Package ‘NetRep’

October 23, 2025
Type Package
Title Permutation Testing Network Module Preservation Across Datasets
Version 1.2.9

BugReports https://github.com/sritchie73/NetRep/issues

Description Functions for assessing the replication/preservation of a network
module's topology across datasets through permutation testing; Ritchie et al.
(2015) <doi:10.1016/j.cels.2016.06.012>.

License GPL-2
Depends R (>= 3.6), methods

Imports foreach, Rcpp (>=0.11), statmod, RhpcBLASctl, abind,
RColorBrewer, utils, stats, graphics, grDevices

Suggests bigmemory, testthat, knitr, rmarkdown
LinkingTo Rcpp, BH, RcppArmadillo (>= 0.4)
RoxygenNote 7.3.3

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation yes

Author Scott Ritchie [aut, cre] (0000-0002-8454-9548)
Maintainer Scott Ritchie <sritchie73@gmail.com>
Repository CRAN

Date/Publication 2025-10-23 15:20:08 UTC

Contents
diskmatrix e 2
example-data 4
modulePreservation e 6
NetRep o o e 12
networkProperties 13
plotModule e 16
requiredPerms L. 23

https://github.com/sritchie73/NetRep/issues
https://doi.org/10.1016/j.cels.2016.06.012

2 disk.matrix
Index 25
disk.matrix The “disk.matrix’ class
Description
A 'disk.matrix' contains a file path to a matrix stored on disk, along with meta data for how to

read that file. This allows NetRep to load datasets into RAM only when required, i.e. one at a time.
This significantly reduces the memory usage of R when analysing large datasets. 'disk.matrix’
objects may be supplied instead of 'matrix' objects in the input list arguments 'network’', 'data’,
and 'correlation', which are common to most of NetRep’s functions.

Usage
attach.disk.matrix(file, serialized = TRUE, ...)
serialize.table(file, ...)
is.disk.matrix(x)

as.

#it
as

##

as.

disk.matrix(x, file, serialize = TRUE)

S4 method for signature 'disk.matrix'

.disk.matrix(x, file, serialize = TRUE)

S4 method for signature 'matrix'
disk.matrix(x, file, serialize = TRUE)

S4 method for signature 'ANY'

as.disk.matrix(x, file, serialize = TRUE)

S4 method for signature 'disk.matrix'

as.matrix(x)

S4 method for signature 'disk.matrix'

show(object)

Arguments

file for attach.disk.matrix the file name of a matrix on disk. For as.disk.matrix
the file name to save the matrix to. For serialize. table the file name of a ma-
trix in table format on disk.

serialized determines how the matrix will be loaded from disk into R by as.matrix. If

TRUE, the readRDS function will be used. If FALSE, the read. table function
will be used.

arguments to be used by read. table when reading in matrix data from a file in
table format.

disk.matrix 3

X for as.matrix a disk.matrix object to load into R. For as.disk.matrix an
object to convert to a disk.matrix. For is.disk.matrix an object to check if
its a disk.matrix.

serialize determines how the matrix is saved to disk by as.disk.matrix. If TRUE it will
be stored as a serialized R object using saveRDS. If FALSE it will be stored as a
tab-separated file using write. table.

object a 'disk.matrix' object.

Details

Matrices may either be stored as regular table files that can be read by read. table, or as serialized
R objects that can be read by readRDS. Serialized objects are much faster to load, but cannot be
read by other programs.

The attach.disk.matrix function creates a disk.matrix object from a file path. The as.matrix
function will load the data from disk into the R session as a regular matrix object.

The as.disk.matrix function converts a matrix into a disk.matrix by saving its contents to the
specified file. The serialize argument determines whether the data is stored as a serialized R
object or as a tab-separated file (i.e. sep="\t"). We recommend storing the matrix as a serialized
R object unless disk space is a concern. More control over the storage format can be obtained by
using saveRDS or write. table directly.

The serialize.matrix function converts a file in table format to a serialized R object with the
same file name, but with the ".rds" extension.

Value

A disk.matrix object (attach.disk.matrix, as.disk.matrix), amatrix (as.matrix), the file
path to a serialized matrix (serialize.table), or a TRUE or FALSE indicating whether an object is
adisk.matrix (is.disk.matrix).

Slots

file the name of the file where the matrix is saved.
read. func either "read. table"” or "readRDS".

func.args alist of arguments to be supplied to the 'read. func'.

Warning

attach.disk.matrix does not check whether the specified file can be read into R. as.matrix will
fail and throw an error if this is the case.

4 example-data

example-data Example data

Description

Example gene coexpression networks inferred from two independent datasets to demonstrate the
usage of package functions.

Usage
data(”"NetRep")

Format
""discovery_network' a matrix with 150 columns and 150 rows containing the network edge
weights encoding the interaction strength between each pair of genes in the discovery dataset.

""discovery_data" a matrix with 150 columns (genes) and 30 rows (samples) whose entries cor-
respond to the expression level of each gene in each sample in the discovery dataset.

"discovery_correlation' a matrix with 150 columns and 150 rows containing the correlation-
coefficients between each pair of genes calculated from the "discovery_data" matrix.

\"module_labels" a named vector with 150 entries containing the module assignment for each
gene as identified in the discovery dataset.

""test_network'' a matrix with 150 columns and 150 rows containing the network edge weights
encoding the interaction strength between each pair of genes in the fest dataset.

""test_data' amatrix with 150 columns (genes) and 30 rows (samples) whose entries correspond
to the expression level of each gene in each sample in the fest dataset.

"test_correlation' amatrix with 150 columns and 150 rows containing the correlation-coefficients
between each pair of genes calculated from the "test_data" matrix.

An object of class matrix (inherits from array) with 150 rows and 150 columns.
An object of class matrix (inherits from array) with 30 rows and 150 columns.
An object of class matrix (inherits from array) with 150 rows and 150 columns.
An object of class numeric of length 150.

An object of class matrix (inherits from array) with 150 rows and 150 columns.
An object of class matrix (inherits from array) with 30 rows and 150 columns.

An object of class matrix (inherits from array) with 150 rows and 150 columns.

Details

The preservation of network modules in a second dataset is quantified by measuring the preservation
of topological properties between the discovery and test datasets. These properties are calculated not
only from the interaction networks inferred in each dataset, but also from the data used to infer those
networks (e.g. gene expression data) as well as the correlation structure between variables/nodes.
Thus, all functions in the NetRep package have the following arguments:

example-data 5

network: a list of interaction networks, one for each dataset.
data: a list of data matrices used to infer those networks, one for each dataset.

correlation: a list of matrices containing the pairwise correlation coefficients between vari-
ables/nodes in each dataset.

moduleAssignments: a list of vectors, one for each discovery dataset, containing the module as-
signments for each node in that dataset.

modules: a list of vectors, one vector for each discovery dataset, containing the names of the mod-
ules from that dataset to analyse.

discovery: a vector indicating the names or indices of the previous arguments’ lists to use as the
discovery dataset(s) for the analyses.

test: alist of vectors, one vector for each discovery dataset, containing the names or indices of the
network, data, and correlation argument lists to use as the test dataset(s) for the analysis
of each discovery dataset.

This data is used to provide concrete examples of the usage of these arguments in each package
function.

Simulation details

The discovery gene expression dataset ("discovery_data") containing 30 samples and 150 genes
was simulated to contain four distinct modules of sizes 20, 25, 30, and 35 genes. Data for each

module were simulated as:
Gs;lurzi,ulated = E(w)ri + \/ 1- Tz'QE

Where E) is the simulated module’s summary vector, r is the simulated module’s node contri-
butions for each gene, and e is the error term drawn from a standard normal distribution. E@W)
and r were simulated by bootstrapping (sampling with replacement) samples and genes from the
corresponding vectors in modules 63, 51, 57, and 50 discovered in the liver tissue gene expres-
sion data from a publicly available mouse dataset (see reference (1) for details on the dataset and
network discovery). The remaining 40 genes that were not part of any module were simulated
by randomly selecting 40 liver genes and bootstrapping 30 samples and adding the noise term, e.
A vector of module assignments was created ("module_labels") in which each gene was labelled
with a number 1-4 corresponding to the module they were simulated to be coexpressed with, or
a label of 0 for the for the 40 "background" genes not participating in any module. The correla-
tion structure ("discovery_correlation") was calculated as the Pearson’s correlation coefficient be-
tween genes (cor(discovery_data)). Edge weights in the interaction network ("discovery_network")
were calculated as the absolute value of the correlation coefficient exponentiated to the power 5
(abs(discovery_correlation)”5).

An independent test dataset ("test_data") containing the same 150 genes as the discovery dataset
but 30 different samples was simulated as above. Modules 1 and 4 (containing 20 and 35 genes
respectively) were simulated to be preserved using the same equation above, where the summary
vector E(") was bootstrapped from the same liver modules (modules 63 and 50) as in the discovery
and with identical node contributions r as in the discovery dataset. Genes in modules 2 and 3 were
simulated as "background" genes, i.e. not preserved as described above. The correlation structure
between genes in the fest dataset ("test_correlation") and the interaction network ("test_network")
were calculated the same way as in the discovery dataset.

The random seed used for the simulations was 37.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2814

6 modulePreservation

References

1. Ritchie, S.C., et al., A scalable permutation approach reveals replication and preservation
patterns of network modules in large datasets. Cell Systems. 3, 71-82 (2016).

See Also

modulePreservation, plotModule, and networkProperties.

modulePreservation Replication and preservation of network modules across datasets

Description

Quantify the preservation of network modules (sub-graphs) in an independent dataset through per-
mutation testing on module topology. Seven network statistics (see details) are calculated for each
module and then tested by comparing to distributions generated from their calculation on random
subsets in the test dataset.

Usage

modulePreservation(
network,
data,
correlation,
moduleAssignments,
modules = NULL,
backgroundLabel = "0",
discovery = 1,
test = 2,
selfPreservation = FALSE,
nThreads = NULL,

nPerm = NULL,
null = "overlap”,
alternative = "greater”,

simplify = TRUE,
verbose = TRUE

)
Arguments
network a list of interaction networks, one for each dataset. Each entry of the list should
be a n*n matrix or where each element contains the edge weight between nodes
1 and j in the inferred network for that dataset.
data a list of matrices, one for each dataset. Each entry of the list should be the

data used to infer the interaction network for that dataset. The columns should
correspond to variables in the data (nodes in the network) and rows to samples
in that dataset.

modulePreservation 7

correlation a list of matrices, one for each dataset. Each entry of the list should be a n x n
matrix where each element contains the correlation coefficient between nodes
and j in the data used to infer the interaction network for that dataset.

moduleAssignments
a list of vectors, one for each discovery dataset, containing the module assign-
ments for each node in that dataset.

modules a list of vectors, one for each discovery dataset, of modules to perform the anal-
ysis on. If unspecified, all modules in each discovery dataset will be analysed,
with the exception of those specified in backgroundLabel argument.
backgroundLabel
a single label given to nodes that do not belong to any module in the moduleAssignments
argument. Defaults to "0". Set to NULL if you do not want to skip the network
background module.

discovery a vector of names or indices denoting the discovery dataset(s) in the data,
correlation, network, moduleAssignments, modules, and test lists.

test a list of vectors, one for each discovery dataset, of names or indices denoting
the test dataset(s) in the data, correlation, and network lists.

selfPreservation

logical; if FALSE (default) then module preservation analysis will not be per-
formed within a dataset (i.e. where the discovery and test datasets are the
same).

nThreads number of threads to parallelise the calculation of network properties over. Au-
tomatically determined as the number of cores - 1 if not specified.

nPerm number of permutations to use. If not specified, the number of permutations
will be automatically determined (see details). When set to O the permutation
procedure will be skipped and the observed module preservation will be returned
without p-values.

null variables to include when generating the null distributions. Must be either "over-
lap" or "all" (see details).

alternative The type of module preservation test to perform. Must be one of "greater" (de-
fault), "less" or "two.sided" (see details).

simplify logical; if TRUE, simplify the structure of the output list if possible (see Return
Value).

verbose logical; should progress be reported? Default is TRUE.

Details

Input data structures:: The preservation of network modules in a second dataset is quantified
by measuring the preservation of topological properties between the discovery and test datasets.
These properties are calculated not only from the interaction networks inferred in each dataset,
but also from the data used to infer those networks (e.g. gene expression data) as well as the
correlation structure between variables/nodes. Thus, all functions in the NetRep package have the
following arguments:

network: a list of interaction networks, one for each dataset.
data: a list of data matrices used to infer those networks, one for each dataset.

modulePreservation

correlation: a list of matrices containing the pairwise correlation coefficients between vari-
ables/nodes in each dataset.

moduleAssignments: a list of vectors, one for each discovery dataset, containing the module
assignments for each node in that dataset.

modules: a list of vectors, one for each discovery dataset, containing the names of the modules
from that dataset to analyse.

discovery: avector indicating the names or indices of the previous arguments’ lists to use as the
discovery dataset(s) for the analyses.

test: a list of vectors, one vector for each discovery dataset, containing the names or indices
of the network, data, and correlation argument lists to use as the fest dataset(s) for the
analysis of each discovery dataset.

The formatting of these arguments is not strict: each function will attempt to make sense of the
user input. For example, if there is only one discovery dataset, then input to the moduleAssigments
and test arguments may be vectors, rather than lists.

Analysing large datasets:: Matrices in the network, data, and correlation lists can be sup-
plied as disk.matrix objects. This class allows matrix data to be kept on disk and loaded as re-
quired by NetRep. This dramatically decreases memory usage: the matrices for only one dataset
will be kept in RAM at any point in time.

Additional memory usage of the permutation procedure is directly proportional to the sum of
module sizes squared multiplied by the number of threads. Very large modules may result in
significant additional memory usage per core due to extraction of the correlation coefficient sub-
matrix at each permutation.

Module Preservation Statistics:: Module preservation is assessed through seven module preser-
vation statistics, each of which captures a different aspect of a module’s topology; i.e. the structure
of the relationships between its nodes (7,2). Below is a description of each statistic, what they
seek to measure, and where their interpretation may be inappropriate.

The module coherence ('coherence'), average node contribution ('avg.contrib'), and con-
cordance of node contribution (' cor.contrib') are all calculated from the data used to infer the
network (provided in the 'data' argument). They are calculated from the module’s summary
profile. This is the eigenvector of the 1st principal component across all observations for every
node composing the module. For gene coexpression modules this can be interpreted as a "sum-
mary expression profile". It is typically referred to as the "module eigengene" in the weighted
gene coexpression network analysis literature (4).

The module coherence (' coherence') quantifies the proportion of module variance explained by
the module’s "summary profile". The higher this value, the more "coherent" the data is, i.e. the
more similar the observations are nodes for each sample. With the default alternate hypothesis, a
small permutation P-value indicates that the module is more coherent than expected by chance.

The average node contribution (' avg.contrib') and concordance of node contribution (' cor.contrib")
are calculated from the node contribution, which quantifies how similar each node is to the mod-

ules’s summary profile. It is calculated as the Pearson correlation coefficient between each node

and the module summary profile. In the weighted gene coexpression network literature it is typi-

cally called the "module membership" (2).

The average node contribution ('avg.contrib') quantifies how similar nodes are to the module
summary profile in the test dataset. Nodes detract from this score where the sign of their node
contribution flips between the discovery and test datasets, e.g. in the case of differential gene

modulePreservation 9

expression across conditions. A high average node contribution with a small permutation P-
value indicates that the module remains coherent in the test dataset, and that the nodes are acting
together in a similar way.

The concordance of node contribution (' cor.contrib') measures whether the relative rank of
nodes (in terms of their node contribution) is preserved across datasets. If a module is coherent
enough that all nodes contribute strongly, then this statistic will not be meaningful as its value will
be heavily influenced by tiny variations in node rank. This can be assessed through visualisation
of the module topology (see plotContribution.) Similarly, a strong 'cor.contrib’ is unlikely
to be meaningful if the 'avg.contrib' is not significant.

The concordance of correlation strucutre (' cor.cor") and density of correlation structure (' avg.cor')
are calculated from the user-provided correlation structure between nodes (provided in the ' correlation'’
argument). This is referred to as "coexpression" when calculated on gene expression data.

The 'avg.cor' measures how strongly nodes within a module are correlation on average in the
test dataset. This average depends on the correlation coefficients in the discovery dataset: the score
is penalised where correlation coefficients change in sign between datasets. A high 'avg.cor'
with a small permutation P-value indicates that the module is (a) more strongly correlated than
expected by chance for a module of the same size, and (b) more consistently correlated with
respect to the discovery dataset than expected by chance.

The 'cor.cor' measures how similar the correlation coefficients are across the two datasets. A
high 'cor.cor' with a small permutation P-value indicates that the correlation structure within a
module is more similar across datasets than expected by chance. If all nodes within a module are
very similarly correlated then this statistic will not be meaningful, as its value will be heavily in-
fluenced by tiny, non-meaningful, variations in correlation strength. This can be assessed through
visualisation of the module topology (see plotCorrelation.) Similarly, a strong 'cor.cor' is
unlikely to be meaningful if the 'avg.cor' is not significant.

The average edge weight (' avg.weight') and concordance of weighted degree (' cor.degree')
are both calculated from the interaction network (provided as adjacency matrices to the 'network'
argument).

The 'avg.weight' measures the average connection strength between nodes in the test dataset.
In the weighted gene coexpression network literature this is typically called the "module density"
(2). A high 'avg.weight' with a small permutation P-value indicates that the module is more
strongly connected in the test dataset than expected by chance.

The 'cor.degree' calculates whether the relative rank of each node’s weighted degree is similar
across datasets. The weighted degree is calculated as the sum of a node’s edge weights to all
other nodes in the module. In the weighted gene coexpression network literature this is typically
called the "intramodular connectivity" (2). This statistic will not be meaningful where all nodes
are connected to each other with similar strength, as its value will be heavily influenced by tiny,
non-meaningful, variations in weighted degree. This can be assessed through visualisation of the
module topology (see plotDegree.)

Both the 'avg.weight' and 'cor.degree' assume edges are weighted, and that the network
is densely connected. Note that for sparse networks, edges with zero weight are included when
calculating both statistics. Only the magnitude of the weights, not their sign, contribute to the
score. If the network is unweighted, i.e. edges indicate presence or absence of a relationship, then
the 'avg.weight' will be the proportion of the number of edges to the total number of possible
edges while the weighted degree simply becomes the degree. A high 'avg.weight' in this case
measures how interconnected a module is in the test dataset. A high degree indicates that a node
is connected to many other nodes. The interpretation of the 'cor.degree' remains unchanged
between weighted and unweighted networks. If the network is directed the interpretation of the

10

modulePreservation

'avg.weight' remains unchanged, while the cordegree will measure the concordance of the
node in-degree in the test network. To measure the out-degree instead, the adjacency matrices
provided to the 'network' argument should be transposed.

Sparse data:: Caution should be used when running NetRep on sparse data (i.e. where there
are many zero values in the data used to infer the network). For this data, the average node
contribution ('avg.contrib'), concordance of node contribution (' cor.contrib"'), and module
coherence ('coherence') will all be systematically underestimated due to their reliance on the
Pearson correlation coefficient to calculate the node contribution.

Care should also be taken to use appropriate methods for inferring the correlation structure when
the data is sparse for the same reason.

Proportional data:: Caution should be used when running NetRep on proportional data (i.e.
where observations across samples all sum to the same value, e.g. 1). For this data, the average
node contribution ('avg.contrib'), concordance of node contribution ('cor.contrib'), and
module coherence ('coherence') will all be systematically overestimated due to their reliance
on the Pearson correlation coefficient to calculate the node contribution.

Care should also be taken to use appropriate methods for inferring the correlation structure from
proportional data for the same reason.

Hypothesis testing:: Three alternative hypotheses are available. "greater", the default, tests
whether each module preservation statistic is larger than expected by chance. "lesser" tests
whether each module preservation statistic is smaller than expected by chance, which may be
useful for identifying modules that are extremely different in the fest dataset. "two.sided" can be
used to test both alternate hypotheses.

To determine whether a module preservation statistic deviates from chance, a permutation pro-
cedure is employed. Each statistic is calculated between the module in the discovery dataset and
nPerm random subsets of the same size in the test dataset in order to assess the distribution of each
statistic under the null hypothesis.

Two models for the null hypothesis are available: "overlap”, the default, only nodes that are
present in both the discovery and fest networks are used when generating null distributions. This
is appropriate under an assumption that nodes that are present in the fest dataset, but not present
in the discovery dataset, are unobserved: that is, they may fall in the module(s) of interest in the
discovery dataset if they were to be measured there. Alternatively, "all" will use all nodes in the
test network when generating the null distributions.

The number of permutations required for any given significance threshold is approximately 1/ the
desired significance for one sided tests, and double that for two-sided tests. This can be calculated
with requiredPerms. When nPerm is not specified, the number of permutations is automatically
calculated as the number required for a Bonferroni corrected significance threshold adjusting for
the total number of tests for each statistic, i.e. the total number of modules to be analysed multi-
plied by the number of test datasets each module is tested in. Although assessing the replication
of a small numberof modules calls for very few permutations, we recommend using no fewer
than 1,000 as fewer permutations are unlikely to generate representative null distributions. Note:
the assumption used by requiredPerms to determine the correct number of permtutations breaks
down when assessing the preservation of modules in a very small dataset (e.g. gene sets in a
dataset with less than 100 genes total). However, the reported p-values will still be accurate (see
permutationTest) (3).

modulePreservation 11

Value

A nested list structure. At the top level, the list has one element per 'discovery' dataset. Each
of these elements is a list that has one element per 'test' dataset analysed for that 'discovery'
dataset. Each of these elements is also a list, containing the following objects:

observed: A matrix of the observed values for the module preservation statistics. Rows correspond
to modules, and columns to the module preservation statistics.

nulls: A three dimensional array containing the values of the module preservation statistics eval-
uated on random permutation of module assignment in the test network. Rows correspond to
modules, columns to the module preservation statistics, and the third dimension to the permu-
tations.

p.values: A matrix of p-values for the observed module preservation statistics as evaluated
through a permutation test using the corresponding values in nulls.

nVarsPresent: A vector containing the number of variables that are present in the test dataset for
each module.

propVarsPresent: A vector containing the proportion of variables present in the test dataset for
each module. Modules where this is less than 1 should be investigated further before making
judgements about preservation to ensure that the missing variables are not the most connected
ones.

contingency: If moduleAssignments are present for both the discovery and test datasets, then a
contingency table showing the overlap between modules across datasets is returned. Rows
correspond to modules in the discovery dataset, columns to modules in the test dataset.

When simplify = TRUE then the simplest possible structure will be returned. E.g. if module preser-
vation is tested in only one dataset, then the returned list will have only the above elements.

When simplify = FALSE then a nested list of datasets will always be returned, i.e. each element at
the top level and second level correspond to a dataset, e.g. results[["Dataset1"]][["Dataset2"]]
indicates an analysis where modules discovered in "Datasetl" are assessed for preservation in
"Dataset2". Dataset comparisons which have not been assessed will contain NULL.

References
1. Ritchie, S.C., et al., A scalable permutation approach reveals replication and preservation
patterns of network modules in large datasets. Cell Systems. 3, 71-82 (2016).

2. Langfelder, P., Luo, R., Oldham, M. C. & Horvath, S. Is my network module preserved and
reproducible? PLoS Comput. Biol. 7, e1001057 (2011).

3. Phipson, B. & Smyth, G. K. Permutation P-values should never be zero: calculating exact
P-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 9, Article39
(2010).

4. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analy-
sis. BMC Bioinformatics 9, 559 (2008).
See Also

Functions for: visualising network modules, calculating module topology, calculating permutation
test P-values, and splitting computation over multiple machines.

12 NetRep

Examples

load in example data, correlation, and network matrices for a discovery and test dataset:
data(”"NetRep")

Set up input lists for each input matrix type across datasets. The list

elements can have any names, so long as they are consistent between the

inputs.

network_list <- list(discovery=discovery_network, test=test_network)

data_list <- list(discovery=discovery_data, test=test_data)

correlation_list <- list(discovery=discovery_correlation, test=test_correlation)
labels_list <- list(discovery=module_labels)

Assess module preservation: you should run at least 10,000 permutations
preservation <- modulePreservation(

network=network_list, data=data_list, correlation=correlation_list,
moduleAssignments=labels_list, nPerm=1000, discovery="discovery"”,
test="test”, nThreads=2

)

NetRep Fast permutation procedure for testing network module replication

Description

Functions for assessing the replication/preservation of a network module’s topology across datasets
through permutation testing. This is suitable for networks that can be meaningfully inferred from
multiple datasets. These include gene coexpression networks, protein-protein interaction networks,
and microbial interaction networks. Modules within these networks consist of groups of nodes
that are particularly interesting: for example a group of tightly connected genes associated with a
disease, groups of genes annotated with the same term in the Gene Ontology database, or groups of
interacting microbial species, i.e. communities. Application of this method can answer questions
such as; (1) do the relationships between genes in a module replicate in an independent cohort?
(2) are these gene coexpression modules preserved across tissues or tissue specific? (3) are these
modules conserved across species? (4) are microbial communities preserved across multiple spatial
locations?

Details

The main function for this package is modulePreservation. Several functions for downstream
are also provided: networkProperties for calculating the topological properties of a module, and
plotModule for visualising a module.

Author(s)

Maintainer: Scott Ritchie <sritchie73@gmail.com> (0000-0002-8454-9548)

networkProperties 13

See Also
Useful links:

* Report bugs at https://github.com/sritchie73/NetRep/issues

networkProperties Calculate the topological properties for a network module

Description

Calculates the network properties used to assess module preservation for one or more modules in a
user specified dataset.

Usage

networkProperties(
network,
data,
correlation,
moduleAssignments = NULL,
modules = NULL,
backgroundLabel = "0",
discovery = NULL,
test = NULL,
simplify = TRUE,
verbose = TRUE

)
Arguments

network a list of interaction networks, one for each dataset. Each entry of the list should
be a n*n matrix or where each element contains the edge weight between nodes
i and j in the inferred network for that dataset.

data a list of matrices, one for each dataset. Each entry of the list should be the
data used to infer the interaction network for that dataset. The columns should
correspond to variables in the data (nodes in the network) and rows to samples
in that dataset.

correlation a list of matrices, one for each dataset. Each entry of the list should be a n * n

matrix where each element contains the correlation coefficient between nodes

and j in the data used to infer the interaction network for that dataset.
moduleAssignments

a list of vectors, one for each discovery dataset, containing the module assign-

ments for each node in that dataset.

modules alist of vectors, one for each discovery dataset, of modules to perform the anal-
ysis on. If unspecified, all modules in each discovery dataset will be analysed,
with the exception of those specified in backgroundLabel argument.

https://github.com/sritchie73/NetRep/issues

14 networkProperties

backgroundLabel
a single label given to nodes that do not belong to any module in the moduleAssignments
argument. Defaults to "0". Set to NULL if you do not want to skip the network
background module.

discovery a vector of names or indices denoting the discovery dataset(s) in the data,
correlation, network, moduleAssignments, modules, and test lists.

test a list of vectors, one for each discovery dataset, of names or indices denoting
the test dataset(s) in the data, correlation, and network lists.

simplify logical; if TRUE, simplify the structure of the output list if possible (see Return
Value).
verbose logical; should progress be reported? Default is TRUE.
Details

Input data structures:: The preservation of network modules in a second dataset is quantified
by measuring the preservation of topological properties between the discovery and test datasets.
These properties are calculated not only from the interaction networks inferred in each dataset,
but also from the data used to infer those networks (e.g. gene expression data) as well as the
correlation structure between variables/nodes. Thus, all functions in the NetRep package have the
following arguments:

network: a list of interaction networks, one for each dataset.
data: a list of data matrices used to infer those networks, one for each dataset.

correlation: a list of matrices containing the pairwise correlation coefficients between vari-
ables/nodes in each dataset.

moduleAssignments: a list of vectors, one for each discovery dataset, containing the module
assignments for each node in that dataset.

modules: a list of vectors, one for each discovery dataset, containing the names of the modules
from that dataset to analyse.

discovery: a vector indicating the names or indices of the previous arguments’ lists to use as the
discovery dataset(s) for the analyses.

test: a list of vectors, one vector for each discovery dataset, containing the names or indices
of the network, data, and correlation argument lists to use as the fest dataset(s) for the
analysis of each discovery dataset.

The formatting of these arguments is not strict: each function will attempt to make sense of the
user input. For example, if there is only one discovery dataset, then input to the moduleAssigments
and test arguments may be vectors, rather than lists. If the networkProperties are being cal-
culate within the discovery or test datasets, then the discovery and test arguments do not need
to be specified, and the input matrices for the network, data, and correlation arguments do not
need to be wrapped in a list.

Analysing large datasets:: Matrices in the network, data, and correlation lists can be sup-
plied as disk.matrix objects. This class allows matrix data to be kept on disk and loaded as re-
quired by NetRep. This dramatically decreases memory usage: the matrices for only one dataset
will be kept in RAM at any point in time.

networkProperties 15

Value

A nested list structure. At the top level, the list has one element per 'discovery' dataset. Each
of these elements is a list that has one element per 'test' dataset analysed for that 'discovery'
dataset. Each of these elements is a list that has one element per 'modules’' specified. Each of
these is a list containing the following objects:

"degree’: The weighted within-module degree: the sum of edge weights for each node in the
module.

’avgWeight’: The average edge weight within the module.
If the 'data’ used to infer the 'test' network is provided then the following are also returned:

’summary’: A vector summarising the module across each sample. This is calculated as the first
eigenvector of the module from a principal component analysis.

’contribution’: The node contribution: the similarity between each node and the module sum-
mary profile (' summary").

’coherence’: The proportion of module variance explained by the 'summary' vector.

When simplify = TRUE then the simplest possible structure will be returned. E.g. if the network
properties are requested for only one module in only one dataset, then the returned list will have
only the above elements.

When simplify = FALSE then a nested list of datasets will always be returned, i.e. each element at

the top level and second level correspond to a dataset, and each element at the third level will corre-

spond to modules discovered in the dataset specified at the top level if module labels are provided in

the corresponding moduleAssignments list element. E.g. results[["Dataset1"”]]1[["Dataset2"]1[["modulel"]]
will contain the properties of "modulel" as calculated in "Dataset2", where "modulel" was inden-

tified in "Dataset1". Modules and datasets for which calculation of the network properties have not

been requested will contain NULL.

See Also

Getting nodes ordered by degree., and Ordering samples by module summary

Examples

load in example data, correlation, and network matrices for a discovery and test dataset:
data("NetRep")

Set up input lists for each input matrix type across datasets. The list

elements can have any names, so long as they are consistent between the

inputs.

network_list <- list(discovery=discovery_network, test=test_network)

data_list <- list(discovery=discovery_data, test=test_data)

correlation_list <- list(discovery=discovery_correlation, test=test_correlation)
labels_list <- list(discovery=module_labels)

Calculate the topological properties of all network modules in the discovery dataset
props <- networkProperties(
network=network_list, data=data_list, correlation=correlation_list,
moduleAssignments=labels_list

16 plotModule

)

Calculate the topological properties in the test dataset for the same modules
test_props <- networkProperties(
network=network_list, data=data_list, correlation=correlation_list,
moduleAssignments=labels_list, discovery="discovery"”, test="test”

)

plotModule Plot the topology of a network module

Description

Plot the correlation structure, network edges, scaled weighted degree, node contribtuion, module
data, and module summary vectors of one or more network modules.

Individual components of the module plot can be plotted using plotCorrelation, plotNetwork,
plotDegree, plotContribution, plotData, and plotSummary.

Usage

plotModule(
network,
data,
correlation,
moduleAssignments = NULL,
modules = NULL,
backgroundLabel = "0",
discovery = NULL,
test = NULL,
verbose = TRUE,
orderSamplesBy = NULL,
orderNodesBy = NULL,
orderModules = TRUE,
plotNodeNames = TRUE,
plotSampleNames = TRUE,
plotModuleNames = NULL,
main = "Module Topology",
main.line = 1,
drawBorders = FALSE,

lwd =1,

naxt.line = -0.5,
saxt.line = -0.5,
maxt.line = NULL,
xaxt.line = -0.5,
xaxt.tck = -0.025,
xlab.line = 2.5,

plotModule 17

yaxt.line = 0,

yaxt.tck = -0.15,
ylab.line = 2.5,
laxt.line = 2.5,

laxt.tck = 0.04,

cex.axis = 0.8,

legend.main.line = 1.5,

cex.lab = 1.2,

cex.main = 2,

dataCols = NULL,

dataRange = NULL,

corCols = correlation.palette(),
corRange = c(-1, 1),

netCols = network.palette(),

netRange = c(@, 1),

degreeCol = "#feb24c",

contribCols = c("#A50026", "#313695"),
summaryCols = c("#1B7837", "#762A83"),
naCol = "#bdbdbd",

dryRun = FALSE

)
Arguments

network a list of interaction networks, one for each dataset. Each entry of the list should
be a n*xn matrix or where each element contains the edge weight between nodes
7 and j in the inferred network for that dataset.

data a list of matrices, one for each dataset. Each entry of the list should be the
data used to infer the interaction network for that dataset. The columns should
correspond to variables in the data (nodes in the network) and rows to samples
in that dataset.

correlation a list of matrices, one for each dataset. Each entry of the list should be a n * n
matrix where each element contains the correlation coefficient between nodes 7
and j in the data used to infer the interaction network for that dataset.

moduleAssignments
a list of vectors, one for each discovery dataset, containing the module assign-
ments for each node in that dataset.

modules alist of vectors, one for each discovery dataset, of modules to perform the anal-
ysis on. If unspecified, all modules in each discovery dataset will be analysed,
with the exception of those specified in backgroundLabel argument.

backgroundLabel
a single label given to nodes that do not belong to any module in the moduleAssignments
argument. Defaults to "0". Set to NULL if you do not want to skip the network
background module.

discovery a vector of names or indices denoting the discovery dataset(s) in the data,

correlation, network, moduleAssignments, modules, and test lists.

18

plotModule

test a list of vectors, one for each discovery dataset, of names or indices denoting
the test dataset(s) in the data, correlation, and network lists.

verbose logical; should progress be reported? Default is TRUE.

orderSamplesBy NULL (default), NA, or a vector containing a single dataset name or index. Con-
trols how samples are ordered on the plot (see details).

orderNodesBy NULL (default), NA, or a vector of dataset names or indices. Controls how nodes
are ordered on the plot (see details).

orderModules logical; if TRUE modules ordered by clustering their summary vectors. If FALSE
modules are returned in the order provided.
plotNodeNames logical; controls whether the node names are drawed on the bottom axis.
plotSampleNames
logical; controls whether the sample names are drawed on the left axis.
plotModuleNames

logical; controls whether module names are drawed. The default is for module
names to be drawed when multiple modules are drawn.

main title for the plot.

main.line the number of lines into the top margin at which the plot title will be drawn.

drawBorders logical; if TRUE, borders are drawn around the weighted degree, node conribu-
tion, and module summary bar plots.

lwd line width for borders and axes.

naxt.line the number of lines into the bottom margin at which the node names will be
drawn.

saxt.line the number of lines into the left margin at which the sample names will be drawn.

maxt.line the number of lines into the bottom margin at which the module names will be
drawn.

xaxt.line the number of lines into the bottom margin at which the x-axis tick labels will
be drawn on the module summary bar plot.

xaxt.tck the size of the x-axis ticks for the module summary bar plot.

xlab.line the number of lines into the bottom margin at which the x axis label on the
module summary bar plot(s) will be drawn.

yaxt.line the number of lines into the left margin at which the y-axis tick labels will be
drawn on the weighted degree and node contribution bar plots.

yaxt.tck the size of the y-axis ticks for the weighted degree and node contribution bar
plots.

ylab.line the number of lines into the left margin at which the y axis labels on the weighted
degree and node contribution bar plots will be drawn.

laxt.line the distance from the legend to draw the legend axis labels, as multiple of
laxt. tck.

laxt.tck size of the ticks on each axis legend relative to the size of the correlation, edge

weights, and data matrix heatmaps.

cex.axis relative size of the node and sample names.

plotModule

19

legend.main.line

the distance from the legend to draw the legend title.

cex.lab relative size of the module names and legend titles.

cex.main relative size of the plot titles.

dataCols a character vector of colors to create a gradient from for the data heatmap (see
details). Automatically determined if NA or NULL.

dataRange the range of values to map to the dataCols gradient (see details). Automatically
determined if NA or NULL.

corCols a character vector of colors to create a gradient from for the correlation structure
heatmap (see details).

corRange the range of values to map to the corCols gradient (see details).

netCols a character vector of colors to create a gradient from for the network edge weight
heatmap (see details).

netRange the range of values to map to the corCols gradient (see details). Automatically
determined if NA or NULL.

degreeCol color to use for the weighted degree bar plot.

contribCols color(s) to use for the node contribution bar plot (see details).

summaryCols color(s) to use for the node contribution bar plot (see details).

naCol color to use for missing nodes and samples on the data, correlation structure,
and network edge weight heat maps.

dryRun logical; if TRUE, only the axes and labels will be drawed.

Details

Input data structures:: The preservation of network modules in a second dataset is quantified
by measuring the preservation of topological properties between the discovery and test datasets.
These properties are calculated not only from the interaction networks inferred in each dataset,
but also from the data used to infer those networks (e.g. gene expression data) as well as the
correlation structure between variables/nodes. Thus, all functions in the NetRep package have the
following arguments:

network: a list of interaction networks, one for each dataset.
data: alist of data matrices used to infer those networks, one for each dataset.

correlation: a list of matrices containing the pairwise correlation coefficients between vari-
ables/nodes in each dataset.

moduleAssignments: a list of vectors, one for each discovery dataset, containing the module
assignments for each node in that dataset.

modules: a list of vectors, one for each discovery dataset, containing the names of the modules
from that dataset to analyse.

discovery: a vector indicating the names or indices of the previous arguments’ lists to use as
the discovery dataset(s) for the analyses.

test: a list of vectors, one vector for each discovery dataset, containing the names or indices
of the network, data, and correlation argument lists to use as the fest dataset(s) for the
analysis of each discovery dataset.

20

plotModule

The formatting of these arguments is not strict: each function will attempt to make sense of the
user input. For example, if there is only one discovery dataset, then input to the moduleAssigments
and test arguments may be vectors, rather than lists. If the node and sample ordering is being cal-
culated within the same dataset being visualised, then the discovery and test arguments do not
need to be specified, and the input matrices for the network, data, and correlation arguments
do not need to be wrapped in a list.

Analysing large datasets:: Matrices in the network, data, and correlation lists can be sup-
plied as disk.matrix objects. This class allows matrix data to be kept on disk and loaded as re-
quired by NetRep. This dramatically decreases memory usage: the matrices for only one dataset
will be kept in RAM at any point in time.

Node, sample, and module ordering:: By default, nodes are ordered in decreasing order of
weighted degree in the discovery dataset (see nodeOrder). Missing nodes are colored in grey.
This facilitates the visual comparison of modules across datasets, as the node ordering will be
preserved.

Alternatively, a vector containing the names or indices of one or more datasets can be provided to
the orderNodesBy argument.

If a single dataset is provided, then nodes will be ordered in decreasing order of weighted degree
in that dataset. Only nodes that are present in this dataset will be drawn when ordering nodes by
a dataset that is not the discovery dataset for the requested modules(s).

If multiple datasets are provided then the weighted degree will be averaged across these datasets
(see nodeOrder for more details). This is useful for obtaining a robust ordering of nodes by relative
importance, assuming the modules displayed are preserved in those datasets.

Ordering of nodes by weighted degree can be suppressed by setting orderNodesBy to NA, in which
case nodes will be ordered as in the matrices provided in the network, data, and correlation
arguments.

When multiple modules are drawn, modules are ordered by the similarity of their summary vectors
in the dataset(s) specified in orderNodesBy argument. If multiple datasets are provided to the
orderNodesBy argument then the module summary vectors are concatenated across datasets.

By default, samples in the data heatmap and accompanying module summary bar plot are ordered
in descending order of module summary in the drawn dataset (specified by the test argument). If
multiple modules are drawn, samples are ordered as per the left-most module on the plot.

Alternatively, a vector containing the name or index of another dataset may be provided to the
orderSamplesBy argument. In this case, samples will be ordered in descending order of module
summary in the specified dataset. This is useful when comparing different measurements across
samples, for example, gene expression data obtained from multiple tissues samples across the
same individuals. If the dataset specified is the discovery dataset, then missing samples will be
displayed as horizontal grey bars. If the dataset specified is one of the other datasets, samples
present in both the specified dataset and the test dataset will be displayed first in order of the
specified dataset, then samples present in only the test dataset will be displayed underneath a
horizontal black line ordered by their module summary vector in the test dataset.

Order of samples by module summary can be suppressed by setting orderSamplesBy to NA, in
which case samples will be order as in the matrix provided to the data argument for the drawn
dataset.

Weighted degree scaling:: When drawn on a plot, the weighted degree of each node is scaled
to the maximum weighted degree within its module. The scaled weighted degree is measure of

plotModule 21

relative importance for each node to its module. This makes visualisation of multiple modules
with different sizes and densities possible. However, the scaled weighted degree should only be
interpreted for groups of nodes that have an apparent module structure.

Plot layout and device size: For optimal results we recommend viewing single modules on a
PNG device with a width of 1500, a height of 2700 and a nominal resolution of 300 (png(filename,
width=5%300, height=9%300, res=300))).

Warning: PDF and other vectorized devices should not be used when plotting more than a hun-
dred nodes. Large files will be generated which may cause image editing programs such as
Inkscape or Illustrator to crash when polishing figures for publication.

When dryRun is TRUE only the axes, legends, labels, and title will be drawn, allowing for quick
iteration of customisable parameters to get the plot layout correct.

If axis labels or legends are drawn off screen then the margins of the plot should be adjusted prior
to plotting using the par command to increase the margin size (see the "mar" option in the par

help page).

The size of text labels can be modified by increasing or decreasing the cex.main, cex.lab, and
cex.axis arguments:

cex.main: controls the size of the plot title (specified in the main argument).

cex.lab: controls the size of the axis labels on the weighted degree, node contribution, and
module summary bar plots as well as the size of the module labels and the heatmap legend
titles.

cex.axis: contols the size of the axis tick labels, including the node and sample labels.

The position of these labels can be changed through the following arguments:

xaxt.line: controls the distance from the plot the x-axis tick labels are drawn on the module
summary bar plot.

xlab.line: controls the distance from the plot the x-axis label is drawn on the module summary
bar plot.

yaxt.line: controls the distance from the plot the y-axis tick labels are drawn on the weighted
degree and node contribution bar plots.

ylab.line: controls the distance from the plot the y-axis label is drawn on the weighted degree
and node contribution bar plots.

main.line: controls the distance from the plot the title is drawn.
naxt.line: controls the distance from the plot the node labels are drawn.
saxt.line: controls the distance from the plot the sample labels are drawn.
maxt.line: controls the distance from the plot the module labels are drawn.

laxt.line: controls the distance from the heatmap legends that the gradient legend labels are
drawn.

legend.main.line: controls the distance from the heatmap legends that the legend title is
drawn.

The rendering of node, sample, and module names can be disabled by setting plotNodeNames,

plotSampleNames, and plotModuleNames to FALSE.

The size of the axis ticks can be changed by increasing or decreasing the following arguments:

xaxt.tck: size of the x-axis tick labels as a multiple of the height of the module summary bar
plot

22

plotModule

yaxt.tck: size of the y-axis tick labels as a multiple of the width of the weighted degree or node
contribution bar plots.

laxt.tck: size of the heatmap legend axis ticks as a multiple of the width of the data, correlation
structure, or network edge weight heatmaps.

The drawBorders argument controls whether borders are drawn around the weighted degree,
node contribution, or module summary bar plots. The lwd argument controls the thickness of
these borders, as well as the thickness of axes and axis ticks.

Modifying the color palettes:: The dataCols and dataRange arguments control the appearance
of the data heatmap (see plotData). The gradient of colors used on the heatmap can be changed
by specifying a vector of colors to interpolate between in dataCols and dataRange specifies the
range of values that maps to this gradient. Values outside of the specified dataRange will be
rendered with the colors used at either extreme of the gradient. The default gradient is determined
based on the data shown on the plot. If all values in the data matrix are positive, then the
gradient is interpolated between white and green, where white is used for the smallest value and
green for the largest. If all values are negative, then the gradient is interpolated between purple
and white, where purple is used for the smallest value and white for the value closest to zero.
If the data contains both positive and negative values, then the gradient is interpolated between
purple, white, and green, where white is used for values of zero. In this case the range shown is
always centered at zero, with the values at either extreme determined by the value in the rendered
data with the strongest magnitude (the maximum of the absolute value).

The corCols and corRange arguments control the appearance of the correlation structure heatmap
(see plotCorrelation). The gradient of colors used on the heatmap can be changed by speci-
fying a vector of colors to interpolate between in corCols. By default, strong negative correla-
tions are shown in blue, and strong positive correlations in red, and weak correlations as white.
corRange controls the range of values that this gradient maps to, by default, -1 to 1. Changing
this may be useful for showing differences where range of correlation coefficients is small.

The netCols and netRange arguments control the appearance of the network edge weight heatmap
(see plotNetwork). The gradient of colors used on the heatmap can be changed by specifying
a vector of colors to interpolate between in netCols. By default, weak or non-edges are shown
in white, while strong edges are shown in red. The netRange controls the range of values this
gradient maps to, by default, O to 1. If netRange is set to NA, then the gradient will be mapped to
values between 0 and the maximum edge weight of the shown network.

The degreeCol argument controls the color of the weighted degree bar plot (see plotDegree).

The contribCols argument controls the color of the node contribution bar plot (see plotContribution.

This can be specified as single value to be used for all nodes, or as two colors: one to use for nodes
with positive contributions and one to use for nodes with negative contributions.

The summaryCols argument controls the color of the module summary bar plot (see plotSummary.
This can be specified as single value to be used for all samples, or as two colors: one to use for
samples with a positive module summary value and one fpr samples with a negative module
summary value.

The naCol argument controls the color of missing nodes and samples on the data, correlaton
structure, and network edge weight heatmaps.

Embedding in Rmarkdown documents: The chunk option fig.keep="1ast" should be set to
avoid an empty plot being embedded above the plot generated by plotModule. This empty plot
is generated so that an error will be thrown as early as possible if the margins are too small to be

requiredPerms 23

displayed. Normally, these are drawn over with the actual plot components when drawing the plot
on other graphical devices.

See Also

plotCorrelation, plotNetwork, plotDegree, plotContribution, plotData, and plotSummary.

Examples

load in example data, correlation, and network matrices for a discovery
and test dataset:
data(”"NetRep")

Set up input lists for each input matrix type across datasets. The list

elements can have any names, so long as they are consistent between the

inputs.

network_list <- list(discovery=discovery_network, test=test_network)

data_list <- list(discovery=discovery_data, test=test_data)

correlation_list <- list(discovery=discovery_correlation, test=test_correlation)
labels_list <- list(discovery=module_labels)

Plot module 1, 2 and 4 in the discovery dataset

plotModule(
network=network_list, data=data_list, correlation=correlation_list,
moduleAssignments=1labels_list, modules=c(1, 2, 4)

)

Now plot them in the test dataset (module 2 does not replicate)
plotModule(
network=network_list,data=data_list, correlation=correlation_list,
moduleAssignments=labels_list, modules=c(1, 2, 4), discovery="discovery”,
test="test"

Plot modules 1 and 4, which replicate, in the test datset ordering nodes
by weighted degree averaged across the two datasets
plotModule(
network=network_list, data=data_list, correlation=correlation_list,
moduleAssignments=labels_list, modules=c(1, 4), discovery="discovery”,

test="test"”, orderNodesBy=c("discovery”, "test")
)
requiredPerms How many permutations do I need to test at my desired significance
level?
Description

How many permutations do I need to test at my desired significance level?

24 requiredPerms

Usage
requiredPerms(alpha, alternative = "greater")
Arguments
alpha desired significance threshold.
alternative a character string specifying the alternative hypothesis, must be one of "greater"
(default), "less", or "two.sided". You can specify just the initial letter.
Value

The minimum number of permutations required to detect any significant associations at the provided
alpha. The minimum p-value will always be smaller than alpha.

Examples

data(”"NetRep")

Set up input lists for each input matrix type across datasets. The list

elements can have any names, so long as they are consistent between the

inputs.

network_list <- list(discovery=discovery_network, test=test_network)

data_list <- list(discovery=discovery_data, test=test_data)

correlation_list <- list(discovery=discovery_correlation, test=test_correlation)
labels_list <- list(discovery=module_labels)

How many permutations are required to Bonferroni adjust for the 4 modules
in the example data?
nPerm <- requiredPerms(0.05/4)

Note that we recommend running at least 10,000 permutations to make sure
that the null distributions are representative.

preservation <- modulePreservation(

network=network_list, data=data_list, correlation=correlation_list,
moduleAssignments=labels_list, nPerm=nPerm, discovery="discovery",
test="test”

)

Index

+ datasets
example-data, 4

+ package
NetRep, 12

as.disk.matrix (disk.matrix), 2
as.disk.matrix, ANY-method
(disk.matrix), 2
as.disk.matrix,disk.matrix-method
(disk.matrix), 2
as.disk.matrix,matrix-method
(disk.matrix), 2
as.matrix,disk.matrix-method
(disk.matrix), 2
attach.disk.matrix (disk.matrix), 2

calculating module topology, /1
calculating permutation test P-values,
11

discovery_correlation (example-data), 4
discovery_data (example-data), 4
discovery_network (example-data), 4
disk.matrix, 2, 8, 14, 20

example-data, 4
Getting nodes ordered by degree., I5
is.disk.matrix (disk.matrix), 2

matrix, 3
module_labels (example-data), 4
modulePreservation, 6, 6, 12

NetRep, 12

NetRep-data (example-data), 4
NetRep-package (NetRep), 12
networkProperties, 6, 12,13
nodeOrder, 20

Ordering samples by module summary, 15

25

par, 21
permutationTest, 10
plotContribution, 9, 16, 22, 23
plotCorrelation, 9, 16, 22, 23
plotData, 16, 22, 23
plotDegree, 9, 16, 22, 23
plotModule, 6, 12, 16
plotNetwork, 16, 22, 23
plotSummary, 16, 22, 23
preservation of network modules, 4, 14,
19

read. table, 3
readRDS, 3
requiredPerms, 10, 23

serialize.table (disk.matrix), 2

show,disk.matrix-method (disk.matrix), 2

splitting computation over multiple
machines, 11

test_correlation (example-data), 4
test_data (example-data), 4
test_network (example-data), 4

visualising network modules, /1

	disk.matrix
	example-data
	modulePreservation
	NetRep
	networkProperties
	plotModule
	requiredPerms
	Index

