Package 'PSAboot'

October 23, 2025

Type Package

Title Bootstrapping for Propensity Score Analysis

Version 1.3.9 **Date** 2025-10-22

Maintainer Jason Bryer < jason@bryer.org>

Description It is often advantageous to test a hypothesis more than once in the context of propensity score analysis (Rosenbaum, 2012) <doi:10.1093/biomet/ass032>. The functions in this package facilitate bootstrapping for propensity score analysis (PSA). By default, bootstrapping using two classification tree methods (using 'rpart' and 'ctree' functions), two matching methods (using 'Matching' and 'MatchIt' packages), and stratification with logistic regression. A framework is described for users to implement additional propensity score methods. Visualizations are emphasized for diagnosing balance; exploring the correlation relationships between bootstrap samples and methods; and to summarize results.

License GPL

URL https://github.com/jbryer/PSAboot

BugReports https://github.com/jbryer/PSAboot/issues

Depends ggplot2, graphics, PSAgraphics, R (>= 4.1.0)

Imports ggthemes, Matching, MatchIt, modeltools, parallel, party, psych, reshape2, rpart, stats, TriMatch, utils

Suggests knitr, rmarkdown

VignetteBuilder knitr

Encoding UTF-8

LazyLoad yes

RoxygenNote 7.3.2

NeedsCompilation no

Author Jason Bryer [aut, cre] (ORCID: https://orcid.org/0000-0002-2454-0402)

Repository CRAN

Date/Publication 2025-10-22 23:30:16 UTC

2 PSAboot-package

Contents

	PSAboot-package	2
	as.data.frame.PSAbootSummary	3
	balance	
	balance.matching	4
	boot.ctree	5
	boot.matching	6
	boot.matchit	6
	boot.rpart	7
	boot.strata	8
	boot.weighting	9
	boxplot.PSAboot	9
	boxplot.PSAboot.balance	10
	calculate_ps_weights	11
	getPSAbootMethods	12
	hist.PSAboot	14
	matrixplot	15
	pisa.psa.cols	15
	pisalux	15
	pisausa	17
	plot.PSAboot	19
	plot.PSAboot.balance	20
	print.PSAboot	21
	print.PSAboot.balance	21
	print.PSAbootSummary	22
	psa.strata	
	q25	
	q75	
	summary.PSAboot	
Index		26
———PSAb	oot-package Bootstrapping for Propensity Score Analysis	

Description

Bootstrapping procedures for Propensity Score Analysis.

Author(s)

Maintainer: Jason Bryer < jason@bryer.org> (ORCID)

See Also

Useful links:

- https://github.com/jbryer/PSAboot
- Report bugs at https://github.com/jbryer/PSAboot/issues

```
as.data.frame.PSAbootSummary
```

Convert the results of PSAboot summary to a data frame.

Description

Convert the results of PSAboot summary to a data frame.

Usage

```
## S3 method for class 'PSAbootSummary'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```

Arguments

```
x results of '[summary.PSAboot()]'
row.names row names.
optional unused.
... unused.
```

Value

a data.frame.

balance

Returns a summary of the balance for all bootstrap samples.

Description

This method provides some crude overall measures of balance.

```
balance(psaboot, na.rm = TRUE, pool.fun = mean)
```

4 balance.matching

Arguments

psaboot results from '[PSAboot()]'.

na.rm should NAs be removed. NAs generally occur when there is insufficient sample for a particular covariate or an unused level.

pool. fun a function specifying how the effect sizes across all covariates should be com-

bined. Possible values include 'mean()' (default), 'q25()', 'q75()', 'median()',

'max()', or any function that takes a vector of numeric values.

Value

a list with three elements:

unadjusted named numeric vector with unadjusted effect size before adjustment for each covariate
complete a matrix with adjusted effect size for each covariate (columns) for each method (rows).
pooled a matrix with mean adjusted effect size for all covariates for each method (columns) and each bootstrap sample (rows).

balances a list with an M x n covariates matrix for each method.

Examples

balance.matching

Returns balance for each covariate from propensity score matching.

Description

This function is function is primarily used by [PSAboot::balance()] and probably does not need to be called directly.

```
balance.matching(index.treated, index.control, covs)
```

boot.ctree 5

Arguments

index.treated a vector with the index of treated rows in covs.

index.control a vector with the index of control rows in covs.

covs data frame or matrix of covariates. Factors should already be recoded. See

'[cv.trans.psa()]'

Value

a named vector with one element per covariate.

boot.ctree

Stratification using classification trees for bootstrapping.

Description

Stratification using classification trees for bootstrapping.

Usage

```
boot.ctree(Tr, Y, X, X.trans, formu, minStrata = 5, ...)
```

Arguments

Tr vector indicating treatment assignment.

Y vector of outcome.

X matrix or data frame of covariates.

 $\hbox{$\tt X.trans} \qquad \qquad \hbox{$\tt a$ data frame of `X` with factors recoded. See `[PSAgraphics::cv.trans.psa()]'$}$

formu the formula to use to estimate propensity scores. Note that the dependent variable

(i.e. treatment varaible) name will be updated using the Tr vector.

minStrata minimum number of treatment or control units within a strata to include that

strata.

... other parameters passed from '[PSAboot()]'

Value

a list with three elements:

summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)

balance a named numeric vector with one element per covariate listed in X. trans representing a balance statistic (usually standardized effect size after adjustment)

details an arbitrary object that contains the full results of the analysis

6 boot.matchit

boot.matching	Matching package implementation for bootstrapping.

Description

Matching package implementation for bootstrapping.

Usage

```
boot.matching(Tr, Y, X, X.trans, formu, estimand = "ATE", ...)
```

Arguments

Tr	vector indicating treatment assignment.
Υ	vector of outcome.
Χ	matrix or data frame of covariates.
X.trans	a data frame of 'X' with factors recoded. See '[PSAgraphics::cv.trans.psa()]'
formu	the formula to use to estimate propensity scores. Note that the dependent variable (i.e. treatment variable) name will be updated using the Tr vector.
estimand	character string for estimand, either ATE, ATT, or ATC. See '[Matching::Match()] for more details.

other parameters passed to '[Matching::Match()]'.

Value

. . .

a list with three elements:

summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)

balance a named numeric vector with one element per covariate listed in X. trans representing a balance statistic (usually standardized effect size after adjustment)

details an arbitrary object that contains the full results of the analysis

muchi package imperientation for bootstrapping.	boot.matchit	MatchIt package implementation for bootstrapping.
---	--------------	---

Description

MatchIt package implementation for bootstrapping.

```
boot.matchit(Tr, Y, X, X.trans, formu, ...)
```

boot.rpart 7

Arguments

Tr vector indicating treatment assignment.

Y vector of outcome.

X matrix or data frame of covariates.

X. trans a data frame of 'X' with factors recoded. See '[PSAgraphics::cv.trans.psa()]'

formu the formula to use to estimate propensity scores. Note that the dependent variable

(i.e. treatment varaible) name will be updated using the Tr vector.

... other parameters passed from '[PSAboot()]'

Value

a list with three elements:

summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)

balance a named numeric vector with one element per covariate listed in X. trans representing a balance statistic (usually standardized effect size after adjustment)

details an arbitrary object that contains the full results of the analysis

boot.rpart

Stratification using classification trees for bootstrapping.

Description

Stratification using classification trees for bootstrapping.

Usage

```
boot.rpart(Tr, Y, X, X.trans, formu, minStrata = 5, ...)
```

Arguments

Tr vector indicating treatment assignment.

Y vector of outcome.

X matrix or data frame of covariates.

X. trans a data frame of 'X' with factors recoded. See '[PSAgraphics::cv.trans.psa()]'

formu the formula to use to estimate propensity scores. Note that the dependent variable

(i.e. treatment varaible) name will be updated using the Tr vector.

minStrata minimum number of treatment or control units within a strata to include that

strata.

... other parameters passed from '[PSAboot()]'

8 boot.strata

Value

a list with three elements:

summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)

balance a named numeric vector with one element per covariate listed in X.trans representing a balance statistic (usually standardized effect size after adjustment)

details an arbitrary object that contains the full results of the analysis

boot.strata

Stratification implementation for bootstrapping.

Description

Stratification implementation for bootstrapping.

Usage

```
boot.strata(Tr, Y, X, X.trans, formu, nstrata = 5, ...)
```

Arguments

Tr vector indicating treatment assignment.

Y vector of outcome.

X matrix or data frame of covariates.

X. trans a data frame of 'X' with factors recoded. See '[PSAgraphics::cv.trans.psa()]'

formu the formula to use to estimate propensity scores. Note that the dependent variable

(i.e. treatment varaible) name will be updated using the Tr vector.

nstrata number of strata to divide the propensity scores.
... other parameters passed from '[PSAboot()]'

Value

a list with three elements:

summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)

balance a named numeric vector with one element per covariate listed in X.trans representing a balance statistic (usually standardized effect size after adjustment)

details an arbitrary object that contains the full results of the analysis

boot.weighting 9

boot.weighting	Propensity score weighting implementation for bootstrapping.	

Description

Propensity score weighting implementation for bootstrapping.

Usage

```
boot.weighting(Tr, Y, X, X.trans, formu, estimand = "ATE", ...)
```

Arguments

Tr	vector indicating treatment assignment.
Υ	vector of outcome.
Χ	matrix or data frame of covariates.
X.trans	a data frame of 'X' with factors recoded. See '[PSAgraphics::cv.trans.psa()]'
formu	the formula to use to estimate propensity scores. Note that the dependent variable (i.e. treatment variable) name will be updated using the Tr vector.
estimand	which treatment effect to estimate. Values can be ATE, ATT, ATC, or ATM.
	other parameters passed from '[PSAboot()]'

Value

a list with three elements:

summary a named numeric vector (with at minimum estimate, ci.min, and ci.max but other values allowed)

balance a named numeric vector with one element per covariate listed in X.trans representing a balance statistic (usually standardized effect size after adjustment)

details an arbitrary object that contains the full results of the analysis

poxplot.PSAboot B

Description

Boxplot of PSA bootstrap results.

Usage

```
## S3 method for class 'PSAboot'
boxplot(
    x,
    bootstrap.mean.color = "blue",
    bootstrap.ci.color = "green",
    bootstrap.ci.width = 0.5,
    bootstrap.ci.size = 3,
    overall.mean.color = "red",
    tufte = FALSE,
    coord.flip = TRUE,
    ...
)
```

Arguments

```
result of '[PSAboot()]'.
bootstrap.mean.color
                  the color of the point for the bootstrap mean, or NA to omit.
bootstrap.ci.color
                  the color of the confidence intervals of the bootstrap samples, or NA to omit.
bootstrap.ci.width
                  the width of the confidence interval lines at the end.
bootstrap.ci.size
                  the size of the confidence interval lines.
overall.mean.color
                  the color of the point for the overall (before bootstrapping) mean, or NA to omit.
tufte
                  use Tufte's boxplot style. Requires the ggthemes package.
                  Whether to flip the coordinates.
coord.flip
                  unused
```

Value

a ggplot2 expression.

```
boxplot.PSAboot.balance
```

Boxplot of the balance statistics for bootstrapped samples.

Description

Boxplot of the balance statistics for bootstrapped samples.

calculate_ps_weights 11

Usage

```
## S3 method for class 'PSAboot.balance'
boxplot(
    x,
    unadjusted.color = "red",
    pooled.color = "blue",
    point.size = 3,
    point.alpha = 0.5,
    ...
)
```

Arguments

Value

a ggplot2 expression.

Examples

calculate_ps_weights Calculates propensity score weights.

Description

Calculates propensity score weights.

12 getPSAbootMethods

Usage

```
calculate_ps_weights(treatment, ps, estimand = "ATE")
```

Arguments

treatment a logical vector for treatment status.

ps numeric vector of propensity scores

estimand character string indicating which estimand to be used. Possible values are ATE

(average treatment effect), ATT (average treatment effect for the treated), ATC (average treatment effect for the controls), ATM (Average Treatment Effect Among the Evenly Matched), ATO (Average Treatment Effect Among the Over-

lap Population)

getPSAbootMethods

Returns a vector with the default methods used by 'PSAboot()'.

Description

The current default methods are:

Bootstrapping has become a popular resampling method for estimating sampling distributions. And propensity score analysis (PSA) has become popular for estimating causal effects in observational studies. This function implements bootstrapping specifically for PSA. Like typical bootstrapping methods, this function estimates treatment effects for M random samples. However, unlike typical bootstrap methods, this function allows for separate sample sizes for treatment and control units. That is, under certain circumstances (e.g. when the ratio of treatment-to-control units is large) bootstrapping only the control units may be desirable. Additionally, this function provides a framework to use multiple PSA methods for each bootstrap sample.

```
getPSAbootMethods()

PSAboot(
    Tr,
    Y,
    X,
    M = 100,
    formu = as.formula(paste0("treat ~ ", paste0(names(X), collapse = " + "))),
    control.ratio = 5,
    control.sample.size = min(control.ratio * min(table(Tr)), max(table(Tr))),
    control.replace = TRUE,
    treated.sample.size = min(table(Tr)),
    treated.replace = TRUE,
    methods = getPSAbootMethods(),
    parallel = TRUE,
    seed = NULL,
```

getPSAbootMethods 13

```
)
```

Arguments

Tr numeric (0 or 1) or logical vector of treatment indicators.

Y vector of outcome variable

X matrix or data frame of covariates used to estimate the propensity scores.

M number of bootstrap samples to generate.

formula used for estimating propensity scores. The default is to use all covari-

ates in X.

control.ratio the ratio of control units to sample relative to the treatment units.

control.sample.size

the size of each bootstrap sample of control units.

control.replace

whether to use replacement when sampling from control units.

treated.sample.size

the size of each bootstrap sample of treatment units. The default uses all treat-

ment units for each bootstrap sample.

treated.replace

whether to use replacement when sampling from treated units.

methods a named vector of functions for each PSA method to use.

parallel whether to run the bootstrap samples in parallel.

random seed. Each iteration, i, will use a seed of seed + i.
... other parameters passed to '[Match()]' and '[psa.strata()]'

Details

Be sure to check the 'PSAboot' vignette for more details. The *Applied Propensity Score Analysis with R* online book also has some worked examples: https://psa.bryer.org

Value

a vector of methods for use by 'PSAboot()'

a list with following elements:

overall.summary Data frame with the results using the complete dataset (i.e. unbootstrapped results).

overall.details Objects returned from each method for complete dataset.

pooled.summary Data frame with results of each bootstrap sample.

pooled.details List of objects returned from each method for each bootstrap sample.

control.sample.size sample size used for control units.

treated.sample.size sample size used for treated units.

control.replace whether control units were sampled with replacement.

14 hist.PSAboot

treated.replace whether treated units were sampled with replacement.

Tr vector of treatment assignment.

Y vector out outcome.

X matrix or data frame of covariates.

M number of bootstrap samples.

See Also

getPSAbootMethods

Examples

```
library(PSAboot)
data(pisa.psa.cols)
data(pisausa)
bm.usa <- PSAboot(Tr = as.integer(pisausa$PUBPRIV) - 1,
        Y = pisausa$Math,
        X = pisausa[,pisa.psa.cols],
        control.ratio = 5, M = 100, seed = 2112)</pre>
```

hist.PSAboot

Histogram of PSA bootstrap results

Description

Histogram of PSA bootstrap results

Usage

```
## S3 method for class 'PSAboot' hist(x, ...)
```

Arguments

```
x result of '[PSAboot()]'.... other parameters passed to '[ggplot2::geom_histogram()]
```

Value

```
a ggplot2 expression.
```

matrixplot 15

Description

Matrix Plot of Bootstrapped Propensity Score Analysis

Usage

```
matrixplot(bm)
```

Arguments

bm

result from '[PSAboot()]'.

Value

Nothing returned. Creates a plot using the [graphics::pairs()] function.

pisa.psa.cols	Character vector representing the list of covariates used for estimating
	propensity scores.

Description

Character vector representing the list of covariates used for estimating propensity scores.

Format

a character vector with covariate names for estimating propensity scores.

pisalux	Programme of International Student Assessment (PISA) results from the Luxembourg in 2009.

Description

Student results from the 2009 Programme of International Student Assessment (PISA) as provided by the Organization for Economic Co-operation and Development (OECD). See https://www.oecd.org/pisa/ for more information including the code book.

16 pisalux

Format

a data frame with 4,622 rows and 65 columns.

CNT Country

SCHOOLID SchoolID

ST01Q01 Grade

ST04Q01 Sex

ST05Q01 Attend

ST06Q01 Age

ST07Q01 Repeat

ST08Q01 At home mother

ST08Q02 At home father

ST08Q03 At home brothers

ST08Q04 At home sisters

ST08Q05 At home grandparents

ST08Q06 At home others

ST10Q01 Mother highest schooling

ST12Q01 Mother current job status

ST14Q01 Father highest schooling

ST16Q01 Father current job status

ST19Q01 Language at home

ST20Q01 Desk

ST20Q02 Own room

ST20Q03 Study place

ST20Q04 Computer

ST20Q05 Software

ST20Q06 Internet

ST20Q07 Literature

ST20Q08 Poetry

ST20Q09 Art

ST20Q10 Textbooks

ST20Q12 Dictionary

ST20Q13 Dishwasher

ST20Q14 DVD

ST21Q01 How many cellphones

ST21Q02 How many TVs

ST21Q03 How many computers

ST21Q04 How many cars

pisausa 17

ST21Q05	How many rooms bath or shower
ST22Q01	How many books
ST23Q01	Reading enjoyment time
ST31Q01	Enrich in test language
ST31Q02	Enrich in mathematics
ST31Q03	Enrich in science
ST31Q05	Remedial in test language
ST31Q06	Remedial in mathematics
ST31Q07	Remedial in science
ST32Q01	Out of school lessons in test language
ST32Q02	Out of school lessons maths
ST32Q03	Out of school lessons in science
PUBPRIV	Public or private school
STRATIO	Student to teacher ratio in school

Details

Note that missing values have been imputed using the mice package. Details on the specific procedure are in the pisa.impute function in the pisa package.

References

Organisation for Economic Co-operation and Development (2009). Programme for International Student Assessment (PISA).

pisausa	Programme of International Student Assessment (PISA) results from the United States in 2009.

Description

Student results from the 2009 Programme of International Student Assessment (PISA) as provided by the Organization for Economic Co-operation and Development (OECD). See www.oecd.org/pisa/ for more information including the code book.

Format

a data frame with 5,233 rows and 65 columns.

CNT Country
SCHOOLID SchoolID
ST01Q01 Grade
ST04Q01 Sex

18 pisausa

- ST05Q01 Attend
- ST06Q01 Age
- ST07Q01 Repeat
- ST08Q01 At home mother
- ST08Q02 At home father
- ST08Q03 At home brothers
- ST08Q04 At home sisters
- ST08Q05 At home grandparents
- ST08Q06 At home others
- ST10Q01 Mother highest schooling
- ST12Q01 Mother current job status
- ST14Q01 Father highest schooling
- ST16Q01 Father current job status
- ST19Q01 Language at home
- ST20Q01 Desk
- ST20Q02 Own room
- ST20Q03 Study place
- ST20Q04 Computer
- ST20Q05 Software
- ST20Q06 Internet
- ST20Q07 Literature
- ST20Q08 Poetry
- ST20Q09 Art
- ST20Q10 Textbooks
- ST20Q12 Dictionary
- ST20Q13 Dishwasher
- ST20Q14 DVD
- ST21Q01 How many cellphones
- ST21Q02 How many TVs
- ST21Q03 How many computers
- ST21Q04 How many cars
- ST21Q05 How many rooms bath or shower
- ST22Q01 How many books
- ST23Q01 Reading enjoyment time
- ST31Q01 Enrich in test language
- ST31Q02 Enrich in mathematics
- ST31Q03 Enrich in science

plot.PSAboot 19

```
ST31Q05 Remedial in test language
ST31Q06 Remedial in mathematics
ST31Q07 Remedial in science
ST32Q01 Out of school lessons in test language
ST32Q02 Out of school lessons maths
ST32Q03 Out of school lessons in science
PUBPRIV Public or private school
STRATIO Student to teacher ratio in school
```

Details

Note that missing values have been imputed using the mice package. Details on the specific procedure are in the pisa.impute function in the pisa package.

References

Organisation for Economic Co-operation and Development (2009). Programme for International Student Assessment (PISA).

plot.PSAboot

Plot the results of PSAboot

Description

Plot the results of PSAboot

Usage

```
## S3 method for class 'PSAboot'
plot(
    x,
    sort = "all",
    ci.sig.color = "red",
    plot.overall = FALSE,
    plot.bootstrap = TRUE,
    ...
)
```

Arguments

```
x result of '[PSAboot()]'.

sort how the sort the rows by mean difference. Options are to sort using the mean difference from matching, stratification, both individually, or no sorting.

ci.sig.color the color used for confidence intervals that do not span zero.
```

20 plot.PSAboot.balance

```
    plot.overall whether to plot vertical lines for the overall (non-bootstrapped) estimate and confidence interval.
    plot.bootstrap whether to plot vertical lines for the bootstrap pooled estimate and confidence interval.
    currently unused.
```

Value

```
a ggplot2 expression.
```

```
plot.PSAboot.balance Plot method for balance.
```

Description

Plot method for balance.

Usage

```
## S3 method for class 'PSAboot.balance'
plot(
    x,
    unadjusted.color = "red",
    complete.color = "blue",
    pooled.color = "black",
    ...
)
```

Arguments

Value

```
a ggplot2 expression.
```

print.PSAboot 21

Examples

print.PSAboot

Print results of PSAboot

Description

Print results of PSAboot

Usage

```
## S3 method for class 'PSAboot'
print(x, ...)
```

Arguments

```
x result of '[PSAboot()]'.
... currently unused.
```

Value

Nothing returned. S3 generic function that calls the [PSAboot::summary()] function.

```
print.PSAboot.balance Print method for balance.
```

Description

This is a crude measure of overall balance. Absolute value of the standardized effect sizes are calculated for each covariate. Overall balance statistics are the mean of those effect sizes after adjustment for each method across all bootstrap samples.

```
## S3 method for class 'PSAboot.balance'
print(x, na.rm = TRUE, ...)
```

22 psa.strata

Arguments

x results from '[balance()]'
na.rm whether NA balance statistics should be removed before averaging them.
... currently unused.

Value

No valued returned.

```
print.PSAbootSummary Print method for PSAboot Summary.
```

Description

Print method for PSAboot Summary.

Usage

```
## S3 method for class 'PSAbootSummary'
print(x, digits = 3, ...)
```

Arguments

x result of '[summary.PSAboot()]'
digits desired number of digits after the decimal point.

... unused.

Value

Nothing returned.

psa.strata

Propensity Score Analysis using Stratification

Description

Propensity Score Analysis using Stratification

```
psa.strata(Y, Tr, strata, trim = 0, minStrata = 5)
```

q25 23

Arguments

Y response variable.

Tr treatment variable.

strata strata identifier.

trim allows for a trimmed mean as outcome measure, where trim is from 0 to .5 (.5

implying median).

minStrata minimum number of treatment or control units within a strata to include that

strata.

Value

a character vector containing summary.strata, ATE, se.wtd, approx.t, df, and CI.95.

q25

 $Return\ the\ 25th\ percentile.$

Description

Return the 25th percentile.

Usage

```
q25(x, na.rm = FALSE, ...)
```

Arguments

x numeric vector.

na.rm logical; if true, any NA and NaN's are removed from x before the quantiles are

computed

... other parameters passed to '[PSAboot()]'.

Value

the 25th percentile.

24 summary.PSAboot

q75

Returns the 75th percentile.

Description

Returns the 75th percentile.

Usage

```
q75(x, na.rm = FALSE, ...)
```

Arguments

x numeric vector.

na.rm logical; if true, any NA and NaN's are removed from x before the quantiles are

computed

other parameters passed to '[PSAboot()]'.

Value

the 75th percentile.

summary.PSAboot

Summary of pooled results from PSAboot

Description

Summary of pooled results from PSAboot

Usage

```
## S3 method for class 'PSAboot'
summary(object, ...)
```

Arguments

```
object result of '[PSAboot()]'.
... currently unused.
```

summary.PSAboot 25

Value

a list with pooled summary statistics.

a list with the results from easch PSA method. For each method a list contains the following elements:

sig.tot.per Percentage of boostrap samples where the confidence interval does not span zero.

boostrap.mean Weighted mean difference across all bootstrap samples.

boostrap.ci Overall confidence interval across all bootstrap samples.

bootstrap.weighted.mean Overall weighted bootstrap mean.

percent.sig Contingency table of the number of bootstrap samples that don't span zero.

complete Results of the summary of the PSA method.

Index

```
* datasets
    pisa.psa.cols, 15
\verb|as.data.frame.PSAbootSummary|, 3
balance, 3
balance.matching, 4
boot.ctree, 5
boot.matching, 6
boot.matchit, 6
boot.rpart, 7
boot.strata, 8
boot.weighting, 9
boxplot.PSAboot, 9
boxplot.PSAboot.balance, 10
calculate_ps_weights, 11
getPSAbootMethods, 12
hist.PSAboot, 14
matrixplot, 15
pisa.psa.cols, 15
pisalux, 15
pisausa, 17
plot.PSAboot, 19
plot.PSAboot.balance, 20
print.PSAboot, 21
print.PSAboot.balance, 21
print.PSAbootSummary, 22
psa.strata, 22
PSAboot (getPSAbootMethods), 12
PSAboot-package, 2
q25, 23
q75, 24
summary.PSAboot, 24
```