quiet

Path to the simulation-specific rds file generated by NMsim, typically called
‘NMsim_MetaData.rds‘. Can also be a table of simulation runs as stored in
‘rds‘ files by ‘NMsim‘. The latter should almost never be used.

If found, check whether ‘fst® file modification time is newer than ‘rds‘ file.
The ‘fst‘ is generated based on information in ‘rds‘, but notice that some sys-
tems don’t preserve the file modification times. Becasue of that, ‘check.time® is
‘FALSE* by default.

By default, ‘NMreadSim* will use information about the relative path from the
results table file (‘_MetaData.rds) to the Nonmem simulation results. If these
paths have changed, or for other reasons this doesn’t work, you can use the
‘dir.sims‘ argument to specify where to find the Nonmem simulation results. If
an “.fst‘ file was already generated and is found next to the °_MetaData.rds‘, the
path to the Nonmem simulation results is not used.

If simulations seem to not be done yet, wait for them to finish? If not, an error
will be thrown. If you choose to wait, the risk is results never come. ‘NMread-
Sim* will be waiting for an ‘Ist file. If Nonmem fails, it will normally generate
an ‘Ist* file. But if ‘NMTRAN" fails (checks of control stream prior to running
Nonmem), the ‘Ist* file is not generated. Default is not to wait.

Turn off some messages about what is going on? Default is to report the mes-
sages.

24 NMsim
progress Track progress? Default is “TRUE® if ‘quiet* is FALSE and more than one model
is being read. The progress tracking is based on the number of models com-
pleted/read, not the status of the individual models.
skip.missing Skip models where results are not available? Default is ‘FALSE‘ meaning an
error will be thrown if one or more models do not have completed results.
rm. tmp If results are read successfully, remove temporary simulation results files? This
can be useful after a script is developed and intermediate debugging information
is not needed. It cleans up and saves significant disk space.
as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble®)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.
Value
A data set of class defined by as.fun
NMsim Simulate from a Nonmem model
Description
Supply a data set and an estimation input control stream, and NMsim can create neccesary files
(control stream, data files), run the simulation and read the results. It has additional methods for
other simulation types available, can do multiple simulations at once and more. Please see vignettes
for an introduction to how to get the most out of this.
Usage
NMsim(
file.mod,
data,

subproblems = NULL,

reuse.results

seed.R,
seed.nm,
name.sim,

table.vars,

= FALSE,

table.options,
table.format = "s1PE16.9",
carry.out = TRUE,

method.sim

NMsim_default,

typical = FALSE,

inits,
modify,
filters,
sizes,

NMsim
path.nonmem =
sge = FALSE,
nc =1,

25

NULL,

execute = TRUE,

script = NULL

’

transform = NULL,

order.columns

= TRUE,

method.execute,

nmfe.options,
nmrep,

col.flagn = FALSE,

dir.psn,

args.psn.execute,
args.NMscanData,

as.fun,
system. type
dir.sims,
dir.res,
file.res,
dir.sim.sub =
wait,
text.sim =

nn

NULL,

TRUE,

auto.dv = TRUE,

clean,

sim.dir.from.scratch = TRUE,

create.dirs =
quiet = FALSE
nmquiet,
progress,

TRUE,

’

check.mod = TRUE,

format.data.complete =

text.table,
suffix.sim,
seed,

n n

rds”,

file.ext = NULL,

method.update
modify.model,
list.sections

Arguments

file.mod

data

.inits,

’

Path(s) to the input control stream(s) to run the simulation on. The output control
stream is for now assumed to be stored next to the input control stream and
ending in .Ist instead of .mod. The .ext file must also be present. If simulating
known subjects, the .phi is necessary too.

The simulation data as a data.frame or a list of data.frames. If a list, the

26

subproblems

reuse.results

seed.R

seed.nm

name.sim

table.vars

table.options

table.format

carry.out

method.sim

NMsim

model(s) will be run on each of the data sets in the list.

Number of subproblems to use as SUBPROBLEMS in $SIMULATION block in Non-
mem. The default is subproblem=0 which means not to use SUBPROBLEMS.

If simulation results found on file, should they be used? If TRUE and reading
the results fail, the simulations will still be rerun.

A value passed to set.seed(). It is recommended to use seed.R rather than
calling set.seed() manually because the seed can then be captured and stored
by NMsim() for reproducibility. See seed.nm for finer control of the seeds that
are used in the Nonmem control streams.

Control Nonmem seeds. If a numeric, a vector or a ‘data.frame’, these are used
as the the seed values (a single value or vector will be recycled so make sure
the dimesnsions are right, the number of columns in a data. frame will dictate
the number of seeds in each Nonmem control stream. Use a list with elements
‘values‘, and ‘dist‘ and others for detailed control of the random sources. See
?NMseed for details on what arguments can be passed this way.

Default is to draw seeds betwen 0 and 2147483647 (the values supported by
Nonmem) for each simulation. You can pass a function that will be evaluated
(say to choose a different pool of seeds to draw from).

To avoid changing an exisiting seed in a control stream, use seed.nm="asis".
In case method. sim=NMsim_EBE, seeds are not used.

Give all filenames related to the simulation a suffix. A short string describing
the sim is recommended like "ph3_regimens".

Variables to be printed in output table as a character vector or a space-separated
string of variable names. The default is to export the same tables as listed in the
input control stream. If table.vars is provided, all output tables in estimation
control streams are dropped and replaced by a new one with just the provided
variables. If many variables are exported, and much fewer are used, it can speed
up NMsim significantly to only export what is needed (sometimes this is as little
as "PRED IPRED"). Nonmem writes data slowly so reducing output data can
make a very big difference in execution time. See table.options too.

A character vector or a string of space-separated options. Only used if table.vars
is provided. If constructing a new output table with table.vars the default is to
add two options, NOAPPEND and NOPRINT. You can modify that with table.options.
Do not try to modify output filename - NMsim takes care of that. See ‘ta-
ble.format® too.

A format for ‘STABLE‘. Only used if ‘table.vars‘ is provided. Default is
"sIPE16.9". NMsim needs a high-resolution format. The Nonmem default
"s1PE11.4" is insufficient for simulation data sets of 1e5 rows or more.

Variables from input data that should be included in results. Default is to include
everything. If working with large data sets, it may be wanted to provide a subset
of the columns here. If doing very large simulations, this may also be a way to
save memory.

A function (not quoted) that creates the simulation control stream and other
necessary files for a simulation based on the estimation control stream, the data,
etc. The default is called NMsim_default which will replace any estimation

NMsim

typical

inits

modify

27

and covariance step by a simulation step. See details section on oter methods,
and see examples and especially vignettes on how to use the different provided
methods.

Run with all ETAs fixed to zero? Technically all ETAs=0 is obtained by re-
placing $OMEGA by a zero matrix. Default is ‘FALSE‘. Instead of a logical
‘TRUE/FALSE®, a character vector can be used to specify what parameter types
to set to zero and fix. Examples: ‘typical=c("OMEGA","SIGMA")‘, ‘typi-
cal=c("THETAPV","OMEGA","OMEGAP","OMEGAPD")*. In fact, if ‘typi-
cal=TRUE"‘, both ‘SOMEGA " itself and - if found - their priors will be fixed at
Zero.

Control the parameter values. ‘inits* is a list and contains (any of) the ‘method°
used to edit the parameters, and what modifications to do.

Using the defaul ‘method‘, all other list elements are passed as arguments to
‘NMwritelnits()‘. Please see ‘?NMwritelnits® and the examples on the NMsim
website for how to edit the parameter values: https://nmautoverse.github.
io/NMsim/articles/NMsim-modify-model.html

The ‘method‘ element controls which method is used to do this, and this corre-
sponds to the old ‘method.update.initxfgs‘ argument. Normally, the user should
not need to deal with this as the default ‘nmsim‘ method is very flexible and
powerful. If using the new ‘method=nmsim* you can specify parameter values,
fix/unfix them, and edit lower and upper limits for estimation.

* ‘method="nmsim"‘ (default) A highly flexible internal method, allows for
modification of the parameter values. All other elements in ‘inits‘ are
passed to ‘NMwritelnits(). Example where “THETA(2)‘ is customized:
‘inits=list("THETA(2)"=list(init=1.3))‘. See ‘?NMwritelnits‘ too.

* ‘method="psn"* Uses PSN’s "update_inits". Requires a functioning PSN
installation and possibly that dir.psn is correctly set. The advantages of
this method are that it keeps comments in the control stream and that it is a
method known to many.

* ‘method="simple"* Uses a simple internal method to update the parameter
values based on the ext file. The advantages are it does not require PSN,
and that it does not rely on code-interpretation for generation of simula-
tion control streams. "simple" fixes the whole OMEGA and SIGMA ma-
trices as single blocks which is robust because it avoids any interpretation
of BLOCK structure or other code in the control streams. The downside
is it strips all comments, and generally makes the SOMEGA and $SIGMA
sections of the simulation control streams less easy to read. "simple" can

ne

be used as a fallback in case of any issues with ‘method="nmsim" ‘.

"e

* ‘method="none"‘ Do nothing. This is useful if the model to simulate has
not been estimated but parameter values have been manually put into the
respective sections in the control stream.

See also ‘file.ext® which can now be handled by ‘inits‘ too. This change collects
the update of the "initial" parameter values into one interface rather than multiple
arguments.

Named list of additional control stream section edits. Note, these can be func-
tions that define how to edit sections. This is an advanced feature which is not

https://nmautoverse.github.io/NMsim/articles/NMsim-modify-model.html
https://nmautoverse.github.io/NMsim/articles/NMsim-modify-model.html

28

filters

sizes

path.nonmem

sge

nc

execute

script

transform

order.columns

method.execute

nmfe.options

nmrep

NMsim

needed to run most simulations. It is however powerful for some types of anal-
yses, like modifying parameter values. See vignettes for further information.

Edit data filters (‘'IGNORE‘/‘ACCEPT" statements) before running model. This
should normally only be used if no data set is provided. It can be useful if
simulating for a VPC but a different subset of data needs to be simulated than
the one used for estimation. A common example on this is inclusion of BLQ’s
in the VPC even if they were excluded in the estimation. See ‘?NMreadFilters*
which returns a table you can edit and pass to ‘filters‘. You can also just pass a
string representing the full set of filters to be used. If you pass a string, consider
including "IGN=@" to avoid character rows, like the column headers.

If needed, adjust the ‘$SIZES‘ section by providing a list of arguments to ‘NMup-
dateSizes()‘. Example: ‘sizes=list(PD=80)‘. See ‘?NMupdateSizes* for details.
Don’t use arguments like ‘file.mod‘ and ‘newfile* which are handled internally.

The path to the Nonmem executable to use. The could be something like "/usr/local/ NONMEM/run/nmfe’

(which is a made up example). No default is available. You should be able to
figure this out through how you normally execute Nonmem, or ask a colleague.

Submit to cluster? Default is not to, but this is very useful if creating a large
number of simulations, e.g. simulate with all parameter estimates from a boot-
strap result.

Number of cores used in parallelization. Only used if ‘sge=TRUE".

Execute the simulation or only prepare it? ‘execute=FALSE‘ can be useful if
you want to do additional tweaks or simulate using other parameter estimates.

The path to the script where this is run. For stamping of dataset so results can
be traced back to code.

A list defining transformations to be applied after the Nonmem simulations and
before plotting. For each list element, its name refers to the name of the column
to transform, the contents must be the function to apply.

reorder columns by calling NMdata: :NMorderColumns before saving dataset
and running simulations? Default is TRUE.

Specify how to call Nonmem. Options are "psn" (PSN’s execute), "nmsim"
(an internal method similar to PSN’s execute), and "direct" (just run Nonmem
directly and dump all the temporary files). "nmsim" has advantages over "psn"
that makes it the only supported method when type.sim="NMsim_EBE". "psn"
has the simple advantage that the path to nonmem does not have to be specified
if "execute" is in the system search path. So as long as you know where your
Nonmem executable is, "nmsim" is recommended. The default is "nmsim" if
path.nonmem is specified, and "psn" if not.

additional options that will be passed to nmfe. It is only used when path.nonmem
is available (directly or using ‘NMdataConf()‘). Default is "-maxlim=2" For
PSN, see ‘args.psn.execute’.

Include ‘NMREP‘ as counter of subproblems? The default is to do so if ‘sub-
problems>0°‘. This will insert a counter called ‘NMREP* in the ‘SERROR‘ sec-
tion and include that in the output table(s). At this point, nothing is done to
avoid overwriting existing variables.

NMsim

col.flagn

dir.psn

29

Only used if ‘data‘ is provided. Use this if you are including an exclusion flag
column in data. However, what NMsim will then do is to require that column to
equal ‘0° (zero) for the rows to be simulated. It is often better to subset the data
before simulation. See ‘filters® too.

The directory in which to find PSN’s executables ("execute’ and ’update_inits’).
The default is to rely on the system’s search path. So if you can run ’execute’
and ’update_inits’ by just typing that in a terminal, you don’t need to specify this
unless you want to explicitly use a specific installation of PSN on your system.

args.psn.execute

args.NMscanData

as.fun

system. type

dir.sims

dir.res

file.res

dir.sim.sub

A charachter string that will be passed as arguments PSN’s ‘execute‘. The de-

fault is "-model_dir_name -nm_output=coi,cor,cov,ext,phi,shk,xml -nmfe_options=\"-
maxlim=2\"" in addition to the "-clean" based on the ‘clean‘ argument. Notice,

if ‘path.nonmem° is provided, the default is not to use PSN.

If execute=TRUE&sge=FALSE, NMsim will normally read the results using NMreadSim.
Use this argument to pass additional arguments (in a list) to that function if you

want the results to be read in a specific way. This can be if the model for some
reason drops rows, and you need to merge by a row identifier. You would do
‘args.NMscanData=list(col.row="ROW")‘ to merge by a column called ‘ROW".

This is only used in rare cases.

The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble®)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

A charachter string, either "windows" or "linux" - case insensitive. Windows is
only experimentally supported. Default is to use Sys.info()[["sysname”]].

The directory in which NMsim will store all generated files. Default is to create
a folder called ‘NMsim* next to ‘file.mod".

Provide a path to a directory in which to save rds files with paths to results. De-
fault is to use dir.sims. After running ‘NMreadSim()‘ on these files, the original
simulation files can be deleted. Hence, providing both ‘dir.sims* and ‘dir.res*
provides a structure that is simple to clean. ‘dir.sims‘ can be purged when ‘NM-
readSim* has been run and only small ‘rds‘ and ‘fst files will be kept in ‘dir.res".
Notice, in case multiple models are simulated, multiple ‘rds‘ (to be read with
‘NMreadSim() ‘) files will be created by default. In cases where multiple models
are simulated, see ‘file.res‘ to get just one file refering to all simulation results.

Path to an rds file that will contain a table of the simulated models and other
metadata. This is needed for subsequently retrieving all the results using ‘NM-
readSim()‘. The default is to create a file called ‘NMsim_..._MetaData.rds‘ un-
der the dir.res directory where ... is based on the model name. However, if
multiple models (file.mod) are simulated, this will result in multiple rds files.
Specifying a path ensures that one rds file containing information about all sim-
ulated models will be created. Notice if file.res is supplied, dir.res is not
used.

If ‘TRUE‘ (default) a dedicated subdirectory will be created for eac model run.
This is normally the cleanest way to run simulations. However, when ‘NMsim()*
is used for estimation, it may be better to provide model results in the same

30

wait

text.sim

auto.dv

clean

NMsim

folder as the input control stream (like PSN would do). Use ‘dir.sim.sub=FALSE‘
to get this behavior.

Wait for simulations to finish? Default is to do so if simulations are run locally
but not to if they are sent to the cluster. Waiting for them means that the results
will be read when simulations are done. If not waiting, path(s) to ‘rds‘ files to
read will be returned. Pass them through ‘NMreadSim()‘. Conveniently, NM-
readSim() also takes the ‘wait® argument too, allowing flexibility to run Non-
mem in the background, and then read the results, still waiting for Nonmem to
finish.

A character string to be pasted into $SIMULATION. This must not contain
seed or SUBPROBLEM which is handled separately. Default is to include
"ONLYSIM". You cannot avoid that using ‘text.sim‘. If needed, you can use
‘onlysim=FALSE* which will be passed to ‘NMsim_default()‘.

Add a column called ‘DV* to input data sets if a column of that name is not
found? Nonmem is generally dependent on a ‘DV* column in input data but
this is typically uninformative in simulation data sets and hence easily forgotten
when generating simulation data sets. If auto.dv=TRUE and no ‘DV‘ column
is found, ‘DV=NA* will be added. In this case (‘auto.dv=TRUE® and no ‘DV*
column found) a ‘MDV=1* column will also be added if none found.

The degree of cleaning (file removal) to do after Nonmem execution. If ‘method.execute=="psn"*,

this is passed to PSN’s ‘execute‘. If ‘method.execute=="nmsim"‘ a similar be-
havior is applied, even though not as granular. NMsim’s internal method only
distinguishes between 0 (no cleaning), any integer 1-4 (default, quite a bit of
cleaning) and 5 (remove temporary dir completely).

sim.dir.from.scratch

create.dirs

quiet

nmquiet

progress

check.mod

If TRUE (default) this will wipe the simulation directory before running new
simulations. The directory that will be emptied is _not_ dir.sims where you may
keep many or all your simulations. It is the subdirectory named based on the
run name and name. sim. The reason it is advised to wipe this directory is that if
you in a previous simulation created simulation runs that are now obsolete, you
could end up reading those too when collecting the results. NMsim will delete
previously generated simulation control streams with the same name, but this
option goes further. An example where it is important is if you first ran 1000
replications, fixed something and now rand 500. If you choose FALSE here, you
can end up with the results of 500 new and 500 old simulations.

If the directories specified in dir.sims and dir.res do not exists, should it be cre-
ated? Default is TRUE.

If TRUE, messages from what is going on will be suppressed.

Silent console messages from Nonmem? The default behaviour depends. It is
FALSE if there is only one model to execute and ‘progress=FALSE‘.

Track progress? Default is ‘TRUE® if ‘quiet* is FALSE and more than one model
is being simulated. The progress tracking is based on the number of models
completed, not the status of the individual models.

Check the provided control streams for contents that may cause issues for simu-
lation. Default is “TRUE", and it is only recommended to disable this if you are

NMsim 31

fully aware of such a feature of your control stream, you know how it impacts
simulation, and you want to get rid of warnings.
format.data.complete

For development purposes - users do not need this argument. Controls what
format the complete input data set is saved in. Possible values are ‘rds‘ (default),
‘fst* (experimental) and ‘csv‘. ‘fst’ may be faster and use less disk space but
factor levels may be lost from input data to output data. ‘csv‘ will also lead to
loss of additional information such as factor levels.

text.table Deprecated. Use ‘table.vars‘ and ‘table.options‘ instead.

suffix.sim Deprecated. Use name.sim instead.

seed Deprecated. See seed.R and seed. nm.

file.ext Deprecated. Use ‘inits=list(file.ext="path/to/file.ext")‘ instead. Optionally pro-

vide a parameter estimate file from Nonmem. This is normally not needed since
‘NMsim* will by default use the ext file stored next to the input control stream
(replacing the file name extension with ‘.ext‘). If using method.update.inits="psn",
this argument cannot be used.

method.update.inits
Deprecated, please migrate to ‘inits‘ instead. The initial values of all parameters
are by updated from the estimated model before running the simulation. NMsim
can do this with a native function or use PSN to do it - or the step can be skipped
to not update the values.

modify.model Deprecated. Use modify instead.
list.sections Deprecated. Use modify instead.

Additional arguments passed to method.sim.

Details

Loosely speaking, the argument method.sim defines _what_ NMsim will do, method.execute
define _how_ it does it. method.sim takes a function that converts an estimation control stream
into whatever should be run. Features like replacing ‘SINPUT®, ‘SDATA‘, ‘$TABLE®, and handling
seeds are NMsim features that are done in addition to the method.sim. Also the modeify.model
argument is handled in addition to the method. sim. The subproblems and seed.nm arguments are
available to all methods creating a $SIMULATION section.

Notice, the following functions are internally available to ‘NMsim‘ so you can run them by say
method. sim=NMsim_EBE without quotes. To see the code of that method, type NMsim_EBE.

* NMsim_default The default behaviour. Replaces any SESTIMATION and $COVARIANCE
sections by a $SSIMULATION section.

* NMsim_asis The simplest of all method. It does nothing (but again, NMsim handles ‘$SINPUT",
‘$DATA®, ‘$TABLE® and more. Use this for instance if you already created a simulation (or
estimation actually) control stream and want NMsim to run it on different data sets.

* NMsim_EBE Simulates _known_ ETAs. By default, the ETA values are automatically taken
from the estimation run. This is what is refered to as emperical Bayes estimates, hence the
name of the method "NMsim_EBE". However, the user can also provide a different ‘.phi‘
file which may contain simulated ETA values (see the ‘file.phi‘ argument). ID values in the

32

Value

NMsimTestConf

simulation data set must match ID values in the phi file for this step to work. If refering to
estimated subjects, the .phi file from the estimation run must be found next to the .Ist file from
the estimation with the same file name stem (say ‘runl.lst‘ and ‘runl.phi‘). Again, ID values
in the (simulation) input data must be ID values that were used in the estimation too. The
method Runs an $ESTIMATION MAXEVAL=0 but pulls in ETAs for the ID’s found in data. No
$SIMULATION step is run which unfortunately means no residual error will be simulated.

NMsim_VarCov Like NMsim_default but ‘$STHETA®, ‘SOMEGA®, and ‘SIGMA° are drawn
from distribution estimated in covariance step. This means that a successful covariance step
must be available from the estimation. NB. A multivariate normal distribution is used for all
parameters, including ‘SOMEGA*‘ and ‘$SIGMA‘ which is not the correct way to do this.
In case the simulation leads to negative diagonal elements in SOMEGA and $SIGMA, those
values are truncated at zero. This method is only valid for simulation of ‘STHETA® vari-
ability. The method accepts a table of parameter values that can be produced with other
tools than ‘NMsim*. For simulation with parameter variability based on bootstrap results, use
NMsim_default.

A data.frame with simulation results (same number of rows as input data). If ‘sge=TRUE‘ a char-
acter vector with paths to simulation control streams.

NMsimTestConf Summarize and test NMsim configuration

Description

Summarize and test NMsim configuration

Usage

NMsimTestConf (

path.nonmem,
dir.psn,
method.execute,
must.work = FALSE,
system. type

)

Arguments
path.nonmem See "NMsim
dir.psn See "NMsim

method.execute See ?NMsim

must.work Throw an error if the configuration does not seem to match system.

system. type See ?NMsim

NMsim_asis 33

Value

A list with configuration values

NMsim_asis Simulation method that uses the provided control stream as is

Description

The simplest of all method. It does nothing (but again, NMsim handles ‘$INPUT®, ‘$DATA, ‘$TA-
BLE® and more. Use this for instance if you already created a simulation (or estimation actually)
control stream and want NMsim to run it on different data sets.

Usage

NMsim_asis(file.sim, file.mod, data.sim)

Arguments
file.sim See ?NMsim.
file.mod See ?NMsim.
data.sim See ?NMsim.
Value

Path to simulation control stream

NMsim_default Transform an estimated Nonmem model into a simulation control
stream

Description

The default behaviour of NMsim. Replaces any SESTIMATION and $COVARIANCE sections by a
$SIMULATION section.

Usage

NMsim_default(

file.sim,

file.mod,

data.sim,

nsims = 1,

onlysim = TRUE,
replace.sim = TRUE,
return.text = FALSE

34 NMsim_EBE

Arguments
file.sim See ?NMsim.
file.mod See ?NMsim.
data.sim See ?NMsim.
nsims Number of replications wanted. The default is 1. If greater, multiple control
streams will be generated.
onlysim Include ‘ONLYSIM® in ‘$SIMULATION‘? Default is “TRUE‘. Only applied

when ‘replace.sim="TRUE".

replace.sim If there is a $SIMULATION section in the contents of file.sim, should it be
replaced? Default is yes. See the list.section argument to NMsim for how
to provide custom contents to sections with NMsim instead of editing the control
streams beforehand.

return. text If TRUE, just the text will be returned, and resulting control stream is not written
to file.

Value

Character vector of simulation control stream paths

NMsim_EBE Use emperical Bayes estimates to simulate re-using ETAs

Description

Simulation reusing ETA values from estimation run or otherwise specified ETA values. For ob-
served subjects, this is refered to as emperical Bayes estimates (EBE). The .phi file from the es-
timation run must be found next to the .Ist file from the estimation.This means that ID values
in the (simulation) input data must be ID values that were used in the estimation too. Runs an
$ESTIMATION MAXEVAL=@ but pulls in ETAs for the ID’s found in data. No $SIMULATION step is run
which may affect how for instance residual variability is simulated, if at all. You can also specify a
different . phi file which can be a simulation result.

Usage

NMsim_EBE(file.sim, file.mod, data.sim, file.phi, return.text = FALSE)

Arguments
file.sim The path to the control stream to be edited. This function overwrites the contents
of the file pointed to by file.sim.
file.mod Path to the path to the original input control stream provided as ‘file.mod* to

‘NMsim()*.

data.sim See ?NMsim.

NMsim_NWPRI 35

file.phi A phi file to take the known subjects from. The default is to replace the filename
extension on file.mod with .phi. A different .phi file would be used if you want
to reuse subjects simulated in a previous simulation.

return. text If TRUE, just the text will be returned, and resulting control stream is not written
to file.

Value

Path to simulation control stream

See Also
simPopEtas
NMsim_NWPRI Simulate with parameter variability using the NONMEM NWPRI sub-
routine
Description

Modify control stream for simulation with uncertainty using inverse-Wishart distribution for OMEGA
and SIGMA parameters

This function does not run any simulations. To simulate, using this method, see ‘NMsim()‘. See
examples.

Usage

NMsim_NWPRI(file.sim, file.mod, data.sim, PLEV = 0.999, add.diag, ...)

Arguments

file.sim The path to the control stream to be edited. This function overwrites the contents
of the file pointed to by file.sim.

file.mod Path to the path to the original input control stream provided as ‘file.mod‘ to
‘NMsim()‘.

data.sim Included for compatibility with ‘NMsim()*. Not used.

PLEV Used in $PRIOR NWPRI PLEV=0.999. This is a NONMEM argument to the NW-
PRI subroutine. When PLEV < 1, a value of THETA will actually be obtained
using a truncated multivariate normal distribution, i.e. from an ellipsoidal re-
gion R1 over which only a fraction of mass of the normal occurs. This fraction
is given by PLEV.

add.diag A umeric value to add to the diagonal of the covariance matrix. This can be used

in case of negative eigenvaluen in variance-covariance matrix.

Additional arguments passed to ‘NMsim_default().

36 NMsim_typical

Details

Simulate with parameter uncertainty. THETA parameters are sampled from a multivariate normal
distribution while OMEGA and SIGMA are simulated from the inverse-Wishart distribution. Cor-
relations of OMEGA and SIGMA parameters will only be applied within modeled "blocks".

Value

Path to simulation control stream

Author(s)
Brian Reilly, Philip Delff

References
inverse-Wishart degrees of freedom calculation for OMEGA and SIGMA: NONMEM tutorial part
II, supplement 1, part C.

See Also
NMsim_VarCov

Examples

Not run:
simres <- NMsim(file.path,method.sim=NMsim_WPRI,typical=TRUE, subproblems=500)

End(Not run)

NMsim_typical Typical subject simiulation method

Description

Like NMsim_default but with all ETAs=0, giving a "typical subject" simulation. Do not confuse
this with a "reference subject" simulation which has to do with covariate values. Technically all
ETAs=0 is obtained by replacing $OMEGA by a zero matrix.

Usage

NMsim_typical(file.sim, file.mod, data.sim, return.text = FALSE)

Arguments
file.sim See ?NMsim.
file.mod See ?NMsim.
data.sim See ?NMsim.
return.text If TRUE, just the text will be returned, and resulting control stream is not written

to file.

https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12422&file=psp412422-sup-0001-Supinfo1.pdf
https://ascpt.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1002%2Fpsp4.12422&file=psp412422-sup-0001-Supinfo1.pdf

NMsim_ VarCov 37

Value

Path to simulation control stream

NMsim_VarCov Simulate with parameter values sampled from a covariance step

Description

Like NMsim_default but ‘$STHETA®, ‘SOMEGA°, and ‘SIGMA* are drawn from distribution es-
timated in covariance step. A successful covariance step must be available from the estimation.
In case the simulation leads to negative diagonal elements in SOMEGA and $SIGMA, those val-
ues are truncated at zero. For simulation with parameter variability based on bootstrap results, use
NMsim_default.

This function does not run any simulations. To simulate, using this method, see ‘NMsim()°.

Usage

NMsim_VarCov(
file.sim,
file.mod,
data.sim,
nsims,
method.sample = "mvrnorm”,
ext,
write.ext = NULL,

)
Arguments

file.sim The path to the control stream to be edited. This function overwrites the contents
of the file pointed to by file.sim.

file.mod Path to the path to the original input control stream provided as ‘file.mod‘ to
‘NMsim()‘.

data.sim Included for compatibility with ‘NMsim()‘. Not used.

nsims Number of replications wanted. The default is 1. If greater, multiple control

streams will be generated.

method.sample When ‘ext’ is not used, parameters are sampled, using ‘samplePars()‘. ‘method’
must be either ‘mvrnorm‘ or ‘simpar‘. Only used when ‘ext‘ is not provided.

ext Parameter values in long format as created by ‘readParsWide‘ and ‘NMdata::NMreadExt*.

write.ext If supplied, a path to an rds file where the parameter values used for simulation
will be saved.

Additional arguments passed to ‘NMsim_default().

38

Value

NMwritelnits

Character vector of simulation control stream paths

NMwriteInits

Writes a parameter values to a control stream

Description

Edit parameter values, fix/unfix them, or edit lower/upper bounds.

Usage

NMwriteInits(
file.mod,

lines,
update =

TRUE,

file.ext = NULL,

ext,

inits.tab,

values,
newfile,

Arguments

file.mod
lines

update

file.ext

ext

inits.tab

values

newfile

Path to control stream.
Control stream as character vector. Use either ‘file.mod‘ or ‘lines‘, not both.

If “TRUE® (default), the parameter values are updated based on the ‘.ext file.
The path to the ‘.ext’ file can be specified with ‘file.ext‘ but that is normally not
necessary.

Optionally provide the path to an ‘.ext file. If not provided, the default is to
replace the file name extention on ‘file.mod* with ‘.ext‘. This is only used if
‘update=TRUE".

An long-format parameter table as returned by ‘NMreadExt()‘. Can contain
multiple models if ‘file.mod* does not.

A wide-format parameter table, well suited for customizing initial values, limits,
and for fixing parameters. For multiple custom parameter specifications, this
may be the most suitable argument.

A list of lists. Each list specifies a parameter with named elements. Must be
named by the parameter name. ‘lower, ‘upper‘ and ‘fix‘ can be supplied to
modify the parameter. See examples. Notice, you can use ‘...° instead. ‘values*
may be easier for programming but other than that, most users will find °...
more intuitive.

If provided, the results are written to this file as a new input control stream.

Parameter specifications. See examples,

NMwriteSizes 39

Details

Limitations:

* ‘NMwritelnits()* can only update specifications of existing parameters. It cannot insert new
parameters.

* lower, init, upper, and FIX must be on same line in control stream.

* If using something like CL=(.1,4,15) in control stream, two of those cannot be on the same
line.

In Nonmem an entire block is either fixed or not. ‘NMwritelnits()‘ fixes/unfixes the entire block
based on the top-left element in the block. This means, if OMEGA(2,2)-OMEGA(3,3) is a block,
the ‘FIX* status of OMEGA(2,2) determines whether the block is fixed. ‘FIX* of all other elements
in the block has no effect.

Value

a control stream as lines in a character vector.

Examples

Not run:
file.mod <- system.file("”examples/nonmem/xgxr@21.mod",package="NMdata")
specify parameters using ...
NMwriteInits(file.mod,
"theta(2)"=list(init=1.4),
"THETA(3)"=1ist(FIX=1),
"omega(2,2)"=list(init=0.1)
)
or put them in a list in the values argument
NMwriteInits(file.mod,
values=list("theta(2)"=list(init=1.4),
"THETA(3)"=1ist(FIX=1),
"omega(2,2)"=1list(init=0.1))

End(Not run)

NMwriteSizes Create or update $SIZES in a control stream

Description

Update $SIZES parameters in a control stream. The control stream can be in a file or provided as a
character vector (file lines).

40 NMwriteSizes

Usage
NMwriteSizes(
file.mod = NULL,
newfile,
lines = NULL,
wipe = FALSE,
write = !is.null(newfile),
)
Arguments
file.mod A path to a control stream. See also alternative ‘lines‘ argument. Notice, if
‘write‘ is “TRUE (default) and ‘newfile‘ is not provided, ‘file.mod* will be over-
written.
newfile An optional path to write the resulting control stream to. If nothing is provided,
the default is to overwrite ‘file.mod°.
lines Control stream lines as a character vector. If you already read the control stream
- say using ‘NMdata::NMreadSection()‘, use this to modify the text lines.
wipe The default behavior (‘wipe=FALSE®) is to add the ‘$SIZES‘ values to any ex-
isting values found. If SIZES parameter names are overlapping with existing,
the values will be updated. If ‘wipe=TRUE®, any existing ‘$SIZES* section is
disregarded.
write Write results to ‘newfile?
The $SIZES parameters. Provided anything, like ‘PD=40°‘ See examples.
Value

Character lines with updated control stream

Examples

No existing SIZES in control stream

Not run:

file.mod <- system.file("examples/nonmem/xgxr132.mod",package="NMdata")
newmod <- NMwriteSizes(file.mod,LTV=50,write=FALSE)

head(newmod)

End(Not run)

provide control stream as text lines

Not run:

file.mod <- system.file("examples/nonmem/xgxr@32.mod",package="NMdata")
lines <- readLines(file.mod)

newmod <- NMwriteSizes(lines=lines,LTV=50,write=FALSE)

head(newmod)

End(Not run)
By default (wipe=FALSE) variabels are added to SIZES

overwrite 41

Not run:

lines.mod <- NMwriteSizes(file.mod,LTV=50,write=FALSE)
newmod <- NMwriteSizes(lines=lines.mod,PD=51,write=FALSE)
head(newmod)

End(Not run)

overwrite Create function that modifies text elements in a vector Namely used to
feed functions to modify control streams using ‘NMsim()‘ arguments
such as ‘modify‘. Those functions are often onveniently passed a func-
tion. ‘add‘ and ‘overwrite‘ are simple shortcuts to creating such func-
tions. Make sure to see examples.

Description

Create function that modifies text elements in a vector Namely used to feed functions to modify con-
trol streams using ‘NMsim()‘ arguments such as ‘modify‘. Those functions are often onveniently

passed a function. ‘add‘ and ‘overwrite‘ are simple shortcuts to creating such functions. Make sure
to see examples.

Usage
overwrite(..., fixed = TRUE)
Arguments
Passed to ‘gsub()*
fixed This is passed to gsub(), but ‘overwrite()*’s default behavior is the opposite of
the one of ‘gsub()‘. Defaultis ‘FALSE‘ which means that strings that are exactly
matched will be replaced. This is useful because strings like ‘“THETA(1)* con-
tains special characters. Use ‘fixed=FALSE‘ to use regular expressions. Also,
see other arguments accepted by ‘gsub()‘ for advanced features.
Value

A function that runs ‘gsub‘ to character vectors

Examples

myfun <- overwrite("b","d")
myfun(c("a”,"b","c", "abc"))

regular expressions

myfun2 <- overwrite("b.*","d",fixed=FALSE)
myfun2(c("a”,"b","c”, "abc"))

42 readParsWide

print.summary_NMsimRes
print method for NMsimRes summaries

Description

print method for NMsimRes summaries

Usage
S3 method for class 'summary_NMsimRes'
print(x, ...)

Arguments

X The summary object to be printed. See ?summary.NMsimRes

Arguments passed to other print methods.

Value

NULL (invisibly)

readParsWide Parameter data from csv

Description

Reads output table from simpar and returns a long format data.table. This is the same format as
returned by NMreadExt() which can be used by NMsim.

Usage

readParsWide(
data,
col.model,
col.model.sim,
strings.par.type = c(THETA = "AT.x", OMEGA = "*0.*", SIGMA = "*S."),
as.fun

readParsWide 43

Arguments
data A data.frame or a path to a delimited file to be read using ‘data.table::fread".
col.model Column containing name of the original model. By default a column called

"model" will contain "Modell".

col.model.sim Name of the model counter, default is "model.sim". If the provided name is
not found in data, it will be created as a row counter. Why needed? Each row
in data represents a set of parameters, i.e. a model. In the long format result,
each model will have multiple rows. Hence, a model identifier is needed to
distinguish between models in results.

strings.par.type
Defines how column names get associated with THETA, OMEGA, and SIGMA.
Default is to look for "T", "O", or "S" as starting letter. If customizing, make
sure each no column name will be matched by more than one criterion.

as.fun The default is to return data as a data.frame. Pass a function (say tibble::as_tibble)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Details

The wide data format read by ‘readParsWide* is not a Nonmem format. It is used to bridge output
from other tools such as simpar, and potentially PSN.

This function reads a data that is "wide" in parameters - it has a column for each parameter, and one
row per parameter set or "model". It returns a data set that is "long" in model and parameters. The
long format contains

* id.model.par The unique model-parameter identifier. The row-identifier.

* model Model identifier.

* par.type ("THETA", "OMEGA", "SIGMA")

* iand j indexes for the parameters (j is NA for par.type=="THETA").

* value The parameter value

» parameter Nonmem-style parameter names. THETA1, OMEGA(1,1) etc. Notice the incon-
sistent naming of THETA vs others.

¢ name.wide The column name in the wide data where this value was taken
The columns or "measure variables" from which to read values are specified as three regular expres-
sions, called THETA, OMEGA, and SIGMA. The default three regular expressions will associate

a column name starting with "T" with THETAs, while "O" or "S" followed by anything means
"OMEGA" or "SIGMA".

readParsWide extracts i and j indexes from sequences of digits in the column names. TH.1 would
be TETAI, SG1.1 is SIGMA(1,1).

Value

a long-format data.frame of model parameters

44 sampleCovs

Examples
Not run:
tab.ext <- readParsCsv("simpartab.csv")
or

tab.simpar <- fread("simpartab.csv")
tab.ext <- readParsCsv(tab.simpar)
NMsim(...,method.sim=NMsim_VarCov, tab.ext=tab.ext)

End(Not run)

sampleCovs Sample subject-level covariates from an existing data set

Description

Repeats a data set with just one subject by sampling covariates from subjects in an existing data set.
This can conveniently be used to generate new subjects with covariate resampling from an studied

population.
Usage
sampleCovs(
data,
Nsubjs,
col.id = "ID",
col.id.covs = "ID",
data.covs,
covs,
seed.R,
as.fun
)
Arguments
data A simulation data set with only one subject
Nsubjs The number of subjects to be sampled. This can be greater than the number of
subjects in data.covs.
col.id Name of the subject ID column in ‘data‘ (default is "ID").
col.id.covs Name of the subject ID column in ‘data.covs‘ (default is "ID").
data.covs The data set containing the subjects to sample covariates from.
covs The name of the covariates (columns) to sample from ‘data.covs®.
seed.R If provided, passed to ‘set.seed()‘.
as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble®)

in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

samplePars 45

Value

A data.frame. Includes sampled covariates. The subject ID’s the covariates are sampled from will
be included in a column called ‘IDCOVS®.

Examples

library(NMdata)

data.covs <- NMscanData(system.file("examples/nonmem/xgxr134.mod",package="NMsim"))

dos.1 <- NMcreateDoses(TIME=0,AMT=100)

data.sim.1 <- NMaddSamples(dos.1,TIME=c(1,4),CMT=2)
sampleCovs(data=data.sim.1,Nsubjs=3,col.id.covs="ID",data.covs=data.covs,covs=c("WEIGHTB", "eff@"))

samplePars Sample model parameters using ‘mvrnorm° or the ‘simpar* package

Description

Sample model parameters using ‘mvrnorm‘ or the ‘simpar* package

Usage
samplePars(file.mod, nsims, method, seed.R, format = "ext"”, as.fun)
Arguments
file.mod Path to model control stream. Will be used for both ‘NMreadExt()‘ and ‘NM-
readCov()‘, and extension will automatically be replaced by ‘.ext* and ‘.cov'.
nsims Number of sets of parameter values to generate. Passed to ‘simpar".
method The sampling method. Options are "mvrnorm" and "simpar". Each have pros
and cons. Notice that both methods are fully automated as long as ".ext" and
".cov" files are available from model estimation.
seed.R seed value passed to set.seed().
format The returned data set format "ext" (default) or "wide". "ext" is a long-format,
similar to what ‘NMdata::NMreadExt()‘ returns.
as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble®)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.
Details

samplePars() uses internal methods to sample using mvrnorm or simpar. Also be aware of NM-
sim_NWPRI which is based on the Nonmem-internal NWPRI subroutine. NMsim_NWPRI is much
faster to execute. Simulation with paramater uncertainty on variance components (‘OMEGA* and
‘SIGMA) is only reliable starting from Nonmem 7.6.0.

46 sampleParsSimpar

mvrorm: The multivariate normal distribution does not ensure non-negative variances. Negative
variances are not allowed and can not be simulated. To avoid this, ‘method=mvrnorm‘ truncates
negative variance diagonal elements at zero.

simpar: simpar must be installed.

Please refer to publications and vignettes for more information on sampling methods.

Value

A table with sampled model parameters

Author(s)
Sanaya Shroff, Philip Delff

sampleParsSimpar Sample model parameters using the ‘simpar‘ package

Description

Sample model parameters using the ‘simpar* package

Usage
sampleParsSimpar(file.mod, nsim, format = "ext"”, seed.R, as.fun)
Arguments
file.mod Path to model control stream. Will be used for both ‘NMreadExt()‘ and ‘NM-
readCov()‘, and extension will automatically be replaced by ‘.ext* and ‘.cov".
nsim Number of sets of parameter values to generate. Passed to ‘simpar*.
format "ext" (default) or "wide".
seed.R seed value passed to set.seed().
as.fun The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble®)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.
Value

A table with sampled model parameters

Author(s)
Sanaya Shroff, Philip Delff

simPopEtas

47

simPopEtas

Generate a population based on a Nonmem model

Description

Generate a population based on a Nonmem model

Usage

simPopEtas(

file,
N,
seed.R,
pars,

file.phi,
overwrite

as.fun,

file.mod,

seed,

Arguments

file

seed.R
pars
file.phi

overwrite
as.fun

file.mod
seed

Value

A data.frame

FALSE,

Passed to ‘NMdata::NMreadExt()‘. Path to ext file. By default, ‘NMreadExt()
uses a‘auto.ext=TRUE* which means that the file name extension is replaced by
‘.ext‘. If your ext file name extension is not ‘.ext‘, add ‘auto.ext=FALSE* (see
o)

Number of subjects to generate

Optional seed. Will be passed to ‘set.seed‘. Same thing as running ‘set.seed’
just before calling ‘simPopEtas()°.

A long-format parameter table containing par.type and i columns. If this is sup-
plied, the parameter values will not be read from an ext file, and file has no
effect. If an ext file is available, it is most likely better to use the file argument.

An optional phi file to write the generated subjects to.
If ‘“file.phi® exists already, overwrite it? Default is ‘FALSE®.

The default is to return data as a data.frame. Pass a function (say ‘tibble::as_tibble®)
in as.fun to convert to something else. If data.tables are wanted, use as.fun="data.table".
The default can be configured using NMdataConf.

Deprecated. Use file instead.
Deprecated. Use seed.R instead.
Additional arguments passed to NMdata::NMreadExt().

48 summary.NMsimRes

summarizeCovs Summarize simulated exposures relative to reference subject (see
‘forestSummarize()‘)

Description

Summarize simulated exposures relative to reference subject (see ‘forestSummarize()®)

Usage

summarizeCovs(...)

Arguments

Passed to ‘forestSummarize()*

Value

A data.frame

summary .NMsimRes summary method for NMsim results (NMsimRes objects)

Description

summary method for NMsim results (NMsimRes objects)

Usage
S3 method for class 'NMsimRes'
summary (object, ...)
Arguments
object An NMsimRes object (from NMsim).
Not used
Value

A list with summary information on the NMsimRes object.

triagSize 49

triagSize Calculate number of elements for matrix specification

Description

calculate number of elements in the diagonal and lower triangle of a squared matrix, based on the
length of the diagonal.

Usage

triagSize(diagSize)

Arguments

diagSize The length of the diagonal. Same as number of rows or columns.

Value

An integer

Examples

NMsim: ::triagSize(1:5)

unNMsimModTab Remove NMsimModTab class and discard NMsimModTab meta data

Description
Remove NMsimModTab class and discard NMsimModTab meta data

Check if an object is "NMsimModTab’
Basic arithmetic on NMsimModTab objects

Usage
unNMsimModTab (x)
is.NMsimModTab(x)

S3 method for class 'NMsimModTab'
merge(x, ...)

S3 method for class 'NMsimModTab'
t(x, ...)

50 unNMsimRes

S3 method for class 'NMsimModTab'
dimnames(x, ...)

S3 method for class 'NMsimModTab'
rbind(x, ...)

S3 method for class 'NMsimModTab'

cbind(x, ...)
Arguments
X an NMsimModTab object
arguments passed to other methods.
Details

When ’dimnames’, *merge’, 'cbind’, ’rbind’, or ’t’ is called on an 'NMsimModTab’ object, the
’NMsimModTab’ class is dropped, and then the operation is performed. So if and "NMsimModTab’
object inherits from ’data.frame’ and no other classes (which is default), these operations will be
performed using the ’data.frame’ methods. But for example, if you use ’as.fun’ to get a ’data.table’
or ’tbl’, their respective methods are used instead.

Value

x stripped from the "NMsimModTab’ class
logical if x is an "'NMsimModTab’ object
An object that is not of class 'NMsimModTab’.

unNMsimRes Remove NMsimRes class and discard NMsimRes meta data

Description

Remove NMsimRes class and discard NMsimRes meta data
Check if an object is "NMsimRes’

Basic arithmetic on NMsimRes objects

Usage
unNMsimRes (x)

is.NMsimRes(x)

S3 method for class 'NMsimRes'
merge(x, ...)

unNMsimRes 51

S3 method for class 'NMsimRes'
t(x, ...)

S3 method for class 'NMsimRes'
dimnames(x, ...)

S3 method for class 'NMsimRes'

rbind(x, ...)
S3 method for class 'NMsimRes'
cbind(x, ...)
Arguments
X an NMsimRes object
arguments passed to other methods.
Details

When ’dimnames’, *merge’, *cbind’, 'rbind’, or ’t’ is called on an "NMsimRes’ object, the "NMsim-
Res’ class is dropped, and then the operation is performed. So if and "NMsimRes’ object inherits
from ’data.frame’ and no other classes (which is default), these operations will be performed using
the ’data.frame’ methods. But for example, if you use ’as.fun’ to get a ’data.table’ or ’tbl’, their
respective methods are used instead.

Value

x stripped from the 'NMsimRes’ class
logical if x is an "'NMsimRes’ object

An object that is not of class 'NMsimRes’.

Index

add, 3
addEVID2, 3
addResVar, 6

cbind.NMsimModTab (unNMsimModTab), 49
cbind.NMsimRes (unNMsimRes), 50

deleteTmpDirs, 8

dimnames.NMsimModTab (unNMsimModTab), 49

dimnames.NMsimRes (unNMsimRes), 50
expandCovs, 9

forestDefineCovs, 9
forestSummarize, 11

genPhiFile, 12

inputArchiveDefault, 12
is.NMsimModTab (unNMsimModTab), 49
is.NMsimRes (unNMsimRes), 50

merge.NMsimModTab (unNMsimModTab), 49
merge.NMsimRes (unNMsimRes), 50
modTab, 13

NMaddSamples, 14
NMcreateDoses, 17
NMexec, 19
NMreadFilters, 22
NMreadInits, 22
NMreadSim, 23
NMsim, 24
NMsim_asis, 33
NMsim_default, 33
NMsim_EBE, 34
NMsim_NWPRI, 35
NMsim_typical, 36
NMsim_VarCov, 37

NMsimModTabOperations (unNMsimModTab),

49

NMsimResOperations (unNMsimRes), 50
NMsimTestConf, 32
NMwriteInits, 38
NMwriteSizes, 39

overwrite, 41
print.summary_NMsimRes, 42

rbind.NMsimModTab (unNMsimModTab), 49
rbind.NMsimRes (unNMsimRes), 50
readParsWide, 42

sampleCovs, 44
samplePars, 45
sampleParsSimpar, 46
simPopEtas, 47
summarizeCovs, 48
summary .NMsimRes, 48

t.NMsimModTab (unNMsimModTab), 49
t.NMsimRes (unNMsimRes), 50
triagSize, 49

unNMsimModTab, 49
unNMsimRes, 50

	add
	addEVID2
	addResVar
	deleteTmpDirs
	expandCovs
	forestDefineCovs
	forestSummarize
	genPhiFile
	inputArchiveDefault
	modTab
	NMaddSamples
	NMcreateDoses
	NMexec
	NMreadFilters
	NMreadInits
	NMreadSim
	NMsim
	NMsimTestConf
	NMsim_asis
	NMsim_default
	NMsim_EBE
	NMsim_NWPRI
	NMsim_typical
	NMsim_VarCov
	NMwriteInits
	NMwriteSizes
	overwrite
	print.summary_NMsimRes
	readParsWide
	sampleCovs
	samplePars
	sampleParsSimpar
	simPopEtas
	summarizeCovs
	summary.NMsimRes
	triagSize
	unNMsimModTab
	unNMsimRes
	Index

