Package 'UComp'

November 18, 2025

```
Type Package
Title Automatic Univariate Time Series Modelling of many Kinds
Version 5.1.5
Date 2025-11-18
Author Diego J. Pedregal [aut, cre] (ORCID:
     <https://orcid.org/0000-0003-4958-0969>)
Maintainer Diego J. Pedregal < diego.pedregal@uclm.es>
Description Comprehensive analysis and forecasting
     of univariate time series using automatic
     time series models of many kinds.
     Harvey AC (1989) <doi:10.1017/CBO9781107049994>.
     Pedregal DJ and Young PC (2002) <doi:10.1002/9780470996430>.
     Durbin J and Koopman SJ (2012) <doi:10.1093/acprof:oso/9780199641178.001.0001>.
     Hyndman RJ, Koehler AB, Ord JK, and Snyder RD (2008) <doi:10.1007/978-3-540-71918-2>.
     Gómez V, Maravall A (2000) <doi:10.1002/9781118032978>.
     Pedregal DJ, Trapero JR and Holgado E (2024) <doi:10.1016/j.ijforecast.2023.09.004>.
License GPL-3
Encoding UTF-8
Imports ggplot2, gridExtra, tsibble, tsoutliers, stats, ggforce,
     utils, parallel
LinkingTo Rcpp, RcppArmadillo
Depends Rcpp (>= 1.0.3), R (>= 3.5.0)
LazyData true
Suggests knitr, rmarkdown
RoxygenNote 7.3.3
NeedsCompilation yes
Repository CRAN
Date/Publication 2025-11-18 12:30:15 UTC
```

2 Contents

Contents

Accuracy	3
acft	4
AIC.UComp	5
airpas	6
ARIMA	6
ARIMAestim	8
ARIMAforecast	9
ARIMAsetup	11
ARIMAvalidate	13
arma2tsi	13
armaFilter	14
auxInvBoxCox	15
BIC.UComp	15
box.cox	16
ch4	17
colMedians	17
conv	18
cusum	19
dif	20
ETS	21
ETScomponents	23
ETScomponents	24
ETSestill	25
ETStotecast	27
ETSvalidate	29
extract	30
gaussTest	31
	31
gdp	32
getp0	32 33
ident	33
inv.box.cox	34 34
invBoxCox	
	35
OECDgdp	36
plotAcfPacf	36
plotBar	37
plotSlide	38
plus_one	39
predict.UComp	39
removeNaNs	40
roots	41
rowMedians	41
sales	42
size	43
slide	43
slide Aux	45

Accuracy 3

UChp	. 69
TTO	
UCforecast	. 66
UCfilter	. 65
UCestim	
±	
1 7	
•	
TETSestim	
TETScomponents	
TETS	. 48
tests	
	TETS TETScomponents TETSestim TETSforecast TETSsetup TETSvalidate tsDisplay UC UCcommand UCcomponents UCdisturb UCdisturb UCdisturb UCestim UCfilter

Description

Accuracy for 1 time series y and several forecasting methods py and h steps ahead py is h x n $Methods\ x\ nSeries$

Usage

```
Accuracy(py, y, s = frequency(y), collectFun = mean)
```

Arguments

ру	matrix of forecasts (h x nMethods x nForecasts)
у	a matrix of actual values (n x nForecasts)
S	seasonal period, number of observations per year
collectFun	aggregation function (mean, median, etc.)

4 acft

Value

Table of accuracy results

Author(s)

Diego J. Pedregal

See Also

colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, tsDisplay, size

Examples

```
## Not run: Accuracy(py, y, 12)
```

acft

acft

Description

Theoretical autocorrelation functions of ARMA models

Usage

```
acft(MApoly = 1, ARpoly = 1, ncoef = 38, s = 1)
```

Arguments

MApoly coefficients of numerator polynomial in descending order

ARpoly coefficients of denominator polynomial in descending order

ncoef number of coefficients

s seasonal period, number of observations per year

Value

Theoretical autocorrelation functions

Author(s)

Diego J. Pedregal

See Also

colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, slide, plotSlide, Accuracy, tsDisplay, size

AIC.UComp 5

Examples

```
acft(c(1, -0.8), c(1, 0.8))
```

AIC.UComp

AIC.UComp

Description

Extract AIC value of UComp object

Usage

```
## S3 method for class 'UComp'
AIC(object, ..., k = 2)
```

Arguments

object Object of class "UComp".
... Additional inputs to function.

k The penalty per parameter to be used.

Details

Selection criteria for models with different number of parameters, the smaller AIC the better. The formula used here is AIC = -2(ln(L) - k)/n, where ln(L) is the log-likelihood at the optimum, k is the number of parameters plus non-stationary states and n is the number of observations. Mind that this formulation differs from the usual definition that does not divide by n. This makes that AIC(m) and AIC(logLik(m)) give different results, being m an UComp object.

Value

AIC value of a UC model

Author(s)

Diego J. Pedregal

See Also

```
UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents
```

```
y <- log(AirPassengers)
m1 <- UCforecast(y, model = "llt/equal/arma(0,0)")
AIC(m1)</pre>
```

6 ARIMA

airpas

Airpassengers in Spain

Description

Foreign arrivals by air in Spain in thousands of passengers (airpas).

Usage

airpas

Format

Time series objects.

Monthly data from 1969

https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx

Value

No return value, called for side effects

Examples

airpas

ARIMA

ARIMA

Description

Runs all relevant functions for ARIMA modelling

Usage

```
ARIMA(
   y,
   u = NULL,
   model = NULL,
   cnst = NULL,
   s = frequency(y),
   criterion = "bic",
   h = 2 * s,
   verbose = FALSE,
   lambda = 1,
   maxOrders = c(3, 2, 3, 2, 1, 2),
```

ARIMA 7

```
bootstrap = FALSE,
nSimul = 5000,
fast = FALSE
)
```

Arguments

y a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should

be supplied compulsorily (see below).

u a matrix of input time series. If the output wanted to be forecast, matrix u should

contain future values for inputs.

model the model to estimate. A vector c(p,d,q,P,D,Q) containing the model orders of

an ARIMA(p,d,q)x(P,D,Q)_s model. A constant may be estimated with the cnst

input. Use a NULL to automatically identify the ARIMA model.

cnst flag to include a constant in the model (TRUE/FALSE/NULL). Use NULL to

estimate

s seasonal period of time series (1 for annual, 4 for quarterly, ...) criterion information criterion for identification stage ("aic", "bic", "aicc")

h forecast horizon. If the model includes inputs h is not used, the length of u is

used instead.

verbose intermediate estimation output (TRUE / FALSE)
lambda Box-Cox lambda parameter (NULL: estimate)

maxOrders a vector c(p,d,q,P,D,Q) containing the maximum orders of model orders to search

for in the automatic identification

bootstrap use bootstrap simulation for predictive distributions

nSimul number of simulation runs for bootstrap simulation of predictive distributions

fast fast identification (avoids post-identification checks)

Details

See help of ARIMAforecast.

Value

An object of class ARIMA. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any ARIMA object as specified in what follows (function ARIMA fills in all of them at once):

After running ARIMAforecast or ARIMA:

p Estimated parameters yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

After running ARIMAvalidate:

table Estimation and validation table

8 ARIMAestim

Author(s)

Diego J. Pedregal

See Also

ARIMAforecast, ARIMAvalidate,

Examples

```
y <- log(AirPassengers)
m1 <- ARIMA(y)
m1 <- ARIMA(y, lambda = NULL)</pre>
```

ARIMAestim

ARIMAestim

Description

Estimates and forecasts ARIMA models

Usage

```
ARIMAestim(m)
```

Arguments

m

an object of type ARIMA created with ARIMAforecast

Details

ARIMAestim estimates and forecasts a time series using an ARIMA model

Value

The same input object with the appropriate fields filled in, in particular:

p Estimated parameters

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

ARIMAforecast 9

ARIMAforecast

ARIMAforecast

Description

Estimates and forecasts ARIMA general univariate models

Usage

```
ARIMAforecast(
   y,
   u = NULL,
   model = NULL,
   cnst = NULL,
   s = frequency(y),
   criterion = "bic",
   h = 2 * s,
   verbose = FALSE,
   lambda = 1,
   maxOrders = c(3, 2, 3, 2, 1, 2),
   bootstrap = FALSE,
   nSimul = 5000,
   fast = FALSE
)
```

Arguments

у	a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should be supplied compulsorily (see below).
u	a matrix of input time series. If the output wanted to be forecast, matrix u should contain future values for inputs.
model	the model to estimate. A vector $c(p,d,q,P,D,Q)$ containing the model orders of an ARIMA $(p,d,q)x(P,D,Q)$ _s model. A constant may be estimated with the cost input. Use a NULL to automatically identify the ARIMA model.
cnst	flag to include a constant in the model (TRUE/FALSE/NULL). Use NULL to estimate
S	seasonal period of time series (1 for annual, 4 for quarterly,)
criterion	information criterion for identification stage ("aic", "bic", "aicc")
h	forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead.
verbose	intermediate estimation output (TRUE / FALSE)
lambda	Box-Cox lambda parameter (NULL: estimate)
maxOrders	a vector $c(p,d,q,P,D,Q)$ containing the maximum orders of model orders to search for in the automatic identification

10 ARIMAforecast

bootstrap use bootstrap simulation for predictive distributions

nSimul number of simulation runs for bootstrap simulation of predictive distributions

fast identification (avoids post-identification checks)

Details

ARIMAforecast is a function for modelling and forecasting univariate time series with Autoregressive Integrated Moving Average (ARIMA) time series models. It sets up the model with a number of control variables that govern the way the rest of functions in the package will work. It also estimates the model parameters by Maximum Likelihood and forecasts the data.

Value

An object of class ARIMA. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any ARIMA object as specified in what follows (function ARIMA fills in all of them at once):

After running ARIMAforecast or ARIMA:

p Estimated parameters

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

After running ARIMAvalidate:

table Estimation and validation table

Author(s)

Diego J. Pedregal

See Also

ARIMA, ARIMAvalidate,

```
y <- log(AirPassengers)
m1 <- ARIMAforecast(y)
m1 <- ARIMAforecast(y, lambda = NULL)</pre>
```

ARIMAsetup 11

ARIMAsetup ARIMAsetup

Description

Sets up ARIMA general models

Usage

```
ARIMAsetup(
   y,
   u = NULL,
   model = NULL,
   cnst = NULL,
   s = frequency(y),
   criterion = "bic",
   h = 2 * s,
   verbose = FALSE,
   lambda = 1,
   maxOrders = c(3, 2, 3, 2, 1, 2),
   bootstrap = FALSE,
   nSimul = 5000,
   fast = FALSE
)
```

Arguments

У	a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should be supplied compulsorily (see below).
u	a matrix of input time series. If the output wanted to be forecast, matrix u should contain future values for inputs.
model	the model to estimate. A vector $c(p,d,q,P,D,Q)$ containing the model orders of an ARIMA $(p,d,q)x(P,D,Q)$ _s model. A constant may be estimated with the cnst input. Use a NULL to automatically identify the ARIMA model.
cnst	flag to include a constant in the model (TRUE/FALSE/NULL). Use NULL to estimate
S	seasonal period of time series (1 for annual, 4 for quarterly,)
criterion	information criterion for identification stage ("aic", "bic", "aicc")
h	forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead.
verbose	intermediate estimation output (TRUE / FALSE)
lambda	Box-Cox lambda parameter (NULL: estimate)
maxOrders	a vector $c(p,d,q,P,D,Q)$ containing the maximum orders of model orders to search for in the automatic identification

12 ARIMAsetup

bootstrap use bootstrap simulation for predictive distributions

nSimul number of simulation runs for bootstrap simulation of predictive distributions

fast identification (avoids post-identification checks)

Details

See help of ARIMAforecast.

Value

An object of class ARIMA. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any ARIMA object as specified in what follows (function ARIMA fills in all of them at once):

After running ARIMAforecast or ARIMA:

p Estimated parameters

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

After running ARIMAvalidate:

table Estimation and validation table

Author(s)

Diego J. Pedregal

See Also

ARIMA, ARIMAforecast, ARIMAvalidate,

```
y <- log(AirPassengers)
m1 <- ARIMAsetup(y)
m1 <- ARIMAsetup(y, lambda = NULL)</pre>
```

ARIMAvalidate 13

ARIMAvalidate

ARIMAvalidate

Description

Shows a table of estimation and diagnostics results for ARIMA models

Usage

```
ARIMAvalidate(m)
```

Arguments

m

an object of type ARIMA created with ARIMAforecast

Value

The same input object with the appropriate fields filled in, in particular:

table

Estimation and validation table

Author(s)

Diego J. Pedregal

See Also

```
ARIMA, ARIMAforecast, ARIMAvalidate,
```

Examples

```
m1 <- ARIMAforecast(log(gdp))
m1 <- ARIMAvalidate(m1)</pre>
```

arma2tsi

arma2tsi

Description

AR polynomial coefficients of ARMA model

Usage

```
arma2tsi(MApoly, ARpoly, n = 100)
```

14 armaFilter

Arguments

MApoly coefficients of numerator polynomial in descending order coefficients of denominator polynomial in descending order

n number of coefficients

Value

Tsi (MA form) coefficients of equivalent ARMA model

Author(s)

Diego J. Pedregal

armaFilter

armaFilter

Description

Filter of time series

Usage

```
armaFilter(MA = 1, AR = 1, y)
```

Arguments

MA numerator polynomial
AR denominator polynomial
y a vector, ts or tsibble object

Value

Filtered time series

Author(s)

Diego J. Pedregal

See Also

```
colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size
```

```
y <- armaFilter(1, c(1, -0.8), rnorm(200))
```

auxInvBoxCox 15

auxInvBoxCox

auxInvBoxCox

Description

Inverse of Box-Cox transformation

Usage

```
auxInvBoxCox(y, lambda)
```

Arguments

y matrix, array or vector

lambda parameter of Box-Cox transformation

Value

Inverse of Box-Cox heteroskedasticity transformation

Author(s)

Diego J. Pedregal

BIC.UComp

BIC.UComp

Description

Extract BIC (or SBC) value of UComp object

Usage

```
## S3 method for class 'UComp'
BIC(object, ...)
```

Arguments

object Object of class "UComp".
... Additional inputs to function.

Details

Selection criteria for models with different number of parameters, the smaller BIC the better. The formula used here is BIC = (-2ln(L) + kln(n))/n, where ln(L) is the log-likelihood at the optimum, k is the number of parameters plus non-stationary states and n is the number of observations. Mind that this formulation differs from the usual definition that does not divide by n. This makes that BIC(m) and BIC(logLik(m)) give different results, being m an UComp object.

box.cox

Value

BIC value of a UC model

Author(s)

Diego J. Pedregal

See Also

UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents

Examples

```
y <- log(AirPassengers)
m1 <- UCforecast(y, model = "llt/equal/arma(0,0)")
BIC(m1)</pre>
```

box.cox

box.cox

Description

Runs Box-Cox transform of a time series

Usage

```
box.cox(x, lambda)
```

Arguments

x Time series object.

1ambda Lambda parameter for Box-Cox transform.

Value

Box-Cox transformed time series

Author(s)

Diego J. Pedregal

See Also

inv.box.cox, UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents

ch4 17

Examples

```
y <- box.cox(AirPassengers, 0.5)
plot(y)</pre>
```

ch4

Methane concentration at Cape Grim in Australia

Description

Methane concentration at Cape Grim in Australia (ch4).

Usage

ch4

Format

Time series objects.

Monthly data from January 1992 to December 2019

Value

No return value, called for side effects

Source

CH4 data

Examples

ch4

colMedians

colMedians

Description

Medians of matrix by columns

Usage

```
colMedians(x, na.rm = TRUE, ...)
```

18 conv

Arguments

x a matrix

na.rm boolean indicating whether to remove nans

... rest of inputs

Value

A vector with all the medians in columns

Author(s)

Diego J. Pedregal

See Also

```
rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size
```

Examples

```
s <- colMedians(matrix(4, 3, 2))</pre>
```

conv

conv

Description

1D convolution: filtering or polynomial multiplication

Usage

```
conv(...)
```

Arguments

... list of vectors to convolute

Value

Convolution of all input vectors

Author(s)

Diego J. Pedregal

See Also

```
colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size
```

cusum 19

Examples

```
conv(c(1, -1), c(1, -2, 1))

conv(c(1, -1), c(1, 0.8))
```

cusum

cusum

Description

Cusum and cusumsq tests

Usage

```
cusum(y, runFromTest = FALSE)
```

Arguments

y a vector, ts or tsibble object runFromTest internal check variable

Value

No return value, called for side effects

Author(s)

Diego J. Pedregal

See Also

```
colMedians, rowMedians, tests, sumStats, gaussTest, ident, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size
```

```
cusum(AirPassengers)
```

20 dif

dif dif

Description

Discrete differencing of time series

Usage

```
dif(y, difs = 1, seas = 1)
```

Arguments

y a vector, ts or tsibble object
difs vector with differencing orders
seas vector of seasonal periods

Value

Differenced time series

Author(s)

Diego J. Pedregal

See Also

colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size

```
dif(AirPassengers)
dif(AirPassengers, 2)
dif(AirPassengers, c(1, 1), c(1, 12))
```

ETS 21

ETS ETS

Description

Runs all relevant functions for ETS modelling

Usage

```
ETS(
  у,
  u = NULL,
 model = "???",
  s = frequency(y),
  h = 2 * s,
  criterion = "aicc",
  lambda = 1,
  armaIdent = FALSE,
  identAll = FALSE,
  forIntervals = FALSE,
  bootstrap = FALSE,
  nSimul = 5000,
  verbose = FALSE,
  alphaL = c(1e-08, 1 - 1e-08),
  betaL = alphaL,
  gammaL = alphaL,
 phiL = c(0.8, 0.98),
  p0 = -99999
)
```

Arguments

u

model

y a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should be supplied compulsorily (see below).

a matrix of input time series. If the output wanted to be forecast, matrix u should contain future values for inputs.

the model to estimate. It is a single string indicating the type of model for each component with one or two letters:

• Error: ? / A / M

• Trend: ? / N / A / Ad / M / Md

• Seasonal: ?/N/A/M

s seasonal period of time series (1 for annual, 4 for quarterly, ...)

forecast horizon. If the model includes inputs h is not used, the length of u is used instead.

22 ETS

criterion information criterion for identification ("aic", "bic" or "aicc").

lambda Box-Cox lambda parameter (NULL: estimate)

armaIdent check for arma models for error component (TRUE / FALSE).

identAll run all models to identify the best one (TRUE / FALSE)

forIntervals estimate forecasting intervals (TRUE / FALSE)
bootstrap use bootstrap simulation for predictive distributions

nSimul number of simulation runs for bootstrap simulation of predictive distributions

verbose intermediate estimation output (TRUE / FALSE)

alphaL constraints limits for alpha parameter
betaL constraints limits for beta parameter
gammaL constraints limits for gamma parameter
phiL constraints limits for phi parameter

p0 initial values for parameter search (alpha, beta, phi, gamma) with consraints:

0 < alpha < 10 < beta < alpha0 < phi < 1

• 0 < gamma < 1 - alpha

Details

See help of ETSforecast.

Value

An object of class ETS. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any ETS object as specified in what follows (function ETS fills in all of them at once):

After running ETSforecast:

p Estimated parameters

criteria Values for estimation criteria (LogLik, AIC, BIC, AICc)

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

After running ETSvalidate:

table Estimation and validation table

comp Estimated components in matrix form

After running ETScomponents:

comp Estimated components in matrix form

An object of class ETS. See ETSforecast.

ETScomponents 23

Author(s)

Diego J. Pedregal

See Also

ETSforecast, ETSvalidate, ETScomponents

Examples

```
y <- log(AirPassengers)
m1 <- ETS(y)
m1 <- ETS(y, model = "MAM")</pre>
```

ETScomponents

ETScomponents

Description

Estimates components of ETS models

Usage

```
ETScomponents(m)
```

Arguments

m

an object of type ETS created with ETSforecast

Value

The same input object with the appropriate fields filled in, in particular:

comp

Estimated components in matrix form

Author(s)

Diego J. Pedregal

See Also

```
ETS, ETSforecast, ETSvalidate
```

```
m1 <- ETS(log(gdp))
m1 <- ETScomponents(m1)</pre>
```

24 ETSestim

ETSestim ETSestim

Description

Estimates and forecasts ETS models

Usage

```
ETSestim(m)
```

Arguments

m

an object of type ETS created with ETSforecast

Details

ETSestim estimates and forecasts a time series using an an ETS model

Value

The same input object with the appropriate fields filled in, in particular:

p Estimated parameters

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

Author(s)

```
Diego J. Pedregal
```

See Also

```
ETS, ETSforecast, ETSvalidate, ETScomponents
```

```
m1 <- ETSsetup(log(gdp))
m1 <- ETSestim(m1)</pre>
```

ETSforecast 25

ETSforecast

ETSforecast

Description

Estimates and forecasts ETS general univariate models

Usage

```
ETSforecast(
  u = NULL,
 model = "???",
  s = frequency(y),
  h = max(2 * s, 6),
  criterion = "aicc",
  lambda = 1,
  armaldent = FALSE,
  identAll = FALSE,
  forIntervals = FALSE,
  bootstrap = FALSE,
  nSimul = 5000,
  verbose = FALSE,
  alphaL = c(1e-08, 1 - 1e-08),
 betaL = alphaL,
  gammaL = alphaL,
 phiL = c(0.8, 0.98),
 p0 = -99999
)
```

Arguments

u

model

y a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should be supplied compulsorily (see below).

a matrix of input time series. If the output wanted to be forecast, matrix u should contain future values for inputs.

the model to estimate. It is a single string indicating the type of model for each component with one or two letters:

• Error: ? / A / M

• Trend: ? / N / A / Ad / M / Md

• Seasonal: ?/N/A/M

s seasonal period of time series (1 for annual, 4 for quarterly, ...)

forecast horizon. If the model includes inputs h is not used, the length of u is used instead.

26 ETSforecast

criterion information criterion for identification ("aic", "bic" or "aicc").

lambda Box-Cox lambda parameter (NULL: estimate)

armaIdent check for arma models for error component (TRUE / FALSE).

identAll run all models to identify the best one (TRUE / FALSE)

forIntervals estimate forecasting intervals (TRUE / FALSE)
bootstrap use bootstrap simulation for predictive distributions

nSimul number of simulation runs for bootstrap simulation of predictive distributions

verbose intermediate estimation output (TRUE / FALSE)

alphaL constraints limits for alpha parameter
betaL constraints limits for beta parameter
gammaL constraints limits for gamma parameter
phiL constraints limits for phi parameter

p0 initial values for parameter search (alpha, beta, phi, gamma) with consraints:

0 < alpha < 10 < beta < alpha0 < phi < 1

• 0 < gamma < 1 - alpha

Details

ETSforecast is a function for modelling and forecasting univariate time series with ExponenTial Smoothing (ETS) time series models. It sets up the model with a number of control variables that govern the way the rest of functions in the package will work. It also estimates the model parameters by Maximum Likelihood and forecasts the data.

Value

An object of class ETS. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any ETS object as specified in what follows (function ETS fills in all of them at once):

After running ETSforecast:

p Estimated parameters

criteria Values for estimation criteria (LogLik, AIC, BIC, AICc)

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

After running ETSvalidate:

table Estimation and validation table

comp Estimated components in matrix form

After running ETScomponents:

comp Estimated components in matrix form

ETSsetup 27

Author(s)

Diego J. Pedregal

See Also

ETS, ETSvalidate, ETScomponents

Examples

```
y <- log(AirPassengers)
m1 <- ETSforecast(y)
m1 <- ETSforecast(y, model = "A?A")</pre>
```

ETSsetup

ETSsetup

Description

Sets up ETS general univariate models

Usage

```
ETSsetup(
  у,
  u = NULL,
  model = "???",
  s = frequency(y),
  h = 2 * s,
  criterion = "aicc",
  lambda = 1,
  armaIdent = FALSE,
  identAll = FALSE,
  forIntervals = FALSE,
  bootstrap = FALSE,
  nSimul = 5000,
  verbose = FALSE,
  alphaL = c(1e-08, 1 - 1e-08),
  betaL = alphaL,
  gammaL = alphaL,
  phiL = c(0.8, 0.98),
  p0 = -99999
)
```

28 ETSsetup

Arguments

y a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should

be supplied compulsorily (see below).

u a matrix of input time series. If the output wanted to be forecast, matrix u should

contain future values for inputs.

model the model to estimate. It is a single string indicating the type of model for each

component with one or two letters:

• Error: ? / A / M

• Trend: ? / N / A / Ad / M / Md

• Seasonal: ? / N / A / M

s seasonal period of time series (1 for annual, 4 for quarterly, ...)

h forecast horizon. If the model includes inputs h is not used, the length of u is

used instead.

criterion information criterion for identification ("aic", "bic" or "aicc").

lambda Box-Cox lambda parameter (NULL: estimate)

armaIdent check for arma models for error component (TRUE / FALSE).

identAll run all models to identify the best one (TRUE / FALSE)

forIntervals estimate forecasting intervals (TRUE / FALSE)
bootstrap use bootstrap simulation for predictive distributions

nSimul number of simulation runs for bootstrap simulation of predictive distributions

verbose intermediate estimation output (TRUE / FALSE)

alphaL constraints limits for alpha parameter
betaL constraints limits for beta parameter
gammaL constraints limits for gamma parameter
phiL constraints limits for phi parameter

p0 initial values for parameter search (alpha, beta, phi, gamma) with consraints:

0 < alpha < 10 < beta < alpha

• 0 < phi < 1

• 0 < gamma < 1 - alpha

Details

See help of ETSforecast.

Value

An object of class ETS. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any ETS object as specified in what follows (function ETS fills in all of them at once):

After running ETSforecast:

ETSvalidate 29

p Estimated parameters

criteria Values for estimation criteria (LogLik, AIC, BIC, AICc)

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

After running ETSvalidate:

table Estimation and validation table

comp Estimated components in matrix form

After running ETScomponents:

comp Estimated components in matrix form

An object of class ETS. See ETSforecast.

Author(s)

Diego J. Pedregal

See Also

ETS, ETSforecast, ETSvalidate, ETScomponents

Examples

```
y <- log(AirPassengers)
m1 <- ETSsetup(y)
m1 <- ETSsetup(y, model = "???")
m1 <- ETSsetup(y, model = "?AA")</pre>
```

ETSvalidate

ETSvalidate

Description

Shows a table of estimation and diagnostics results for ETS models

Usage

```
ETSvalidate(m)
```

Arguments

m

an object of type ETS created with ETSforecast

30 extract

Value

The same input object with the appropriate fields filled in, in particular:

table

Estimation and validation table

Author(s)

```
Diego J. Pedregal
```

See Also

```
ETS, ETSforecast, ETSvalidate, ETScomponents
```

Examples

```
m1 <- ETSforecast(log(gdp))
m1 <- ETSvalidate(m1)</pre>
```

extract

extract

Description

Reorder data frame returning column col reordered according to the values in column according To

Usage

```
extract(x, col, accordingTo = 1)
```

Arguments

x a data frame

col column to be ordered

accordingTo column to take as the pattern

Value

Data frame reordered accoring to a given column data

Author(s)

Diego J. Pedregal

gaussTest 31

gaussTest

gaussTest

Description

Gaussianity tests

Usage

```
gaussTest(y, runFromTests = FALSE)
```

Arguments

y a vector, ts or tsibble object

runFromTests internal check

Value

No return value, called for side effects

Author(s)

Diego J. Pedregal

See Also

colMedians, rowMedians, tests, sumStats, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size

Examples

```
gaussTest(AirPassengers)
```

gdp

Spanish GDP

Description

Quarterly real Spanish Gross Domestic Product (gdp)

Usage

gdp

32 getp0

Format

Time series objects.

Quarterly since 1995

https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx

Value

No return value, called for side effects

Examples

gdp

|--|

Description

Get initial conditions for parameters of UComp object

Usage

```
getp0(y, model = "llt/equal/arma(0,0)", periods = NA)
```

Arguments

y a time series to forecast.

model any valid UComp model without any ?.

periods vector of fundamental period and harmonics required.

Details

Provides initial parameters of a given model for the time series. They may be changed arbitrarily by the user to include as an input p0 to UC or UCforecast functions (see example below). There is no guarantee that the model will converge and selecting initial conditions should be used with care.

Value

A set of parameters p0 of an object of class UComp to use as input to UC, UCforecast.

Author(s)

Diego J. Pedregal

See Also

```
UC, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents, UChp
```

ident 33

Examples

```
## Not run:
p0 <- getp0(log(AirPassengers), model = "llt/equal/arma(0,0)")
p0[1] <- 0  # p0[1] <- NA
m <- UCforecast(log(AirPassengers), model = "llt/equal/arma(0,0)", p0 = p0)
## End(Not run)</pre>
```

ident

ident

Description

Autocorrelation functions of a time series

Usage

```
ident(y, nCoef = min(37, floor(length(y)/4)), nPar = 0, runFromTests = FALSE)
```

Arguments

y a vector, ts or tsibble object

nCoef number of autocorrelation coefficients to estimate nPar number of parameters in a model if y is a residual

runFromTests internal check

Value

A vector with output table including ACF, etc.

Author(s)

Diego J. Pedregal

See Also

```
colMedians, rowMedians, tests, sumStats, gaussTest, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size
```

```
ident(AirPassengers)
```

34 invBoxCox

inv.box.cox

inv.box.cox

Description

Runs inverse of Box-Cox transform of a time series

Usage

```
inv.box.cox(x, lambda)
```

Arguments

x Transformed time series object.

lambda Lambda parameter used for Box-Cox transform.

Value

Inverse Box-Cox transformed time series

Author(s)

Diego J. Pedregal

See Also

```
box.cox, UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents
```

Examples

```
y <- inv.box.cox(box.cox(AirPassengers, 0.5), 0.5)
plot(y)</pre>
```

invBoxCox

invBoxCox

Description

Calculates inverse of Box-Cox transformation with confidence bands, calculated as const time the standard error

Usage

```
invBoxCox(y, yVar, lambda, const = 2)
```

ipi 35

Arguments

y matrix, array or vector

yVar matrix, array or vector of variances of y

lambda lambda parameter of Box-Cox transformation const number of standard error for confidence band

Value

Inverse of Box-Cox heteroskedasticity transformation with confidence bands

Author(s)

Diego J. Pedregal

ipi

Spanish Industrial Production Index

Description

Spanish Industrial Production Index (ipi).

Usage

ipi

Format

Objeto time series.

Monthly since 1975

https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx

Value

No return value, called for side effects

Examples

ipi

36 plotAcfPacf

0ECDgdp

OECD GDP

Description

Seasonally adjusted quarterly OECD real gross domestic product (OECDgdp).

Usage

OECDgdp

Format

Time series objects.

Quarterly data from 1962 to 2019

https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx

Value

No return value, called for side effects

Examples

0ECDgdp

plotAcfPacf

plotAcfPacf

Description

Plot of ACF and PACF

Usage

```
plotAcfPacf(ACF, PACF, s = 1, n = NA, runFromTest = FALSE)
```

Arguments

ACF variable to plot

PACF second variable to plot

s seasonal period

n number of coefficients runFromTest internal check variable plotBar 37

Value

No return value, called for side effects

Author(s)

Diego J. Pedregal

plotBar plotBar

Description

Plot variable in bars

Usage

```
plotBar(ACF, s = 1, n = NA, label = "ACF")
```

Arguments

ACF variable to plot s seasonal period

n number of coefficients

label label for plot

Value

Handle of plot

Author(s)

Diego J. Pedregal

38 plotSlide

Description

Plot summarised results from slide

Usage

```
plotSlide(py1, y, orig, step = 1, errorFun, collectFun = mean)
```

Arguments

py1	output from slide function
у	a vector, matrix or list of time series (the same used in slide call)
orig	starting forecasting origin (the same used in slide call)
step	observations ahead to move the forecasting origin (the same used in slide call)
errorFun	user function to calculate error measures
collectFun	aggregation function (mean, median, etc.)

Value

An array of forecasting errors of dimensions (horizon x nOrigs x nModels x nSeries)

Author(s)

```
Diego J. Pedregal
```

See Also

```
colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, Accuracy, tsDisplay, size
```

```
## Not run: plotSlide(py1, AirPassengers, 100, 1, errorFun)
```

plus_one 39

plus_one plus_one

Description

Returns date of next to end time series y

Usage

```
plus_one(y)
```

Arguments

y a ts object

Value

Next time stamp

Author(s)

Diego J. Pedregal

predict.UComp

predict.UComp

Description

Forecasting using structural Unobseved Components models with prediction intervals

Usage

```
## S3 method for class 'UComp'
predict(object, newdata = NULL, n.ahead = NULL, level = 0.95, ...)
```

Arguments

object	Object of class "UComp".
newdata	New output data to apply "UComp" object to.
n.ahead	Number of steps ahead to forecast or new inputs variables including their predictions.
level	Confidence level for prediction intervals.

... Ignored.

40 removeNaNs

Details

See help of UC.

Value

Forecasts of a UC model

A matrix with the mean forecasts and lower and upper prediction intervals

Author(s)

Diego J. Pedregal

See Also

UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents

Examples

```
y <- log(AirPassengers)
m1 <- UCforecast(y, model = "llt/eq/arma(0,0)")
f1 <- predict(m1)</pre>
```

removeNaNs

removeNaNs

Description

Remove nans at beginning or end of vector

Usage

```
removeNaNs(x)
```

Arguments

Χ

a vector or a ts object

Value

vector with nans removed (only those at beginning or end)

Author(s)

Diego J. Pedregal

roots 41

roots

roots

Description

Roots of polynomial

Usage

```
roots(x)
```

Arguments

Χ

coefficients of polynomial in descending order

Value

Roots of polynomial

Author(s)

Diego J. Pedregal

See Also

```
colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size
```

Examples

```
roots(c(1, -2 ,1))
roots(conv(c(1, -1), c(1, 0.8)))
```

rowMedians

rowMedians

Description

Medians of matrix by rows

Usage

```
rowMedians(x, na.rm = TRUE, ...)
```

42 sales

Arguments

x a matrix

na.rm boolean indicating whether to remove nans

... rest of inputs

Value

A vector with all the medians in rows

Author(s)

Diego J. Pedregal

See Also

```
colMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size
```

Examples

```
s <- rowMedians(matrix(4, 3, 2))</pre>
```

sales

Sales index for large retailers in Spain

Description

Sales index for food of large retailers in Spain

Usage

sales

Format

Time series objects.

Monthly data from January 1995 to December 2019

https://portal.mineco.gob.es/es-es/economiayempresa/EconomiaInformesMacro/Paginas/bdsice.aspx

Value

No return value, called for side effects

Examples

sales

size 43

size size

Description

Size of vector, matrix or array

Usage

```
size(y)
```

Arguments

У

a vector, matrix or array

Value

A vector with all the dimensions

Author(s)

Diego J. Pedregal

See Also

```
colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay
```

Examples

```
s <- size(matrix(4, 3, 2))
s <- size(rep(4, 3))
s <- size(array(4, c(3, 2, 2)))</pre>
```

slide

slide

Description

Rolling forecasting of a matrix of time series

44 slide

Usage

```
slide(
   y,
   orig,
   forecFun,
   ...,
   h = 12,
   step = 1,
   output = TRUE,
   window = NA,
   parallel = FALSE
)
```

Arguments

a vector, a matrix or a list of time series starting forecasting origin orig forecFun user function that implements forecasting methods rest of inputs to forecFun function . . . h forecasting horizon observations ahead to move the forecasting origin step output output TRUE/FALSE window fixed window width in number of observations (NA for non fixed) parallel run forecasts in parallel

Details

Takes time series and run forecasting methods implemented in function forecFun h steps ahead along the time series y, starting at forecasting origin orig, and moving step observations ahead. Forecasts may be run in parallel by setting parallel to TRUE. A fixed window width may be specified with input window. The output is of dimensions (h, nOrigs, nModels, nSeries)

Value

An array of forecasts of dimensions (horizon x nOrigs x nModels x nSeries)

Author(s)

Diego J. Pedregal

See Also

```
colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, plotSlide, Accuracy, tsDisplay, size
```

```
## Not run: slide(AirPassengers, 100, forecFun)
```

slideAux 45

slideAux slideAux

Description

Auxiliary function run from slide

Usage

```
slideAux(
   y,
   orig,
   forecFun,
   h = 12,
   step = 1,
   output = TRUE,
   graph = TRUE,
   window = NA,
   parallel = FALSE,
   isList = FALSE,
   ...
)
```

Arguments

у	a vector or matrix of time series
orig	starting forecasting origin
forecFun	user function that implements forecasting methods
h	forecasting horizon
step	observations ahead to move the forecasting origin
output	output TRUE/FALSE
graph	fraphical output TRUE/FALSE
window	fixed window width in number of observations (NA for non fixed)
parallel	run forecasts in parallel
isList	whether the input data y is a list or a matrix
	rest of inputs to forecFun function

Value

Auxiliary output of slide function for just one time series

Author(s)

Diego J. Pedregal

46 sumStats

sumStats

sumStats

Description

Summary statistics of a matrix of variables

Usage

```
sumStats(y, decimals = 5)
```

Arguments

y a vector, matrix of time series

decimals number of decimals for table

Details

Position, dispersion, skewness, kurtosis, etc.

Value

Table of values in string matrix

Author(s)

Diego J. Pedregal

See Also

colMedians, rowMedians, tests, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size

```
s <- sumStats(AirPassengers)</pre>
```

tests 47

tests *tests*

Description

Tests on a time series

Usage

```
tests(
   y,
   parts = 1/3,
   nCoef = min(25, length(x)/4),
   nPar = 0,
   s = frequency(y),
   avoid = 16
)
```

Arguments

У	a vector, ts or tsibble object
parts	proportion of sample to include in ratio of variances test
nCoef	number of autocorrelation coefficients to estimate
nPar	number of parameters in a model if y is a residual
S	seasonal period, number of observations per year
avoid	number of observations to avoid at beginning of sample to eliminate initial effects

Details

Multiple tests on a time series, including summary statistics, autocorrelation, Gaussianity and heteroskedasticity,

Value

Table with all test results

Author(s)

Diego J. Pedregal

See Also

```
colMedians, rowMedians, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size
```

48 TETS

Examples

```
tests(AirPassengers)
```

TETS

TETS

Description

Runs all relevant functions for TETS modelling

Usage

```
TETS(
  u = NULL
 model = "???",
  s = frequency(y),
  h = 2 * s,
  criterion = "aicc",
  forIntervals = FALSE,
  bootstrap = FALSE,
  nSimul = 5000,
  verbose = FALSE,
  alphaL = c(0, 1),
  betaL = alphaL,
  gammaL = alphaL,
  phiL = c(0.8, 0.98),
  p0 = -99999,
  Ymin = -Inf,
  Ymax = Inf
)
```

Arguments

у

a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should be supplied compulsorily (see below).

u

a matrix of input time series. If the output wanted to be forecast, matrix u should contain future values for inputs.

mode1

the model to estimate. It is a single string indicating the type of model for each component with one or two letters:

• Error: ? / A

Trend: ?/N/A/AdSeasonal: ?/N/A

S

seasonal period of time series (1 for annual, 4 for quarterly, ...)

TETS 49

h forecast horizon. If the model includes inputs h is not used, the length of u is

used instead.

criterion information criterion for identification ("aic", "bic" or "aicc").

forIntervals estimate forecasting intervals (TRUE / FALSE)
bootstrap use bootstrap simulation for predictive distributions

nSimul number of simulation runs for bootstrap simulation of predictive distributions

verbose intermediate estimation output (TRUE / FALSE)

alphaL constraints limits for alpha parameter
betaL constraints limits for beta parameter
gammaL constraints limits for gamma parameter
phiL constraints limits for phi parameter

p0 initial values for parameter search (alpha, beta, phi, gamma, sigma2) with con-

sraints:

Ymin scalar or vector of time varying censoring values from below Ymax scalar or vector of time varying censoring values from above

0 < alpha < 10 < beta < alpha0 < phi < 1

• 0 < gamma < 1 - alpha

• sigma2 > 0

Details

See help of TETSforecast.

Value

An object of class TETS. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any TETS object as specified in what follows (function TETS fills in all of them at once):

After running TETSforecast:

p Estimated parameters

criteria Values for estimation criteria (LogLik, AIC, BIC, AICc)

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

After running TETSvalidate:

table Estimation and validation table comp Estimated components in matrix form

After running TETScomponents:

comp Estimated components in matrix form

TETScomponents

Author(s)

Diego J. Pedregal

See Also

TETSforecast, TETSvalidate, TETScomponents

Examples

```
y <- log(AirPassengers)
m1 <- TETS(y)
m1 <- TETS(y, model = "MAM")</pre>
```

TETScomponents

TETScomponents

Description

Estimates components of TOBIT TETS models

Usage

```
TETScomponents(m)
```

Arguments

m

an object of type TETS created with TETSforecast

Value

The same input object with the appropriate fields filled in, in particular:

comp

Estimated components in matrix form

Author(s)

```
Diego J. Pedregal
```

See Also

```
TETS, TETSforecast, TETSvalidate
```

```
m1 <- TETS(log(gdp))
m1 <- TETScomponents(m1)</pre>
```

TETSestim 51

TETSestim TETSestim

Description

Estimates and forecasts TOBIT TETS models

Usage

```
TETSestim(m)
```

Arguments

m

an object of type TETS created with TETSforecast

Details

TETSestim estimates and forecasts a time series using an a TOBIT TETS model

Value

The same input object with the appropriate fields filled in, in particular:

p Estimated parameters

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

Author(s)

```
Diego J. Pedregal
```

See Also

```
TETS, TETSforecast, TETSvalidate, TETScomponents
```

```
m1 <- TETSsetup(log(gdp))
m1 <- TETSestim(m1)</pre>
```

52 TETSforecast

TETSforecast

TETSforecast

Description

Estimates and forecasts TOBIT TETS general univariate models

Usage

```
TETSforecast(
 у,
 u = NULL,
 model = "???",
  s = frequency(y),
 h = max(2 * s, 6),
  criterion = "aicc",
  forIntervals = FALSE,
 bootstrap = FALSE,
  nSimul = 5000,
  verbose = FALSE,
  alphaL = c(0, 1),
 betaL = alphaL,
  gammaL = alphaL,
 phiL = c(0.8, 0.98),
 p0 = -99999,
 Ymin = -Inf,
  Ymax = Inf
)
```

Arguments

У	a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should be supplied compulsorily (see below).
u	a matrix of input time series. If the output wanted to be forecast, matrix u should contain future values for inputs.
model	the model to estimate. It is a single string indicating the type of model for each component with one or two letters:
	• Error: ?/A
	 Trend: ? / N / A / Ad Seasonal: ? / N / A
S	seasonal period of time series (1 for annual, 4 for quarterly,)
h	forecast horizon. If the model includes inputs h is not used, the lenght of u is used instead.
criterion	information criterion for identification ("aic", "bic" or "aicc").

TETSforecast 53

forIntervals estimate forecasting intervals (TRUE / FALSE)
bootstrap use bootstrap simulation for predictive distributions

nSimul number of simulation runs for bootstrap simulation of predictive distributions

verbose intermediate estimation output (TRUE / FALSE)

alphaL constraints limits for alpha parameter
betaL constraints limits for beta parameter
gammaL constraints limits for gamma parameter
phiL constraints limits for phi parameter

p0 initial values for parameter search (alpha, beta, phi, gamma, sigma2) with con-

sraints:

Ymin scalar or vector of time varying censoring values from below Ymax scalar or vector of time varying censoring values from above

0 < alpha < 10 < beta < alpha0 < phi < 1

• 0 < gamma < 1 - alpha

• sigma2 > 0

Details

TETSforecast is a function for modelling and forecasting univariate time series with TOBIT ExponenTial Smoothing (TETS) time series models. It sets up the model with a number of control variables that govern the way the rest of functions in the package will work. It also estimates the model parameters by Maximum Likelihood and forecasts the data.

Value

An object of class TETS. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any TETS object as specified in what follows (function TETS fills in all of them at once):

After running TETSforecast:

p Estimated parameters

criteria Values for estimation criteria (LogLik, AIC, BIC, AICc)

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

After running TETSvalidate:

table Estimation and validation table

comp Estimated components in matrix form

After running TETScomponents:

comp Estimated components in matrix form

54 TETSsetup

Author(s)

Diego J. Pedregal

See Also

TETS, TETSvalidate, TETScomponents

Examples

```
y <- log(AirPassengers)
m1 <- TETSforecast(y)
m1 <- TETSforecast(y, model = "A?A")</pre>
```

TETSsetup

TETSsetup

Description

Sets up TOBIT TETS general univariate models

Usage

```
TETSsetup(
 у,
 u = NULL
 model = "???",
 s = frequency(y),
 h = 2 * s,
  criterion = "aicc",
  forIntervals = FALSE,
  bootstrap = FALSE,
  nSimul = 5000,
  verbose = FALSE,
  alphaL = c(0, 1),
  betaL = alphaL,
  gammaL = alphaL,
 phiL = c(0.8, 0.98),
  p0 = -99999,
  Ymin = -Inf,
  Ymax = Inf
)
```

TETSsetup 55

Arguments

y a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input s should

be supplied compulsorily (see below).

a matrix of input time series. If the output wanted to be forecast, matrix u should

contain future values for inputs.

model the model to estimate. It is a single string indicating the type of model for each

component with one or two letters:

• Error: ? / A

Trend: ?/N/A/AdSeasonal: ?/N/A

s seasonal period of time series (1 for annual, 4 for quarterly, ...)

h forecast horizon. If the model includes inputs h is not used, the length of u is

used instead.

criterion information criterion for identification ("aic", "bic" or "aicc").

forIntervals estimate forecasting intervals (TRUE / FALSE)

bootstrap use bootstrap simulation for predictive distributions

nSimul number of simulation runs for bootstrap simulation of predictive distributions

verbose intermediate estimation output (TRUE / FALSE)

alphaL constraints limits for alpha parameter
betaL constraints limits for beta parameter
gammaL constraints limits for gamma parameter

phiL constraints limits for phi parameter

p0 initial values for parameter search (alpha, beta, phi, gamma, sigma2) with con-

sraints:

Ymin scalar or vector of time varying censoring values from below

Ymax scalar or vector of time varying censoring values from above

• 0 < alpha < 1

• 0 < beta < alpha

• 0 < phi < 1

• 0 < gamma < 1 - alpha

• sigma2 > 0

Details

See help of TETSforecast.

56 TETSvalidate

Value

An object of class TETS. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any TETS object as specified in what follows (function TETS fills in all of them at once):

After running TETSforecast:

p Estimated parameters

criteria Values for estimation criteria (LogLik, AIC, BIC, AICc)

yFor Forecasted values of output

yForV Variance of forecasted values of output

ySimul Bootstrap simulations for forecasting distribution evaluation

After running TETSvalidate:

table Estimation and validation table

comp Estimated components in matrix form

After running TETScomponents:

comp Estimated components in matrix form

Author(s)

Diego J. Pedregal

See Also

TETS, TETSforecast, TETSvalidate, TETScomponents

Examples

```
y <- log(AirPassengers)
m1 <- TETSsetup(y)
m1 <- TETSsetup(y, model = "???")
m1 <- TETSsetup(y, model = "?AA")</pre>
```

TETSvalidate

TETSvalidate

Description

Shows a table of estimation and diagnostics results for TOBIT TETS models

Usage

TETSvalidate(m)

tsDisplay 57

Arguments

m an object of type TETS created with TETSforecast

Value

The same input object with the appropriate fields filled in, in particular:

table

Estimation and validation table

Author(s)

Diego J. Pedregal

See Also

```
TETS, TETSforecast, TETSvalidate, TETScomponents
```

Examples

```
m1 <- TETSforecast(log(gdp))
m1 <- TETSvalidate(m1)</pre>
```

tsDisplay

tsDisplay

Description

Displays time series plot with autocorrelation functions

Usage

```
tsDisplay(y, nCoef = 25, nPar = 0, s = NA)
```

Arguments

y a vector, ts or tsibble object nCoef number of autocorrelation coefficients to estimate

nPar number of parameters in a model if y is a residual s seasonal period, number of observations per year

Value

No return value, called for side effects

Author(s)

Diego J. Pedregal

58 UC

See Also

```
colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, size
```

Examples

```
tsDisplay(AirPassengers)
```

UC

UC

Description

Runs all relevant functions for UC modelling

Usage

```
UC(
  у,
  u = NULL,
  model = "?/none/?/?",
  h = 24,
  lambda = 1,
  outlier = 9999,
  tTest = FALSE,
  criterion = "aic",
  periods = NA,
  verbose = FALSE,
  stepwise = FALSE,
  p0 = -9999.9,
  arma = FALSE,
  TVP = NULL,
  trendOptions = "none/rw/llt/dt",
  seasonalOptions = "none/equal/different",
  irregularOptions = "none/arma(0,0)"
)
```

Arguments

u

y a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input periods

should be supplied compulsorily (see below).

a matrix of external regressors included only in the observation equation. (it may be either a numerical vector or a time series object). If the output wanted to be forecast, matrix u should contain future values for inputs.

UC 59

model

tTest

the model to estimate. It is a single string indicating the type of model for each component. It allows two formats "trend/seasonal/irregular" or "trend/cycle/seasonal/irregular". The possibilities available for each component are:

- Trend: ? / none / rw / irw / llt / dt / td;
- Seasonal: ? / none / equal / different;
- Irregular: ? / none / arma(0, 0) / arma(p, q) with p and q integer positive orders;

• Cycles: ? / none / combination of positive or negative numbers. Positive numbers fix the period of the cycle while negative values estimate the period taking as initial condition the absolute value of the period supplied. Several cycles with positive or negative values are possible and if a question mark is included, the model test for the existence of the cycles specified. The following are valid examples with different meanings: 48, 48?, -48, -48?, 48+60, -48+60, -48-60, 48-60, 48+60?, -48+60?, -48-60?, 48-60?.

h forecast horizon. If the model includes inputs h is not used, the lenght of u is

used instead.

lambda Box-Cox transformation lambda, NULL for automatic estimation

outlier critical level of outlier tests. If NA it does not carry out any outlier detection

(default). A positive value indicates the critical minimum t test for outlier detection in any model during identification. Three types of outliers are identified, namely Additive Outliers (AO), Level Shifts (LS) and Slope Change (SC).

numery radditive outliers (rio), hever similar (ES) and slope change (SC).

augmented Dickey Fuller test for unit roots used in stepwise algorithm (TRUE / FALSE). The number of models to search for is reduced, depending on the result

of this test.

criterion information criterion for identification ("aic", "bic" or "aicc").

periods vector of fundamental period and harmonics required.

verbose intermediate results shown about progress of estimation (TRUE / FALSE).

stepwise stepwise identification procedure (TRUE / FALSE).
p0 initial parameter vector for optimisation search.

arma check for arma models for irregular components (TRUE / FALSE).

TVP vector of zeros and ones to indicate TVP parameters.

trendOptions trend models to select amongst (e.g., "rw/llt").

seasonalOptions

seasonal models to select amongst (e.g., "none/differentt").

irregularOptions

irregular models to select amongst (e.g., "none/arma(0,1)").

Details

UC is a function for modelling and forecasting univariate time series according to Unobserved Components models (UC). It sets up the model with a number of control variables that govern the way the rest of functions in the package work. It also estimates the model parameters by Maximum Likelihood, forecasts the data, performs smoothing, estimates model disturbances, estimates components and shows statistical diagnostics. Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.

60 *UC*

Value

An object of class UComp. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any UComp object as specified in what follows (function UC fills in all of them at once):

After running UCforecast or UCestim:

- p: Estimated parameters
- v: Estimated innovations (white noise in correctly specified models)
- yFor: Forecasted values of output
- yForV: Forecasted values +- one standard error
- criteria: Value of criteria for estimated model
- iter: Number of iterations in estimation
- grad: Gradient at estimated parameters
- covp: Covariance matrix of parameters

After running UCvalidate:

• table: Estimation and validation table

After running UCcomponents:

- comp: Estimated components in matrix form
- compV: Estimated components variance in matrix form

After running UCfilter, UCsmooth or UCdisturb:

- yFit: Fitted values of output
- yFitV: Variance of fitted values of output
- a: State estimates
- P: Variance of state estimates
- aFor: Forecasts of states
- PFor: Forecasts of states variances

After running UCdisturb:

- eta: State perturbations estimates
- eps: Observed perturbations estimates

Author(s)

Diego J. Pedregal

See Also

UC, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents, UChp

UCcommand 61

Examples

```
y <- log(AirPassengers)
m1 <- UC(y)
m1 <- UC(y, model = "llt/different/arma(0,0)")</pre>
```

UCcommand

UCcommand

Description

Auxiliar function for UC modeling

Usage

```
UCcommand(command, sys)
```

Arguments

command

Command to execute: "forecast", "validate", "filter", "smooth", "disturb", "com-

ponents", "all"

sys

A UComp object created with UC

Value

The input UComp object with the appropriate fields filled in

Author(s)

Diego J. Pedregal

See Also

```
UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCcomponents, UCdisturb
```

```
cycle <- UChp(USgdp)
plot(cycle)</pre>
```

62 UCcomponents

UCcomponents

UCcomponents

Description

Estimates unobserved components of UC models Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.

Usage

```
UCcomponents(sys)
```

Arguments

sys

an object of type UComp created with UC or UCforecast

Value

The same input object with the appropriate fields filled in, in particular:

- comp: Estimated components in matrix form
- compV: Estimated components variance in matrix form

Author(s)

```
Diego J. Pedregal
```

See Also

```
UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCdisturb, UChp
```

```
m1 <- UC(log(AirPassengers))
m1 <- UCcomponents(m1)</pre>
```

UCdisturb 63

UCdisturb

UCdisturb

Description

Runs the Disturbance Smoother for UC models Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.

Usage

```
UCdisturb(sys)
```

Arguments

sys

an object of type UComp created with UC

Value

The same input object with the appropriate fields filled in, in particular:

- yFit: Fitted values of output
- yFitV: Variance of fitted values of output
- a: State estimates
- P: Variance of state estimates (diagonal of covariance matrices)
- eta: State perturbations estimates
- eps: Observed perturbations estimates

Author(s)

```
Diego J. Pedregal
```

See Also

```
UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCcomponents, UChp
```

```
m1 <- UC(log(AirPassengers))
m1 <- UCdisturb(m1)</pre>
```

64 UCestim

UCestim

UCestim

Description

Estimates and forecasts UC models

Usage

UCestim(sys)

Arguments

sys

an object of type UComp created with UC

Details

UCestim estimates and forecasts a time series using an UC model. The optimization method is a BFGS quasi-Newton algorithm with a backtracking line search using Armijo conditions. Parameter names in output table are the following:

- Damping: Damping factor for DT trend.
- Level: Variance of level disturbance.
- Slope: Variance of slope disturbance.
- Rho(#): Damping factor of cycle #.
- Period(#): Estimated period of cycle #.
- Var(#): Variance of cycle #.
- Seas(#): Seasonal harmonic with period #.
- · Irregular: Variance of irregular component.
- AR(#): AR parameter of lag #.
- MA(#): MA parameter of lag #.
- AO#: Additive outlier in observation #.
- LS#: Level shift outlier in observation #.
- SC#: Slope change outlier in observation #.
- Beta(#): Beta parameter of input #.
- Cnst: Constant.

Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.

UCfilter 65

Value

The same input object with the appropriate fields filled in, in particular:

- p: Estimated transformed parameters
- v: Estimated innovations (white noise in correctly specified models)
- yFor: Forecast values of output
- yForV: Forecasted values variance
- criteria: Value of criteria for estimated model
- covp: Covariance matrix of estimated transformed parameters
- grad: Gradient of log-likelihood at the optimum
- iter: Estimation iterations

Author(s)

```
Diego J. Pedregal
```

See Also

```
UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents, UChp
```

Examples

```
m1 <- UCsetup(log(AirPassengers))
m1 <- UCestim(m1)</pre>
```

UCfilter

UCfilter

Description

Runs the Kalman Filter for UC models Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.

Usage

```
UCfilter(sys)
```

Arguments

sys

an object of type UComp created with UC

UCforecast UCforecast

Value

The same input object with the appropriate fields filled in, in particular:

- yFit: Fitted values of output
- yFitV: Variance of fitted values of output
- a: State estimates
- P: Variance of state estimates (diagonal of covariance matrices)

Author(s)

```
Diego J. Pedregal
```

See Also

```
UC, UCforecast, UCvalidate, UCsmooth, UCdisturb, UCcomponents, UChp
```

Examples

```
m1 <- UC(log(AirPassengers))
m1 <- UCfilter(m1)</pre>
```

UCforecast

UCforecast

Description

Estimates and forecasts UC general univariate models

Usage

```
UCforecast(
 у,
 u = NULL
 model = "?/none/?/?",
 h = 24,
  lambda = 1,
  outlier = 9999,
  tTest = FALSE,
  criterion = "aic",
  periods = NA,
  verbose = FALSE,
  stepwise = FALSE,
  p0 = -9999.9,
  arma = FALSE,
  TVP = NULL,
  trendOptions = "none/rw/llt/dt",
```

UCforecast 67

```
seasonalOptions = "none/equal/different",
  irregularOptions = "none/arma(0,0)"
)
```

Arguments

у

a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input periods should be supplied compulsorily (see below).

u

a matrix of external regressors included only in the observation equation. (it may be either a numerical vector or a time series object). If the output wanted to be forecast, matrix u should contain future values for inputs.

mode1

the model to estimate. It is a single string indicating the type of model for each component. It allows two formats "trend/seasonal/irregular" or "trend/cycle/seasonal/irregular". The possibilities available for each component are:

- Trend: ? / none / rw / irw / llt / dt / td;
- Seasonal: ? / none / equal / different;
- Irregular: ? / none / arma(0, 0) / arma(p, q) with p and q integer positive orders;
- Cycles: ? / none / combination of positive or negative numbers. Positive numbers fix the period of the cycle while negative values estimate the period taking as initial condition the absolute value of the period supplied. Several cycles with positive or negative values are possible and if a question mark is included, the model test for the existence of the cycles specified. The following are valid examples with different meanings: 48, 48?, -48, -48?, 48+60, -48+60, -48-60, 48-60, 48+60?, -48+60?, -48-60?, 48-60?.

h

forecast horizon. If the model includes inputs h is not used, the length of u is used instead.

lambda

Box-Cox transformation lambda, NULL for automatic estimation

outlier

critical level of outlier tests. If NA it does not carry out any outlier detection (default). A positive value indicates the critical minimum t test for outlier detection in any model during identification. Three types of outliers are identified, namely Additive Outliers (AO), Level Shifts (LS) and Slope Change (SC).

tTest

augmented Dickey Fuller test for unit roots used in stepwise algorithm (TRUE / FALSE). The number of models to search for is reduced, depending on the result of this test.

criterion

information criterion for identification ("aic", "bic" or "aicc").

periods

vector of fundamental period and harmonics required.

verbose

intermediate results shown about progress of estimation (TRUE / FALSE).

stepwise

stepwise identification procedure (TRUE / FALSE).

Øq

initial parameter vector for optimisation search.

arma

check for arma models for irregular components (TRUE / FALSE).

TVP

vector of zeros and ones to indicate TVP parameters.

trendOptions

trend models to select amongst (e.g., "rw/llt").

68 UCforecast

```
seasonalOptions seasonal models to select amongst (e.g., "none/differentt"). irregularOptions irregular models to select amongst (e.g., "none/arma(0,1)").
```

Details

UCforecast is a function for modelling and forecasting univariate time series according to Unobserved Components models (UC). It sets up the model with a number of control variables that govern the way the rest of functions in the package work. It also estimates the model parameters by Maximum Likelihood and forecasts the data. Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.

Value

An object of class UComp. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any UComp object as specified in what follows (function UC fills in all of them at once):

After running UCforecast:

- p: Estimated parameters
- v: Estimated innovations (white noise in correctly specified models)
- yFor: Forecasted values of output
- yForV: Forecasted values +- one standard error
- criteria: Value of criteria for estimated model
- iter: Number of iterations in estimation
- grad: Gradient at estimated parameters
- covp: Covariance matrix of parameters

After running UCvalidate:

• table: Estimation and validation table

After running UCcomponents:

- comp: Estimated components in matrix form
- compV: Estimated components variance in matrix form

After running UCfilter, UCsmooth or UCdisturb:

- yFit: Fitted values of output
- yFitV: Variance of fitted values of output
- a: State estimates
- P: Variance of state estimates
- aFor: Forecasts of states
- PFor: Forecasts of states variances

After running UCdisturb:

- eta: State perturbations estimates
- eps: Observed perturbations estimates

UChp 69

Author(s)

Diego J. Pedregal

See Also

UC, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents, UChp

Examples

```
y <- log(AirPassengers)
m1 <- UCforecast(y)
m1 <- UCforecast(y, model = "llt/equal/arma(0,0)")</pre>
```

UChp

UChp

Description

Hodrick-Prescott filter estimation

Usage

```
UChp(y, lambda = 1600)
```

Arguments

y A time series object

lambda Smoothing constant (default: 1600)

Value

The cycle estimation

Author(s)

Diego J. Pedregal

See Also

UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCcomponents, UCdisturb

```
cycle <- UChp(USgdp)
plot(cycle)</pre>
```

70 UComp

UComp UComp

Description

Package for time series modelling and forecasting of times series models inspired on different sources:

Details

- Unobserved Components models due to A.C. Harvey (Basic Structural Model: BSM), enhanced with automatic identification tools by Diego J. Pedregal.
- ExponenTial Smoothing by R.J. Hyndman and colaborators.
- · ARIMA models by V. Gómez and A. Maravall
- Tobit ETS models by Pedregal, Trapero and Holgado

The package is designed for automatic identification among a wide range of possible models. The models may include exogenous variables. ARMA irregular components and automatic detection of outliers in some instances.

References

Harvey AC (1989). Forecasting, Structural Time Series Models and the Kalman Filter. Cam-bridge University Press.

de Jong, P & Penzer, J (1998). Diagnosing Shocks in Time Series, Journal of the American Statistical Association, 93, 442, 796-806.

Pedregal, DJ, & Young, PC (2002). Statistical approaches to modelling and forecasting time series. In M. Clements, & D. Hendry (Eds.), Companion to economic forecasting (pp. 69–104). Oxford: Blackwell Publishers.

Durbin J, Koopman SJ (2012). Time Series Analysis by State Space Methods. 38. Oxford University Press.

Proietti T and Luati A (2013). Maximum likelihood estimation of time series models: the Kalman filter and beyond, in Handbook of research methods and applications in empirical macroeconomics, ed. Nigar Hashimzade and Michael Thornton, E. Elgar, UK.

Hyndman RJ, Koehler AB, Ord JK and Snyder RD (2008), Forecasting with exponential smoothing, The State Sapce approach, Berlin, Springer-Verlag.

Gómez V and Maravall, A (2000), Automatic methods for univariate series. In Peña, D., Tiao, G.C. and Tsay R.S., A course in time series analyis. Wiley.

Trapero JR, Holgado E, Pedregal DJ (2024), Demand forecasting under lost sales stock policies, International Journal of Forecasting, 40, 1055-1068.

Maintainer

Diego J. Pedregal

UCsetup 71

Author(s)

Diego J. Pedregal

UCsetup

UCsetup

Description

Sets up UC general univariate models

Usage

```
UCsetup(
  у,
  u = NULL,
  model = "?/none/?/?",
  h = 24,
  lambda = 1,
  outlier = 9999,
  tTest = FALSE,
  criterion = "aic",
  periods = NA,
  verbose = FALSE,
  stepwise = FALSE,
  p0 = -9999.9
  arma = FALSE,
  TVP = NULL,
  trendOptions = "none/rw/llt/dt",
  seasonalOptions = "none/equal/different",
  irregularOptions = "none/arma(0,0)"
)
```

Arguments

У

a time series to forecast (it may be either a numerical vector or a time series object). This is the only input required. If a vector, the additional input periods should be supplied compulsorily (see below).

u

a matrix of external regressors included only in the observation equation. (it may be either a numerical vector or a time series object). If the output wanted to be forecast, matrix u should contain future values for inputs.

model

the model to estimate. It is a single string indicating the type of model for each component. It allows two formats "trend/seasonal/irregular" or "trend/cycle/seasonal/irregular". The possibilities available for each component are:

- Trend: ? / none / rw / irw / llt / dt / td;
- Seasonal: ? / none / equal / different;

72 UCsetup

• Irregular: ? / none / arma(0, 0) / arma(p, q) - with p and q integer positive orders;

• Cycles: ? / none / combination of positive or negative numbers. Positive numbers fix the period of the cycle while negative values estimate the period taking as initial condition the absolute value of the period supplied. Several cycles with positive or negative values are possible and if a question mark is included, the model test for the existence of the cycles specified. The following are valid examples with different meanings: 48, 48?, -48, -48?, 48+60, -48+60, -48-60, 48-60, 48+60?, -48+60?, -48-60?, 48-60?.

h forecast horizon. If the model includes inputs h is not used, the lenght of u is

used instead.

lambda Box-Cox transformation lambda, NULL for automatic estimation

outlier critical level of outlier tests. If NA it does not carry out any outlier detection

(default). A positive value indicates the critical minimum t test for outlier detection in any model during identification. Three types of outliers are identified, namely Additive Outliers (AO), Level Shifts (LS) and Slope Change (SC).

tTest augmented Dickey Fuller test for unit roots used in stepwise algorithm (TRUE /

FALSE). The number of models to search for is reduced, depending on the result

of this test.

criterion information criterion for identification ("aic", "bic" or "aicc").

periods vector of fundamental period and harmonics required.

verbose intermediate results shown about progress of estimation (TRUE / FALSE).

stepwise stepwise identification procedure (TRUE / FALSE).
p0 initial parameter vector for optimisation search.

arma check for arma models for irregular components (TRUE / FALSE).

TVP vector of zeros and ones to indicate TVP parameters.

trendOptions trend models to select amongst (e.g., "rw/llt").

seasonalOptions

seasonal models to select amongst (e.g., "none/differentt").

irregularOptions

irregular models to select amongst (e.g., "none/arma(0,1)").

Details

See help of UC.

Value

An object of class UComp. It is a list with fields including all the inputs and the fields listed below as outputs. All the functions in this package fill in part of the fields of any UComp object as specified in what follows (function UC fills in all of them at once):

After running UCforecast:

• p: Estimated parameters

UCsetup 73

- v: Estimated innovations (white noise in correctly specified models)
- yFor: Forecasted values of output
- yForV: Variance of forecasts
- criteria: Value of criteria for estimated model
- iter: Number of iterations in estimation
- grad: Gradient at estimated parameters
- covp: Covariance matrix of parameters

After running UCvalidate:

• table: Estimation and validation table

After running UCcomponents:

- comp: Estimated components in matrix form
- compV: Estimated components variance in matrix form

After running UCfilter, UCsmooth or UCdisturb:

- yFit: Fitted values of output
- yFitV: Estimated fitted values variance
- a: State estimates
- P: Variance of state estimates
- aFor: Forecasts of states
- PFor: Forecasts of states variances

After running UCdisturb:

- eta: State perturbations estimates
- eps: Observed perturbations estimates

Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.

Author(s)

Diego J. Pedregal

See Also

UC, UCforecast, UCvalidate, UCfilter, UCsmooth, UCdisturb, UCcomponents, UChp

```
y <- log(AirPassengers)
m1 <- UCsetup(y)
m1 <- UCsetup(y, outlier = 4)
m1 <- UCsetup(y, model = "llt/equal/arma(0,0)")
m1 <- UCsetup(y, model = "?/?/?/?")
m1 <- UCsetup(y, model = "llt/?/equal/?", outlier = 4)</pre>
```

74 UCsmooth

UCsmooth

UCsmooth

Description

Runs the Fixed Interval Smoother for UC models Standard methods applicable to UComp objects are print, summary, plot, fitted, residuals, logLik, AIC, BIC, coef, predict, tsdiag.

Usage

```
UCsmooth(sys)
```

Arguments

sys

an object of type UComp created with UC

Value

The same input object with the appropriate fields filled in, in particular:

- yFit: Fitted values of output
- yFitV: Variance of fitted values of output
- a: State estimates
- P: Variance of state estimates (diagonal of covariance matrices)

Author(s)

```
Diego J. Pedregal
```

See Also

```
UC, UCforecast, UCvalidate, UCfilter, UCdisturb, UCcomponents, UChp
```

```
m1 <- UC(log(AirPassengers))
m1 <- UCsmooth(m1)</pre>
```

UCvalidate 75

UCvalidate UCvalidate

Description

Shows a table of estimation and diagnostics results for UC models. Equivalent to print or summary. The table shows information in four sections: Firstly, information about the model estimated, the relevant periods of the seasonal component included, and further information about convergence. Secondly, parameters with their names are provided, the asymptotic standard errors, the ratio of the two, and the gradient at the optimum. One asterisk indicates concentrated-out parameters and two asterisks signals parameters constrained during estimation. Thirdly, information criteria and the value of the log-likelihood. Finally, diagnostic statistics about innovations, namely, the Ljung-Box Q test of absense of autocorrelation statistic for several lags, the Jarque-Bera gaussianity test, and a standard ratio of variances test.

Usage

```
UCvalidate(sys, printScreen = TRUE)
```

Arguments

sys an object of type UComp created with UC printScreen print to screen or just return output table

Value

The same input object with the appropriate fields filled in, in particular:

• table: Estimation and validation table

Author(s)

```
Diego J. Pedregal
```

See Also

```
UC, UCforecast, UCfilter, UCsmooth, UCdisturb, UCcomponents, UChp
```

```
m1 <- UC(log(gdp))
m1 <- UCvalidate(m1)</pre>
```

76 varTest

USgdp

US GDP

Description

Seasonally adjusted quarterly US real gross domestic product (USgdp).

Usage

USgdp

Format

Time series objects.

Quarterly data from 1962 to 2019

Value

No return value, called for side effects

Source

USgdp

Examples

USgdp

_		
varT	es:	H

varTest

Description

Ratio of variances test

Usage

```
varTest(y, parts = 1/3)
```

Arguments

y a vector, ts or tsibble object

parts portion of sample to estimate variances

zplane 77

Value

Table with test results

Author(s)

Diego J. Pedregal

See Also

colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, conv, armaFilter, dif, roots, zplane, acft, slide, plotSlide, Accuracy, tsDisplay, size

Examples

```
varTest(AirPassengers)
```

zplane

zplane

Description

Real-imaginary plane to show roots of digital filters (ARMA)

Usage

```
zplane(MApoly = 1, ARpoly = 1)
```

Arguments

MApoly coefficients of numerator polynomial in descending order

ARpoly coefficients of denominator polynomial in descending order

Details

Shows the real-imaginary plane to show zeros (roots of numerator or MA polynomial) and poles (roots of denominator of AR polynomial). Unit roots and real vs imaginary roots can be seen by eye

Value

No return value, called for side effects

Author(s)

Diego J. Pedregal

78 zplane

See Also

colMedians, rowMedians, tests, sumStats, gaussTest, ident, cusum, varTest, conv, armaFilter, dif, roots, acft, slide, plotSlide, Accuracy, tsDisplay, size

```
zplane(c(1, -2, 1), c(1, -0.8))
```

Index

* datasets	ETSestim, 24
airpas, 6	ETSforecast, 23, 24, 25, 29, 30
ch4, 17	ETSsetup, 27
gdp, 31	ETSvalidate, 23, 24, 27, 29, 29, 30
ipi, 35	extract, 30
OECDgdp, 36	
sales, 42	gaussTest, 4, 14, 18–20, 31, 33, 38, 41–44,
USgdp, 76	46, 47, 58, 77, 78
33gap, 73	gdp, 31
Accuracy, 3, 4, 14, 18–20, 31, 33, 38, 41–44,	getp0, 32
46, 47, 58, 77, 78	getp0, 32
acft, 4, 4, 14, 18–20, 31, 33, 38, 41–44, 46,	ident, 4, 14, 18-20, 31, 33, 38, 41-44, 46, 47,
47, 58, 77, 78	58, 77, 78
AIC.UComp, 5	inv.box.cox, 16, 34
airpas, 6	invBoxCox, 34
ARIMA, 6, 10, 12, 13	
ARIMAestim, 8	ipi, 35
ARIMAforecast, 8, 9, 12, 13	OECDgdp, 36
ARIMAsetup, 11	oecogup, 30
ARIMAvalidate, 8, 10, 12, 13, 13	nlothofDoof 26
arma2tsi, 13	plotAcfPacf, 36
armaFilter, 4, 14, 18–20, 31, 33, 38, 41–44,	plotBar, 37
46, 47, 58, 77, 78	plotSlide, 4, 14, 18–20, 31, 33, 38, 41–44,
auxInvBoxCox, 15	46, 47, 58, 77, 78
auxilivboxcox, 13	plus_one, 39
BIC.UComp, 15	predict.UComp, 39
box.cox, 16, 34	
56X. CGX, 10, 57	removeNaNs, 40
ch4, 17	roots, 4, 14, 18–20, 31, 33, 38, 41, 42–44, 46,
colMedians, 4, 14, 17, 18-20, 31, 33, 38,	47, 58, 77, 78
41–44, 46, 47, 58, 77, 78	rowMedians, 4, 14, 18-20, 31, 33, 38, 41, 41,
conv, 4, 14, 18, 18, 19, 20, 31, 33, 38, 41–44,	43, 44, 46, 47, 58, 77, 78
46, 47, 58, 77, 78	
cusum, 4, 14, 18, 19, 20, 31, 33, 38, 41–44, 46,	sales, 42
47, 58, 77, 78	size, 4, 14, 18–20, 31, 33, 38, 41, 42, 43, 44,
,,,,,,,,	46, 47, 58, 77, 78
dif, 4, 14, 18, 19, 20, 31, 33, 38, 41–44, 46,	slide, 4, 14, 18–20, 31, 33, 38, 41–43, 43, 46,
47, 58, 77, 78	47, 58, 77, 78
	slideAux, 45
ETS, 21, 23, 24, 27, 29, 30	sumStats, 4, 14, 18-20, 31, 33, 38, 41-44, 46,
ETScomponents, 23, 23, 24, 27, 29, 30	47, 58, 77, 78

80 INDEX

```
tests, 4, 14, 18-20, 31, 33, 38, 41-44, 46, 47,
         58, 77, 78
TETS, 48, 50, 51, 54, 56, 57
TETScomponents, 50, 50, 51, 54, 56, 57
TETSestim, 51
TETSforecast, 50, 51, 52, 56, 57
TETSsetup, 54
TETSvalidate, 50, 51, 54, 56, 56, 57
tsDisplay, 4, 14, 18-20, 31, 33, 38, 41-44,
         46, 47, 57, 77, 78
UC, 5, 16, 32, 34, 40, 58, 60–63, 65, 66, 69,
         73-75
UCcommand, 61
UCcomponents, 5, 16, 32, 34, 40, 60, 61, 62,
         63, 65, 66, 69, 73–75
UCdisturb, 5, 16, 32, 34, 40, 60-62, 63, 65,
         66, 69, 73–75
UCestim, 64
UCfilter, 5, 16, 32, 34, 40, 60-63, 65, 65, 69,
         73–75
UCforecast, 5, 16, 32, 34, 40, 61-63, 65, 66,
         66, 69, 73–75
UChp, 32, 60, 62, 63, 65, 66, 69, 69, 73–75
UComp, 70
UComp-package (UComp), 70
UCsetup, 71
UCsmooth, 5, 16, 32, 34, 40, 60–63, 65, 66, 69,
          73, 74, 75
UCvalidate, 5, 16, 32, 34, 40, 60–63, 65, 66,
         69, 73, 74, 75
USgdp, 76
varTest, 4, 14, 18-20, 31, 33, 38, 41-44, 46,
         47, 58, 76, 78
zplane, 4, 14, 18-20, 31, 33, 38, 41-44, 46,
         47, 58, 77, 77
```