Package ‘animint2’

October 22, 2025

Title Animated Interactive Grammar of Graphics
Version 2025.10.17

URL https://animint.github.io/animint2/

BugReports https://github.com/animint/animint2/issues

Description Functions are provided for defining animated,
interactive data visualizations in R code, and rendering
on a web page. The 2018 Journal of Computational and
Graphical Statistics paper,
<doi:10.1080/10618600.2018.1513367>
describes the concepts implemented.

Depends R (>=3.5.0)

Imports servr, digest, RISONIO, grid, gtable (>=0.1.1), MASS, plyr
(>=1.7.1), reshape2, scales (>= 0.4.1), stats, knitr (>=
1.5.33), data.table (>= 1.9.8), methods

Suggests gert, gitcreds, gh, sp, gistr (>=0.2), shiny, covr,
RColorBrewer, htmltools, rmarkdown, testthat, XML, devtools,
httr, maps, ggplot2movies, hexbin, Hmisc, lattice, mapproj,
mgcv, nlme, rpart, svglite, ggplot2, chromote, magick

License GPL-3
Encoding UTF-8
LazyData true

Collate 'gganimintproto.r' 'aaa-.r' 'aes-calculated.r’
'aes-colour-fill-alpha.r' 'aes-group-order.r'
'aes-linetype-size-shape.r' 'aes-position.r' 'utilities.r'
'aes.r' 'legend-draw.r' 'geom-.r' 'annotation-custom.r'
'annotation-logticks.r' 'geom-polygon.r' 'geom-map.r'
'annotation-map.r' 'annotation.r' 'autoplot.r' '‘bench.r'
'bin.R' 'coord-.r' 'coord-cartesian-.r' 'coord-fixed.r'
'coord-flip.r' 'coord-map.r' 'coord-munch.r' 'coord-polar.r'
‘coord-quickmap.R' 'coord-transform.r' 'data.R' 'facet-.r'
'facet-grid-.r' 'facet-labels.r' 'facet-layout.r'
'facet-locate.r' 'facet-null.r' 'facet-viewports.r'

https://animint.github.io/animint2/
https://github.com/animint/animint2/issues
https://doi.org/10.1080/10618600.2018.1513367

'facet-wrap.r' 'fortify-Im.r' 'fortify-map.r’
'fortify-spatial.r' 'fortify.r' 'stat-.r' 'geom-abline.r'
'geom-rect.r' 'geom-bar.r' 'geom-bin2d.r' 'geom-blank.r'
'geom-path.r' 'geom-contour.r' 'geom-count.r' 'geom-crossbar.r'
'geom-segment.r' 'geom-curve.r' 'geom-defaults.r'
'geom-ribbon.r' 'geom-density.r' 'geom-density2d.r'
'geom-dotplot.r' 'geom-errorbar.r' 'geom-errorbarh.r'
'geom-freqpoly.r' 'geom-hex.r' 'geom-histogram.r'
'gseom-hline.r' 'geom-jitter.r' 'geom-label-aligned.R'
'geom-label.R' 'geom-linerange.r' 'geom-point.r'
'geom-pointrange.r' 'geom-rug.r' 'geom-smooth.r' 'geom-spoke.r'
'geom-text.r' 'geom-tile.r' 'geom-violin.r' 'geom-vline.r'
'ggplot2.r' 'grob-absolute.r' 'grob-dotstack.r' 'grob-null.r'
'erouping.r' 'guide-colorbar.r' 'guide-legend.r' 'guides-.r'
'guides-axis.r' 'guides-grid.r' 'hexbin.R' 'labels.r' 'layer.r’
'limits.r' 'margins.R' 'panel.r' ‘plot-build.r'
'plot-construction.r' 'plot-last.r' 'plot.r' "position-.r'
'position-collide.r' 'position-dodge.r' 'position-fill.1'
'position-identity.r' 'position-jitter.r’
'position-jitterdodge.R' 'position-nudge.R' 'position-stack.r'
'quick-plot.r' 'range.r' 'save.r' 'scale-.r' 'scale-alpha.r'
'scale-brewer.r' 'scale-continuous.r' 'scale-date.r'
'scale-discrete-.r' 'scale-gradient.r' 'scale-grey.r'
'scale-hue.r' 'scale-identity.r' 'scale-linetype.r'
'scale-manual.r' 'scale-shape.r' 'scale-size.r' 'scale-type.R'
'scales-.r" 'stat-bin.r' 'stat-bin2d.r' 'stat-bindot.r'
'stat-binhex.r' 'stat-contour.r' 'stat-count.r'
'stat-density-2d.r' 'stat-density.r' 'stat-ecdf.r'
'stat-ellipse.R' 'stat-function.r' 'stat-identity.r'

'stat-qq.r' 'stat-smooth-methods.r' 'stat-smooth.r’
'stat-sum.r' 'stat-summary-2d.r' 'stat-summary-bin.R’'
'stat-summary-hex.r' 'stat-summary.r' 'stat-unique.r'
'stat-ydensity.r' 'summary.r' 'theme-defaults.r'
'theme-elements.r' 'theme.r' 'translate-qplot-ggplot.r'
'translate-gplot-lattice.r' 'utilities-break.r’

'utilities-grid.r' 'utilities-help.r' 'utilities-matrix.r'
'utilities-resolution.r' 'utilities-table.r' 'uu_zxx.r'
'wu_zzz.r' 'z_animint.R' 'z_animintHelpers.R' 'z_facets.R'
'z_geoms.R' 'z_helperFunctions.R' 'z_knitr.R' 'z_pages.R'
'z_print.R' 'z_scales.R' 'z_theme_animint.R’
'z_transformShape.R'

RoxygenNote 7.3.3
Config/Needs/website tidyverse/tidytemplate
NeedsCompilation no

Author Toby Hocking [aut, cre] (Original animint code),
Biplab Sutradhar [ctb] (Updated animist.js to use class for source
links),

Contents 3
Hadley Wickham [aut] (Forked ggplot2 code),
Winston Chang [aut] (Forked ggplot2 code),
RStudio [cph] (Forked ggplot2 code),
Nicholas Lewin-Koh [aut] (hexGrob),
Martin Maechler [aut] (hexGrob),
Randall Prium [aut] (cut_width),
Susan VanderPlas [aut] (Animint GSOC 2013),
Carson Sievert [aut] (Animint GSOC 2014),
Kevin Ferris [aut] (Animint GSOC 2015),
Jun Cai [aut] (Animint GSOC 2015),
Faizan Khan [aut] (Animint GSOC 2016-2017),
Vivek Kumar [aut] (Animint GSOC 2018),
Himanshu Singh [aut] (Animint2 GSoC 2020),
Yufan Fei [aut] (Animint2 GSoC 2022),
Jocelyne Chen [aut] (Animint2 GSoC 2023),
Siddhesh Deodhar [aut] (Animint2 GSoC 2024),
Suhaani Agarwal [aut] (Animint2 GSoC 2025),
Gaurav Chaudhary [ctb] (Remove unused css.file parameter)
Maintainer Toby Hocking <toby.hocking@r-project.org>
Repository CRAN
Date/Publication 2025-10-22 17:20:02 UTC
Contents
+.2EANIMINt L e e e e e e e e e e e e 7
addShowSelectedForLegend 9
addSSandCSasAesthetics 9
add_theme e 10
ABS + . e e e e e e e e e e e e e 10
AES_ © o e e e e e e e 11
aes_colour_fill_alpha 12
aes_linetype_size_shapeo 13
ABS_POSILION o v e e e e 14
animint e e 15
animint2dir L e e e e e 18
animint2pageso e e e e 20
animintOutput L e 21
ANNOLALE ot o e 22
annotation_CuStOM v v vt e e e e e e e e e e e e e 23
annotation_logticks L L 24
annotation_MAP . . .« . v v v v v e e e e e e e e e e e e e e e e e 26
as.list.gganimintproto e e e 27
as_labeller e 27
autoploto e 28
borders e e e e e e 29
breakpoints 30

calc_element e 31

Contents

checkAnimationTimeVar 31
checkExtraParams e e 32
checkForSSandCSasAesthetics 32
checkPlotForAnimintExtensions 33
checkPlotList e e e 33
checkSingleShowSelectedValue 0oL 34
coord_carteSian e e e e e 34
coord_fixed e e 35
coord_flip e 36
COOrd_MAap o o e 37
coord_polar e 39
COOTA_LTansS v vt i e e e e e e e e e e e e e e e e e e e 40
cut_interval L s, 42
diamonds e e e e 43
ECONOIMICS & « & v v v v e o e 44
element blank L L e 44
element_line e 45
element_rect e 45
element_text L e e e e e e e e e e e e e 46
expand_limits 47
facet_grid 47
facet_null e e 50
facet_wrap e 51
faithfuld e 53
FluView e 53
format.gganimintproto Lol 54
fortify e 54
fortifylm 55
fortifymap e 56
fortify.sp e 57
generation.Joci L 58
geom_abline e e e e e 59
geom_bar e 61
geom_bin2d 64
geom_blank 66
GEOM_CONLOUL . .« . v v v v v et e e e e e e e e e e e e e e e e e e 67
GEOM_COUNL v v v v v ittt e 69
GEOM_CroSSbar e e e 72
geOmM_density e e e e e e e e e 75
geom_density_2d L e e 77
geom_dotplot e 80
geom_errorbarh oL 83
geom_freqpoly e 85
geom_heX e e 89
GEOM_JIIET o o o e e e e e e 91
geom_label e 93
geom_label_aligned L 97

GEOML_IMAD « + « ¢ v v v e 99

Contents

5
geom_path. L e e e e 101
GEOM_POINt v it it e e e e e e e e e e e e e e e e 105
geom_polygon 108
GEOML_TECE .« . . v v v v e et e e e e e e e e e 110
geom_ribbon 112
GEOML_TUZ « . v v v v e et e et e e e e e e e e e e e e e e e e 114
GEOM_SEZMENL . . . o v v e v i e e e e e e e e e e e e e e 116
geom_smooth e e e 118
gEOM_SPOKE e e e 122
geom_tallrect L 124
geom_violin e 125
geOM_WIdErect e e e e e 129
getCommonChunk L 130
getLayerName L 130
getLayerParams L e 131
getlegend 131
getLegendList 132
getTextSize e e e 132
getUniqueAxisLabels 133
SEANIMINIPIOtO o o i i e e e e e e 133
geplot . . L 134
GESAVE . v v vt e e e e e e e e e e e e e e e e 135
ggtheme 137
graphical-units 138
SUIdES e e 139
guide_colourbar oL 140
guide_legend 143
hmisc 147
INIEZ . . o o v o e e e e e e e e e e 148
1S.gganimintproto L. L. e 148
isrel . oL L 149
ISIED L e e e 149
istheme L e 150
issueSelectorWarnings 150
knit_printanimint L. oL 151
labeller e 151
labellers e e 153
label_bquote e 155
labs . . . e 156
last_plot L e 157
layer e 158
Lims . . . e 159
luv_colours e 160
make bar e 160
make_tallrect e 161
make_tallrect_or_widerect e 162
make_text e e e e e 163

make WIderect e e 163

Contents

map_data e e e e e 164
MArgIN . . . oot e e e e e e e e e e e e e e 165
MEAN_SE . . v v v v v e e e e e e e e e e 165
MEIZE_TECUISE « . & o v v e e e e e et e e e e e e e e e e e e e e 166
MIAWESE o . e e e e e e e e e e e e e e e e 166
1010 167
msleepo 168
newEnvironment L. L L e e e e 169
parsePlot e 169
position_dodge 170
position_fill 171
position_identity L. e e 172
POSIION_JILLer o e e 172
position_jitterdodge Lo 173
position_nudge e e e e 174
presidential e e 174
printanimint. e e e e e e 175
print.gganimintplot e e 175
print.gganimintproto L. . oL e e e e e e e e e 176
pttolines e 176
gPIot . . . e 177
rel .o e e 179
renderAnimint e e e e e e e e 180
resolution e 180
saveChunks e e e 181
scale_alpha 181
scale_colour_brewer e 182
scale_colour_gradient L. 184
scale_Colour_grey oo e e e e e e e e 187
scale_colour_hue 188
scale_continuouS e e e 190
scale_date e e 193
scale_identity L e 195
scale_linetype e 197
scale_manual e e 197
scale_shape L 198
scale_SIZEe e e 199
scale_size animint e e e 201
scale_X_diSCIete e e 202
Seals L e e e e 203
selectSSandCS L 203
setPlotSizes e e e 204
SPIt_TeCUrsive L e e e e 204
stat_ecdf L e, 205
stat_ellipse L 206
stat_function L e e e 208
stat_identity oL e e e e 210

+.gganimint 7

stat_summary_2d L . e e e e e e e 213
stat_summary_bino L 216
StAt_UNIqUE L e e e e e e e e e e 218
SWIICh_AXES o o e e e e e 219
theme e e e 220
theme _animint e e e e 224
theme_update L e e 225
toRGB e e e 226
transform_shape 227
translate_qgplot_ggplot 227
translate_qgplot_lattice 229
txhousing 230
update_gallery L. e 231
update_geom_defaults 231
update_labels 232
UStornadoes e e e 233
varied.chunk L e e e 234
WorldBank 235
worldPop 236
Index 237
+.gganimint Add a new component to a ggplot or theme object.
Description

This operator allows you to add objects to a ggplot or theme object.

Usage
S3 method for class 'gganimint'
el + e2
el %+% e2
el %+treplace% e2
Arguments
el An object of class ggplot or theme
e2 A component to add to e1

8 +.gganimint

Details

If the first object is an object of class ggplot, you can add the following types of objects, and it will
return a modified ggplot object.

* data.frame: replace current data.frame (must use %+%)

* uneval: replace current aesthetics

e layer: add new layer

* theme: update plot theme

* scale: replace current scale

* coord: override current coordinate system

» facet: override current coordinate faceting
If the first object is an object of class theme, you can add another theme object. This will return a
modified theme object.
For theme objects, the + operator and the %+replace% can be used to modify elements in themes.

The + operator updates the elements of el that differ from elements specified (not NULL) in e2.
Thus this operator can be used to incrementally add or modify attributes of a ggplot theme.

In contrast, the %+replace% operator replaces the entire element; any element of a theme not spec-
ified in e2 will not be present in the resulting theme (i.e. NULL). Thus this operator can be used to
overwrite an entire theme.

See Also

theme

Examples

Adding objects to a ggplot object
p <- ggplot(mtcars, aes(wt, mpg, colour = disp)) +
geom_point()

+ coord_cartesian(ylim = c(0, 40))
+ scale_colour_continuous(breaks = c(100, 300))
+ guides(colour = "colourbar™")

T T T T

ETS

Use a different data frame
m <- mtcars[1:10,]
p %t% m

Adding objects to a theme object

Compare these results of adding theme objects to other theme objects

add_el <- theme_grey() + theme(text = element_text(family = "Times"))

rep_el <- theme_grey() %treplace% theme(text = element_text(family = "Times"))

add_el$text
rep_el$text

addShowSelectedForLegend 9

addShowSelectedForlLegend
Add a showSelected aesthetic if legend is specified

Description

Add a showSelected aesthetic if legend is specified

Usage
addShowSelectedForLegend(meta, legend, L)

Arguments
meta meta object with all information
legend legend to scan for showSelected
L layer of the plot

Value

L : Layer with additional mapping to new aesthetic

addSSandCSasAesthetics
Add the showSelected/clickSelects params to the aesthetics mapping

Description

Add the showSelected/clickSelects params to the aesthetics mapping

Usage

addSSandCSasAesthetics(aesthetics, extra_params)

Arguments

aesthetics list. Original aesthetics mapping of the layer

extra_params named list containing the details of showSelected and clickSelects values of the
layer

Details

Used before calling ggplot_build in parsePlot and while checking animint extensions to raise error

Value

Modified aesthetics list with showSelected/clickSelects params added

10 aes

add_theme Modify properties of an element in a theme object

Description

Modify properties of an element in a theme object

Usage

add_theme(t1, t2, t2name)

Arguments
t1 A theme object
t2 A theme object that is to be added to t1
t2name A name of the t2 object. This is used for printing informative error messages.
aes Define aesthetic mappings.
Description

Generate aesthetic mappings that describe how variables in the data are mapped to visual properties
(aesthetics) of geoms. This function also standardise aesthetic names by performs partial name
matching, converting color to colour, and old style R names to ggplot names (eg. pch to shape, cex

to size)
Usage
aes(x, y, ...)
Arguments
Xy Ys onn List of name value pairs giving aesthetics to map to variables. The names for x
and y aesthetics can be omitted (because they are so common); all other aesthet-
ics must be named.
See Also

See aes_g/aes_string for standard evaluation versions of aes.

See aes_colour_fill_alpha, aes_linetype_size_shape and aes_position for more specific
examples with different aesthetics.

aes_ 11

Examples

aes(x = mpg, y = wt)
aes(mpg, wt)

You can also map aesthetics to functions of variables
aes(x =mpg * 2, y = wt / cyl)

Aesthetic names are automatically standardised
aes(col = x)

aes(fg = x)

aes(color = x)

aes(colour = x)

aes is almost always used with ggplot() or a layer
ggplot(mpg, aes(displ, hwy)) + geom_point()
ggplot(mpg) + geom_point(aes(displ, hwy))

Aesthetics supplied to ggplot() are used as defaults for every layer
you can override them, or supply different aesthetics for each layer

aes_ Define aesthetic mappings from strings, or quoted calls and formulas.

Description

Aesthetic mappings describe how variables in the data are mapped to visual properties (aesthetics)
of geoms. aes uses non-standard evaluation to capture the variable names. aes_ and aes_string
require you to explicitly quote the inputs either with "" for aes_string(), or with quote or ~ for
aes_(). (aes_qis an alias to aes_)

Usage

aes_(X, y, ...)

aes_string(x, vy, ...)
aes_q(x, vy, ...)

Arguments

X, Yy onn List of name value pairs. Elements must be either quoted calls, strings, one-
sided formulas or constants.
Details

It’s better to use aes_q(), because there’s no easy way to create the equivalent to aes(colour =
"my colour™) or aes{x = “X$1° } with aes_string().

12 aes_colour_fill_alpha

aes_string and aes_ are particularly useful when writing functions that create plots because you
can use strings or quoted names/calls to define the aesthetic mappings, rather than having to use
substitute to generate a call to aes().

See Also

aes

Examples

Three ways of generating the same aesthetics
aes(mpg, wt, col = cyl)

aes_(quote(mpg), quote(wt), col = quote(cyl))
aes_(~mpg, ~wt, col = ~cyl)

aes_string("mpg"”, "wt"”, col = "cyl")

You can't easily mimic these calls with aes_string

aes("$100°, colour = "smooth")

aes_(~ “$100°, colour = "smooth")

Ok, you can, but it requires a _lot_ of quotes
aes_string("~$100°", colour = '"smooth"')

Convert strings to names with as.name
var <- "cyl”

aes(col = x)

aes_(col = as.name(var))

aes_colour_fill_alpha Colour related aesthetics: colour, fill and alpha

Description

This page demonstrates the usage of a sub-group of aesthetics; colour, fill and alpha.

Examples
Bar chart example
c <- ggplot(mtcars, aes(factor(cyl)))
Default plotting
c + geom_bar()
To change the interior colouring use fill aesthetic
c + geom_bar(fill = "red")
Compare with the colour aesthetic which changes just the bar outline
c + geom_bar(colour = "red")
Combining both, you can see the changes more clearly
c + geom_bar(fill = "white"”, colour = "red")
The aesthetic fill also takes different colouring scales

setting fill equal to a factor variable uses a discrete colour scale

aes_linetype_size_shape

3 3 3 =

T T T T T =

#
#

<- ggplot(mtcars, aes(factor(cyl), fill = factor(vs)))
+ geom_bar ()

Fill aesthetic can also be used with a continuous variable
<- ggplot(faithfuld, aes(waiting, eruptions))

+ geom_tile()

+ geom_tile(aes(fill = density))

Some geoms don't use both aesthetics (i.e. geom_point or geom_line)
<- ggplot(economics, aes(x = date, y = unemploy))

+ geom_line()

+ geom_line(colour = "green")

+ geom_point()

+ geom_point(colour = "red")

For large datasets with overplotting the alpha
aesthetic will make the points more transparent

df <- data.frame(x = rnorm(5000), y = rnorm(5000))

h
h
h
h
#

J
J

<- ggplot(df, aes(x,y))

+ geom_point()

+ geom_point(alpha = 0.5)
+ geom_point(alpha = 1/10)

Alpha can also be used to add shading
<- b + geom_line()

yrng <- range(economics$unemploy)

J

<- j + geom_rect(aes(NULL, NULL, xmin = start, xmax = end, fill = party),

ymin = yrng[1], ymax = yrng[2], data = presidential)

J
J

+ scale_fill_manual(values = alpha(c("blue”", "red"”), .3))

13

aes_linetype_size_shape

Differentiation related aesthetics: linetype, size, shape

Description

This page demonstrates the usage of a sub-group of aesthetics; linetype, size and shape.

Examples

Line types should be specified with either an integer, a name, or with a string of
an even number (up to eight) of hexadecimal digits which give the lengths in

#
#

#

consecutive positions in the string.
@ = blank, 1 = solid, 2 = dashed, 3 = dotted, 4 = dotdash, 5 = longdash, 6 = twodash
Data

df <- data.frame(x = 1:10 , y = 1:10)

14

- -

ETS

aes_position

<- ggplot(df, aes(x, y))
+ geom_line(linetype = 2)
+ geom_line(linetype = "dotdash”)

An example with hex strings, the string "33" specifies three units on followed
by three off and "3313" specifies three units on followed by three off followed
by one on and finally three off.

+ geom_line(linetype = "3313")

Mapping line type from a variable

ggplot(economics_long, aes(date, value@l)) +

T T T T # # #

T T T T T HF &+ & H =

H*

#

geom_line(aes(linetype = variable))

Size examples

Should be specified with a numerical value (in millimetres),
or from a variable source

<- ggplot(mtcars, aes(wt, mpg))

+ geom_point(size = 4)

+ geom_point(aes(size = gsec))

+ geom_point(size = 2.5) +

geom_hline(yintercept = 25, size = 3.5)

Shape examples

Shape takes four types of values: an integer in [0, 25],

a single character-- which uses that character as the plotting symbol,

a . to draw the smallest rectangle that is visible (i.e., about one pixel)
an NA to draw nothing

+ geom_point()

+ geom_point(shape = 5)

+ geom_point(shape = "k", size = 3)

+

+

geom_point(shape = ".")
geom_point(shape = NA)

Shape can also be mapped from a variable
+ geom_point(aes(shape = factor(cyl)))

A look at all 25 symbols

df2 <- data.frame(x = 1:5 , y = 1:25, z = 1:25)

S
S

#

<- ggplot(df2, aes(x, y))

+ geom_point(aes(shape = z), size = 4) +

scale_shape_identity()

While all symbols have a foreground colour, symbols 19-25 also take a

background colour (fill)

4, colour = "Red") +

+ geom_point(aes(shape = z), size
scale_shape_identity()

+ geom_point(aes(shape = z), size = 4, colour = "Red”, fill = "Black") +
scale_shape_identity()

aes_position Position related aesthetics: x, y, xmin, xmax, ymin, ymax, xend, yend

animint 15

Description

This page demonstrates the usage of a sub-group of aesthetics; X, y, Xmin, xmax, ymin, ymax, xend,
and yend.

Examples

Generate data: means and standard errors of means for prices

for each type of cut

dmod <- Im(price ~ cut, data = diamonds)

cuts <- data.frame(cut = unique(diamonds$cut), predict(dmod, data.frame(cut =
unique(diamonds$cut)), se = TRUE)[c("fit", "se.fit")])

se <- ggplot(cuts, aes(x = cut, y = fit, ymin = fit - se.fit,

ymax = fit + se.fit, colour = cut))

se + geom_pointrange()

Using annotate

p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()

p + annotate("rect”, xmin = 2, xmax = 3.5, ymin = 2, ymax = 25,
fill = "dark grey"”, alpha = .5)

Geom_segment examples

p + geom_segment(aes(x = 2, y = 15, xend = 2, yend = 25),
arrow = arrow(length = unit(@.5, "cm")))

p + geom_segment(aes(x = 2, y = 15, xend = 3, yend
arrow = arrow(length = unit(@.5, "cm")))

p + geom_segment(aes(x = 5, y = 30, xend = 3.5, yend = 25),
arrow = arrow(length = unit(@.5, "cm")))

15),

You can also use geom_segment to recreate plot(type = "h") :
counts <- as.data.frame(table(x = rpois(100, 5)))

counts$x <- as.numeric(as.character(counts$x))

with(counts, plot(x, Freq, type = "h", lwd = 10))

ggplot(counts, aes(x, Freq)) +
geom_segment (aes(yend = 0@, xend = x), size = 10)

animint Create an animint

Description

Create an animated, interactive data visualization. The easiest way to get started is by reading the
Animint2 Manual, https://animint-manual-en.netlify.app

Usage

animint(...)

16 animint

Arguments

ggplots and options

Details

This function creates a list with the items in ... and attaches the animint class. It also provides default
names for un-named ggplots. The list should contain ggplots and options. Each geom can be made
interactive by using the showSelected and clickSelects parameters; each should be a character vector
of selection variable names. For example geom_line(clickSelects="country") means that clicking
the line changes the value of the "country" selection variable; geom_point(showSelected="year")
means to only show the subset of data for the currently selected year.

Value

list of class animint

Author(s)

Toby Dylan Hocking

Examples

if(require('data.table'))setDTthreads(1)#for CRAN.
library(animint2)
Simple hello world example (1 selector: word).
animint(ggplot()+geom_text(aes(
word, word, label=word, color=word),
data=data.frame(word=c("Hello", "world!"))))

More complex Hello World (2 selectors: number, language).
hello_df <- data.frame(
language=c("en","en","fr","fr"),
word=c("Hello", "world!"”, "Bonjour"”,"monde !"),
number=factor(c(1,2,1,2)))
lang_df <- data.frame(number=factor(1:2), language=c("en","fr"))
animint(
ggplot()+
geom_text (aes(
number, "message"”, label=word, color=number),
showSelected="language", data=hello_df)+
geom_text (aes(
number, "select language”, label=language),
clickSelects="language",
data=lang_df))

More complex World Bank example (3 selectors: country, region, year).
data(WorldBank, package="animint2")

WorldBank$Region <- sub(” (all income levels)”, "", WorldBank$region, fixed=TRUE)
years <- unique(WorldBank[, "year"”, drop=FALSE])

y1960 <- subset(WorldBank, year==1960)

animint(

animint 17

title="Linked scatterplot and time series”, #web page title.
time=list(variable="year",ms=3000), #variable and time delay used for animation.
duration=list(country=1000, year=1000), #smooth transition duration in milliseconds.
selector.types=list(country="multiple”), #single/multiple selection for each variable.
first=1list(#selected values to show when viz is first rendered.
country=c("Canada”, "Japan"),
year=1970),
ggplots are rendered together for an interactive data viz.
ts=ggplot()+
theme_animint (width=500)+
theme(legend.position="none")+
make_tallrect(WorldBank, "year")+
geom_label_aligned(aes(
year, life.expectancy,
key=country,
color=Region,
label=country),
showSelected=c("country”, "Region”),
clickSelects="country”,
hjust=1,
data=y1960)+
scale_x_continuous(
breaks=seq(1960, 2010, by=10),
limits=c(1940, NA))+
geom_line(aes(
year, life.expectancy, group=country, color=Region),
clickSelects="country”,
showSelected="Region”,
data=WorldBank,
size=4,
alpha=0.55),
scatter=ggplot()+
geom_point(aes(
fertility.rate, life.expectancy,
key=country, colour=Region, size=population),
chunk_vars=character(),
showSelected="year",
clickSelects="country”,
data=WorldBank)+
geom_text (aes(
fertility.rate, life.expectancy,
key=country,
label=country),
showSelected=c("country”, "year"),
chunk_vars=character(),
data=WorldBank)+
geom_text (aes(
5, 80, key=1, label=paste("year =", year)),
showSelected="year",
data=years)+
scale_x_continuous(breaks=1:9)+
scale_size_animint(pixel.range=c(2,20), breaks=10"(4:9)))

18

animint2dir

animint2dir

Compile and render an animint in a local directory.

Description

This function converts an animint plot.list into a directory of files which can be used to render the
interactive data visualization in a web browser.

Usage

animint2dir(
plot.list,

out.dir = NULL,

open.browser

= interactive(),

chromote_sleep_seconds = getOption(”"animint2.chromote_sleep_seconds"),
chromote_width = 3000,
chromote_height = 2000

Arguments

plot.list

out.dir

open.browser

chromote_sleep_

chromote_width

chromote_height

Value

a named list of ggplots and option lists.

directory to store html/js/csv files. If it exists already, it will be removed before
writing the new directory/files.

logical (default TRUE if interactive), should R open a browser? If TRUE, we
look at the animint.browser option to determine how. If it is set to "browseURL"
then we use a file URL (be sure to configure your browser to allow access to
local files, as some browsers block this by default). Otherwise (default) we use
servr::httd(out.dir).

seconds

if numeric, chromote will be used to take a screenshot of the data viz, pausing
this number of seconds to wait for rendering (experimental). Defaults to option
animint2.chromote_sleep_seconds.

width of chromote window in pixels, default 3000 should be sufficient for most
data viz, but can be increased if your data viz screenshot appears cropped too
small.

height of chromote window in pixels, default 2000 should be sufficient for most
data viz, but can be increased if your data viz screenshot appears cropped too
small.

invisible list of ggplots in list format.

animint2dir 19

Examples

if(require('data.table'))setDTthreads(1)#for CRAN.

Make a Gapminder plot (aka Google motion chart), which is actually
just a scatterplot with size and color that moves over time.
library(animint2)
data(WorldBank)
gapminder <- list(
title="Linked scatterplot and time series”,
ts=ggplot()+
make_tallrect(WorldBank, "year")+
geom_line(aes(year, life.expectancy, group=country, color=region),
clickSelects="country"”,
data=WorldBank, size=4, alpha=3/5),
time=1list(variable="year",ms=3000),
duration=list(year=1000),
scatter=ggplot()+
geom_point(aes(fertility.rate, life.expectancy,
key=country, colour=region, size=population),
showSelected="year",
clickSelects="country"”,
data=WorldBank)+
geom_text(aes(fertility.rate, life.expectancy, label=country),
showSelected=c("country”, "year"),
data=WorldBank)+
make_text(WorldBank, 5, 8@, "year")+
scale_size_animint(pixel.range=c(2,20), breaks=10"(4:9)))
animint2dir(gapminder)

data(worldPop)
Linked bar and line plots of world population by subcontinent,
inspired by polychartjs.
popPlots <- list(
bars=ggplot()+
geom_bar (aes(x=subcontinent, y=population),
clickSelects="subcontinent”,
showSelected="year",
data=worldPop, stat="identity”, position="identity")+
This make_text creates a geom_text that shows the current
selected value of the year variable.
make_text(worldPop, 1, 3e6, "year")+
coord_flip(),
lines=ggplot()+
This make_tallrect tiles the background of the lineplot with
rects that can be clicked to select the year variable.
make_tallrect(worldPop, "year")+
This geom_point does not have aes(clickSelects) so its alpha
transparency behaves normally: all points have alpha=1/4.
geom_point(aes(year, population, colour=type),
data=worldPop, size=4, alpha=1/4)+
This geom_line DOES have aes(clickSelects) so only the
selected line has the specified alpha=3/4. The other

20 animint2pages

unselected lines have 0.5 less (alpha=1/4).
geom_line(aes(year, population, group=subcontinent),
clickSelects="subcontinent”,
data=worldPop, size=4, alpha=3/4))
animint2dir(popPlots)
Make it animated by specifying year as the variable to animate and
an interval of 2000 milliseconds between animation frames.
popAnim <- c(popPlots, list(time=list(variable="year",ms=2000)))
animint2dir (popAnim)
Make the animation smooth by specifying a duration of 1000 ms for
geoms with aes(showSelected=year).
popSmooth <- c(popAnim, list(duration=list(year=1000)))
animint2dir(popSmooth)

animint2pages Publish a list of ggplots as interactive visualizations on a GitHub
repository

Description

This function takes a named list of ggplots, generates interactive animations, and pushes the gener-
ated files to a specified GitHub repository. You can choose to keep the repository private or public.
Before using this function set your appropriate git 'user.username’ and ’user.email’

Usage

animint2pages(
plot.list,
github_repo,
owner = NULL,

commit_message = "Commit from animint2pages”,
private = FALSE,
required_opts = c("title", "source"),
)
Arguments
plot.list A named list of ggplots and option lists.
github_repo The name of the GitHub repository to which the files will be pushed.
owner The user/org under which the repo will be created, default comes from gh: : gh_whoami.
commit_message A string specifying the commit message for the pushed files.
private A logical flag indicating whether the GitHub repository should be private or not
(default FALSE).

required_opts Character vector of plot.list element names which are checked (stop with an
error if not present). Use required_opts=NULL to skip check.

Additional options passed onto animint2dir.

animintOutput

Value

The function returns the initialized GitHub repository object.

Examples

Not run:
library(animint2)
mtcars$Cyl <- factor(mtcars$cyl)
viz <- animint(
ggplot(mtcars, aes(x = mpg, y = disp, color=Cyl)) +
geom_point(),
ggplot(mtcars, aes(x
geom_point(),
title="Motor Trend Cars data viz",
source="https://github.com/animint/animint2/blob/master/R/z_pages.R"
)

animint2pages(viz, "animint2pages-example-mtcars")

hp, y = wt, color=Cyl)) +

End(Not run)

21

animintOutput Shiny ui output function

Description

Shiny ui output function

Usage

animintOutput (outputId)

Arguments

outputId output variable to read the plot from

See Also

http://shiny.rstudio.com/articles/building-outputs.html

22 annotate

annotate Create an annotation layer.

Description

This function adds geoms to a plot. Unlike typical a geom function, the properties of the geoms
are not mapped from variables of a data frame, but are instead passed in as vectors. This is useful
for adding small annotations (such as text labels) or if you have your data in vectors, and for some
reason don’t want to put them in a data frame.

Usage
annotate(

geom,

x = NULL,

y = NULL,
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
xend = NULL,
yend = NULL,

L

na.rm = FALSE

Arguments

geom name of geom to use for annotation

X, ¥, Xmin, ymin, xmax, ymax, xend, yend
positioning aesthetics - you must specify at least one of these.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

Details

Note that all position aesthetics are scaled (i.e. they will expand the limits of the plot so they are
visible), but all other aesthetics are set. This means that layers created with this function will never
affect the legend.

annotation_custom 23

Examples
p <- ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
p + annotate("text”, x = 4, y = 25, label = "Some text")
p + annotate("text”, x = 2:5, y = 25, label = "Some text")
p + annotate("rect”, xmin = 3, xmax = 4.2, ymin = 12, ymax = 21,

alpha = .2)

p + annotate("segment”, x = 2.5, xend = 4, y = 15, yend = 25,
colour = "blue")

p + annotate("pointrange”, x = 3.5, y = 20, ymin = 12, ymax = 28,
colour = "red”, size = 1.5)

p + annotate("text”, x = 2:3, y = 20:21, label = c("my label”, "label 2"))

annotation_custom Annotation: Custom grob.

Description

This is a special geom intended for use as static annotations that are the same in every panel. These
annotations will not affect scales (i.e. the x and y axes will not grow to cover the range of the grob,
and the grob will not be modified by any ggplot settings or mappings).

Usage

annotation_custom(grob, xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf)
Arguments

grob grob to display

xmin, xmax x location (in data coordinates) giving horizontal location of raster

ymin, ymax y location (in data coordinates) giving vertical location of raster
Details

Most useful for adding tables, inset plots, and other grid-based decorations.

Note

annotation_custom expects the grob to fill the entire viewport defined by xmin, xmax, ymin,
ymax. Grobs with a different (absolute) size will be center-justified in that region. Inf values can be
used to fill the full plot panel (see examples).

24 annotation_logticks

Examples

Dummy plot
df <- data.frame(x = 1:10, y = 1:10)
base <- ggplot(df, aes(x, y)) +
geom_blank() +
theme_bw()

Full panel annotation
base + annotation_custom(
grob = grid: :roundrectGrob(),
xmin = -Inf, xmax = Inf, ymin = -Inf, ymax = Inf

)

Inset plot
df2 <- data.frame(x =1 , y = 1)
g <- ggplotGrob(ggplot(df2, aes(x, y)) +
geom_point() +
theme(plot.background = element_rect(colour = "black")))
base +
annotation_custom(grob = g, xmin = 1, xmax = 10, ymin = 8, ymax = 10)

annotation_logticks Annotation: log tick marks

Description

This annotation adds log tick marks with diminishing spacing. These tick marks probably make
sense only for base 10.

Usage
annotation_logticks(
base = 10,
sides = "bl",

scaled = TRUE,

short = unit(@.1, "cm"),
mid = unit(@.2, "cm"),
long = unit(@.3, "cm"),
colour = "black”,

size = 0.5,

linetype = 1,

alpha = 1,

color = NULL,

annotation_logticks

Arguments

base

sides

scaled

short

mid

long

colour
size
linetype
alpha

color

See Also

25

the base of the log (default 10)

a string that controls which sides of the plot the log ticks appear on. It can be set
to a string containing any of "trbl", for top, right, bottom, and left.

is the data already log-scaled? This should be TRUE (default) when the data is
already transformed with 1og1@() or when using scale_y_log10. It should be
FALSE when using coord_trans(y = "log10").

a unit object specifying the length of the short tick marks

a unit object specifying the length of the middle tick marks. In base 10, these
are the "5" ticks.

a unit object specifying the length of the long tick marks. In base 10, these are
the "1" (or "10") ticks.

Colour of the tick marks.

Thickness of tick marks, in mm.

Linetype of tick marks (solid, dashed, etc.)
The transparency of the tick marks.

An alias for colour.

Other parameters passed on to the layer

scale_y_continuous, scale_y_log1@ for log scale transformations.

coord_trans for log coordinate transformations.

Examples

Make a log-log plot (without log ticks)
a <- ggplot(msleep, aes(bodywt, brainwt)) +
geom_point(na.rm = TRUE) +

scale_x_log10(

breaks = scales::trans_breaks("log10"”, function(x) 10*x),
labels = scales::trans_format(”log10”, scales::math_format(10*.x))

) +
scale_y_logl10(

breaks = scales::trans_breaks("logl10"”, function(x) 10%x),
labels = scales::trans_format(”log10"”, scales::math_format(10*.x))

) +
theme_bw()
a + annotation_logticks() # Default: log ticks on bottom and left
a + annotation_logticks(sides = "1r") # Log ticks for y, on left and right
a + annotation_logticks(sides = "trbl") # All four sides
Hide the minor grid lines because they don't align with the ticks

a + annotation_logticks(sides = "trbl"”) + theme(panel.grid.minor = element_blank())

26 annotation_map

Another way to get the same results as 'a' above: log-transform the data before
plotting it. Also hide the minor grid lines.
b <- ggplot(msleep, aes(logl@(bodywt), logl@(brainwt))) +
geom_point(na.rm = TRUE) +
scale_x_continuous(name = "body"”, labels = scales::math_format(10*.x)) +
scale_y_continuous(name = "brain”, labels = scales::math_format(10*.x)) +
theme_bw() + theme(panel.grid.minor = element_blank())

b + annotation_logticks()

Using a coordinate transform requires scaled = FALSE
t <- ggplot(msleep, aes(bodywt, brainwt)) +
geom_point() +
coord_trans(x = "logl1@", y = "loglQ") +
theme_bw()
t + annotation_logticks(scaled = FALSE)

Change the length of the ticks
a + annotation_logticks(

short = unit(.5,"mm"),

mid = unit(3,"mm"),

long = unit(4,"mm"

annotation_map Annotation: maps.

Description

Annotation: maps.

Usage
annotation_map(map, ...)
Arguments
map data frame representing a map. Most map objects can be converted into the right
format by using fortify
other arguments used to modify aesthetics
Examples

if (require("maps”)) {
usamap <- map_data("state")

seal.sub <- subset(seals, long > -130 & lat < 45 & lat > 40)
ggplot(seal.sub, aes(x = long, y = lat)) +
annotation_map(usamap, fill = "NA", colour = "grey50") +

as.list.gganimintproto 27

geom_segment (aes(xend = long + delta_long, yend = lat + delta_lat))
seal2 <- transform(seal.sub,

latr = cut(lat, 2),

longr = cut(long, 2))

ggplot(seal2, aes(x = long, y = lat)) +

annotation_map(usamap, fill = "NA", colour = "grey50") +
geom_segment (aes(xend = long + delta_long, yend = lat + delta_lat)) +
facet_grid(latr ~ longr, scales = "free", space = "free")

}

as.list.gganimintproto
Convert a gganimintproto object to a list

Description

This will not include the object’s super member.

Usage
S3 method for class 'gganimintproto'
as.list(x, inherit = TRUE, ...)
Arguments
X A gganimintproto object to convert to a list.
inherit If TRUE (the default), flatten all inherited items into the returned list. If FALSE,

do not include any inherited items.

Further arguments to pass to as.list.environment.

as_labeller Coerce to labeller function

Description

This transforms objects to labeller functions. Used internally by labeller().

Usage

as_labeller(x, default = label_value, multi_line = TRUE)

28 autoplot

Arguments
X Object to coerce to a labeller function. If a named character vector, it is used as
a lookup table before being passed on to default. If a non-labeller function, it
is assumed it takes and returns character vectors and is applied to the labels. If
a labeller, it is simply applied to the labels.
default Default labeller to process the labels produced by lookup tables or modified by
non-labeller functions.
multi_line Whether to display the labels of multiple factors on separate lines. This is passed
to the labeller function.
See Also

labeller(), labellers

Examples

p <- ggplot(mtcars, aes(disp, drat)) + geom_point()
p + facet_wrap(~am)

Rename labels on the fly with a lookup character vector
to_string <- as_labeller(c(@ = "Zero", 17 = "One"))
p + facet_wrap(~am, labeller = to_string)

Quickly transform a function operating on character vectors to a
labeller function:

appender <- function(string, suffix = "-foo") paste@(string, suffix)
p + facet_wrap(~am, labeller = as_labeller(appender))

If you have more than one facetting variable, be sure to dispatch
your labeller to the right variable with labeller()
p + facet_grid(cyl ~ am, labeller = labeller(am = to_string))

autoplot Create a complete ggplot appropriate to a particular data type

Description

autoplot uses ggplot2 to draw a particular plot for an object of a particular class in a single com-
mand. This defines the S3 generic that other classes and packages can extend.

Usage
autoplot(object, ...)
Arguments
object an object, whose class will determine the behaviour of autoplot

other arguments passed to specific methods

borders 29

Value

a ggplot object

See Also

ggplot and fortify

borders Create a layer of map borders.

Description

Create a layer of map borders.

Usage
borders(
database = "world",
regions = ".",
fill = NA,
colour = "grey50",
xlim = NULL,
ylim = NULL,
)
Arguments
database map data, see map for details
regions map region
fill fill colour
colour border colour
x1lim, ylim latitudinal and logitudinal range for extracting map polygons, see map for details.
other arguments passed onto geom_polygon
Examples

if (require("maps”)) {

ia <- map_data("county”, "iowa")
mid_range <- function(x) mean(range(x))
seats <- plyr::ddply(ia, "subregion”, plyr::colwise(mid_range, c("lat”, "long")))
ggplot(ia, aes(long, lat)) +
geom_polygon(aes(group = group), fill = NA, colour = "grey60") +
geom_text(aes(label = subregion), data = seats, size = 2, angle = 45)

30 breakpoints

data(us.cities)
capitals <- subset(us.cities, capital == 2)
ggplot(capitals, aes(long, lat)) +
borders("state") +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()

Same map, with some world context
ggplot(capitals, aes(long, lat)) +
borders("world”, xlim = c(-130, -60), ylim = c(20, 50)) +
geom_point(aes(size = pop)) +
scale_size_area() +
coord_quickmap()

breakpoints The breakpointError of simulated signals

Description

Two noisy signals were sampled from a latent signal with known breakpoints, which were used to
measure the error of estimated models with 1,...,20 segments.

Usage

data(breakpoints)

Format

A list of 5 data.frames: error contains the breakpointError of the estimated models, signals contains
the noisy signals, breaks contains the breakpoints in the estimated signals, segments contains the
estimated segments, and imprecision contains the normalized imprecision curves which were used
to evaluate the error.

Source

The breakpointError package was used to measure the model error, see etc/breakpoints.R.

calc_element

31

calc_element Calculate the element properties, by inheriting properties from its par-
ents

Description

Calculate the element properties, by inheriting properties from its parents

Usage

calc_element(element, theme, verbose = FALSE)

Arguments

element The name of the theme element to calculate

theme A theme object (like theme_grey())

verbose If TRUE, print out which elements this one inherits from
Examples

t <- theme_grey()
calc_element('text', t)

Compare the "raw” element definition to the element with calculated inheritance
t$axis.text.x
calc_element('axis.text.x', t, verbose = TRUE)

This reports that axis.text.x inherits from axis.text,

which inherits from text. You can view each of them with:
t$axis. text.x

t$axis. text

t$text

checkAnimationTimeVar Check animation variable for errors

Description

Check animation variable for errors

Usage

checkAnimationTimeVar(timeVarList)

32 checkForSSandCSasAesthetics

Arguments

timeVarList plot.list$time in animint2dir to check for errors

Value

NULL :Stops with an error for invalid input

checkExtraParams Check extra_params argument for duplicates, non-named list

Description

Check extra_params argument for duplicates, non-named list

Usage

checkExtraParams(extra_params, aes_mapping, layer_df)

Arguments

extra_params named list containing the details of showSelected and clickSelects values of the

layer
aes_mapping aesthetics mapping of the layer
layer_df the data frame

Value

Modified extra_params list

checkForSSandCSasAesthetics
Check if showSelected and clickSelects have been used as aesthetics
as in old syntax. If yes, raise error

Description
Check if showSelected and clickSelects have been used as aesthetics as in old syntax. If yes, raise
error

Usage

checkForSSandCSasAesthetics(aesthetics, plot_name)

checkPlotForAnimintExtensions 33

Arguments
aesthetics list. aesthetics mapping of the layer
plot_name character vector of the plot the layer belongs to
Value

NULL Throws error if used as aesthetics

checkPlotForAnimintExtensions
Performs error checking on the plot for animint extensions

Description

Performs error checking on the plot for animint extensions

Usage

checkPlotForAnimintExtensions(p, plot_name)

Arguments
p plot from plot.list to check for errors
plot_name plot name error check. Should be alphanumeric and should begin with an alpha-
bet
Value

NULL :Stops with an error for invalid input

checkPlotList Check plot.list for errors

Description

Check that plot.list is a list and every element is named

Usage
checkPlotList(plot.list)

Arguments

plot.list from animint2dir to check for errors

Value

Throws an error for invalid values

34 coord_cartesian

checkSingleShowSelectedValue

Issue warnings for non interactive plots where there is only one showS-
elected value

Description

Issue warnings for non interactive plots where there is only one showSelected value

Usage

checkSingleShowSelectedValue(selectors)

Arguments

selectors selectors to check for warnings

Value

NULL

coord_cartesian Cartesian coordinates.

Description

The Cartesian coordinate system is the most familiar, and common, type of coordinate system. Set-
ting limits on the coordinate system will zoom the plot (like you’re looking at it with a magnifying
glass), and will not change the underlying data like setting limits on a scale will.

Usage

coord_cartesian(xlim = NULL, ylim = NULL, expand = TRUE)

Arguments
x1im, ylim Limits for the x and y axes.
expand If TRUE, the default, adds a small expansion factor to the limits to ensure that

data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

coord_fixed 35

Examples

#
#

T #

H

There are two ways of zooming the plot display: with scales or
with coordinate systems. They work in two rather different ways.

<- ggplot(mtcars, aes(disp, wt)) +
geom_point() +
geom_smooth()

Setting the limits on a scale converts all values outside the range to NA.
+ scale_x_continuous(limits = c(325, 500))

Setting the limits on the coordinate system performs a visual zoom.

The data is unchanged, and we just view a small portion of the original
plot. Note how smooth continues past the points visible on this plot.

+ coord_cartesian(xlim = c(325, 500))

By default, the same expansion factor is applied as when setting scale
limits. You can set the limits precisely by setting expand = FALSE
+ coord_cartesian(xlim = c(325, 500), expand = FALSE)

Simiarly, we can use expand = FALSE to turn off expansion with the
default limits
+ coord_cartesian(expand = FALSE)

You can see the same thing with this 2d histogram
<- ggplot(diamonds, aes(carat, price)) +
stat_bin2d(bins = 25, colour = "white")

When zooming the scale, the we get 25 new bins that are the same
size on the plot, but represent smaller regions of the data space
+ scale_x_continuous(limits = c(@, 1))

When zooming the coordinate system, we see a subset of original 50 bins,
displayed bigger
+ coord_cartesian(xlim = c(@, 1))

coord_fixed Cartesian coordinates with fixed relationship between x and y scales.

Description

A fixed scale coordinate system forces a specified ratio between the physical representation of data
units on the axes. The ratio represents the number of units on the y-axis equivalent to one unit on
the x-axis. The default, ratio = 1, ensures that one unit on the x-axis is the same length as one unit
on the y-axis. Ratios higher than one make units on the y axis longer than units on the x-axis, and
vice versa. This is similar to eqscplot, but it works for all types of graphics.

36 coord_flip

Usage

coord_fixed(ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE)

Arguments
ratio aspect ratio, expressed as y / x
x1im, ylim Limits for the x and y axes.
expand If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.
Examples

ensures that the ranges of axes are equal to the specified ratio by
adjusting the plot aspect ratio

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
p + coord_fixed(ratio = 1)

p + coord_fixed(ratio = 5)

p + coord_fixed(ratio = 1/5)

Resize the plot to see that the specified aspect ratio is maintained

coord_flip Flipped cartesian coordinates.

Description

Flipped cartesian coordinates so that horizontal becomes vertical, and vertical, horizontal. This is
primarily useful for converting geoms and statistics which display y conditional on X, to x condi-
tional on y.

Usage

coord_flip(xlim = NULL, ylim = NULL, expand = TRUE)

Arguments
x1lim, ylim Limits for the x and y axes.
expand If TRUE, the default, adds a small expansion factor to the limits to ensure that

data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

coord_map 37

Examples

h <- ggplot(diamonds, aes(carat)) +
geom_histogram()

h

h + coord_flip()

h + coord_flip() + scale_x_reverse()

You can also use it to flip line and area plots:
df <- data.frame(x = 1:5, y = (1:5) * 2)
ggplot(df, aes(x, y)) +

geom_area()
last_plot() + coord_flip()

coord_map Map projections.

Description

The representation of a portion of the earth, which is approximately spherical, onto a flat 2D plane
requires a projection. This is what coord_map does. These projections account for the fact that
the actual length (in km) of one degree of longitude varies between the equator and the pole. Near
the equator, the ratio between the lengths of one degree of latitude and one degree of longitude
is approximately 1. Near the pole, it is tends towards infinity because the length of one degree
of longitude tends towards 0. For regions that span only a few degrees and are not too close to
the poles, setting the aspect ratio of the plot to the appropriate lat/lon ratio approximates the usual
mercator projection. This is what coord_quickmap does. With coord_map all elements of the
graphic have to be projected which is not the case here. So coord_quickmap has the advantage
of being much faster, in particular for complex plots such as those using with geom_tile, at the
expense of correctness in the projection. This coordinate system provides the full range of map
projections available in the mapproj package.

Usage

coord_map(
projection = "mercator”,

orientation = NULL,
xlim = NULL,
ylim = NULL

coord_quickmap(xlim = NULL, ylim = NULL, expand = TRUE)

Arguments

projection projection to use, see mapproject for list

other arguments passed on to mapproject

38

orientation

x1lim
ylim

expand

Examples

coord_map

projection orientation, which defaults to c(90, @, mean(range(x))). This is
not optimal for many projections, so you will have to supply your own. See
mapproject for more information.

manually specific x limits (in degrees of longitude)
manually specific y limits (in degrees of latitude)

If TRUE, the default, adds a small expansion factor to the limits to ensure that
data and axes don’t overlap. If FALSE, limits are taken exactly from the data or
xlim/ylim.

if (require("maps”)) {

nz <- map_data("nz")

Prepare a map of NZ

nzmap <- ggplot(nz, aes(x = long, y = lat, group = group)) +
geom_polygon(fill = "white”, colour = "black")

Plot it in cartesian coordinates

nzmap

With correct mercator projection
nzmap + coord_map()

With the aspect ratio approximation
nzmap + coord_quickmap()

Other projections
nzmap + coord_map(”cylindrical”)
nzmap + coord_map("azequalarea”, orientation = c(-36.92,174.6,0))

states <- map_data("state")
usamap <- ggplot(states, aes(long, lat, group = group)) +
geom_polygon(fill = "white", colour = "black")

Use cartesian coordinates

usamap

With mercator projection

usamap + coord_map()

usamap + coord_quickmap()

See ?mapproject for coordinate systems and their parameters
usamap + coord_map("gilbert"”)

usamap + coord_map("lagrange")

For most projections, you'll need to set the orientation yourself
as the automatic selection done by mapproject is not available to

ggplot

usamap + coord_map("orthographic")

usamap

coord_map("stereographic”)

+
usamap + coord_map("”conic”, lat@ = 30)
+

usamap

coord_map("”bonne”, lat@ = 50)

World map, using geom_path instead of geom_polygon
world <- map_data("world")

coord_polar 39

worldmap <- ggplot(world, aes(x = long, y = lat, group = group)) +
geom_path() +
scale_y_continuous(breaks =
scale_x_continuous(breaks

(-2:2) * 30) +
(-4:4) * 45)

Orthographic projection with default orientation (looking down at North pole)
worldmap + coord_map("ortho")

Looking up up at South Pole

worldmap + coord_map("ortho”, orientation = c(-90, @, 0))

Centered on New York (currently has issues with closing polygons)

worldmap + coord_map("ortho”, orientation = c(41, -74, 0))

}

coord_polar Polar coordinates.

Description

The polar coordinate system is most commonly used for pie charts, which are a stacked bar chart in
polar coordinates.

Usage
coord_polar(theta = "x", start = @, direction = 1)
Arguments
theta variable to map angle to (x or y)
start offset of starting point from 12 o’clock in radians
direction 1, clockwise; -1, anticlockwise
Examples

NOTE: Use these plots with caution - polar coordinates has

major perceptual problems. The main point of these examples is
to demonstrate how these common plots can be described in the
grammar. Use with EXTREME caution.

#' # A pie chart = stacked bar chart + polar coordinates

pie <- ggplot(mtcars, aes(x = factor(1), fill = factor(cyl))) +
geom_bar(width = 1)

pie + coord_polar(theta = "y")

A coxcomb plot = bar chart + polar coordinates

cxc <- ggplot(mtcars, aes(x = factor(cyl))) +
geom_bar(width = 1, colour = "black")

cxc + coord_polar()

40 coord_trans

A new type of plot?
cxc + coord_polar(theta = "y")

The bullseye chart
pie + coord_polar()

Hadley's favourite pie chart

df <- data.frame(
variable = c("does not resemble”, "resembles"”),
value = c(20, 80)

)

ggplot(df, aes(x = "", y = value, fill = variable)) +
geom_bar(width = 1, stat = "identity") +
scale_fill_manual(values = c("red”, "yellow")) +
coord_polar("y", start = pi / 3) +
labs(title = "Pac man")

Windrose + doughnut plot

if (require(”ggplot2movies”)) {

movies$rrating <- cut_interval(movies$rating, length = 1)
movies$budgetq <- cut_number(movies$budget, 4)

doh <- ggplot(movies, aes(x = rrating, fill = budgetq))

Wind rose

doh + geom_bar(width = 1) + coord_polar()

Race track plot

doh + geom_bar(width = 0.9, position = "fill") + coord_polar(theta = "y")
3

coord_trans Transformed cartesian coordinate system.

Description

coord_trans is different to scale transformations in that it occurs after statistical transformation and
will affect the visual appearance of geoms - there is no guarantee that straight lines will continue to
be straight.

Usage

coord_trans(
x = "identity",
y = "identity",
limx = NULL,
limy = NULL,
xtrans,
ytrans

coord_trans 41

Arguments
X,y transformers for x and y axes
limx, limy limits for x and y axes. (Named so for backward compatibility)

xtrans, ytrans Deprecated; use x and y instead.

Details

All current transformations only work with continuous values - see trans_new for list of transfor-
mations, and instructions on how to create your own.

Examples

Three ways of doing transformation in ggplot:
= by transforming the data
ggplot(diamonds, aes(logl@(carat), logl@(price))) +
geom_point()
= by transforming the scales
ggplot(diamonds, aes(carat, price)) +
geom_point() +
scale_x_loglo() +
scale_y_logl10()
* by transforming the coordinate system:
ggplot(diamonds, aes(carat, price)) +
geom_point() +
coord_trans(x = "logl1@", y = "logl0")

The difference between transforming the scales and
transforming the coordinate system is that scale
transformation occurs BEFORE statistics, and coordinate
transformation afterwards. Coordinate transformation also
changes the shape of geoms:

E N

d <- subset(diamonds, carat > 0.5)

ggplot(d, aes(carat, price)) +
geom_point() +
geom_smooth(method = "1m")
scale_x_loglo() +
scale_y_logl10()

+

ggplot(d, aes(carat, price)) +
geom_point() +
geom_smooth(method = "1m")
coord_trans(x = "log10", y = "logl10")

+

Here I used a subset of diamonds so that the smoothed line didn't
drop below zero, which obviously causes problems on the log-transformed
scale

With a combination of scale and coordinate transformation, it's
possible to do back-transformations:

42 cut_interval

ggplot(diamonds, aes(carat, price)) +
geom_point() +
geom_smooth(method = "1m") +
scale_x_loglo() +
scale_y_loglo() +
coord_trans(x = scales::exp_trans(10), y = scales::exp_trans(10))

cf.

ggplot(diamonds, aes(carat, price)) +
geom_point() +
geom_smooth(method = "1m")

Also works with discrete scales
df <- data.frame(a = abs(rnorm(26)),letters)
plot <- ggplot(df,aes(a,letters)) + geom_point()

plot + coord_trans(x = "logl10")
plot + coord_trans(x = "sqrt")
cut_interval Cut up numeric vector into useful groups.

Description

cut_interval makes n groups with equal range, cut_number makes n groups with (approximately)
equal numbers of observations; cut_width makes groups of width width.

Usage
cut_interval(x, n = NULL, length = NULL, ...)
cut_number(x, n = NULL, ...)
cut_width(
X)
width,

center = NULL,
boundary = NULL,
closed = c("right”, "left")

)
Arguments
X numeric vector
n number of intervals to create, OR
length length of each interval

other arguments passed on to cut

diamonds 43

width The bin width.

center, boundary
Specify either the position of edge or the center of a bin. Since all bins are
aligned, specifying the position of a single bin (which doesn’t need to be in the
range of the data) affects the location of all bins. If not specified, uses the "tile
layers algorithm", and sets the boundary to half of the binwidth.

To center on integers, width = 1 and center = @. boundary = 9. 5.

closed One of "right” or "left” indicating whether right or left edges of bins are
included in the bin.

Author(s)

Randall Prium contributed most of the implementation of cut_width.

See Also

cut_number

Examples

table(cut_interval(1:100, 10))
table(cut_interval(1:100, 11))

table(cut_number(runif(1000), 10))
table(cut_width(runif(1000), 0.1))

table(cut_width(runif(1000), @.1, boundary = 0))
table(cut_width(runif(1000), 0.1, center = 0))

diamonds Prices of 50,000 round cut diamonds

Description

A dataset containing the prices and other attributes of almost 54,000 diamonds. The variables are
as follows:

Usage

diamonds

Format
A data frame with 53940 rows and 10 variables:
e price: price in US dollars ($326-$18,823)

e carat: weight of the diamond (0.2-5.01)
* cut: quality of the cut (Fair, Good, Very Good, Premium, Ideal)

44 element blank

¢ color: diamond colour, from J (worst) to D (best)

e clarity: a measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVSI,
VVS2, IF (best))

* x: length in mm (0-10.74)

¢ y: width in mm (0-58.9)

 z: depth in mm (0-31.8)

¢ depth: total depth percentage =z / mean(x,y) =2 *z/ (x +y) (43-79)
* table: width of top of diamond relative to widest point (43-95)

economics US economic time series.

Description
This dataset was produced from US economic time series data available from https://fred.
stlouisfed.org/. economics is in "wide" format, economics_long is in "long" format.

Usage

economics

economics_long

Format
A data frame with 478 rows and 6 variables

* date. Month of data collection

* psavert, personal savings rate,

* pce, personal consumption expenditures, in billions of dollars,
* unemploy, number of unemployed in thousands,

* uempmed, median duration of unemployment, in week,

* pop, total population, in thousands,

An object of class data. frame with 2870 rows and 4 columns.

element_blank Theme element: blank. This theme element draws nothing, and assigns
no space

Description

Theme element: blank. This theme element draws nothing, and assigns no space

Usage

element_blank()

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/

element_line 45

element_line Theme element: line.

Description

Theme element: line.

Usage

element_line(
colour = NULL,
size = NULL,
linetype = NULL,
lineend = NULL,

color = NULL

)
Arguments

colour line colour

size line size

linetype line type

lineend line end

color an alias for colour

element_rect Theme element: rectangle.

Description

Most often used for backgrounds and borders.

Usage
element_rect(
fill = NULL,
colour = NULL,
size = NULL,
linetype = NULL,
color = NULL

46 element_text

Arguments

fill fill colour

colour border colour

size border size

linetype border linetype

color an alias for colour

element_text Theme element: text.

Description

Theme element: text.

Usage

element_text(
family = NULL,

face = NULL,
colour = NULL,
size = NULL,
hjust = NULL,
vjust = NULL,
angle = NULL,
lineheight = NULL,
color = NULL,
margin = NULL,
debug = NULL
)
Arguments
family font family
face font face ("plain”, "italic", "bold", "bold.italic")
colour text colour
size text size (in pts)
hjust horizontal justification (in [0, 1])
vjust vertical justification (in [0, 1])
angle angle (in [0, 360])
lineheight line height

color an alias for colour

expand_limits 47

margin margins around the text. See margin for more details. When creating a theme,
the margins should be placed on the side of the text facing towards the center of
the plot.

debug If TRUE, aids visual debugging by drawing a solid rectangle behind the complete

text area, and a point where each label is anchored.

expand_limits Expand the plot limits with data.

Description

panels or all plots. This function is a thin wrapper around geom_blank that makes it easy to add
such values.

Usage

expand_limits(...)

Arguments

named list of aesthetics specifying the value (or values) that should be included
in each scale.

Examples

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
p + expand_limits(x Q)

p + expand_limits(y = c(1, 9))

p + expand_limits(x = @, y = @)

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = cyl)) +
expand_limits(colour = seq(2, 10, by = 2))

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = factor(cyl))) +
expand_limits(colour = factor(seq(2, 10, by = 2)))

facet_grid Lay out panels in a grid.

Description

Lay out panels in a grid.

48 facet_grid
Usage
facet_grid(
facets,
margins = FALSE,
scales = "fixed",
space = "fixed",
shrink = TRUE,
labeller = "label_value”,
as.table = TRUE,
switch = NULL,
drop = TRUE
)
Arguments
facets a formula with the rows (of the tabular display) on the LHS and the columns (of
the tabular display) on the RHS; the dot in the formula is used to indicate there
should be no faceting on this dimension (either row or column). The formula
can also be provided as a string instead of a classical formula object
margins either a logical value or a character vector. Margins are additional facets which
contain all the data for each of the possible values of the faceting variables.
If FALSE, no additional facets are included (the default). If TRUE, margins are
included for all faceting variables. If specified as a character vector, it is the
names of variables for which margins are to be created.
scales Are scales shared across all facets (the default, "fixed"), or do they vary across
rows ("free_x"), columns ("free_y"), or both rows and columns ("free")
space If "fixed", the default, all panels have the same size. If "free_y" their height
will be proportional to the length of the y scale; if "free_x" their width will be
proportional to the length of the x scale; or if "free” both height and width will
vary. This setting has no effect unless the appropriate scales also vary.
shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.
labeller A function that takes one data frame of labels and returns a list or data frame of
character vectors. Each input column corresponds to one factor. Thus there will
be more than one with formulae of the type ~cyl + am. Each output column gets
displayed as one separate line in the strip label. This function should inherit from
the "labeller" S3 class for compatibility with labeller (). See label_value for
more details and pointers to other options.
as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.
switch By default, the labels are displayed on the top and right of the plot. If "x", the
top labels will be displayed to the bottom. If "y", the right-hand side labels will
be displayed to the left. Can also be set to "both".
drop If TRUE, the default, all factor levels not used in the data will automatically be

dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.

facet_grid 49

Examples
p <- ggplot(mpg, aes(displ, cty)) + geom_point()
+ facet_grid(. ~ cyl)

+ facet_grid(drv ~ .)
p + facet_grid(drv ~ cyl)

T ©

H+

To change plot order of facet grid,
change the order of variable levels with factor()

H+

If you combine a facetted dataset with a dataset that lacks those
facetting variables, the data will be repeated across the missing
combinations:

df <- data.frame(displ = mean(mpg$displ), cty = mean(mpg$cty))

p+

facet_grid(. ~ cyl) +

geom_point(data = df, colour = "red", size = 2)
Free scales —----—---——---——--———--———--———— o
You can also choose whether the scales should be constant
across all panels (the default), or whether they should be allowed
to vary

mt <- ggplot(mtcars, aes(mpg, wt, colour = factor(cyl))) +
geom_point()

mt + facet_grid(. ~ cyl, scales = "free")

If scales and space are free, then the mapping between position
and values in the data will be the same across all panels. This
is particularly useful for categorical axes
ggplot(mpg, aes(drv, model)) +
geom_point() +
facet_grid(manufacturer ~ ., scales = "free"”, space = "free") +
theme(strip.text.y = element_text(angle = @))

Facet labels -----------------—-—--
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
p

label_both() displays both variable name and value
p + facet_grid(vs ~ cyl, labeller = label_both)

label_parsed() parses text into mathematical expressions, see ?plotmath
mtcars$cyl2 <- factor(mtcars$cyl, labels = c("alpha”, "beta”, "sqrt(x, y)"))
ggplot(mtcars, aes(wt, mpg)) +

geom_point() +

facet_grid(. ~ cyl2, labeller = label_parsed)

label_bquote() makes it easy to construct math expressions
p + facet_grid(. ~ vs, labeller = label_bquote(cols = alpha * .(vs)))

The facet strips can be displayed near the axes with switch

50

data <- transform(mtcars,
am = factor(am, levels = 0:1, c("Automatic”, "Manual”)),

gear = factor(gear, levels = 3:5, labels = c("Three”, "Four”, "Five"))

<- ggplot(data, aes(mpg, disp)) + geom_point()
+ facet_grid(am ~ gear, switch = "both")

It looks better without boxes around the strips
+ facet_grid(am ~ gear, switch = "both”) +
theme(strip.background = element_blank())

T & T T v

Margins ---------—---——---—mo o

Margins can be specified by logically (all yes or all no) or by specific

variables as (character) variable names

mg <- ggplot(mtcars, aes(x = mpg, y = wt)) + geom_point()
mg + facet_grid(vs + am ~ gear)

mg + facet_grid(vs + am ~ gear, margins = TRUE)

mg + facet_grid(vs + am ~ gear, margins = "am")

" "

when margins are made over "vs", since the facets for "am" vary
is also

” n n

within the values of "vs
a margin over "am".

mg + facet_grid(vs + am ~ gear, margins = "vs")

mg + facet_grid(vs + am ~ gear, margins = "gear")

mg + facet_grid(vs + am ~ gear, margins = c("gear”, "am"))

, the marginal facet for "vs

facet_null

facet_null Facet specification: a single panel.

Description

Facet specification: a single panel.

Usage

facet_null(shrink = TRUE)

Arguments

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will

be range of raw data before statistical summary.

Examples

facet_null is the default facetting specification if you
don't override it with facet_grid or facet_wrap
ggplot(mtcars, aes(mpg, wt)) + geom_point()

facet_wrap 51

facet_wrap Wrap a 1d ribbon of panels into 2d.

Description

Most displays are roughly rectangular, so if you have a categorical variable with many levels, it
doesn’t make sense to try and display them all in one row (or one column). To solve this dilemma,
facet_wrap wraps a 1d sequence of panels into 2d, making best use of screen real estate.

Usage

facet_wrap(
facets,
nrow = NULL,
ncol = NULL,
scales = "fixed",
shrink = TRUE,
labeller = "label_value”,
as.table = TRUE,
switch = NULL,

drop = TRUE,
di r. = n h n
)
Arguments

facets Either a formula or character vector. Use either a one sided formula, ~a + b, or
a character vector, c("a", "b").

nrow, ncol Number of rows and columns.

scales should Scales be fixed ("fixed"”, the default), free ("free"), or free in one
dimension ("free_x", "free_y").

shrink If TRUE, will shrink scales to fit output of statistics, not raw data. If FALSE, will
be range of raw data before statistical summary.

labeller A function that takes one data frame of labels and returns a list or data frame of
character vectors. Each input column corresponds to one factor. Thus there will
be more than one with formulae of the type ~cyl + am. Each output column gets
displayed as one separate line in the strip label. This function should inherit from
the "labeller" S3 class for compatibility with 1labeller (). See label_value for
more details and pointers to other options.

as.table If TRUE, the default, the facets are laid out like a table with highest values at the
bottom-right. If FALSE, the facets are laid out like a plot with the highest value
at the top-right.

switch By default, the labels are displayed on the top of the plot. If switchis "x", they

will be displayed to the bottom. If "y", they will be displayed to the left, near
the y axis.

52 facet_wrap
drop If TRUE, the default, all factor levels not used in the data will automatically be
dropped. If FALSE, all factor levels will be shown, regardless of whether or not
they appear in the data.
dir Direction: either "h" for horizontal, the default, or "v", for vertical.
Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_wrap(~class)

Control the number of rows and columns with nrow and ncol
ggplot(mpg, aes(displ, hwy)) +

geom_point() +

facet_wrap(~class, nrow = 4)

You can facet by multiple variables
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_wrap(~ cyl + drv)
Or use a character vector:
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_wrap(c(”cyl”, "drv"))

Use the ~labeller™ option to control how labels are printed:
ggplot(mpg, aes(displ, hwy)) +

geom_point() +

facet_wrap(c("cyl”, "drv"), labeller = "label_both")

To change the order in which the panels appear, change the levels
of the underlying factor.
mpg$class2 <- reorder(mpg$class, mpg$displ)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
facet_wrap(~class2)

By default, the same scales are used for all panels. You can allow
scales to vary across the panels with the “scales™ argument.
Free scales make it easier to see patterns within each panel, but
harder to compare across panels.
ggplot(mpg, aes(displ, hwy)) +

geom_point() +

facet_wrap(~class, scales = "free")

To repeat the same data in every panel, simply construct a data frame
that does not contain the facetting variable.
ggplot(mpg, aes(displ, hwy)) +
geom_point(data = transform(mpg, class = NULL), colour = "grey85") +
geom_point() +
facet_wrap(~class)

faithfuld 53

Use “switch™ to display the facet labels near an axis, acting as
a subtitle for this axis. This is typically used with free scales
and a theme without boxes around strip labels.
ggplot(economics_long, aes(date, value)) +

geom_line() +

facet_wrap(~variable, scales = "free_y"”, nrow = 2, switch = "x") +

theme(strip.background = element_blank())

faithfuld 2d density estimate of Old Faithful data

Description

A 2d density estimate of the waiting and eruptions variables data faithful.

Usage
faithfuld

Format

A data frame with 5,625 observations and 3 variables.

FluView FluView

Description

Data about Flu outbreaks.

Usage

data("Fluview")

Format

The format is a named list of two data.frames.

54 fortity

format.gganimintproto Format a gganimintproto object

Description

Format a gganimintproto object

Usage
S3 method for class 'gganimintproto'
format(x, ..., flat = TRUE)

Arguments
X A gganimintproto object to print.

If the gganimintproto object has a print method, further arguments will be
passed to it. Otherwise, these arguments are unused.

flat If TRUE (the default), show a flattened list of all local and inherited members. If
FALSE, show the inheritance hierarchy.

fortify Fortify a model with data.

Description

Rather than using this function, I now recomend using the broom package, which implements a
much wider range of methods. fortify may be deprecated in the future.

Usage
fortify(model, data, ...)
Arguments
model model or other R object to convert to data frame
data original dataset, if needed
other arguments passed to methods
See Also

fortify.1lm

fortity.Im 55

fortify.1lm Supplement the data fitted to a linear model with model fit statistics.

Description

If you have missing values in your model data, you may need to refit the model with na.action =

na.exclude.
Usage

S3 method for class 'lm'

fortify(model, data = model$model, ...)
Arguments

model linear model

data data set, defaults to data used to fit model

not used by this method

Value

The original data with extra columns:

.hat Diagonal of the hat matrix
.sigma Estimate of residual standard deviation when corresponding observation is dropped
from model
.cooksd Cooks distance, cooks.distance
.fitted Fitted values of model
.resid Residuals
.stdresid Standardised residuals
Examples

mod <- lm(mpg ~ wt, data = mtcars)
head(fortify(mod))
head(fortify(mod, mtcars))

plot(mod, which = 1)

ggplot(mod, aes(.fitted, .resid)) +
geom_point() +
geom_hline(yintercept = @) +
geom_smooth(se = FALSE)

ggplot(mod, aes(.fitted, .stdresid)) +
geom_point() +
geom_hline(yintercept = @) +

56 fortify.map

geom_smooth(se = FALSE)

ggplot(fortify(mod, mtcars), aes(.fitted, .stdresid)) +
geom_point(aes(colour = factor(cyl)))

ggplot(fortify(mod, mtcars), aes(mpg, .stdresid)) +
geom_point(aes(colour = factor(cyl)))

plot(mod, which = 2)

ggplot(mod) +
stat_qq(aes(sample = .stdresid)) +
geom_abline()

plot(mod, which = 3)

ggplot(mod, aes(.fitted, sqrt(abs(.stdresid)))) +
geom_point() +
geom_smooth(se = FALSE)

plot(mod, which = 4)
ggplot(mod, aes(seq_along(.cooksd), .cooksd)) +
geom_bar(stat = "identity")

plot(mod, which = 5)

ggplot(mod, aes(.hat, .stdresid)) +
geom_vline(size = 2, colour = "white"”, xintercept = @) +
geom_hline(size = 2, colour = "white"”, yintercept = 0) +
geom_point() + geom_smooth(se = FALSE)

ggplot(mod, aes(.hat, .stdresid)) +
geom_point(aes(size = .cooksd)) +
geom_smooth(se = FALSE, size = 0.5)

plot(mod, which = 6)
ggplot(mod, aes(.hat, .cooksd)) +
geom_vline(xintercept = @, colour = NA) +
geom_abline(slope = seq(@, 3, by = 0.5), colour = "white") +
geom_smooth(se = FALSE) +
geom_point()

ggplot(mod, aes(.hat, .cooksd)) +
geom_point(aes(size = .cooksd / .hat)) +
scale_size_area()

fortify.map Fortify method for map objects.

Description

This function turns a map into a data frame that can more easily be plotted with ggplot2.

fortity.sp

Usage
S3 method for class 'map'
fortify(model, data, ...)
Arguments
model map object
data not used by this method

not used by this method

See Also

map_data and borders

Examples

if (require("maps")) {
ca <- map("county”, "ca", plot = FALSE, fill = TRUE)
head(fortify(ca))
ggplot(ca, aes(long, lat)) +
geom_polygon(aes(group = group))

tx <- map("county”, "texas"”, plot = FALSE, fill = TRUE)

head(fortify(tx))
ggplot(tx, aes(long, lat)) +
geom_polygon(aes(group = group), colour = "white")
3
fortify.sp Fortify method for classes from the sp package.
Description

To figure out the correct variable name for region, inspect as.data. frame(model).

Usage

S3 method for class 'SpatialPolygonsDataFrame'
fortify(model, data, ...)

S3 method for class 'SpatialPolygons'
fortify(model, data, ...)

S3 method for class 'Polygons'
fortify(model, data, ...)

S3 method for class 'Polygon'

58 generation.loci

fortify(model, data, ...)

S3 method for class 'SpatiallLinesDataFrame'
fortify(model, data, ...)

S3 method for class 'Lines'
fortify(model, data, ...)

S3 method for class 'Line'

fortify(model, data, ...)

Arguments
model SpatialPolygonsDataFrame to convert into a dataframe.
data not used by this method

not used by this method

generation.loci Evolution simulation

Description

Allele frequencies for 100 loci and 12 populations were simulated over 100 generations.

Usage

data(generation.loci)

Format

A data frame with 120000 observations on the following 4 variables.

locus a numeric vector
population a numeric vector
generation a numeric vector
frequency a numeric vector
color factor: blue, red, or neutral

type factor: balancing, none, or positive

Source

Data generated using nicholsonppp::sim.drift.selection, see code in etc/generation.loci.R.

geom_abline 59

geom_abline Lines: horizontal, vertical, and specified by slope and intercept.

Description
These paired geoms and stats add straight lines to a plot, either horizontal, vertical or specified by
slope and intercept. These are useful for annotating plots.

Usage

geom_abline(
mapping = NULL,

data = NULL,
slope,
intercept,

na.rm = FALSE,
show.legend = NA
)

geom_hline(
mapping = NULL,
data = NULL,
yintercept,
na.rm = FALSE,
show.legend = NA

)

geom_vline(
mapping = NULL,
data = NULL,
xintercept,
na.rm = FALSE,
show.legend = NA

)
Arguments
mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

60 geom_abline

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame., and will be used as the layer data.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

xintercept, yintercept, slope, intercept
Parameters that control the position of the line. If these are set, data, mapping
and show. legend are overridden

Details

These geoms act slightly different to other geoms. You can supply the parameters in two ways: ei-

ther as arguments to the layer function, or via aesthetics. If you use arguments, e.g. geom_abline(intercept
=0, slope = 1), then behind the scenes the geom makes a new data frame containing just the data

you’ve supplied. That means that the lines will be the same in all facets; if you want them to vary

across facets, construct the data frame yourself and use aesthetics.

Unlike most other geoms, these geoms do not inherit aesthetics from the plot default, because they
do not understand x and y aesthetics which are commonly set in the plot. They also do not affect
the x and y scales.

Aesthetics

These geoms are drawn using with geom_line so support the same aesthetics: alpha, colour, line-
type and size. They also each have aesthetics that control the position of the line:

e geom_vline: xintercept
e geom_hline: yintercept

e geom_abline: slope and intercept

See Also

See geom_segment for a more general approach to adding straight line segments to a plot.

Examples

p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()

Fixed values

p + geom_vline(xintercept = 5)
p + geom_vline(xintercept = 1:5)
p + geom_hline(yintercept = 20)

geom_bar 61

p + geom_abline() # Can't see it - outside the range of the data
p + geom_abline(intercept = 20)

Calculate slope and intercept of line of best fit
coef(Im(mpg ~ wt, data = mtcars))

p + geom_abline(intercept = 37, slope = -5)

But this is easier to do with geom_smooth:

p + geom_smooth(method = "1m", se = FALSE)

To show different lines in different facets, use aesthetics
p <- ggplot(mtcars, aes(mpg, wt)) +

geom_point() +

facet_wrap(~ cyl)

mean_wt <- data.frame(cyl = c(4, 6, 8), wt = c(2.28, 3.11, 4.00))
p + geom_hline(aes(yintercept = wt), mean_wt)

You can also control other aesthetics

ggplot(mtcars, aes(mpg, wt, colour = wt)) +
geom_point() +
geom_hline(aes(yintercept = wt, colour = wt), mean_wt) +
facet_wrap(~ cyl)

geom_bar Bars, rectangles with bases on x-axis

Description

There are two types of bar charts, determined by what is mapped to bar height. By default, geom_bar
uses stat="count” which makes the height of the bar proportion to the number of cases in each
group (or if the weight aethetic is supplied, the sum of the weights). If you want the heights of the
bars to represent values in the data, use stat="identity" and map a variable to the y aesthetic.

Usage

geom_bar(
mapping = NULL,
data = NULL,
stat = "count”,
position = "stack”,

width = NULL,
binwidth = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

62

stat_count(

geom_bar

mapping = NULL,

data = NULL,
geom = "bar"”,
position = "stack",
width = NULL,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping

data

position

width
binwidth

na.rm

show. legend

inherit.aes

geom, stat

Details

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

Bar width. By default, set to 90% of the resolution of the data.

geom_bar no longer has a binwidth argument - if you use it you’ll get an warning
telling to you use geom_histogram instead.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Override the default connection between geom_bar and stat_count.

A bar chart maps the height of the bar to a variable, and so the base of the bar must always be shown
to produce a valid visual comparison. This is why it doesn’t make sense to use a log-scaled y axis

with a bar chart.

geom_bar 63

By default, multiple x’s occurring in the same place will be stacked atop one another by position_stack.

If you want them to be dodged side-to-side, see position_dodge. Finally, position_fill shows
relative proportions at each x by stacking the bars and then stretching or squashing to the same
height.

Aesthetics

geom_bar understands the following aesthetics (required aesthetics are in bold):

* X
* alpha

* colour
* fill

* linetype

e size

Computed variables

count number of points in bin

prop groupwise proportion

See Also

geom_histogram for continuous data, position_dodge for creating side-by-side barcharts.

stat_bin, which bins data in ranges and counts the cases in each range. It differs from stat_count,
which counts the number of cases at each x position (without binning into ranges). stat_bin
requires continuous x data, whereas stat_count can be used for both discrete and continuous x
data.

Examples

geom_bar is designed to make it easy to create bar charts that show
counts (or sums of weights)

<- ggplot(mpg, aes(class))

Number of cars in each class:

+ geom_bar ()

Total engine displacement of each class

+ geom_bar(aes(weight = displ))

oo #H0Q H 0 H H

To show (e.g.) means, you need stat = "identity”
df <- data.frame(trt = c("a", "b", "c"), outcome = c(2.3, 1.9, 3.2))
ggplot(df, aes(trt, outcome)) +

geom_bar(stat = "identity")
But geom_point() display exactly the same information and doesn't
require the y-axis to touch zero.
ggplot(df, aes(trt, outcome)) +

geom_point()

You can also use geom_bar() with continuous data, in which case

64 geom_bin2d

it will show counts at unique locations

df <- data.frame(x = rep(c(2.9, 3.1, 4.5), c(5, 10, 4)))
ggplot(df, aes(x)) + geom_bar()

cf. a histogram of the same data

ggplot(df, aes(x)) + geom_histogram(binwidth = 0.5)

ES

Bar charts are automatically stacked when multiple bars are placed
at the same location
+ geom_bar(aes(fill = drv))

0 #*

H

You can instead dodge, or fill them
+ geom_bar(aes(fill = drv), position = "dodge")
+ geom_bar(aes(fill = drv), position = "fill")

oQ

o

To change plot order of bars, change levels in underlying factor
reorder_size <- function(x) {
factor(x, levels = names(sort(table(x))))
}
ggplot(mpg, aes(reorder_size(class))) + geom_bar()

geom_bin2d Add heatmap of 2d bin counts.

Description

Add heatmap of 2d bin counts.

Usage

geom_bin2d(
mapping = NULL,

data = NULL,
stat = "bin2d",
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

stat_bin_2d(
mapping = NULL,

data = NULL,
geom = "tile”,
position = "identity",

L

bins = 30,

geom_bin2d

65

binwidth = NULL,

drop = TRUE,

na.rm = FALSE,

show. legend
inherit.aes

Arguments

mapping

data

position

na.rm

show. legend

inherit.aes

geom, stat

bins

binwidth

drop

Aesthetics

NA,
TRUE

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.
Use to override the default connection between geom_bin2d and stat_bin2d

numeric vector giving number of bins in both vertical and horizontal directions.
Set to 30 by default.

Numeric vector giving bin width in both vertical and horizontal directions. Over-
rides bins if both set.

if TRUE removes all cells with O counts.

stat_bin2dunderstands the following aesthetics (required aesthetics are in bold):

* X
Yy
* fill

66 geom_blank

See Also

stat_binhex for hexagonal binning

Examples

d <- ggplot(diamonds, aes(x, y)) + xlim(4, 10) + ylim(4, 10)
d + geom_bin2d()

You can control the size of the bins by specifying the number of
bins in each direction:
d + geom_bin2d(bins = 10)
d + geom_bin2d(bins = 30)

Or by specifying the width of the bins
d + geom_bin2d(binwidth = c(0.1, 0.1))

geom_blank Blank, draws nothing.

Description
The blank geom draws nothing, but can be a useful way of ensuring common scales between differ-
ent plots.

Usage

geom_blank(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity”,
show.legend = NA,
inherit.aes = TRUE
)
Arguments
mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

geom_contour 67

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Examples

ggplot(mtcars, aes(wt, mpg))
Nothing to see here!

geom_contour Display contours of a 3d surface in 2d.

Description

Display contours of a 3d surface in 2d.

Usage

geom_contour(
mapping = NULL,

data = NULL,
stat = "contour”,
position = "identity"”,

lineend = "butt”,
linejoin = "round”,
linemitre = 1,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

stat_contour(
mapping = NULL,
data = NULL,
geom = "contour”,

68

geom_contour

position = "identity",

L

na.rm = FALSE,

show. legend
inherit.aes

Arguments

mapping

data

stat

position

lineend
linejoin
linemitre
na.rm

show. legend

inherit.aes

geom

Aesthetics

NA,
TRUE

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

Line end style (round, butt, square)
Line join style (round, mitre, bevel)
Line mitre limit (number greater than 1)

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

The geometric object to use display the data

geom_contourunderstands the following aesthetics (required aesthetics are in bold):

* X
°y
* alpha

geom_count 69

¢ colour
* linetype
e size

* weight

Computed variables

level height of contour

See Also

geom_density_2d: 2d density contours

Examples

#' # Basic plot
v <- ggplot(faithfuld, aes(waiting, eruptions, z = density))
v + geom_contour()

Or compute from raw data
ggplot(faithful, aes(waiting, eruptions)) +
geom_density_2d()

Setting bins creates evenly spaced contours in the range of the data
v + geom_contour(bins = 2)
v + geom_contour(bins = 10)

Setting binwidth does the same thing, parameterised by the distance
between contours

v + geom_contour(binwidth = 0.01)

v + geom_contour(binwidth = 0.001)

Other parameters
v + geom_contour(aes(colour = ..level..))
v + geom_contour(colour = "red")
v + geom_tile(aes(fill = density)) +
geom_contour(colour = "white")
geom_count Count the number of observations at each location.
Description

This is a variant geom_point that counts the number of observations at each location, then maps
the count to point size. It useful when you have discrete data.

70

Usage

geom_count (

geom_count

mapping = NULL,

data = NULL,
stat = "sum

position = "identity"”,

°

na.rm = FALSE,
show.legend = NA,

inherit.aes

)

stat_sum(

TRUE

mapping = NULL,

data = NULL,

geom = "point”,

position

L

"identity",

na.rm = FALSE,
show.legend = NA,

inherit.aes

Arguments

mapping

data

position

na.rm

show. legend

TRUE

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

geom_count 71

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

geom, stat Use to override the default connection between geom_count and stat_sum.

Aesthetics

geom_pointunderstands the following aesthetics (required aesthetics are in bold):

X

Yy

* alpha
* colour
* fill

* shape
* size

¢ stroke

Computed variables

n number of observations at position

prop percent of points in that panel at that position

Examples

ggplot(mpg, aes(cty, hwy)) +
geom_point()

ggplot(mpg, aes(cty, hwy)) +
geom_count ()

Best used in conjunction with scale_size_area which ensures that
counts of zero would be given size @. Doesn't make much different
here because the smallest count is already close to 0.
ggplot(mpg, aes(cty, hwy)) +

geom_count ()

scale_size_area()

Display proportions instead of counts ----------------—-——————o————
By default, all categorical variables in the plot form the groups.
Specifying geom_count without a group identifier leads to a plot which is
not useful:

<- ggplot(diamonds, aes(x = cut, y = clarity))

+ geom_count(aes(size = ..prop..))

To correct this problem and achieve a more desirable plot, we need

to specify which group the proportion is to be calculated over.

+ geom_count(aes(size = ..prop.., group = 1)) +

scale_size_area(max_size = 10)

o H Qo O B o oE R

72 geom_crossbar

Or group by x/y variables to have rows/columns sum to 1.

d + geom_count(aes(size = ..prop.., group = cut)) +
scale_size_area(max_size = 10)
d + geom_count(aes(size = ..prop.., group = clarity)) +

scale_size_area(max_size = 10)

geom_crossbar Vertical intervals: lines, crossbars & errorbars.

Description

Various ways of representing a vertical interval defined by x, ymin and ymax.

Usage

geom_crossbar(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity"”,
fatten = 2.5,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_errorbar(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_linerange(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_crossbar 73

)

geom_pointrange(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity”,
fatten = 4,
na.rm = FALSE,

show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.
A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

fatten A multiplicative factor used to increase the size of the middle bar in geom_crossbar ()
and the middle point in geom_pointrange().

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Aesthetics

geom_linerangeunderstands the following aesthetics (required aesthetics are in bold):

74

* X
* ymax

* ymin

* alpha

* colour
* linetype

* size

See Also

geom_crossbar

stat_summary for examples of these guys in use, geom_smooth for continuous analog

Examples

#' # Create a simple example dataset
df <- data.frame(

trt = factor(c(1, 1, 2, 2)),

resp = c(1, 5, 3, 4)

group = factor(c(1, 2, 1, 2)),
upper = c(1.1, 5.3, 3.3, 4.2),
lower = c(0.8, 4.6, 2.4, 3.6)
)
p <- ggplot(df, aes(trt, resp, colour = group))
p + geom_linerange(aes(ymin = lower, ymax = upper))
p + geom_pointrange(aes(ymin = lower, ymax = upper))
p + geom_crossbar(aes(ymin = lower, ymax = upper), width = 0.2)
p + geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)

H+

Draw lines connecting group means

p+

geom_line(aes(group = group)) +

geom_errorbar(aes(ymin = lower, ymax = upper), width = 0.2)

If you want to dodge bars and errorbars, you need to manually
specify the dodge width

p <- ggplot(df, aes(trt, resp, fill = group))

p+

geom_bar(position = "dodge"”, stat = "identity") +
geom_errorbar(aes(ymin = lower, ymax = upper), position = "dodge"”, width

Because the bars and errorbars have different widths
we need to specify how wide the objects we are dodging are
dodge <- position_dodge(width=0.9)
p+
geom_bar(position = dodge, stat = "identity") +

geom_errorbar(aes(ymin = lower, ymax = upper), position = dodge, width =

= 9.25)

0.25)

geom_density 75

geom_density Display a smooth density estimate.

Description
A kernel density estimate, useful for display the distribution of variables with underlying smooth-
ness.

Usage

geom_density(
mapping = NULL,

data = NULL,
stat = "density”,
position = "identity",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_density(
mapping = NULL,

data = NULL,

geom = "area”,
position = "stack”,
bw = "nrde"”,

adjust =1,

kernel = "gaussian”,
trim = FALSE,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)
Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

76

position

na.rm
show. legend
inherit.aes
geom, stat
bw

adjust

kernel

trim

Aesthetics

geom_density

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Use to override the default connection between geom_density and stat_density.
the smoothing bandwidth to be used, see density for details

adjustment of the bandwidth, see density for details

kernel used for density estimation, see density for details

This parameter only matters if you are displaying multiple densities in one plot.
If FALSE, the default, each density is computed on the full range of the data.
If TRUE, each density is computed over the range of that group: this typically
means the estimated x values will not line-up, and hence you won’t be able to
stack density values.

geom_densityunderstands the following aesthetics (required aesthetics are in bold):

* X
°y

* alpha

* colour
* fill

* linetype
* size

* weight

Computed variables

density density estimate

count density * number of points - useful for stacked density plots

scaled density estimate, scaled to maximum of 1

geom_density_2d 77

See Also

See geom_histogram, geom_fregpoly for other methods of displaying continuous distribution.
See geom_violin for a compact density display.

Examples

ggplot(diamonds, aes(carat)) +
geom_density()

ggplot(diamonds, aes(carat)) +
geom_density(adjust = 1/5)
ggplot(diamonds, aes(carat)) +

geom_density(adjust = 5)

ggplot(diamonds, aes(depth, colour = cut)) +
geom_density() +
x1lim(55, 70)

ggplot(diamonds, aes(depth, fill = cut, colour = cut)) +
geom_density(alpha = 0.1) +
x1lim(55, 70)

Stacked density plots: if you want to create a stacked density plot, you
probably want to 'count' (density * n) variable instead of the default
density

Loses marginal densities

ggplot(diamonds, aes(carat, fill = cut)) +
geom_density(position = "stack")

Preserves marginal densities

ggplot(diamonds, aes(carat, ..count.., fill = cut)) +
geom_density(position = "stack")

You can use position="fill" to produce a conditional density estimate
ggplot(diamonds, aes(carat, ..count.., fill = cut)) +
geom_density(position = "fill")

geom_density_2d Contours from a 2d density estimate.

Description

Perform a 2D kernel density estimation using kde2d and display the results with contours. This can
be useful for dealing with overplotting.

78

Usage

geom_density_2d

geom_density_2d(

)

mapping = NULL,

data = NULL,
stat = "density2d"”,
position = "identity",

lineend = "butt”,
linejoin = "round”,
linemitre = 1,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

stat_density_2d(

mapping = NULL,

data = NULL,
geom = "density_2d",
position = "identity"”,

contour = TRUE,

n = 100,

h = NULL,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping

data

position

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

geom_density_2d 79

lineend Line end style (round, butt, square)

linejoin Line join style (round, mitre, bevel)

linemitre Line mitre limit (number greater than 1)

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently

removes missing values.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

geom, stat Use to override the default connection between geom_density_2d and stat_density_2d.
contour If TRUE, contour the results of the 2d density estimation
n number of grid points in each direction
h Bandwidth (vector of length two). If NULL, estimated using bandwidth.nrd.
Aesthetics

geom_density_2dunderstands the following aesthetics (required aesthetics are in bold):

* X
Yy

* alpha

* colour
* linetype

* size

Computed variables

Same as stat_contour

See Also

geom_contour for contour drawing geom, stat_sum for another way of dealing with overplotting

Examples

m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +
geom_point() +

x1im(0.5, 6) +

ylim(40, 110)

m + geom_density_2d()

m + stat_density_2d(aes(fill = ..level..), geom = "polygon”)

set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]

80 geom_dotplot

d <- ggplot(dsmall, aes(x, y))
If you map an aesthetic to a categorical variable, you will get a
set of contours for each value of that variable
d + geom_density_2d(aes(colour = cut))
If we turn contouring off, we can use use geoms like tiles:
d + stat_density_2d(geom = "tile", aes(fill = ..density..), contour = FALSE)
Or points:
d + stat_density_2d(geom = "point”, aes(size = ..density..), n = 20, contour = FALSE)
geom_dotplot Dot plot
Description

In a dot plot, the width of a dot corresponds to the bin width (or maximum width, depending on the
binning algorithm), and dots are stacked, with each dot representing one observation.

Usage

geom_dotplot(
mapping = NULL,
data = NULL,
position = "identity",

binwidth = NULL,

binaxis = "x",

method = "dotdensity”,
binpositions = "bygroup”,
stackdir = "up”,

stackratio = 1,
dotsize =1,
stackgroups = FALSE,
origin = NULL,

right = TRUE,
width = 0.9,
drop = FALSE,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

geom_dotplot

data

position

binwidth

binaxis

method

binpositions

stackdir

stackratio

dotsize

stackgroups

origin

right

width
drop

na.rm

show. legend

inherit.aes

81

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

When method is "dotdensity", this specifies maximum bin width. When method
is "histodot", this specifies bin width. Defaults to 1/30 of the range of the data

The axis to bin along, "x" (default) or "y"

"dotdensity" (default) for dot-density binning, or "histodot" for fixed bin widths
(like stat_bin)

When method is "dotdensity", "bygroup" (default) determines positions of the
bins for each group separately. "all" determines positions of the bins with all the
data taken together; this is used for aligning dot stacks across multiple groups.

non non

which direction to stack the dots. "up" (default), "down", "center",
hole" (centered, but with dots aligned)

centerw-

how close to stack the dots. Default is 1, where dots just just touch. Use smaller
values for closer, overlapping dots.

The diameter of the dots relative to binwidth, default 1.

should dots be stacked across groups? This has the effect that position =
"stack” should have, but can’t (because this geom has some odd properties).

When method is "histodot", origin of first bin

When method is "histodot", should intervals be closed on the right (a, b], or not
[a, b)

nen

When binaxisis "y", the spacing of the dot stacks for dodging.
If TRUE, remove all bins with zero counts

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

82 geom_dotplot

Details
With dot-density binning, the bin positions are determined by the data and binwidth, which is the
maximum width of each bin. See Wilkinson (1999) for details on the dot-density binning algorithm.
With histodot binning, the bins have fixed positions and fixed widths, much like a histogram.

When binning along the x axis and stacking along the y axis, the numbers on y axis are not mean-
ingful, due to technical limitations of ggplot2. You can hide the y axis, as in one of the examples,
or manually scale it to match the number of dots.

Aesthetics

geom_dotplotunderstands the following aesthetics (required aesthetics are in bold):

X
Yy

* alpha
* colour
o fill

Computed variables

x center of each bin, if binaxis is "x
y center of each bin, if binaxis is "x"

binwidth max width of each bin if method is "dotdensity"; width of each bin if method is "histodot"
count number of points in bin

ncount count, scaled to maximum of 1

density density of points in bin, scaled to integrate to 1, if method is "histodot"

ndensity density, scaled to maximum of 1, if method is "histodot"

References

Wilkinson, L. (1999) Dot plots. The American Statistician, 53(3), 276-281.

Examples

ggplot(mtcars, aes(x = mpg)) + geom_dotplot()
ggplot(mtcars, aes(x = mpg)) + geom_dotplot(binwidth = 1.5)

Use fixed-width bins
ggplot(mtcars, aes(x = mpg)) +
geom_dotplot(method="histodot”, binwidth = 1.5)

Some other stacking methods
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, stackdir = "center")
ggplot(mtcars, aes(x = mpg)) +

geom_dotplot(binwidth = 1.5, stackdir = "centerwhole")

geom_errorbarh

y axis isn't really meaningful, so hide it
ggplot(mtcars, aes(x = mpg)) + geom_dotplot(binwidth = 1.5) +
scale_y_continuous(NULL, breaks = NULL)

Overlap dots vertically
ggplot(mtcars, aes(x = mpg)) + geom_dotplot(binwidth = 1.5, stackratio = .7)

Expand dot diameter
ggplot(mtcars, aes(x = mpg)) + geom_dotplot(binwidth = 1.5, dotsize = 1.25)

Examples with stacking along y axis instead of x
ggplot(mtcars, aes(x = 1, y = mpg)) +

no,n

geom_dotplot(binaxis = "y", stackdir = "center")

ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +

no,n

geom_dotplot(binaxis = "y", stackdir = "center")

ggplot(mtcars, aes(x = factor(cyl), y = mpg)) +

non

geom_dotplot(binaxis = "y", stackdir = "centerwhole")

ggplot(mtcars, aes(x = factor(vs), fill = factor(cyl), y = mpg)) +

no,n

geom_dotplot(binaxis = "y", stackdir = "center”, position = "dodge")

binpositions="all” ensures that the bins are aligned between groups
ggplot(mtcars, aes(x = factor(am), y = mpg)) +

no,n

geom_dotplot(binaxis = "y", stackdir = "center”, binpositions="all")

Stacking multiple groups, with different fill
ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +
geom_dotplot(stackgroups = TRUE, binwidth = 1, binpositions = "all")

ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +
geom_dotplot(stackgroups = TRUE, binwidth = 1, method = "histodot")

ggplot(mtcars, aes(x = 1, y = mpg, fill = factor(cyl))) +
geom_dotplot(binaxis = "y", stackgroups = TRUE, binwidth = 1, method = "histodot")

geom_errorbarh Horizontal error bars

Description

Horizontal error bars

Usage

geom_errorbarh(

84

geom_errorbarh

mapping = NULL,

data = NULL,

stat = "identity”,

position

L

"identity",

na.rm = FALSE,
show.legend = NA,

inherit.aes

Arguments

mapping

data

stat

position

na.rm

show. legend

inherit.aes

Aesthetics

TRUE

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

geom_errorbarhunderstands the following aesthetics (required aesthetics are in bold):

* X
¢ Xmax

e Xmin

geom_fregpoly

* alpha

* colour

* height
* linetype

* size

See Also

geom_errorbar: vertical error bars

Examples

df <- data.frame(

trt = factor(c(1, 1, 2, 2)),

resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1,

se = c(0.1, 0.3, 0.3, 0.2)

)

Define the top and bottom of the errorbars

2)),

p <- ggplot(df, aes(resp, trt, colour = group))

p + geom_point() +
geom_errorbarh(aes(xmax =

p + geom_point() +
geom_errorbarh(aes(xmax =

resp + se,

resp + se,

xmin

xmin

resp - se))

resp - se, height = .2))

85

geom_freqpoly

Histograms and frequency polygons.

Description

Display a 1d distribution by dividing into bins and counting the number of observations in each bin.

Histograms use bars; frequency polygons use lines.

Usage

geom_fregpoly(
mapping = NULL,

data = NULL,
stat = "bin",
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

86

geom_fregpoly

geom_histogram(

)

mapping = NULL,

data = NULL,
stat = "bin",
position = "stack",

binwidth = NULL,
bins = NULL,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

stat_bin(

mapping = NULL,
data = NULL,

geom = "bar”,
position = "stack”,

binwidth = NULL,

bins = NULL,

center = NULL,

boundary = NULL,

closed = c("right", "left"),
pad = FALSE,

na.rm = FALSE,

show.legend = NA,
inherit.aes = TRUE

Arguments

mapping

data

position

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an

geom_fregpoly

na.rm
show. legend

inherit.aes

binwidth

bins
geom, stat

center

boundary

closed

pad

Details

87

aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

The width of the bins. The default is to use bins bins that cover the range of the
data. You should always override this value, exploring multiple widths to find
the best to illustrate the stories in your data.

The bin width of a date variable is the number of days in each time; the bin
width of a time variable is the number of seconds.

Number of bins. Overridden by binwidth. Defaults to 30

Use to override the default connection between geom_histogram/geom_fregpoly
and stat_bin.

The center of one of the bins. Note that if center is above or below the range of
the data, things will be shifted by an appropriate number of widths. To center
on integers, for example, use width=1 and center=0, even if 0 is outside the
range of the data. At most one of center and boundary may be specified.

A boundary between two bins. As with center, things are shifted when boundary
is outside the range of the data. For example, to center on integers, use width =
1 and boundary = 0.5, even if 1 is outside the range of the data. At most one of
center and boundary may be specified.

One of "right” or "left” indicating whether right or left edges of bins are
included in the bin.

If TRUE, adds empty bins at either end of x. This ensures frequency polygons
touch 0. Defaults to FALSE.

By default, stat_bin uses 30 bins - this is not a good default, but the idea is to get you experiment-
ing with different binwidths. You may need to look at a few to uncover the full story behind your

data.

Aesthetics

geom_histogram uses the same aesthetics as geom_bar; geom_freqpoly uses the same aesthetics

as geom_line.

Computed variables

count number of points in bin

density density of points in bin, scaled to integrate to 1

ncount count, scaled to maximum of 1

ndensity density, scaled to maximum of 1

88

See Also

geom_fregpoly

stat_count, which counts the number of cases at each x posotion, without binning. It is suitable
for both discrete and continuous x data, whereas stat_bin is suitable only for continuous x data.

Examples

ggplot(diamonds, aes(carat)) +
geom_histogram()

ggplot(diamonds, aes(carat)) +
geom_histogram(binwidth = 0.01)

ggplot(diamonds, aes(carat)) +
geom_histogram(bins = 200)

Rather than stacking histograms, it's easier to compare frequency
polygons
ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(binwidth = 500)
ggplot(diamonds, aes(price, colour = cut)) +
geom_fregpoly(binwidth = 500)

To make it easier to compare distributions with very different counts,

put density on the y axis instead of the default count

ggplot(diamonds, aes(price, ..density.., colour = cut)) +
geom_fregpoly(binwidth = 500)

if (require("ggplot2movies”)) {

Often we don't want the height of the bar to represent the
count of observations, but the sum of some other variable.

For example, the following plot shows the number of movies
in each rating.

m <- ggplot(movies, aes(rating))

m + geom_histogram(binwidth = 0.1)

If, however, we want to see the number of votes cast in each
category, we need to weight by the votes variable

3

+ geom_histogram(aes(weight = votes), binwidth = 0.1) + ylab("votes")

For transformed scales, binwidth applies to the transformed data.
The bins have constant width on the transformed scale.

+ geom_histogram() + scale_x_logl10()

+ geom_histogram(binwidth = ©.05) + scale_x_logl10()

3 3 #

H

For transformed coordinate systems, the binwidth applies to the
raw data. The bins have constant width on the original scale.

ETS

Using log scales does not work here, because the first

bar is anchored at zero, and so when transformed becomes negative
infinity. This is not a problem when transforming the scales, because
no observations have 0@ ratings.

+ geom_histogram(origin = @) + coord_trans(x = "logl10")

Use origin = 0, to make sure we don't take sqrt of negative values

+ geom_histogram(origin = @) + coord_trans(x = "sqrt")

S % 3 % % oE o

geom_hex 89

}

rm(movies)

geom_hex Hexagon binning.

Description

Hexagon binning.

Usage

geom_hex (
mapping = NULL,
data = NULL,
stat = "binhex",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_bin_hex(
mapping = NULL,

data = NULL,

geom = "hex",

position = "identity”,
bins = 30,

binwidth = NULL,

na.rm = FALSE,

show.legend = NA,
inherit.aes = TRUE

)
Arguments
mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

90

position

na.rm

show. legend

inherit.aes

geom, stat

bins

binwidth

Aesthetics

geom_hex

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Override the default connection between geom_hex and stat_binhex.

numeric vector giving number of bins in both vertical and horizontal directions.
Set to 30 by default.

Numeric vector giving bin width in both vertical and horizontal directions. Over-
rides bins if both set.

geom_hexunderstands the following aesthetics (required aesthetics are in bold):

* X

Yy

* alpha
* colour
* fill

e size

See Also

stat_bin2d for rectangular binning

Examples

d <- ggplot(diamonds, aes(carat, price))

d + geom_hex()

You can control the size of the bins by specifying the number of
bins in each direction:

geom_jitter

d + geom_hex(bins
d + geom_hex(bins

91

= 10)
30)

Or by specifying the width of the bins
d + geom_hex(binwidth = c(1, 1000))
d + geom_hex(binwidth = c(.1, 500))

geom_jitter

Points, jittered to reduce overplotting.

Description

The jitter geom is a convenient default for geom_point with position = ’jitter’. It’s a useful way of
handling overplotting caused by discreteness in smaller datasets.

Usage

geom_jitter(

mapping = NULL,

"jitter”,

data = NULL,

stat = "identity"”,
position =

width = NULL,

height = NULL,
na.rm = FALSE,

show. legend
inherit.aes

Arguments

mapping

data

stat

position

NA,
TRUE

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

92

width, height

na.rm

show. legend

inherit.aes

Aesthetics

geom_jitter

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

Amount of vertical and horizontal jitter. The jitter is added in both positive and
negative directions, so the total spread is twice the value specified here.

If omitted, defaults to 40% of the resolution of the data: this means the jitter
values will occupy 80% of the implied bins. Categorical data is aligned on the
integers, so a width or height of 0.5 will spread the data so it’s not possible to
see the distinction between the categories.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

geom_pointunderstands the following aesthetics (required aesthetics are in bold):

* X
°y

* alpha

* colour
o fill

* shape

* size

¢ stroke

See Also

geom_point for regular, unjittered points.

Examples

p <- ggplot(mpg, aes(cyl, hwy))

p + geom_point()
p + geom_jitter()

Add aesthetic mappings
p + geom_jitter(aes(colour = class))

Use smaller width/height to emphasise categories
ggplot(mpg, aes(cyl, hwy)) + geom_jitter()
ggplot(mpg, aes(cyl, hwy)) + geom_jitter(width = 0.25)

geom_label

Use larger width/height to completely smooth away discreteness
ggplot(mpg, aes(cty, hwy)) + geom_jitter()
ggplot(mpg, aes(cty, hwy)) + geom_jitter(width = 0.5, height = 0.5)

93

geom_label

Textual annotations.

Description

geom_text adds text directly to the plot. geom_label draws a rectangle underneath the text, making
it easier to read.

Usage

geom_label (

)

mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

parse = FALSE,
nudge_x = 0,
nudge_y = 0,

label.padding = unit(@.25, "lines"),
label.r = unit(0.15, "lines"),

label.size = 0.25,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_text(

mapping = NULL,

data = NULL,

stat = "identity",
position = "identity",
parse = FALSE,

nudge_x = 0,

nudge_y = 0,
check_overlap = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

94

Arguments

mapping

data

stat

position

parse

nudge_x, nudge_y

label.padding
label.r
label.size

na.rm

show. legend

inherit.aes

check_overlap

Details

geom_label

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If TRUE, the labels will be parsed into expressions and displayed as described
in ?plotmath

Horizontal and vertical adjustment to nudge labels by. Useful for offsetting text
from points, particularly on discrete scales.

Amount of padding around label. Defaults to 0.25 lines.
Radius of rounded corners. Defaults to 0.15 lines.
Size of label border, in mm.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

If TRUE, text that overlaps previous text in the same layer will not be plotted. A
quick and dirty way

Note the the "width" and "height" of a text element are 0, so stacking and dodging text will not work
by default, and axis limits are not automatically expanded to include all text. Obviously, labels do
have height and width, but they are physical units, not data units. The amount of space they occupy
on that plot is not constant in data units: when you resize a plot, labels stay the same size, but the
size of the axes changes.

geom_label 95

Aesthetics

geom_textunderstands the following aesthetics (required aesthetics are in bold):

* label

* X

Yy

* alpha

* angle

* colour
* family
* fontface
* hjust

* lineheight
* size

* vjust

geom_label

Currently geom_label does not support the rot parameter and is considerably slower than geom_text.
The fill aesthetic controls the background colour of the label.

Alignment

You can modify text alignment with the vjust and hjust aesthetics. These can either be a number
between O (right/bottom) and 1 (top/left) or a character ("left", "middle", "right", "bottom", "center",
"top"). There are two special alignments: "inward" and "outward". Inward always aligns text
towards the center, and outward aligns it away from the center

Examples

p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars)))

p + geom_text()

Avoid overlaps

p + geom_text(check_overlap = TRUE)
Labels with background

p + geom_label()

Change size of the label

p + geom_text(size = 10)

Set aesthetics to fixed value

p + geom_point() + geom_text(hjust = @, nudge_x = 0.05)
p + geom_point() + geom_text(vjust = @, nudge_y = 0.5)
p + geom_point() + geom_text(angle = 45)

Not run:

Doesn't work on all systems

p + geom_text(family = "Times New Roman")

96

©

T & T

T % o

ES

Aligning labels and bars
df <- data.frame(

End(Not run)

Add aesthetic mappings

+ geom_text(aes(colour = factor(cyl)))

+ geom_text(aes(colour = factor(cyl))) +

scale_colour_discrete(l = 40)

+ geom_label(aes(fill = factor(cyl)), colour = "white”, fontface = "bold")

+ geom_text(aes(size = wt))
Scale height of text, rather than sqgrt(height)
+ geom_text(aes(size = wt)) + scale_radius(range = c(3,6))

You can display expressions by setting parse = TRUE. The
details of the display are described in ?plotmath, but note that
geom_text uses strings, not expressions.

+ geom_text(aes(label = paste(wt, "~(", cyl, ")", sep = "")),
parse = TRUE)

Add a text annotation
+

geom_text() +

annotate("text"”, label = "plot mpg vs. wt”, x = 2, y = 15, size = 8, colour

x = factor(c(1, 1, 2, 2)),
y=C(1Y 37 27 1)'
grp = c("a”", "b", "a", "b")

ggplot2 doesn't know you want to give the labels the same virtual width
as the bars:
ggplot(data = df, aes(x, y, fill = grp, label = y)) +

geom_bar(stat = "identity"”, position = "dodge") +
geom_text(position = "dodge")

So tell it:
ggplot(data = df, aes(x, y, fill = grp, label = y)) +

geom_bar(stat = "identity"”, position = "dodge") +
geom_text(position = position_dodge(@.9))

Use you can't nudge and dodge text, so instead adjust the y postion
ggplot(data = df, aes(x, y, fill = grp, label = y)) +

geom_bar(stat = "identity”, position = "dodge") +
geom_text(aes(y = y + 0.05), position = position_dodge(0.9), vjust = @)

To place text in the middle of each bar in a stacked barplot, you
need to do the computation yourself
df <- transform(df, mid_y = ave(dfy, dfx, FUN = function(val) cumsum(val) - (0.5 x val)))

ggplot(data = df, aes(x, y, fill = grp, label = y)) +

geom_bar(stat = "identity") +
geom_text(aes(y = mid_y))

geom_label

= "red")

geom_label_aligned 97

Justification -----------------—---——---
df <- data.frame(

x=c(, 1, 2, 2, 1.5),

y =c(l, 2, 1, 2, 1.5),

text = c("bottom-left”, "bottom-right”, "top-left”, "top-right”, "center”)
)

ggplot(df, aes(x, y)) +
geom_text(aes(label = text))
ggplot(df, aes(x, y)) +
geom_text(aes(label = text), vjust = "inward”, hjust = "inward")
geom_label_aligned Non-overlapping label boxes

Description

This geom creates boxes with labels that are aligned either vertically or horizontally, using quadratic
programming to optimize their positions and avoid overlaps. The QP solver is applied after all
showSelected filtering occurs, and operates as follows:

Usage

geom_label_aligned(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity"”,

label_r = 0.15,
alignment = "vertical”,
min_distance = 0.1,
background_rect = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)
Arguments
mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

98

stat

position

label_r
alignment

min_distance

background_rect

na.rm

show. legend

inherit.aes

Details

geom_label_aligned

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

Radius of rounded corners. Defaults to 0.15 lines.
One of "vertical" (QP on Y axis) or "horizontal" (QP on X axis)

Minimum distance between boxes in pixels.

Disables text background rect if set to FALSE.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

For vertical alignment (default): - QP optimizes Y positions while keeping X positions fixed -
Constraints ensure boxes don’t overlap vertically - Boxes are aligned along the vertical axis at their
original X positions

For horizontal alignment: - QP optimizes X positions while keeping Y positions fixed - Constraints
ensure boxes don’t overlap horizontally - Boxes are aligned along the horizontal axis at their original

Y positions

The QP solver minimizes the total squared distance from original positions while enforcing mini-
mum spacing constraints between boxes.

Examples

library(nlme)

data(BodyWeight, package = "nlme")

Extracting the last point of each rat's trajectory
library(data.table)

label_data <- data.table(BodyWeight)[Time == max(Time)][order(weight)]
rfac=function(x)factor(paste(x), paste(label_data$Rat))
BodyWeight$rat=rfac(BodyWeight$Rat)
label_data$rat=rfac(label_data$Rat)

library(animint2)

geom_map

viz <- animint(
bodyPlot = ggplot() +
theme_bw() +
theme_animint(width=1000)+
geom_line(aes(
x = Time, y = weight,

group = rat),
clickSelects="rat",
size=3,

data = BodyWeight) +
geom_line(aes(
x = Time, y = weight,
group = rat, key = rat, colour = rat),
clickSelects="rat",
data = BodyWeight) +
geom_label_aligned(aes(
x = Time + 1, y = weight,
key = rat, label = rat, fill = rat),
clickSelects="rat",
hjust = 0,
data = label_data) +
facet_grid(~Diet, labeller=label_both) +
ggtitle("rat body weight over time by diet”) +
xlab("Time (days)") +
ylab("Body Weight (grams)"),
duration=list(rat=1000)
)

viz

geom_map Polygons from a reference map.

Description

Does not affect position scales.

Usage
geom_map (
mapping = NULL,
data = NULL,

stat = "identity"”,
map,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

100

Arguments

mapping

data

stat

map

na.rm

show. legend

inherit.aes

Aesthetics

geom_map

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

Data frame that contains the map coordinates. This will typically be created
using fortify on a spatial object. It must contain columns x or long, y or lat,
and region or id.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

geom_mapunderstands the following aesthetics (required aesthetics are in bold):

* map_id
* alpha

* colour
* fill

* linetype

* size

Examples

When using geom_polygon, you will typically need two data frames:
one contains the coordinates of each polygon (positions), and the
other the values associated with each polygon (values). An id

variable links the two together

geom_path 101

ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))

values <- data.frame(

id = ids,

value = ¢(3, 3.1, 3.1, 3.2, 3.15, 3.5)
)

positions <- data.frame(
id = rep(ids, each = 4),

x=c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),

y = c(-0.5, @, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)

)

ggplot(values) + geom_map(aes(map_id = id), map = positions) +
expand_limits(positions)

ggplot(values, aes(fill = value)) +
geom_map(aes(map_id = id), map = positions) +
expand_limits(positions)

ggplot(values, aes(fill = value)) +
geom_map(aes(map_id = id), map = positions) +
expand_limits(positions) + ylim(@, 3)

Better example
crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)
crimesm <- reshape2::melt(crimes, id = 1)
if (require(maps)) {
states_map <- map_data("state")
ggplot(crimes, aes(map_id = state)) +
geom_map(aes(fill = Murder), map = states_map) +
expand_limits(x = states_map$long, y = states_map$lat)

last_plot() + coord_map()

ggplot(crimesm, aes(map_id = state)) +
geom_map(aes(fill = value), map = states_map) +
expand_limits(x = states_map$long, y = states_map$lat) +
facet_wrap(~ variable)

geom_path Connect observations.

Description

geom_path () connects the observations in the order in which they appear in the data. geom_line()
connects them in order of the variable on the x axis. geom_step() creates a stairstep plot, high-
lighting exactly when changes occur.

102 geom_path

Usage

geom_path(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity"”,

lineend = "butt”,

linejoin = "round”,
linemitre = 1,
arrow = NULL,

na.rm = FALSE,

show.legend = NA,

inherit.aes = TRUE
)

geom_line(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

)

geom_step(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
direction = "hv",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

)
Arguments
mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

geom_path

stat

position

lineend
linejoin
linemitre
arrow

na.rm

show. legend

inherit.aes

direction

Aesthetics

103

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

Line end style (round, butt, square)

Line join style (round, mitre, bevel)
Line mitre limit (number greater than 1)
Arrow specification, as created by arrow

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

direction of stairs: ’vh’ for vertical then horizontal, or *hv’ for horizontal then
vertical

geom_pathunderstands the following aesthetics (required aesthetics are in bold):

* X
*y

* alpha

* colour
* linetype

* size

See Also

geom_polygon: Filled paths (polygons); geom_segment: Line segments

104 geom_path

Examples

geom_line() is suitable for time series

ggplot(economics, aes(date, unemploy)) + geom_line()

ggplot(economics_long, aes(date, value@1, colour = variable)) +
geom_line()

geom_step() is useful when you want to highlight exactly when
the y value chanes

recent <- economics[economics$date > as.Date("”2013-01-01"), 1]
ggplot(recent, aes(date, unemploy)) + geom_line()
ggplot(recent, aes(date, unemploy)) + geom_step()

geom_path lets you explore how two variables are related over time,
e.g. unemployment and personal savings rate

m <- ggplot(economics, aes(unemploy/pop, psavert))

m + geom_path()

m + geom_path(aes(colour = as.numeric(date)))

Changing parameters ----------------——--————————-————— -
ggplot(economics, aes(date, unemploy)) +
geom_line(colour = "red")

Use the arrow parameter to add an arrow to the line
See ?arrow for more details
c <- ggplot(economics, aes(x = date, y = pop))
c + geom_line(arrow = arrow())
c + geom_line(
arrow = arrow(angle = 15, ends = "both”, type = "closed")

)

Control line join parameters

df <- data.frame(x = 1:3, y = c(4, 1, 9))

base <- ggplot(df, aes(x, y))

base + geom_path(size = 10)

base + geom_path(size = 10, lineend = "round")

base + geom_path(size = 10, linejoin = "mitre”, lineend = "butt")

NAs break the line. Use na.rm = T to suppress the warning message
df <- data.frame(
x = 1:5,

yl =c(1, 2, 3, 4, NA),
y2 = c(NA, 2, 3, 4, 5),
y3 = c(1, 2, NA, 4, 5)

)

ggplot(df, aes(x, y1)) + geom_point() + geom_line()
ggplot(df, aes(x, y2)) + geom_point() + geom_line()
ggplot(df, aes(x, y3)) + geom_point() + geom_line()

Setting line type vs colour/size
Line type needs to be applied to a line as a whole, so it can
not be used with colour or size that vary across a line

geom_point 105

X <- seq(0.01, .99, length.out = 100)
df <- data.frame(
x = rep(x, 2),
y = c(qlogis(x), 2 * glogis(x)),
group = rep(c(”a","b"),
each = 100)

<- ggplot(df, aes(x=x, y=y, group=group))

These work

+ geom_line(linetype = 2)

+ geom_line(aes(colour = group), linetype = 2)

+ geom_line(aes(colour = x))

But this doesn't

should_stop(p + geom_line(aes(colour = x), linetype=2))

* T T T H# T v

geom_point Points, as for a scatterplot

Description

The point geom is used to create scatterplots.

Usage

geom_point(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)
Arguments
mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

106

stat

position

na.rm

show. legend

inherit.aes

Details

geom_point

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

The scatterplot is useful for displaying the relationship between two continuous variables, although

it can also be used

with one continuous and one categorical variable, or two categorical variables.

See geom_jitter for possibilities.

The bubblechart is a scatterplot with a third variable mapped to the size of points. There are no
special names for scatterplots where another variable is mapped to point shape or colour, however.

The biggest potential problem with a scatterplot is overplotting: whenever you have more than a few
points, points may be plotted on top of one another. This can severely distort the visual appearance
of the plot. There is no one solution to this problem, but there are some techniques that can help.
You can add additional information with geom_smooth or geom_density_2d. Alternatively, you
can summarise the number of points at each location and display that in some way, using stat_sum.
Another technique is to use transparent points, e.g. geom_point(alpha =0.05).

Aesthetics

geom_pointunderstands the following aesthetics (required aesthetics are in bold):

* X

Yy

* alpha

* colour
* fill

* shape

* size

¢ stroke

See Also

scale_size to see scale area of points, instead of radius, geom_jitter to jitter points to reduce

(mild) overplotting

geom_point 107

Examples

<- ggplot(mtcars, aes(wt, mpg))
+ geom_point()

T ©

Add aesthetic mappings

+ geom_point(aes(colour = factor(cyl)))
+ geom_point(aes(shape = factor(cyl)))
+ geom_point(aes(size = gsec))

T T T #H

H+

Change scales
p + geom_point(aes(colour = cyl)) + scale_colour_gradient(low = "blue”)
p + geom_point(aes(shape = factor(cyl))) + scale_shape(solid = FALSE)

Set aesthetics to fixed value

ggplot(mtcars, aes(wt, mpg)) + geom_point(colour = "red"”, size = 3)
Varying alpha is useful for large datasets

d <- ggplot(diamonds, aes(carat, price))

d + geom_point(alpha = 1/10)

d + geom_point(alpha = 1/20)

d + geom_point(alpha = 1/100)

For shapes that have a border (like 21), you can colour the inside and
outside separately. Use the stroke aesthetic to modify the width of the
border
ggplot(mtcars, aes(wt, mpg)) +
geom_point(shape = 21, colour = "black”, fill = "white"”, size = 5, stroke = 5)

You can create interesting shapes by layering multiple points of
different sizes
p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl)))
p + geom_point(aes(colour = factor(cyl)), size = 4) +
geom_point(colour = "grey90", size = 1.5)
p + geom_point(colour = "black”, size = 4.5) +
geom_point(colour = "pink"”, size = 4) +

geom_point(aes(shape = factor(cyl)))

These extra layers don't usually appear in the legend, but we can

force their inclusion

p + geom_point(colour = "black", size = 4.5, show.legend = TRUE) +
geom_point(colour = "pink"”, size = 4, show.legend = TRUE) +
geom_point(aes(shape = factor(cyl)))

geom_point warns when missing values have been dropped from the data set
and not plotted, you can turn this off by setting na.rm = TRUE

mtcars2 <- transform(mtcars, mpg = ifelse(runif(32) < 0.2, NA, mpg))
ggplot(mtcars2, aes(wt, mpg)) + geom_point()

ggplot(mtcars2, aes(wt, mpg)) + geom_point(na.rm = TRUE)

108 geom_polygon

geom_polygon Polygon, a filled path.

Description

Polygon, a filled path.

Usage

geom_polygon(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)
Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.
A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.
other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently

removes missing values.
show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.
inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

geom_polygon 109

Aesthetics

geom_polygonunderstands the following aesthetics (required aesthetics are in bold):

* X
°y

* alpha

* colour
* fill

* linetype

e size

See Also

geom_path for an unfilled polygon, geom_ribbon for a polygon anchored on the x-axis

Examples

When using geom_polygon, you will typically need two data frames:
one contains the coordinates of each polygon (positions), and the
other the values associated with each polygon (values). An id

variable links the two together

ids <= factor(c(”1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))

values <- data.frame(

id = ids,

value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5)
)

positions <- data.frame(
id = rep(ids, each = 4),

x=c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),

y = c(-0.5, @, 1, 0.5, @, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2)

)

Currently we need to manually merge the two together
datapoly <- merge(values, positions, by = c("id"))

(p <- ggplot(datapoly, aes(x = x, y = y)) + geom_polygon(aes(fill = value, group = id)))

Which seems like a lot of work, but then it's easy to add on
other features in this coordinate system, e.g.:

stream <- data.frame(
x = cumsum(runif (50, max = 0.1)),
y = cumsum(runif(50,max = 0.1))

)

110 geom_rect

p + geom_line(data = stream, colour = "grey30", size = 5)

And if the positions are in longitude and latitude, you can use
coord_map to produce different map projections.

geom_rect Draw rectangles.

Description

geom_rect and geom_tile do the same thing, but are parameterised differently. geom_rect uses
the locations of the four corners (xmin, xmax, ymin and ymax). geom_tile uses the center of the tile
and its size (x, y, width, height). geom_tile is a high performance special case for when all the
tiles are the same size.

Usage

geom_rect(
mapping = NULL,
data = NULL,
stat = "identity”,
position = "identity"”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_tile(
mapping = NULL,
data = NULL,
stat = "identity"”,
position = "identity"”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

geom_rect

data

stat

position

na.rm

show. legend

inherit.aes

Aesthetics

111

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

geom_tileunderstands the following aesthetics (required aesthetics are in bold):

* X
°y

* alpha

* colour
* fill

* linetype

* size

Examples

ggplot(faithfuld,

aes(waiting, eruptions)) +

geom_tile(aes(fill = density))

If you want to draw arbitrary rectangles, use geom_tile() or geom_rect()

df <- data.frame(
rep(c(2, 5,
rep(c(1, 2)

= N KK X
1l

7! 9? 12)’ 2)7
, each = 5),

factor(rep(1:5, each = 2)),
rep(diff(c(e, 4, 6, 8, 10, 14)), 2)

112

geom_ribbon

ggplot(df, aes(x, y)) +
geom_tile(aes(fill = z))

ggplot(df, aes(x, y)) +
geom_tile(aes(fill = z, width = w), colour = "grey50")

ggplot(df, aes(xmin = x - w / 2, xmax = x +w / 2, ymin =y, ymax =y + 1)) +
geom_rect(aes(fill = z, width = w), colour = "grey50")

Justification controls where the cells are anchored
df <- expand.grid(x = 0:5, y = 0:5)

df$z

<- runif(nrow(df))

default is compatible with geom_tile()
ggplot(df, aes(x, y, fill = z)) + geom_tile()

Inspired by the image-density plots of Ken Knoblauch

cars <- ggplot(mtcars, aes(mpg, factor(cyl)))
cars + geom_point()
cars + stat_bin2d(aes(fill = ..count..), binwidth = c(3,1))
cars + stat_bin2d(aes(fill = ..density..), binwidth = c(3,1))
cars + stat_density(aes(fill = ..density..), geom = "tile", position = "identity")
cars + stat_density(aes(fill = ..count..), geom = "tile", position = "identity")
geom_ribbon Ribbons and area plots.
Description

For each continuous x value, geom_interval displays a y interval. geom_area is a special case of

geom_ribbon, where the minimum of the range is fixed to 0.

Usage

geom_ribbon(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

L

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_area(
mapping = NULL,
data = NULL,

stat = "identity"”,

geom_ribbon

113

position = "stack",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,

Arguments

mapping

data

stat

position

na.rm

show. legend

inherit.aes

Details

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

An area plot is the continuous analog of a stacked bar chart (see geom_bar), and can be used to show
how composition of the whole varies over the range of x. Choosing the order in which different
components is stacked is very important, as it becomes increasing hard to see the individual pattern
as you move up the stack.

Aesthetics

geom_ribbonunderstands the following aesthetics (required aesthetics are in bold):

* X

* ymax

114 geom_rug

* ymin

* alpha

* colour
* fill

* linetype

e size

See Also

geom_bar for discrete intervals (bars), geom_linerange for discrete intervals (lines), geom_polygon
for general polygons

Examples

Generate data
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
h <- ggplot(huron, aes(year))

h + geom_ribbon(aes(ymin=0, ymax=level))
h + geom_area(aes(y = level))

Add aesthetic mappings

h +
geom_ribbon(aes(ymin = level - 1, ymax = level + 1), fill = "grey70") +
geom_line(aes(y = level))

geom_rug Marginal rug plots.
Description
Marginal rug plots.
Usage
geom_rug(
mapping = NULL,
data = NULL,
stat = "identity”,
position = "identity"”,
sides = "bl",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

geom_rug 115

Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.
A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

stat The statistical transformation to use on the data for this layer, as a string.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

sides A string that controls which sides of the plot the rugs appear on. It can be set to
a string containing any of "trbl”, for top, right, bottom, and left.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Aesthetics

geom_rugunderstands the following aesthetics (required aesthetics are in bold):

* alpha
e colour
* linetype
* size
Examples
p <- ggplot(mtcars, aes(wt, mpg))
p + geom_point()
p + geom_point() + geom_rug()
p + geom_point() + geom_rug(sides="b") # Rug on bottom only
p + geom_point() + geom_rug(sides="trbl") # All four sides
p + geom_point() + geom_rug(position="'jitter")

116 geom_segment

geom_segment Line segments and curves.

Description
geom_segment draws a straight line between points (x1, yl) and (x2, y2). geom_curve draws a
curved line.

Usage

geom_segment (
mapping = NULL,

data = NULL,

stat = "identity”,
position = "identity"”,
arrow = NULL,

lineend = "butt”,

na.rm = FALSE,

show.legend = NA,

inherit.aes = TRUE
)

geom_curve(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

L

curvature = 0.5,

angle = 90,
ncp = 5,
arrow = NULL,

lineend = "butt”,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)
Arguments
mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.
data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

geom_segment

stat

position

arrow
lineend

na.rm

show. legend

inherit.aes

curvature

angle

ncp

Aesthetics

117

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame., and will be used as the layer data.

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

specification for arrow heads, as created by arrow()
Line end style (round, butt, square)

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.

A numeric value between 0 and 180, giving an amount to skew the control points
of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

The number of control points used to draw the curve. More control points creates
a smoother curve.

geom_segmentunderstands the following aesthetics (required aesthetics are in bold):

* X
* xend
°y

* yend

* alpha

* colour
* linetype

e size

118 geom_smooth

See Also

geom_path and geom_line for multi- segment lines and paths.

geom_spoke for a segment parameterised by a location (X, y), and an angle and radius.

Examples

b <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()

df <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)

b +

geom_curve(aes(x = x1, y = y1, xend = x2, yend = y2, colour = "curve"), data = df) +
geom_segment(aes(x = x1, y = y1, xend = x2, yend = y2, colour = "segment"), data = df)

b + geom_curve(aes(x = x1, y
b + geom_curve(aes(x = x1, y
b + geom_curve(

aes(x = x1, y = y1, xend = x2, yend = y2),

data = df,

arrow = arrow(length = unit(@.03, "npc"))

)

y1, xend = x2, yend = y2), data
y1, xend = x2, yend = y2), data

df, curvature
df, curvature

-0.2)
1D}

ggplot(seals, aes(long, lat)) +
geom_segment (aes(xend = long + delta_long, yend = lat + delta_lat),
arrow = arrow(length = unit(@.1,"cm"))) +
borders("state")

You can also use geom_segment to recreate plot(type = "h") :
counts <- as.data.frame(table(x = rpois(100,5)))

counts$x <- as.numeric(as.character(counts$x))

with(counts, plot(x, Freq, type = "h", lwd = 10))

ggplot(counts, aes(x, Freq)) +

geom_segment (aes(xend = x, yend = @), size = 10, lineend = "butt")
geom_smooth Add a smoothed conditional mean.
Description

Aids the eye in seeing patterns in the presence of overplotting. geom_smooth and stat_smooth are
effectively aliases: they both use the same arguments. Use geom_smooth unless you want to display
the results with a non-standard geom.

Usage

geom_smooth(
mapping = NULL,
data = NULL,

geom_smooth 119
stat = "smooth”,
position = "identity"”,
method = "auto”,

formula = y ~ x,

se = TRUE,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_smooth(

mapping = NULL,

data

NULL,

geom = "smooth"”,

position

"identity”,

method = "auto”,
formula =y ~ x,

se = TRUE,
n = 80,

span = 0.75,

fullrange

na.rm
show. legend
inherit.aes

Arguments

mapping

data

position

FALSE,
level = 0.95,
method.args = list(),

FALSE,

NA,
TRUE

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

method

formula

se

na.rm

show. legend

inherit.aes

geom, stat

n

span

fullrange
level

method. args

Details

geom_smooth

smoothing method (function) to use, eg. Im, glm, gam, loess, rlm. For datasets
with n < 1000 default is loess. For datasets with 1000 or more observations
defaults to gam, see gam for more details.

formula to use in smoothing function, eg. y ~ x, y ~ poly(x, 2),y ~ log(x)

display confidence interval around smooth? (TRUE by default, see level to con-
trol

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Use to override the default connection between geom_smooth and stat_smooth.
number of points to evaluate smoother at

Controls the amount of smoothing for the default loess smoother. Smaller num-
bers produce wigglier lines, larger numbers produce smoother lines.

should the fit span the full range of the plot, or just the data
level of confidence interval to use (0.95 by default)

List of additional arguments passed on to the modelling function defined by
method.

Calculation is performed by the (currently undocumented) predictdf generic and its methods. For
most methods the standard error bounds are computed using the predict method - the exceptions
are loess which uses a t-based approximation, and glm where the normal confidence interval is
constructed on the link scale, and then back-transformed to the response scale.

Aesthetics

geom_smoothunderstands the following aesthetics (required aesthetics are in bold):

X
°y

* alpha

* colour
* fill

* linetype
* size

* weight

geom_smooth 121

Computed variables

y predicted value
ymin lower pointwise confidence interval around the mean
ymax upper pointwise confidence interval around the mean

se standard error

See Also

See individual modelling functions for more details: 1m for linear smooths, glm for generalised
linear smooths, loess for local smooths

Examples

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth()

Use span to control the "wiggliness” of the default loess smoother
The span is the fraction of points used to fit each local regression:
small numbers make a wigglier curve, larger numbers make a smoother curve.
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(span = 0.3)

Instead of a loess smooth, you can use any other modelling function:
ggplot(mpg, aes(displ, hwy)) +

geom_point() +

geom_smooth(method = "1m", se = FALSE)

ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(method = "1m"”, formula = y ~ splines::bs(x, 3), se = FALSE)

Smoothes are automatically fit to each group (defined by categorical
aesthetics or the group aesthetic) and for each facet

ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point() +
geom_smooth(se = FALSE, method = "1m")
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth(span = 0.8) +
facet_wrap(~drv)

binomial_smooth <- function(...) {
geom_smooth(method = "glm", method.args = list(family = "binomial”), ...)
3
To fit a logistic regression, you need to coerce the values to
a numeric vector lying between @ and 1.
ggplot(rpart::kyphosis, aes(Age, Kyphosis)) +

122 geom_spoke

geom_jitter(height = 0.05) +
binomial_smooth()

ggplot(rpart: :kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
geom_jitter(height = 0.05) +
binomial_smooth()

ggplot(rpart: :kyphosis, aes(Age, as.numeric(Kyphosis) - 1)) +
geom_jitter(height = 0.05) +
binomial_smooth(formula = y ~ splines::ns(x, 2))

But in this case, it's probably better to fit the model yourself
so you can exercise more control and see whether or not it's a good model

geom_spoke A line segment parameterised by location, direction and distance.

Description

A line segment parameterised by location, direction and distance.

Usage

geom_spoke (
mapping = NULL,

data = NULL,
stat = "identity”,
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)
Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

geom_spoke

stat

position

na.rm

show. legend

inherit.aes

Aesthetics

123

The statistical transformation to use on the data for this layer, as a string.

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

geom_spokeunderstands the following aesthetics (required aesthetics are in bold):

* angle

* radius
X

Yy

* alpha

* colour
* linetype

* size

Examples

df <- expand.grid(x = 1:10, y=1:10)
df$angle <- runif(100, @, 2*pi)
df$speed <- runif (100, 0, sqrt(@.1 * df$x))

ggplot(df, aes(x, y)) +

geom_point() +

geom_spoke (aes(angle = angle), radius = 0.5)

ggplot(df, aes(x, y)) +

geom_point() +

geom_spoke(aes(angle = angle, radius = speed))

124 geom_tallrect

geom_tallrect ggplot2 geom with xmin and xmax aesthetics that covers the entire y
range, useful for clickSelects background elements.

Description
ggplot2 geom with xmin and xmax aesthetics that covers the entire y range, useful for clickSelects
background elements.

Usage

geom_tallrect(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity"”,

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)
Arguments
mapping aesthetic mapping
data data set
stat statistic mapping, defaults to identity
position position mapping, defaults to identity
other arguments
na.rm remove missing values?

show. legend TRUE or FALSE
inherit.aes TRUE or FALSE

Value
ggplot2 layer
Examples
if(require('data.table'))setDTthreads(1)#for CRAN.
library(animint2)
Example: 2 plots, 2 selectors, but only interacting with 1 plot.

data(breakpoints)
only.error <- subset(breakpoints$error,type=="E")

geom_violin

only.segments <- subset(only.error,bases.per.probe==bases.per.probel[1])

signal.colors <- c(estimate="#0@adb@a", latent="#0098ef")
breakpointError <- list(
signal=ggplot()+
geom_point(aes(
position, signal),
showSelected="bases.per.probe”,
data=breakpoints$signals)+
geom_line(aes(
position, signal),
colour=signal.colors[["latent"]],
data=breakpoints$imprecision)+
geom_segment (aes(
first.base, mean, xend=last.base, yend=mean),
showSelected=c("segments”, "bases.per.probe”),
colour=signal.colors[["estimate"”]],
data=breakpoints$segments)+
geom_vline(aes(
xintercept=base),
showSelected=c("segments”, "bases.per.probe”),
colour=signal.colors[["estimate"”]],
linetype="dashed",
data=breakpoints$breaks),
error=ggplot()+
geom_vline(aes(
xintercept=segments),
clickSelects="segments",
data=only.segments, lwd=17, alpha=1/2)+
geom_line(aes(
segments, error, group=bases.per.probe),
clickSelects="bases.per.probe”,
data=only.error, lwd=4))
animint2dir(breakpointError)

125

geom_violin Violin plot.

Description

Violin plot.

Usage

geom_violin(
mapping = NULL,

data = NULL,
stat = "ydensity"”,
position = "dodge",

L

draw_quantiles = NULL,

126 geom_violin

trim = TRUE,

scale = "area",

na.rm = FALSE,

show.legend = NA,

inherit.aes = TRUE
)

stat_ydensity(
mapping = NULL,

data = NULL,

geom = "violin",
position = "dodge",
bw = "nrde"”,

adjust =1,

kernel = "gaussian”,
trim = TRUE,

scale = "area",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame., and will be used as the layer data.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

draw_quantiles Ifnot(NULL) (default), draw horizontal lines at the given quantiles of the density
estimate.

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,
don’t trim the tails.

geom_violin

scale

na.rm
show. legend
inherit.aes
geom, stat
bw

adjust

kernel

Aesthetics

127

if "area" (default), all violins have the same area (before trimming the tails).
If "count", areas are scaled proportionally to the number of observations. If
"width", all violins have the same maximum width.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Use to override the default connection between geom_violin and stat_ydensity.
the smoothing bandwidth to be used, see density for details
adjustment of the bandwidth, see density for details

kernel used for density estimation, see density for details

geom_violinunderstands the following aesthetics (required aesthetics are in bold):

* X

°y

* alpha

* colour
* fill

* linetype
* size

* weight

Computed variables

density density estimate

scaled density estimate, scaled to maximum of 1

count density * number of points - probably useless for violin plots

violinwidth density scaled for the violin plot, according to area, counts or to a constant maximum

width

n number of points

width width of violin bounding box

References

Hintze, J. L., Nelson, R. D. (1998) Violin Plots: A Box Plot-Density Trace Synergism. The Ameri-
can Statistician 52, 181-184.

128 geom_violin

See Also

geom_violin for examples, and stat_density for examples with data along the x axis.

Examples

p <- ggplot(mtcars, aes(factor(cyl), mpg))
p + geom_violin()

p + geom_violin() + geom_jitter(height = 0)
p + geom_violin() + coord_flip()

Scale maximum width proportional to sample size:
p + geom_violin(scale = "count”)

Scale maximum width to 1 for all violins:
p + geom_violin(scale = "width")

Default is to trim violins to the range of the data. To disable:
p + geom_violin(trim = FALSE)

Use a smaller bandwidth for closer density fit (default is 1).

p + geom_violin(adjust = .5)

Add aesthetic mappings

Note that violins are automatically dodged when any aesthetic is
a factor

p + geom_violin(aes(fill = cyl))

p + geom_violin(aes(fill = factor(cyl)))

p + geom_violin(aes(fill = factor(vs)))

p + geom_violin(aes(fill = factor(am)))

ETS

Set aesthetics to fixed value
p + geom_violin(fill = "grey80", colour = "#3366FF")

Show quartiles
p + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75))

Scales vs. coordinate transforms -------

if (require("ggplot2movies”)) {

Scale transformations occur before the density statistics are computed.
Coordinate transformations occur afterwards. Observe the effect on the
number of outliers.

<- ggplot(movies, aes(y = votes, x = rating, group = cut_width(rating, 0.5)))
+ geom_violin()

+ geom_violin() + scale_y_loglo()

+ geom_violin() + coord_trans(y = "logl10")

+ geom_violin() + scale_y_logl@() + coord_trans(y = "logl10")

3 3 3 3 3 ¥ H# #

Violin plots with continuous x:
Use the group aesthetic to group observations in violins
ggplot(movies, aes(year, budget)) + geom_violin()

geom_widerect 129

ggplot(movies, aes(year, budget)) +
geom_violin(aes(group = cut_width(year, 10)), scale = "width")

3
geom_widerect ggplot2 geom with ymin and ymax aesthetics that covers the entire x
range, useful for clickSelects background elements.
Description

ggplot2 geom with ymin and ymax aesthetics that covers the entire x range, useful for clickSelects
background elements.
Usage

geom_widerect(
mapping = NULL,

data = NULL,
stat = "identity"”,
position = "identity",

na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)
Arguments
mapping aesthetic mapping
data data set
stat statistic mapping, defaults to identity
position position mapping, defaults to identity
other arguments
na.rm remove missing values?

show. legend TRUE OR FALSE
inherit.aes TRUE OR FALSE
Value

ggplot2 layer

Examples

Not run:
source(system.file("examples/WorldBank.R", package = "animint"))

End(Not run)

130

getLayerName

getCommonChunk Save the common columns for each tsv to one chunk

Description

Save the common columns for each tsv to one chunk

Usage

getCommonChunk (built, chunk.vars, aes.list)

Arguments

built data.frame of built data.

chunk.vars which variables to chunk on.

aes.list a character vector of aesthetics.

vars character vector of chunk variable names to split on.
Value

a list of common and varied data to save, or NULL if there is no common data.

getLayerName Gives a unique name to each layer in savelLayer

Description

Gives a unique name to each layer in savelLayer

Usage

getLayerName(L, geom_num, p.name)

Arguments

L layer in saveLayer to be named

geom_num the number of the layer to be saved

p.name the name of the plot to which the layer belongs
Value

a unique name for the layer

getLayerParams

131

getLayerParams Get all parameters for a layer

Description

Get all parameters for a layer

Usage

getLayerParams (1)
Arguments

1 A single layer of the plot
Value

All parameters in the layer

getlLegend Function to get legend information for each scale

Description

Function to get legend information for each scale

Usage

getlLegend(mb)

Arguments

mb single entry from guides_merge() list of legend data

Value

list of legend information, NULL if guide=FALSE.

132

getTextSize

getlLegendList Function to get legend information from ggplot

Description

Function to get legend information from ggplot

Usage

getlegendList(plistextra)

Arguments

plistextra output from ggplot_build(p)

Value

list containing information for each legend

getTextSize Function to process text size with different types of unit

Description

Function to process text size with different types of unit

Usage

getTextSize(element.name, theme)

Arguments

element.name The name of the theme element

theme combined theme from plot_theme()

Value

character of text size, with unit pt/px

getUniqueAxisLabels 133

getUniqueAxislLabels Get unique axis labels for the plot

Description

Get unique axis labels for the plot

Usage

getUniqueAxisLabels(plot.meta)

Arguments

plot.meta contains axis labels

Value

modified plot.meta with unique axis labels

gganimintproto Create a new gganimintproto object

Description

gganimintproto is inspired by the proto package, but it has some important differences. Notably, it
cleanly supports cross-package inheritance, and has faster performance.

Usage

gganimintproto(~_class™ = NULL, ~_inherit™ = NULL, ...)

gganimintproto_parent(parent, self)

Arguments
_class Class name to assign to the object. This is stored as the class attribute of the
object. If NULL (the default), no class name will be added to the object.
_inherit gganimintproto object to inherit from. If NULL, don’t inherit from any object.

A list of members in the gganimintproto object.

parent, self Access parent class parent of object self.

134 ggplot

Calling gganimintproto methods
gganimintproto methods can take an optional self argument: if it is present, it is a regular method;
if it’s absent, it’s a "static" method (i.e. it doesn’t use any fields).

Imagine you have a gganimintproto object Adder, which has a method addx = function(self,
n) n + self$x. Then, to call this function, you would use Adder$addx(10) — the self is passed
in automatically by the wrapper function. self be located anywhere in the function signature,
although customarily it comes first.

Calling methods in a parent

To explicitly call a methods in a parent, use gganimintproto_parent(Parent, self).

ggplot Create a new ggplot plot.

Description

ggplot() initializes a ggplot object. It can be used to declare the input data frame for a graphic and
to specify the set of plot aesthetics intended to be common throughout all subsequent layers unless
specifically overridden.

Usage
ggplot(data = NULL, mapping = aes(), ..., environment = parent.frame())
Arguments
data Default dataset to use for plot. If not already a data.frame, will be converted to
one by fortify. If not specified, must be suppled in each layer added to the
plot.
mapping Default list of aesthetic mappings to use for plot. If not specified, must be sup-
pled in each layer added to the plot.
Other arguments passed on to methods. Not currently used.
environment If an variable defined in the aesthetic mapping is not found in the data, ggplot
will look for it in this environment. It defaults to using the environment in which
ggplot() is called.
Details

ggplot () is typically used to construct a plot incrementally, using the + operator to add layers to the
existing ggplot object. This is advantageous in that the code is explicit about which layers are added
and the order in which they are added. For complex graphics with multiple layers, initialization with
ggplot is recommended.

There are three common ways to invoke ggplot:

e ggplot(df, aes(x, y, <other aesthetics>))

ggsave 135

e ggplot(df)
* ggplot()

The first method is recommended if all layers use the same data and the same set of aesthetics,
although this method can also be used to add a layer using data from another data frame. See the
first example below. The second method specifies the default data frame to use for the plot, but
no aesthetics are defined up front. This is useful when one data frame is used predominantly as
layers are added, but the aesthetics may vary from one layer to another. The third method initializes
a skeleton ggplot object which is fleshed out as layers are added. This method is useful when
multiple data frames are used to produce different layers, as is often the case in complex graphics.

Examples

df <- data.frame(gp = factor(rep(letters[1:3], each = 10)),
y = rnorm(30))
Compute sample mean and standard deviation in each group
ds <- plyr::ddply(df, "gp", plyr::summarise, mean = mean(y), sd = sd(y))

Declare the data frame and common aesthetics.
The summary data frame ds is used to plot
larger red points in a second geom_point() layer.
If the data = argument is not specified, it uses the
declared data frame from ggplot(); ditto for the aesthetics.
ggplot(df, aes(x = gp, y = y)) +

geom_point() +

geom_point(data = ds, aes(y = mean),

colour = 'red', size = 3)

Same plot as above, declaring only the data frame in ggplot().
Note how the x and y aesthetics must now be declared in
each geom_point() layer.
ggplot(df) +

geom_point(aes(x = gp, y = y)) +

geom_point(data = ds, aes(x = gp, y = mean),

colour = 'red', size = 3)

Set up a skeleton ggplot object and add layers:
ggplot() +

geom_point(data = df, aes(x = gp, y =y)) +

geom_point(data = ds, aes(x = gp, y = mean),

colour = 'red', size = 3) +
geom_errorbar(data = ds, aes(x = gp, y = mean,
ymin = mean - sd, ymax = mean + sd),
colour = 'red', width = 0.4)

ggsave Save a ggplot (or other grid object) with sensible defaults

Description

ggsave() is a convenient function for saving a plot. It defaults to saving the last plot that you
displayed, using the size of the current graphics device. It also guesses the type of graphics device
from the extension.

136

Usage

ggsave(
filename,

ggsave

plot = last_plot(),
device = NULL,

path = NULL,
scale = 1,
width = NA,
height = NA,
unitS = C(“in” , ncmu , nmmn) ,
dpi = 300,
limitsize = TRUE,
)
Arguments
filename File name to create on disk.
plot Plot to save, defaults to last plot displayed.
device Device to use (function or any of the recognized extensions, e.g. "pdf"). By
default, extracted from filename extension. ggsave currently recognises eps/ps,
tex (pictex), pdf, jpeg, tiff, png, bmp, svg and wmf (windows only).
path Path to save plot to (combined with filename).
scale Multiplicative scaling factor.

width, height
units
dpi

limitsize

Examples

Not run:

Plot dimensions, defaults to size of current graphics device.
Units for width and height when specified explicitly (in, cm, or mm)
Resolution used for raster outputs.

When TRUE (the default), ggsave will not save images larger than 50x50 inches,
to prevent the common error of specifying dimensions in pixels.

Other arguments passed on to graphics device

ggplot(mtcars, aes(mpg, wt)) + geom_point()

ggsave(file.path(tempdir(), "mtcars.pdf"))
ggsave(file.path(tempdir(), "mtcars.png"))

ggsave(file.path(tempdir(), "mtcars.pdf”), width
ggsave(file.path(tempdir(), "mtcars.pdf”), width

4, height = 4)
20, height = 20, units = "cm")

unlink(file.path(tempdir(), "mtcars.pdf"))
unlink(file.path(tempdir(), "mtcars.png"))

specify device when saving to a file with unknown extension
(for example a server supplied temporary file)

ggtheme 137

file <- tempfile()
ggsave(file, device = "pdf")
unlink(file)

End(Not run)

ggtheme ggplot2 themes

Description

Themes set the general aspect of the plot such as the colour of the background, gridlines, the size
and colour of fonts.

Usage
theme_grey(base_size = 11, base_family = "")
theme_gray(base_size = 11, base_family = "")
theme_bw(base_size = 12, base_family = "")
theme_linedraw(base_size = 12, base_family = "")
theme_light(base_size = 12, base_family = "")
theme_minimal (base_size = 12, base_family = "")
theme_classic(base_size = 12, base_family = "")
theme_dark(base_size = 12, base_family = "")
theme_void(base_size = 12, base_family = "")

Arguments
base_size base font size
base_family base font family

Details

theme_gray The signature ggplot2 theme with a grey background and white gridlines, designed to
put the data forward yet make comparisons easy.

theme_bw The classic dark-on-light ggplot2 theme. May work better for presentations displayed
with a projector.

138 graphical-units

theme_linedraw A theme with only black lines of various widths on white backgrounds, reminis-
cent of a line drawings. Serves a purpose similar to theme_bw. Note that this theme has some
very thin lines (« 1 pt) which some journals may refuse.

theme_light A theme similar to theme_linedraw but with light grey lines and axes, to direct
more attention towards the data.

theme_dark The dark cousin of theme_light, with similar line sizes but a dark background. Use-
ful to make thin coloured lines pop out.

theme_minimal A minimalistic theme with no background annotations.
theme_classic A classic-looking theme, with x and y axis lines and no gridlines.

theme_void A completely empty theme.

Examples

p <- ggplot(mtcars) + geom_point(aes(x = wt, y = mpg,
colour = factor(gear))) + facet_wrap(~am)

theme_gray ()
theme_bw()
theme_linedraw()
theme_light()
theme_dark()
theme_minimal()
theme_classic()
theme_void()

T T T T T T T T T

+ o+ + o+ o+ o+ o+ o+

graphical-units Graphical units

Description
Multiply size in mm by these constants in order to convert to the units that grid uses internally for
lwd and fontsize.

Usage
.pt

.stroke

Format

An object of class numeric of length 1.

An object of class numeric of length 1.

guides 139

guides Set guides for each scale.

Description

Guides for each scale can be set in call of scale_x with argument guide, or in guides.

Usage
guides(...)

Arguments

List of scale guide pairs

Value

A list containing the mapping between scale and guide.

See Also

Other guides: guide_colourbar(), guide_legend()

Examples
ggplot object
dat <- data.frame(x = 1:5, y = 1:5, p = 1:5, q = factor(1:5),

r = factor(1:5))
p <- ggplot(dat, aes(x, y, colour = p, size = q, shape = r)) + geom_point()

without guide specification
p
Show colorbar guide for colour.
All these examples below have a same effect.
p + guides(colour = "colorbar”, size = "legend”, shape = "legend")
p + guides(colour = guide_colorbar(), size = guide_legend(),
shape = guide_legend())
p+
scale_colour_continuous(guide = "colorbar") +
scale_size_discrete(guide = "legend") +

scale_shape(guide = "legend")
Remove some guides
p + guides(colour = "none")

p + guides(colour = "colorbar”,size = "none")

Guides are integrated where possible

140

p + guides(colour

= guide_legend("title"), size =

shape = guide_legend("title"))

same as

g <- guide_legend("title")
p + guides(colour = g, size = g, shape = g)

p + theme(legend.position = "bottom")

position of guides

p + theme(legend.position = "bottom”, legend.box =

Set order for multiple guides

ggplot(mpg, aes(displ, cty)) +
geom_point(aes(size = hwy, colour = cyl, shape =

guides(

colour = guide_colourbar(order = 1),
shape = guide_legend(order = 2),
size = guide_legend(order = 3)

)

guide_colourbar

guide_legend("title"),

"horizontal”)

drv)) +

guide_colourbar

Continuous colour bar guide.

Description

Colour bar guide shows continuous color scales mapped onto values

scale_fill and scale_colour.

Usage

guide_colourbar(

title = waiver(),

title.position

title.theme
title.hjust
title.vjust

label = TRUE,
label.position = NULL,

label. theme
label.hjust
label.vjust

= NULL,
NULL,
NULL,
NULL,

NULL,
NULL,
NULL,

barwidth = NULL,
barheight = NULL,

nbin = 20,

raster = TRUE,

ticks = TRUE,

. Colour bar is available with

guide_colourbar

)

draw.ulim = TRUE,
draw.1llim = TRUE,
direction = NULL,
default.unit = "line",
reverse = FALSE,

order = 0,

guide_colorbar(

title = waiver(),
title.position = NULL,
title.theme = NULL,
title.hjust = NULL,
title.vjust = NULL,
label = TRUE,
label.position = NULL,
label.theme = NULL,
label.hjust = NULL,
label.vjust = NULL,
barwidth = NULL,
barheight = NULL,

nbin = 20,
raster = TRUE,
ticks = TRUE,

draw.ulim = TRUE,
draw.1lim = TRUE,
direction = NULL,
default.unit = "line",
reverse = FALSE,

order = 0,

Arguments

title

title.position

title.theme

title.hjust

title.vjust
label

141

A character string or expression indicating a title of guide. If NULL, the title

is not shown. By default (waiver), the name of the scale object or the name

specified in 1abs is used for the title.

A character string indicating the position of a title. One of "top" (default for a
vertical guide), "bottom", "left" (default for a horizontal guide), or "right."

A theme object for rendering the title text. Usually the object of element_text

is expected. By default, the theme is specified by legend.title in theme or

theme.

A number specifying horizontal justification of the title text.
A number specifying vertical justification of the title text.

logical. If TRUE then the labels are drawn. If FALSE then the labels are invisible.

142

guide_colourbar

label.position A character string indicating the position of a label. One of "top", "bottom"

label. theme

label.hjust
label.vjust
barwidth

barheight

nbin

raster

ticks

draw.ulim

draw.1lim

direction

default.unit

reverse

order

Details

(default for horizontal guide), "left", or "right" (default for vertical guide).

A theme object for rendering the label text. Usually the object of element_text
is expected. By default, the theme is specified by legend.text in theme or
theme.

A numeric specifying horizontal justification of the label text.
A numeric specifying vertical justification of the label text.

A numeric or a unit object specifying the width of the colorbar. Default value
is legend.key.width or legend.key. size in theme or theme.

A numeric or a unit object specifying the height of the colorbar. Default value
is legend.key.height or legend.key.size in theme or theme.

A numeric specifying the number of bins for drawing colorbar. A smoother
colorbar for a larger value.

A logical. If TRUE then the colorbar is rendered as a raster object. If FALSE then
the colorbar is rendered as a set of rectangles. Note that not all graphics devices
are capable of rendering raster image.

A logical specifying if tick marks on colorbar should be visible.
A logical specifying if the upper limit tick marks should be visible.
A logical specifying if the lower limit tick marks should be visible.

A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

A character string indicating unit for barwidth and barheight.

logical. If TRUE the colorbar is reversed. By default, the highest value is on the
top and the lowest value is on the bottom

positive integer less that 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If O (default), the order is determined by a secret
algorithm.

ignored.

Guides can be specified in each scale_x or in guides. guide="legend"” in scale_* is syntactic
sugar for guide=guide_legend() (e.g. scale_color_manual(guide = "legend”)). As for how
to specify the guide for each scale in more detail, see guides.

Value

A guide object

See Also

Other guides: guide_legend(), guides()

guide_legend 143

Examples
df <- reshape2::melt(outer(1:4, 1:4), varnames = c("X1", "X2"))

pl <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))
p2 <- p1 + geom_point(aes(size = value))

Basic form

p1 + scale_fill_continuous(guide = "colorbar")

pl + scale_fill_continuous(guide = guide_colorbar())
pl + guides(fill = guide_colorbar())

Control styles

bar size
p1 + guides(fill = guide_colorbar(barwidth = 0.5, barheight = 10))

no label
pl + guides(fill = guide_colorbar(label

FALSE))

no tick marks
pl + guides(fill = guide_colorbar(ticks = FALSE))

label position
p1 + guides(fill = guide_colorbar(label.position = "left"))

label theme
p1 + guides(fill = guide_colorbar(label.theme = element_text(colour = "blue”, angle = 0)))

small number of bins
pl + guides(fill = guide_colorbar(nbin = 3))

large number of bins
p1 + guides(fill = guide_colorbar(nbin = 100))

make top- and bottom-most ticks invisible
p1 + scale_fill_continuous(limits = c(0@,20), breaks = c(@, 5, 10, 15, 20),
guide = guide_colorbar(nbin=100, draw.ulim = FALSE, draw.llim = FALSE))

guides can be controlled independently

p2 +
scale_fill_continuous(guide = "colorbar"”) +
scale_size(guide = "legend")

p2 + guides(fill = "colorbar”, size = "legend")

p2 +
scale_fill_continuous(guide = guide_colorbar(direction = "horizontal”)) +
scale_size(guide = guide_legend(direction = "vertical”))

guide_legend Legend guide.

144 guide_legend

Description

Legend type guide shows key (i.e., geoms) mapped onto values. Legend guides for various scales
are integrated if possible.

Usage

guide_legend(
title = waiver(),
title.position = NULL,
title.theme = NULL,
title.hjust = NULL,
title.vjust = NULL,
label = TRUE,
label.position = NULL,
label.theme = NULL,
label.hjust = NULL,
label.vjust = NULL,
keywidth = NULL,
keyheight = NULL,
direction = NULL,

default.unit = "line”,
override.aes = list(),
nrow = NULL,
ncol = NULL,

byrow = FALSE,
reverse = FALSE,
order = 0,

Arguments

title A character string or expression indicating a title of guide. If NULL, the title
is not shown. By default (waiver), the name of the scale object or the name
specified in labs is used for the title.

title.position A character string indicating the position of a title. One of "top" (default for a
vertical guide), "bottom", "left" (default for a horizontal guide), or "right."

title. theme A theme object for rendering the title text. Usually the object of element_text
is expected. By default, the theme is specified by legend.title in theme or

theme.
title.hjust A number specifying horizontal justification of the title text.
title.vjust A number specifying vertical justification of the title text.
label logical. If TRUE then the labels are drawn. If FALSE then the labels are invisible.

label.position A character string indicating the position of a label. One of "top", "bottom"
(default for horizontal guide), "left", or "right" (default for vertical guide).

guide_legend

label. theme

label.hjust
label.vjust
keywidth

keyheight

direction

default.unit
override.aes
nrow
ncol

byrow

reverse

order

Details

145

A theme object for rendering the label text. Usually the object of element_text
is expected. By default, the theme is specified by legend.text in theme or
theme.

A numeric specifying horizontal justification of the label text.
A numeric specifying vertical justification of the label text.

A numeric or a unit object specifying the width of the legend key. Default value
is legend.key.width or legend.key.size in theme or theme.

A numeric or a unit object specifying the height of the legend key. Default
value is legend.key.height or legend.key.size in theme or theme.

A character string indicating the direction of the guide. One of "horizontal" or
"vertical."

A character string indicating unit for keywidth and keyheight.

A list specifying aesthetic parameters of legend key. See details and examples.
The desired number of rows of legends.

The desired number of column of legends.

logical. If FALSE (the default) the legend-matrix is filled by columns, otherwise
the legend-matrix is filled by rows.

logical. If TRUE the order of legends is reversed.

positive integer less that 99 that specifies the order of this guide among multiple
guides. This controls the order in which multiple guides are displayed, not the
contents of the guide itself. If O (default), the order is determined by a secret
algorithm.

ignored.

Guides can be specified in each scale_x or in guides. guide="legend"” in scale_x is syntactic
sugar for guide=guide_legend() (e.g. scale_color_manual(guide = "legend")). As for how
to specify the guide for each scale in more detail, see guides.

Value

A guide object

See Also

Other guides: guide_colourbar(), guides()

Examples

df <- reshape2::melt(outer(1:4, 1:4), varnames = c("X1", "X2"))

pl <- ggplot(df, aes(X1, X2)) + geom_tile(aes(fill = value))
p2 <- p1 + geom_point(aes(size = value))

Basic form

146

pl + scale_fill_continuous(guide =
pl + scale_fill_continuous(guide =

"legend")
guide_legend())

Guide title
p1 + scale_fill_continuous(guide =
pl + scale_fill_continuous(guide =

"V")) # title text
NULL)) # no title

guide_legend(title =
guide_legend(title =

Control styles

key size
pl + guides(fill

guide_legend(keywidth = 3, keyheight = 1))
title position

pl + guides(fill = guide_legend(title = "LEFT", title.position = "left"))

title text styles via element_text
pl + guides(fill =
guide_legend(

title.theme = element_text(

size = 15,
face = "italic”,
colour = "red",
angle = @

)
)
)

label position
pl + guides(fill = guide_legend(label.position = "left”, label.hjust = 1))
label styles
pl + scale_fill_continuous(breaks = c(5, 10,
labels = paste(”long”, c(5, 10, 15)),
guide = guide_legend(
direction = "horizontal”,
title.position = "top”,
label.position = "bottom”,
label.hjust = 0.5,
label.vjust = 1,
label.theme = element_text(angle = 90)
)
)

15);

Set aesthetic of legend key

very low alpha value make it difficult to see legend key

p3 <- ggplot(diamonds, aes(carat, price)) +
geom_point(aes(colour = color), alpha = 1/100)

p3

override.aes overwrites the alpha

p3 + guides(colour = guide_legend(override.aes = list(alpha = 1)))

guide_legend

hmisc 147

multiple row/col legends

df <- data.frame(x = 1:20, y = 1:20, color = letters[1:20])
p <- ggplot(df, aes(x, y)) +

geom_point(aes(colour = color))

+ guides(col = guide_legend(nrow = 8))

+ guides(col = guide_legend(ncol = 8))

+ guides(col = guide_legend(nrow = 8, byrow = TRUE))

+ guides(col = guide_legend(ncol = 8, byrow = TRUE))

T T T T
I

reversed order legend
p + guides(col = guide_legend(reverse = TRUE))

hmisc Wrap up a selection of summary functions from Hmisc to make it easy
to use with stat_summary.

Description

See the Hmisc documentation for details of their options.

Usage

mean_cl_boot(x, ...)

mean_cl_normal(x, ...)

mean_sdl(x, ...)

median_hilow(x, ...)
Arguments

X a numeric vector

other arguments passed on to the respective Hmisc function.

See Also

smean.cl.boot, smean.cl.normal, smean.sdl, smedian.hilow

148 is.gganimintproto

intreg Interval regression

Description

Learning model complexity using max-margin interval regression. We have observed several noisy
piecewise constant signals, and we have weak labels about how many change-points occur in several
regions. Max margin interval regression is an algorithm that uses this information to learn a penalty
function for accurate change-point detection.

Usage

data(intreg)

Format

There are 7 related data.frames: signals contains the noisy piecewise constant signals, annotations
contains the weak labels, segments and breaks contain the segmentation model, selection contains
the penalty and cost information, intervals contains the target intervals of penalty values for each
signal, and model describes the learned max margin interval regression model.

is.gganimintproto Is an object a gganimintproto object?

Description

Is an object a gganimintproto object?

Usage

is.gganimintproto(x)

Arguments

X An object to test.

is.rel 149

is.rel Reports whether x is a rel object

Description

Reports whether x is a rel object

Usage

is.rel(x)

Arguments

X An object to test

is.rgb Check if character is an RGB hexadecimal color value

Description

Check if character is an RGB hexadecimal color value

Usage

is.rgb(x)

Arguments

X character

Value

True/False value

150

issueSelectorWarnings

is.theme Reports whether x is a theme object

Description

Reports whether x is a theme object

Usage

is.theme(x)

Arguments

X An object to test

issueSelectorWarnings Issue warnings for selectors

Description

Issue warnings for selectors

Usage

issueSelectorWarnings(geoms, selector.aes, duration)

Arguments

geoms geoms to check for warnings

selector.aes selectors for each geom

duration animation variable information to check for key value

Value

NULL

knit_print.animint 151

knit_print.animint Insert an interactive animation into an R markdown document using a
customized print method.

Description

Insert an interactive animation into an R markdown document using a customized print method.

Usage
S3 method for class 'animint'
knit_print(x, options, ...)
Arguments
X named list of ggplots and option lists to pass to animint2dir.
options knitr chunk options.
ignored.
Author(s)

Carson Sievert

References

https://github.com/yihui/knitr/blob/master/vignettes/knit_print. Rmd

labeller Generic labeller function for facets

Description

This function makes it easy to assign different labellers to different factors. The labeller can be a
function or it can be a named character vectors that will serve as a lookup table.

Usage
labeller(
.rows = NULL,
.cols = NULL,

keep.as.numeric = NULL,
.multi_line = TRUE,
.default = label_value

152 labeller
Arguments
Named arguments of the form variable = labeller. Each labeller is passed
to as_labeller() and can be a lookup table, a function taking and returning
character vectors, or simply a labeller function.
.rows, .cols Labeller for a whole margin (either the rows or the columns). It is passed to

as_labeller (). When a margin-wide labeller is set, make sure you don’t men-
tion in . .. any variable belonging to the margin.

keep.as.numeric

Deprecated. All supplied labellers and on-labeller functions should be able to
work with character labels.

.multi_line Whether to display the labels of multiple factors on separate lines. This is passed

.default

Details

to the labeller function.

Default labeller for variables not specified. Also used with lookup tables or
non-labeller functions.

In case of functions, if the labeller has class labeller, it is directly applied on the data frame of
labels. Otherwise, it is applied to the columns of the data frame of labels. The data frame is then
processed with the function specified in the .default argument. This is intended to be used with
functions taking a character vector such as capitalize.

Value

A labeller function to supply to facet_grid for the argument labeller.

See Also

as_labeller(), labellers

Examples

pl <- ggplot(mtcars, aes(x = mpg, y = wt)) + geom_point()

You can assign different labellers to variables:
pl + facet_grid(vs + am ~ gear,

labeller

= labeller(vs = label_both, am = label_value))

Or whole margins:
pl + facet_grid(vs + am ~ gear,
labeller = labeller(.rows = label_both, .cols = label_value))

You can supply functions operating on strings:
capitalize <- function(string) {
substr(string, 1, 1) <- toupper(substr(string, 1, 1))

string

}

p2 <- ggplot(msleep, aes(x = sleep_total, y = awake)) + geom_point()
p2 + facet_grid(vore ~ conservation, labeller = labeller(vore = capitalize))

labellers 153

Or use character vectors as lookup tables:
conservation_status <- c(

cd = "Conservation Dependent”,
en = "Endangered”,

lc = "Least concern”,

nt = "Near Threatened”,

vu = "Vulnerable”,
domesticated = "Domesticated”

)

Source: http://en.wikipedia.org/wiki/Wikipedia:Conservation_status

p2 + facet_grid(vore ~ conservation, labeller = labeller(
.default = capitalize,
conservation = conservation_status

))

In the following example, we rename the levels to the long form,

then apply a wrap labeller to the columns to prevent cropped text

msleep$conservation2 <- plyr::revalue(msleep$conservation,
conservation_status)

p2 %+% msleep + facet_grid(vore ~ conservation2)
p2 %+% msleep +
facet_grid(vore ~ conservation2,
labeller = labeller(conservation2 = label_wrap_gen(10))
)

labeller() is especially useful to act as a global labeller. You
can set it up once and use it on a range of different plots with
different facet specifications.

global_labeller <- labeller(
vore = capitalize,
conservation = conservation_status,
conservation2 = label_wrap_gen(10),
.default = label_both

)

p2 + facet_grid(vore ~ conservation, labeller = global_labeller)
p2 + facet_wrap(~vore, labeller = global_labeller)
p2 %t+% msleep + facet_wrap(~conservation2, labeller = global_labeller)

labellers Labeller functions

Description

Labeller functions are in charge of formatting the strip labels of facet grids and wraps. Most of
them accept a multi_line argument to control whether multiple factors (defined in formulae such

154 labellers

as ~first + second) should be displayed on a single line separated with commas, or each on their
own line.

Usage
label_value(labels, multi_line = TRUE)
label_both(labels, multi_line = TRUE, sep = ": ")
label_context(labels, multi_line = TRUE, sep = ": ")
label_parsed(labels, multi_line = TRUE)

label_wrap_gen(width = 25, multi_line = TRUE)

Arguments
labels Data frame of labels. Usually contains only one element, but facetting over
multiple factors entails multiple label variables.
multi_line Whether to display the labels of multiple factors on separate lines.
sep String separating variables and values.
width Maximum number of characters before wrapping the strip.
Details

label_value() only displays the value of a factor while label_both() displays both the variable
name and the factor value. label_context() is context-dependent and uses label_value() for
single factor facetting and label_both() when multiple factors are involved. label_wrap_gen()
uses strwrap() for line wrapping.

label_parsed() interprets the labels as plotmath expressions. label_bquote() offers a more
flexible way of constructing plotmath expressions. See examples and bquote () for details on the
syntax of the argument.

Writing New Labeller Functions

Note that an easy way to write a labeller function is to transform a function operating on character
vectors with as_labeller ().

A labeller function accepts a data frame of labels (character vectors) containing one column for
each factor. Multiple factors occur with formula of the type ~first + second.

The return value must be a rectangular list where each ‘row’ characterises a single facet. The list
elements can be either character vectors or lists of plotmath expressions. When multiple elements
are returned, they get displayed on their own new lines (i.e., each facet gets a multi-line strip of
labels).

To illustrate, let’s say your labeller returns a list of two character vectors of length 3. This is a
rectangular list because all elements have the same length. The first facet will get the first elements
of each vector and display each of them on their own line. Then the second facet gets the second
elements of each vector, and so on.

label_bquote 155

If it’s useful to your labeller, you can retrieve the type attribute of the incoming data frame of
labels. The value of this attribute reflects the kind of strips your labeller is dealing with: "cols”
for columns and "rows"” for rows. Note that facet_wrap() has columns by default and rows when
the strips are switched with the switch option. The facet attribute also provides metadata on the
labels. It takes the values "grid"” or "wrap”.

For compatibility with 1abeller (), each labeller function must have the labeller S3 class.

See Also

labeller(), as_labeller(), label_bquote()

Examples

mtcars$cyl2 <- factor(mtcars$cyl, labels = c("alpha”, "beta”, "gamma"))
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()

Displaying only the values
p + facet_grid(. ~ cyl)
p + facet_grid(. ~ cyl, labeller = label_value)

Displaying both the values and the variables
p + facet_grid(. ~ cyl, labeller = label_both)

Displaying only the values or both the values and variables
depending on whether multiple factors are facetted over
p + facet_grid(am ~ vs+cyl, labeller = label_context)

Interpreting the labels as plotmath expressions
p + facet_grid(. ~ cyl2)

p + facet_grid(. ~ cyl2, labeller = label_parsed)
p + facet_wrap(~vs + cyl2, labeller = label_parsed)

label_bquote Backquoted labeller

Description

label_bquote() offers a flexible way of labelling facet rows or columns with plotmath expressions.
Backquoted variables will be replaced with their value in the facet.

Usage

label_bquote(rows = NULL, cols = NULL, default = label_value)

156 labs

Arguments
rows Backquoted labelling expression for rows.
cols Backquoted labelling expression for columns.
default Default labeller function for the rows or the columns when no plotmath expres-
sion is provided.
See Also

labellers, labeller(),

Examples

The variables mentioned in the plotmath expression must be

backquoted and referred to by their names.

p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()

p + facet_grid(vs ~ ., labeller = label_bquote(alpha * .(vs)))

p + facet_grid(. ~ vs, labeller = label_bquote(cols = .(vs) * .(vs)))

p + facet_grid(. ~ vs + am, labeller = label_bquote(cols = .(am) * .(vs)))

labs Change axis labels, legend titles, plot title/subtitle and below-plot cap-
tion.

Description

Change axis labels, legend titles, plot title/subtitle and below-plot caption.
Usage

labs(...)

xlab(label)

ylab(label)

ggtitle(label, subtitle = NULL)

Arguments
a list of new names in the form aesthetic = "new name"
label The text for the axis, plot title or caption below the plot.
subtitle the text for the subtitle for the plot which will be displayed below the title. Leave

NULL for no subtitle.

last_plot 157

Examples
p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
p + labs(title = "New plot title")
p + labs(x = "New x label")
p + xlab(”"New x label”)
p + ylab("New y label”)
p + ggtitle("New plot title")
Can add a subtitle to plots with either of the following
p + ggtitle("New plot title”, subtitle = "A subtitle”)

p + labs(title = "New plot title"”, subtitle = "A subtitle")

Can add a plot caption underneath the whole plot (for sources, notes or
copyright), similar to the \code{sub} parameter in base R, with the

following

p + labs(caption = "(based on data from ...)")

This should work independently of other functions that modify the

the scale names

p + ylab(”"New y label”) + ylim(2, 4)

p + ylim(2, 4) + ylab("New y label")

The labs function also modifies legend labels

p <- ggplot(mtcars, aes(mpg, wt, colour = cyl)) + geom_point()

p + labs(colour = "Cylinders")

Can also pass in a list, if that is more convenient

p + labs(list(title = "Title”, subtitle = "Subtitle”, x = "X", y = "Y"))
last_plot Retrieve the last plot to be modified or created.
Description

Retrieve the last plot to be modified or created.

Usage

last_plot()

See Also

ggsave

158 layer

layer Create a new layer

Description

A layer is a combination of data, stat and geom with a potential position adjustment. Usually layers
are created using geom_x* or stat_x calls but it can also be created directly using this function.

Usage
layer(
geom = NULL,
stat = NULL,
data = NULL,

mapping = NULL,
position = NULL,
params = list(),
inherit.aes = TRUE,
subset = NULL,
show.legend = NA

)
Arguments

geom The geometric object to use display the data

stat The statistical transformation to use on the data for this layer, as a string.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.
A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

params Additional parameters to the geom and stat.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.

This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.
subset DEPRECATED. An older way of subsetting the dataset used in a layer.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

lims 159

Examples

geom calls are just a short cut for layer
ggplot(mpg, aes(displ, hwy)) + geom_point()
shortcut for
ggplot(mpg, aes(displ, hwy)) +
layer(geom = "point"”, stat = "identity", position = "identity",
params = list(na.rm = FALSE)
)

use a function as data to plot a subset of global data
ggplot(mpg, aes(displ, hwy)) +
layer(geom = "point"”, stat = "identity", position = "identity",
data = head, params = list(na.rm = FALSE)
)

lims Convenience functions to set the axis limits.

Description

Observations not in this range will be dropped completely and not passed to any other layers. If a
NA value is substituted for one of the limits that limit is automatically calculated.

Usage
lims(...)
xlim(...)
ylim(...)
Arguments
If numeric, will create a continuous scale, if factor or character, will create a
discrete scale. For 1ims, every argument must be named.
See Also

For changing x or y axis limits without dropping data observations, see coord_cartesian.

Examples

x1lim

x1im(15, 20)
xlim(20, 15)
xlim(c(10, 20))
xlim("a", "b", "c")

160

make_bar
ggplot(mtcars, aes(mpg, wt)) +
geom_point() +
x1im(15, 20)
with automatic lower limit
ggplot(mtcars, aes(mpg, wt)) +
geom_point() +
x1im(NA, 20)
Change both xlim and ylim
ggplot(mtcars, aes(mpg, wt)) +
geom_point() +
lims(x = c(10, 20), y = c(3, 5))
luv_colours colors() in Luv space.
Description
All built-in colors() translated into Luv colour space.
Usage
luv_colours
Format
A data frame with 657 observations and 4 variables:
L,u,v Position in Luv colour space
col Colour name
make_bar Convenience function for an interactive bar that might otherwise be

created using stat_summary(geom="bar").

Description
Convenience function for an interactive bar that might otherwise be created using stat_summary(geom="bar").

Usage

make_bar(data, x.name, alpha = 1)

Arguments
data data.frame to analyze for unique x.name values.
X.nhame variable to be used for x, clickSelects.

alpha transparency of selected bar, default 1.

make_tallrect 161

Value

a geom_bar layer.

Author(s)
Toby Dylan Hocking
make_tallrect Make a clickSelects geom_tallrect that completely tiles the x range.
This makes it easy to construct tallrects for the common case of select-
ing a particular x value.
Description

Make a clickSelects geom_tallrect that completely tiles the x range. This makes it easy to construct
tallrects for the common case of selecting a particular x value.

Usage
make_tallrect(data, x.name, even = FALSE, alpha = 1/2, ...)
Arguments
data data.frame to analyze for unique x.name values.
X.name variable to be used for x, clickSelects.
even Logical parameter, should tallrects be of even width?
alpha transparency of a selected tallrect, default 1/2.
passed to geom_tallrect.
Value

a geom_tallrect layer.

Author(s)

Toby Dylan Hocking

162

make_tallrect_or_widerect

make_tallrect_or_

widerect
Make a clickSelects geom_widerect or geom_tallrect that completely
tiles the x or y range. This function is used internally by make_tallrect
or make_widerect, which are more user-friendly.

Description

Make a clickSelect

s geom_widerect or geom_tallrect that completely tiles the x or y range. This

function is used internally by make_tallrect or make_widerect, which are more user-friendly.

Usage

make_tallrect_or_widerect(

aes.prefix,
geom_xrect,
data,
var.name,
even FALSE,
alpha = 0.5,

data.fun =

Arguments

aes.prefix
geom_xrect
data
var.name
even

alpha

data.fun

Value

a geom_xrect layer

Author(s)

identity

nyn nen

x"or"y
geom_tallrect or geom_widerect

data.frame to analyze for unique var.name values.
variable to be used for clickSelects

Logical parameter, should xrects be of even width?
transparency of a selected xrect, default 1/2.
passed to geom_xrect

called on data passed to geom_xrect(aes(..), data.fun(df)) this is useful in facetted
plots, for adding columns to the data.frame, if you want that geom in only one
panel.

Toby Dylan Hocking

make_text 163

make_text Convenvience function for a showSelected plot label.

Description

Convenvience function for a showSelected plot label.

Usage

make_text(data, x, y, label.var, format = NULL)

Arguments

data data.frame of relevant data

X x coordinate of label position

y y coordinate of label position

label.var variable matching showSelected, used to obtain label value

format String format for label. Use %d, %f, etc. to insert relevant label.var value.
Value

a geom_text layer.

Author(s)
Toby Dylan Hocking
make_widerect Make a clickSelects geom_widerect that completely tiles the y range.
This makes it easy to construct widerects for the common case of se-
lecting a particular y value.
Description

Make a clickSelects geom_widerect that completely tiles the y range. This makes it easy to construct
widerects for the common case of selecting a particular y value.

Usage

make_widerect(data, y.name, even = FALSE, alpha = 0.5, ...)

164 map_data

Arguments
data data.frame to analyze for unique y.name values.
y.name variable to be used for y, clickSelects.
even Logical parameter, should widerects be of even width?
alpha transparency of a selected widerect, default 1/2.
passed to geom_widerect.
Value

a geom_widerect layer.

Author(s)
Toby Dylan Hocking

map_data Create a data frame of map data.

Description

Create a data frame of map data.

Usage
map_data(map, region = ".", exact = FALSE, ...)
Arguments
map name of map provided by the maps package. These include county, france,
italy, nz, state, usa, world, world2.
region name of subregions to include. Defaults to . which includes all subregion. See
documentation for map for more details.
exact should the region be treated as a regular expression (FALSE) or as a fixed string
(TRUE).
all other arguments passed on to map
Examples

if (require("maps")) {

states <- map_data("state")

arrests <- USArrests

names(arrests) <- tolower(names(arrests))
arrests$region <- tolower(rownames(USArrests))

choro <- merge(states, arrests, sort = FALSE, by = "region")
choro <- choro[order(choro$order), 1]

margin 165

ggplot(choro, aes(long, lat)) +
geom_polygon(aes(group = group, fill = assault)) +
coord_map("albers”, at@ = 45.5, latl = 29.5)

ggplot(choro, aes(long, lat)) +
geom_polygon(aes(group = group, fill = assault / murder)) +
coord_map("albers”, at@ = 45.5, latl = 29.5)

3

margin Define margins.

Description

This is a convenient function that creates a grid unit object of the correct length to use for setting
margins.

Usage

margin(t = 0, r =0, b =0, 1 =0, unit = "pt")

Arguments
t,r,b,1 Dimensions of each margin. (To remember order, think trouble).
unit Default units of dimensions. Defaults to "pt" so it can be most easily scaled with
the text.
Examples
margin(4)

margin(4, 2)
margin(4, 3, 2, 1)

mean_se Calculate mean and standard errors on either side.

Description

Calculate mean and standard errors on either side.

Usage

mean_se(x, mult = 1)

Arguments

X numeric vector

mult number of multiples of standard error

166

See Also

for use with stat_summary

midwest

merge_recurse Merge a list of data frames.

Description

Merge a list of data frames.

Usage

merge_recurse(dfs)

Arguments

dfs list of data frames

Value

data frame

midwest Midwest demographics.

Description

Demographic information of midwest counties

Usage

midwest

Format
A data frame with 437 rows and 28 variables

* PID

e county

* state

* area

* poptotal. Total population

* popdensity. Population density

* popwhite. Number of whites.

mpg

popblack. Number of blacks.

popamerindian. Number of American Indians.

popasian. Number of Asians.
popother. Number of other races.
percwhite. Percent white.

percblack. Percent black.
percamerindan. Percent American Indian.
percasian. Percent Asian.

percother. Percent other races.
popadults. Number of adults.
perchsd.

percollege. Percent college educated.
percprof. Percent profession.
poppovertyknown.
percpovertyknown
percbelowpoverty
percchildbelowpovert
percadultpoverty

percelderlypoverty

inmetro. In a metro area.

category’

167

mpg

Fuel economy data from 1999 and 2008 for 38 popular models of car

Description

This dataset contains a subset of the fuel economy data that the EPA makes available on https:
//fueleconomy.gov. It contains only models which had a new release every year between 1999

and 2008 - this was used as a proxy for the popularity of the car.

Usage

mpg

https://fueleconomy.gov
https://fueleconomy.gov

168

Format

msleep

A data frame with 234 rows and 11 variables

manufacturer.

model.

displ. engine displacement, in litres
year.

cyl. number of cylinders

trans. type of transmission

drv. f = front-wheel drive, r = rear wheel drive, 4 = 4wd
cty. city miles per gallon

hwy. highway miles per gallon

fl.

class.

msleep An updated and expanded version of the mammals sleep dataset.

Description

This is an updated and expanded version of the mammals sleep dataset. Updated sleep times and
weights were taken from V. M. Savage and G. B. West. A quantitative, theoretical framework for
understanding mammalian sleep. Proceedings of the National Academy of Sciences, 104 (3):1051-
1056, 2007.

Usage

msleep

Format

A data frame with 83 rows and 11 variables

name. common name

genus.

vore. carnivore, omnivore or herbivore?

order.

conservation. the conservation status of the animal
sleep_total. total amount of sleep, in hours
sleep_rem. rem sleep, in hours

sleep_cycle. length of sleep cycle, in hours

awake. amount of time spent awake, in hours
brainwt. brain weight in kilograms

bodywt. body weight in kilograms

newEnvironment 169

Details

Additional variables order, conservation status and vore were added from wikipedia.

newEnvironment Environment to store meta data

Description

Get a new environment to store meta-data. Used to alter state in the lower-level functions

Usage

newEnvironment ()

Value

A new environment to store meta data

parsePlot Convert a ggplot to a list.

Description

Convert a ggplot to a list.

Usage

parsePlot(meta, plot, plot.name)

Arguments
meta environment with previously calculated plot data, and a new plot to parse, al-
ready stored in plot and plot.name.
plot ggplot list object
plot.name name of plot
Value

nothing, info is stored in meta.

170 position_dodge

position_dodge Adjust position by dodging overlaps to the side.

Description

Adjust position by dodging overlaps to the side.

Usage

position_dodge(width = NULL)

Arguments
width Dodging width, when different to the width of the individual elements. This
is useful when you want to align narrow geoms with wider geoms. See the
examples for a use case.
See Also

Other position adjustments: position_fill(),position_identity(),position_jitter(),position_jitterdodge(),
position_nudge()

Examples

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
geom_bar(position = "dodge")

ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(position="dodge")

To dodge items with different widths, you need to be explicit
df <- data.frame(x = c("a","a","b","b"), y = 2:5, g = rep(1:2, 2))
p <- ggplot(df, aes(x, y, group = g)) +
geom_bar(
stat = "identity"”, position = "dodge",
fill = "grey50", colour = "black”

)
p
A line range has no width:
p + geom_linerange(aes(ymin = y-1, ymax = y+1), position = "dodge")
You need to explicitly specify the width for dodging
p + geom_linerange(aes(ymin = y-1, ymax = y+1),

position = position_dodge(width = 0.9))

H

Similarly with error bars:

p + geom_errorbar(aes(ymin = y-1, ymax = y+1), width = 0.2,
position = "dodge")

p + geom_errorbar(aes(ymin = y-1, ymax = y+1, width = 0.2),

position_fill 171

position = position_dodge(width = 0.90))

position_fill Stack overlapping objects on top of one another.

Description

position_fill additionally standardises each stack to have unit height.

Usage
position_fill()

position_stack()

See Also

See geom_bar and geom_area for more examples.

Other position adjustments: position_dodge(), position_identity(), position_jitter(),
position_jitterdodge(), position_nudge()

Examples

Stacking is the default behaviour for most area plots:

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) + geom_bar()

Fill makes it easier to compare proportions

ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) +
geom_bar(position = "fill")

To change stacking order, use factor() to change order of levels
mtcars$vs <- factor(mtcars$vs, levels = c(1,0))
ggplot(mtcars, aes(factor(cyl), fill = factor(vs))) + geom_bar()

ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(binwidth = 500)
When used with a histogram, position_fill creates a conditional density
estimate
ggplot(diamonds, aes(price, fill = cut)) +
geom_histogram(binwidth = 500, position = "fill")

Stacking is also useful for time series

data.set <- data.frame(
Time = c(rep(1, 4),rep(2, 4), rep(3, 4), rep(4, 4)),
Type = rep(c('a', 'b', 'c', 'd'), 4),
Value = rpois(16, 10)

)

ggplot(data.set, aes(Time, Value)) + geom_area(aes(fill = Type))

172 position_jitter

If you want to stack lines, you need to say so:
ggplot(data.set, aes(Time, Value)) + geom_line(aes(colour = Type))
ggplot(data.set, aes(Time, Value)) +

geom_line(position = "stack”, aes(colour = Type))

But realise that this makes it *much* harder to compare individual
trends

position_identity Don’t adjust position

Description

Don’t adjust position

Usage

position_identity()

See Also

Other position adjustments: position_dodge(), position_fill(), position_jitter(), position_jitterdodge(),
position_nudge()

position_jitter Jitter points to avoid overplotting.

Description

Jitter points to avoid overplotting.

Usage

position_jitter(width = NULL, height = NULL)

Arguments

width, height Amount of vertical and horizontal jitter. The jitter is added in both positive and
negative directions, so the total spread is twice the value specified here.

If omitted, defaults to 40% of the resolution of the data: this means the jitter
values will occupy 80% of the implied bins. Categorical data is aligned on the
integers, so a width or height of 0.5 will spread the data so it’s not possible to
see the distinction between the categories.

position_jitterdodge 173

See Also

Other position adjustments: position_dodge(), position_fill(), position_identity(), position_jitterdodge(),
position_nudge()

Examples

ggplot(mtcars, aes(am, vs)) + geom_point()

Default amount of jittering will generally be too much for
small datasets:
ggplot(mtcars, aes(am, vs)) + geom_jitter()

Two ways to override
ggplot(mtcars, aes(am, vs)) +
geom_jitter(width = 0.1, height = 0.1)
ggplot(mtcars, aes(am, vs)) +
geom_jitter(position = position_jitter(width = 0.1, height = 0.1))

position_jitterdodge Adjust position by simultaneously dodging and jittering

Description

Adjust position by simultaneously dodging and jittering

Usage

position_jitterdodge(
jitter.width = NULL,
jitter.height = 0,
dodge.width = 0.75

)

Arguments

jitter.width degree of jitter in x direction. Defaults to 40% of the resolution of the data.
jitter.height degree of jitter in y direction. Defaults to 0.

dodge.width the amount to dodge in the x direction. Defaults to 0.75, the default position_dodge ()
width.

See Also

Other position adjustments: position_dodge(), position_fill(), position_identity(), position_jitter(),
position_nudge()

174 presidential

position_nudge Nudge points.

Description

This is useful if you want to nudge labels a little ways from their points.

Usage
position_nudge(x = @, y = 0)

Arguments

X,y Amount of vertical and horizontal distance to move.

See Also

Other position adjustments: position_dodge(), position_fill(), position_identity(), position_jitter(),
position_jitterdodge()

Examples

df <- data.frame(
x =¢(1,3,2,5),
y = c("a”,"c","d","c")

)

ggplot(df, aes(x, y)) +
geom_point() +
geom_text (aes(label = y))

+

ggplot(df, aes(x, y))
geom_point() +

geom_text(aes(label = y), position = position_nudge(y = -0.1))

presidential Terms of 11 presidents from Eisenhower to Obama.

Description

The names of each president, the start and end date of their term, and their party of 11 US presidents
from Eisenhower to Obama.

Usage

presidential

print.animint 175

Format

A data frame with 11 rows and 4 variables

print.animint print animint

Description

Print animint by rendering to local directory.

Usage
S3 method for class 'animint'
print(x, ...)
Arguments
X List of ggplots and options. In particular the out.dir option is passed along to
animint2dir.
passed to animint2dir
Value

same as animint2dir

Author(s)

Toby Dylan Hocking

print.gganimintplot Draw plot on current graphics device.

Description

Draw plot on current graphics device.

Usage
S3 method for class 'gganimintplot'
print(x, newpage = is.null(vp), vp = NULL, ...)

S3 method for class 'gganimintplot'
plot(x, newpage = is.null(vp), vp = NULL, ...)

176 pt.to.lines

Arguments
X plot to display
newpage draw new (empty) page first?
vp viewport to draw plot in
other arguments not used by this method
Value

Invisibly returns the result of ggplot_build, which is a list with components that contain the plot
itself, the data, information about the scales, panels etc.

print.gganimintproto Print a gganimintproto object

Description

If a gganimintproto object has a $print method, this will call that method. Otherwise, it will print
out the members of the object, and optionally, the members of the inherited objects.

Usage
S3 method for class 'gganimintproto'
print(x, ..., flat = TRUE)

Arguments
X A gganimintproto object to print.

If the gganimintproto object has a print method, further arguments will be
passed to it. Otherwise, these arguments are unused.

flat If TRUE (the default), show a flattened list of all local and inherited members. If
FALSE, show the inheritance hierarchy.

pt.to.lines Convert pt value to 1ines

Description

Convert pt value to lines

Usage

pt.to.lines(pt_value)

gplot 177

Arguments

pt_value Value in pt to be converted to 1ines

Value

Value in lines

Note

Does NOT work if input is not in pt. Input is returned as is.

gplot Quick plot

Description

gplot is the basic plotting function in the ggplot2 package, designed to be familiar if you’re used
to base plot(). It’s a convenient wrapper for creating a number of different types of plots using a
consistent calling scheme.

Usage

aplot(
X,
y = NULL,
data,
facets = NULL,
margins = FALSE,

geom = "auto”,
xlim = c(NA, NA),
ylim = c(NA, NA),
log = "",
main = NULL,
xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)),
asp = NA,
stat = NULL,
position = NULL
)
quickplot(
X)
y = NULL,
data,

facets = NULL,

178 gplot
margins = FALSE,
geom = "auto”,
xlim = c(NA, NA),
ylim = c(NA, NA),
10g = nn ,
main = NULL,
xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)),
asp = NA,
stat = NULL,
position = NULL
)
Arguments
XY, ... Aesthetics passed into each layer
data Data frame to use (optional). If not specified, will create one, extracting vectors
from the current environment.
facets faceting formula to use. Picks facet_wrap or facet_grid depending on whether
the formula is one- or two-sided
margins See facet_grid: display marginal facets?
geom Character vector specifying geom(s) to draw. Defaults to "point" if x and y are
specified, and "histogram" if only x is specified.
x1lim, ylim X and y axis limits
log Which variables to log transform ("x", "y", or "xy")

main, xlab, ylab

asp

stat, position

Examples

Character vector (or expression) giving plot title, x axis label, and y axis label
respectively.

The y/x aspect ratio
DEPRECATED.

Use data from data.frame

gplot(mpg, wt, da
gplot(mpg, wt, da
gplot(mpg, wt, da
gplot(mpg, wt, da

ta = mtcars)

ta = mtcars, colour = cyl)

ta = mtcars, size = cyl)

ta = mtcars, facets = vs ~ am)

gplot(1:10, rnorm(10), colour = runif(10))
gplot(1:10, letters[1:10])
mod <- lm(mpg ~ wt, data = mtcars)

gplot(resid(mod),

f <= function() {
a<-1:10
b<-a*?2
gplot(a, b)

fitted(mod))

rel 179

}
O

To set aesthetics, wrap in I()
gplot(mpg, wt, data = mtcars, colour = I("red"))

gplot will attempt to guess what geom you want depending on the input
both x and y supplied = scatterplot

gplot(mpg, wt, data = mtcars)

just x supplied = histogram

gplot(mpg, data = mtcars)

just y supplied = scatterplot, with x = seqg_along(y)

gplot(y = mpg, data = mtcars)

Use different geoms
gplot(mpg, wt, data = mtcars, geom = "path”)
gplot(mpg, data = mtcars, geom = "dotplot”)

rel Relative sizing for theme elements

Description

Relative sizing for theme elements

Usage

rel(x)

Arguments

X A number representing the relative size

Examples

df <- data.frame(x = 1:3, y = 1:3)
ggplot(df, aes(x, y)) +
geom_point() +
theme(axis.title.x = element_text(size = rel(2.5)))

180 resolution

renderAnimint Create an animint output element

Description
Shiny server output function customized for animint plots (similar to shiny::plotOutput and
friends).

Usage

renderAnimint(expr, env = parent.frame(), quoted = FALSE)

Arguments
expr An expression that creates a list of ggplot objects.
env The environment in which to evaluate expr.
quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.
See Also

http://shiny.rstudio.com/articles/building-outputs.html

resolution Compute the "resolution"” of a data vector.

Description
The resolution is is the smallest non-zero distance between adjacent values. If there is only one
unique value, then the resolution is defined to be one.

Usage

resolution(x, zero = TRUE)

Arguments

X numeric vector

zero should a zero value be automatically included in the computation of resolution
Details

If x is an integer vector, then it is assumed to represent a discrete variable, and the resolution is 1.

saveChunks 181

Examples

resolution(1:10)

resolution((1:10) - 9.5)

resolution((1:10) - 0.5, FALSE)

resolution(c(1,2, 10, 20, 50))
resolution(as.integer(c(1, 10, 20, 50))) # Returns 1

saveChunks Split data set into chunks and save them to separate files.

Description

Split data set into chunks and save them to separate files.

Usage

saveChunks(x, meta)

Arguments
X data.frame.
meta environment.
Value

recursive list of chunk file names.

Author(s)
Toby Dylan Hocking

scale_alpha Alpha scales.

Description

scale_alphais an alias for scale_alpha_continuous since that is the most common use of alpha,
and it saves a bit of typing.

Usage
scale_alpha(..., range = c(0.1, 1))
scale_alpha_continuous(..., range = c(0.1, 1))

scale_alpha_discrete(..., range = c(0.1, 1))

182 scale_colour_brewer

Arguments
Other arguments passed on to continuous_scale or discrete_scale as ap-
propriate, to control name, limits, breaks, labels and so forth.
range range of output alpha values. Should lie between 0 and 1.
Examples

(p <- ggplot(mtcars, aes(mpg, cyl)) +
geom_point(aes(alpha = cyl)))

p + scale_alpha(”cylinders™)

p + scale_alpha("number\nof\ncylinders")

p + scale_alpha(range = c(0.4, 0.8))
(p <- ggplot(mtcars, aes(mpg, cyl)) +

geom_point(aes(alpha = factor(cyl))))
p + scale_alpha_discrete(range = c(0.4, 0.8))

scale_colour_brewer Sequential, diverging and qualitative colour scales from color-
brewer.org

Description

ColorBrewer provides sequential, diverging and qualitative colour schemes which are particularly
suited and tested to display discrete values (levels of a factor) on a map. ggplot2 can use those
colours in discrete scales. It also allows to smoothly interpolate 6 colours from any palette to a
continuous scale (6 colours per palette gives nice gradients; more results in more saturated colours
which do not look as good). However, the original colour schemes (particularly the qualitative
ones) were not intended for this and the perceptual result is left to the appreciation of the user. See
https://colorbrewer2.org for more information.

Usage
scale_colour_brewer(..., type = "seq", palette = 1, direction = 1)
scale_fill_brewer(..., type = "seq"”, palette = 1, direction = 1)

scale_colour_distiller(

type = "seq",
palette = 1,
direction = -1,
values = NULL,

space = "Lab",
na.value = "grey50",
guide = "colourbar”

https://colorbrewer2.org

scale_colour_brewer

)

scale_fill_distiller(
type = "seq",
palette = 1,
direction = -1,
values = NULL,
space = "Lab",

183

na.value = "grey50",
guide = "colourbar”
)
Arguments

Other arguments passed on to discrete_scale to control name, limits, breaks,
labels and so forth.

type One of "seq" (sequential), "div" (diverging) or "qual" (qualitative)

palette If a string, will use that named palette. If a number, will index into the list of
palettes of appropriate type

direction Sets the order of colours in the scale. If 1, the default, colours are as output by
RColorBrewer: :brewer.pal(). If -1, the order of colours is reversed.

values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
Oand 1.

space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.

na.value Colour to use for missing values

guide Type of legend. Use "colourbar” for continuous colour bar, or "legend"” for
discrete colour legend.

Palettes

The following palettes are available for use with these scales:

Diverging BrBG, PiYG, PRGn, PuOr, RdBu, RdGy, RdY1Bu, RdY1Gn, Spectral
Qualitative Accent, Dark2, Paired, Pastell, Pastel2, Setl, Set2, Set3

Sequential Blues, BuGn, BuPu, GnBu, Greens, Greys, Oranges, OrRd, PuBu, PuBuGn, PuRd,
Purples, RdPu, Reds, Y1Gn, YIGnBu, Y1OrBr, YIOrRd

See Also

Other colour scales: scale_colour_gradient, scale_colour_grey, scale_colour_hue

184 scale_colour_gradient

Examples

dsamp <- diamonds[sample(nrow(diamonds), 1000),]
(d <- ggplot(dsamp, aes(carat, price)) +
geom_point(aes(colour = clarity)))

Change scale label
+ scale_colour_brewer()
d + scale_colour_brewer("Diamond\nclarity")

o

Select brewer palette to use, see ?scales::brewer_pal for more details
+ scale_colour_brewer(palette = "Greens")
d + scale_colour_brewer(palette = "Set1")

(e}

scale_fill_brewer works just the same as

scale_colour_brewer but for fill colours

p <- ggplot(diamonds, aes(x = price, fill = cut)) +
geom_histogram(position = "dodge"”, binwidth = 1000)

p + scale_fill_brewer()

the order of colour can be reversed

p + scale_fill_brewer(direction = -1)

the brewer scales look better on a darker background

p + scale_fill_brewer(direction = -1) + theme_dark()

Use distiller variant with continous data
v <- ggplot(faithfuld) +
geom_tile(aes(waiting, eruptions, fill = density))

<

+ scale_fill_distiller()
v + scale_fill distiller(palette = "Spectral”)

scale_colour_gradient Smooth gradient between two colours

Description

scale_*_gradient creates a two colour gradient (low-high), scale_*_gradient2 creates a di-
verging colour gradient (low-mid-high), scale_*_gradientn creats a n-colour gradient.

Usage

scale_colour_gradient(
low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "colourbar”

scale_colour_gradient

)

scale_fill_gradient(

)

low = "#132B43",
high = "#56B1F7",
space = "Lab",
na.value = "grey50",
guide = "colourbar”

scale_colour_gradient2(

)

’

low = muted("red”),

mid = "white",

high = muted("blue"),
midpoint = 0,

space = "Lab",
na.value = "grey50",
guide = "colourbar”

scale_fill_gradient2(

)

’

low = muted("red”),

mid = "white",

high = muted("blue"),
midpoint = 0,

space = "Lab",
na.value = "grey50",
guide = "colourbar”

scale_colour_gradientn(

)

c

colours,

values = NULL,

space = "Lab",
na.value = "grey50",
guide = "colourbar”,
colors

scale_fill_gradientn(

colours,
values = NULL,
space = "Lab",

185

186 scale_colour_gradient
na.value = "grey50"”,
guide = "colourbar”,
colors
)
Arguments
Other arguments passed on to discrete_scale to control name, limits, breaks,
labels and so forth.
low, high Colours for low and high ends of the gradient.
space colour space in which to calculate gradient. Must be "Lab" - other values are
deprecated.
na.value Colour to use for missing values
guide Type of legend. Use "colourbar” for continuous colour bar, or "legend” for
discrete colour legend.
mid colour for mid point
midpoint The midpoint (in data value) of the diverging scale. Defaults to 0.
colours, colors Vector of colours to use for n-colour gradient.
values if colours should not be evenly positioned along the gradient this vector gives
the position (between 0 and 1) for each colour in the colours vector. See
rescale() for a convenience function to map an arbitrary range to between
Oand 1.
Details
Default colours are generated with munsell and mns1(c("”2.5PB 2/4", "2.5PB 7/10"). Generally,
for continuous colour scales you want to keep hue constant, but vary chroma and luminance. The
munsell package makes this easy to do using the Munsell colour system.
See Also
seq_gradient_pal for details on underlying palette
Other colour scales: scale_colour_brewer, scale_colour_grey, scale_colour_hue
Examples

df <- data.frame(
X = runif(100),
y = runif(100),

z1 = rnorm(100),
z2 = abs(rnorm(100))

)

Default colour scale colours from light blue to dark blue
ggplot(df, aes(x, y)) +
geom_point(aes(colour = z2))

For diverging colour scales use gradient?2

scale_colour_grey 187

ggplot(df, aes(x, y)) +
geom_point(aes(colour = z1)) +
scale_colour_gradient2()

Use your own colour scale with gradientn

ggplot(df, aes(x, y)) +
geom_point(aes(colour = z1)) +
scale_colour_gradientn(colours = terrain.colors(10))

Equivalent fill scales do the same job for the fill aesthetic

ggplot(faithfuld, aes(waiting, eruptions)) +
geom_tile(aes(fill = density)) +
scale_fill_gradientn(colours = terrain.colors(10))

Adjust colour choices with low and high
ggplot(df, aes(x, y)) +
geom_point(aes(colour = z2)) +
scale_colour_gradient(low = "white”, high = "black")
Avoid red-green colour contrasts because ~10% of men have difficulty
seeing them

scale_colour_grey Sequential grey colour scale.

Description

Based on gray.colors

Usage
scale_colour_grey(..., start = 0.2, end = 0.8, na.value = "red")
scale_fill_grey(..., start = 0.2, end = 0.8, na.value = "red")
Arguments
Other arguments passed on to discrete_scale to control name, limits, breaks,
labels and so forth.
start grey value at low end of palette
end grey value at high end of palette
na.value Colour to use for missing values
See Also

Other colour scales: scale_colour_brewer, scale_colour_gradient, scale_colour_hue

188 scale_colour_hue

Examples

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point(aes(colour = factor(cyl)))
p + scale_colour_grey()
p + scale_colour_grey(end = 0)

You may want to turn off the pale grey background with this scale
p + scale_colour_grey() + theme_bw()

Colour of missing values is controlled with na.value:
miss <- factor(sample(c(NA, 1:5), nrow(mtcars), replace = TRUE))
ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = miss)) +
scale_colour_grey()
ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = miss)) +

scale_colour_grey(na.value = "green")
scale_colour_hue Qualitative colour scale with evenly spaced hues.
Description

Qualitative colour scale with evenly spaced hues.

Usage

scale_colour_hue(

L

h = c(0, 360) + 15,
c = 100,

1 = 65,

h.start = 0,
direction = 1,
na.value = "grey50"

scale_fill_hue(

L

h = c(0, 360) + 15,
c = 100,

1 =65,

h.start = 0,
direction = 1,
na.value = "grey50"

scale_colour_hue

Arguments

1
h.start
direction

na.value

See Also

189

Other arguments passed on to discrete_scale to control name, limits, breaks,
labels and so forth.

range of hues to use, in [0, 360]

chroma (intensity of colour), maximum value varies depending on combination
of hue and luminance.

luminance (lightness), in [0, 100]
hue to start at
direction to travel around the colour wheel, 1 = clockwise, -1 = counter-clockwise

Colour to use for missing values

Other colour scales: scale_colour_brewer, scale_colour_gradient, scale_colour_grey

Examples

dsamp <- diamonds[sample(nrow(diamonds), 1000), 1]
(d <- ggplot(dsamp, aes(carat, price)) + geom_point(aes(colour = clarity)))

+
+ scale_colour_hue(l = 70, c = 150)
+

+ scale_colour_hue(expression(clarity[betal))

30)
30)

150)

+ scale_colour_hue(h = c(90, 180))
+ scale_colour_hue(h = c(180, 270))
+ scale_colour_hue(h = c(270, 360))

(only works with pdf, quartz and cairo devices)
<- ggplot(dsamp, aes(carat, price, colour = clarity))

Change scale label

d + scale_colour_hue()

d + scale_colour_hue("clarity")
d

Adjust luminosity and chroma
d + scale_colour_hue(l = 40, c
d + scale_colour_hue(l = 70, c
d

d + scale_colour_hue(l = 80, c
Change range of hues used

d + scale_colour_hue(h = c(0, 90))
d

d

d

Vary opacity

#

d

d + geom_point(alpha = 0.9)

d + geom_point(alpha = 0.5)

d + geom_point(alpha =

0.2)

Colour of missing values is controlled with na.value:
miss <- factor(sample(c(NA, 1:5), nrow(mtcars), replace = TRUE))
ggplot(mtcars, aes(mpg, wt)) + geom_point(aes(colour = miss))
ggplot(mtcars, aes(mpg, wt)) +

geom_point(aes(colour = miss)) +

190 scale_continuous

scale_colour_hue(na.value = "black")
scale_continuous Continuous position scales (x & y).
Description

scale_x_continuous and scale_y_continuous are the key functions. The others, scale_x_log10
scale_y_sqrt etc, are aliases that set the trans argument to commonly used transformations.

Usage

scale_x_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
trans = "identity"

scale_y_continuous(
name = waiver(),
breaks = waiver(),
minor_breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = censor,
na.value = NA_real_,
trans = "identity"

scale_x_logl1@(...)

scale_y_logla(...)

scale_x_reverse(...)

scale_y_reverse(...)

scale_x_sqgrt(...)

scale_y_sqgrt(...)

scale_continuous

Arguments

name

breaks

minor_breaks

labels

limits

expand

oob

na.value

trans

See Also

191

The name of the scale. Used as axis or legend title. If NULL, the default, the
name of the scale is taken from the first mapping used for that aesthetic.

One of:

* NULL for no breaks
* waiver() for the default breaks computed by the transformation object
* A numeric vector of positions

* A function that takes the limits as input and returns breaks as output
One of:

e NULL for no minor breaks

* waiver() for the default breaks (one minor break between each major
break)

* A numeric vector of positions

* A function that given the limits returns a vector of minor breaks.
One of:

* NULL for no labels
* waiver () for the default labels computed by the transformation object
* A character vector giving labels (must be same length as breaks)

* A function that takes the breaks as input and returns labels as output

A numeric vector of length two providing limits of the scale. Use NA to refer to
the existing minimum or maximum.

A numeric vector of length two giving multiplicative and additive expansion
constants. These constants ensure that the data is placed some distance away
from the axes. The defaults are c(0.05, @) for continuous variables, and c (@,
0.6) for discrete variables.

Function that handles limits outside of the scale limits (out of bounds). The
default replaces out of bounds values with NA.

Missing values will be replaced with this value.

Either the name of a transformation object, or the object itself. Built-in trans-

non non nons non

formations include "asn", "atanh", "boxcox", "exp", "identity", "log", "logl10",

"loglp", "log2", "logit", "probability", "probit", "reciprocal”, "reverse" and "sqrt".
A transformation object bundles together a transform, it’s inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called name_trans, e.g. boxcox_trans. You can create your

own transformation with trans_new.

Other arguments passed on to scale_(x|y)_continuous

scale_date for date/time position scales.

192

scale_continuous

Examples

if (require(ggplot2movies)) {

m

m

3 3

+* 3 3 3 = 3 3 3 #

3 3

3 3 3 #=#

H H 3 3 3 #

#
#

<- ggplot(subset(movies, votes > 1000), aes(rating, votes)) +
geom_point(na.rm = TRUE)

Manipulating the default position scales lets you:
* change the axis labels

+ scale_y_continuous("number of votes")
+ scale_y_continuous(quote(votes * alpha))

* modify the axis limits

+ scale_y_continuous(limits = c(@, 5000))

+ scale_y_continuous(limits = c(1000, 10000))

+ scale_x_continuous(limits = c(7, 8))

you can also use the short hand functions xlim and ylim
+ ylim(@, 5000)

+ ylim(1000, 10000)

+ x1lim(7, 8)

* choose where the ticks appear

+ scale_x_continuous(breaks = 1:10)

+ scale_x_continuous(breaks = ¢(1,3,7,9))

* manually label the ticks

+ scale_x_continuous(breaks = c(2,5,8), labels = c("two", "five", "eight"))

+ scale_x_continuous(breaks = c(2,5,8), labels = c("horrible”, "ok"”, "awesome"))
+ scale_x_continuous(breaks = c(2,5,8), labels = expression(Alpha, Beta, Omega))

There are a few built in transformation that you can use:

+ scale_y_logl10()

+ scale_y_sqrt()

+ scale_y_reverse()

You can also create your own and supply them to the trans argument.
See ?scales::trans_new

You can control the formatting of the labels with the formatter
argument. Some common formats are built into the scales package:

df <- data.frame(

T T T T v

#

x = rnorm(10) * 100000,
y = seq(@, 1, length.out = 10)

<- ggplot(df, aes(x, y)) + geom_point()

+ scale_y_continuous(labels = scales::percent)
+ scale_y_continuous(labels = scales::dollar)
+ scale_x_continuous(labels = scales::comma)

Other shortcut functions

ggplot(movies, aes(rating, votes)) +

geom_point() +

scale_date 193

ylim(le4, 5e4)
x axis labels
ggplot(movies, aes(rating, votes)) +
geom_point() +
labs(x = "My x axis", y = "My y axis")
* log scaling
ggplot(movies, aes(rating, votes)) +
geom_point() +
scale_x_loglo() +
scale_y_log10()
3

scale_date Position scale, date & date times

Description

Use scale_x_date with Date variables, and scale_x_datetime with POSIXct variables.

Usage

scale_x_date(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),
date_minor_breaks = waiver(),
limits = NULL,
expand = waiver()

scale_y_date(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),
minor_breaks = waiver(),
date_minor_breaks = waiver(),
limits = NULL,
expand = waiver()

scale_x_datetime(
name = waiver(),

scale_date

date_breaks = waiver(),

date_labels = waiver(),

= waiver(),

date_minor_breaks = waiver(),

194
breaks = waiver(),
labels = waiver(),
minor_breaks
limits = NULL,
expand = waiver()
)

scale_y_datetime(
name = waiver(),
breaks = waiver(),
date_breaks = waiver(),
labels = waiver(),
date_labels = waiver(),

minor_breaks

= waiver(),

date_minor_breaks = waiver(),
limits = NULL,
expand = waiver()

Arguments

name

breaks

date_breaks

labels

date_labels

minor_breaks

The name of the scale. Used as axis or legend title. If NULL, the default, the
name of the scale is taken from the first mapping used for that aesthetic.
One of:

¢ NULL for no breaks

* waiver() for the default breaks computed by the transformation object

* A numeric vector of positions

* A function that takes the limits as input and returns breaks as output

A string giving the distance between breaks like "2 weeks", or "10 years". If
both breaks and date_breaks are specified, date_breaks wins.

One of:
* NULL for no labels
* waiver () for the default labels computed by the transformation object
* A character vector giving labels (must be same length as breaks)
* A function that takes the breaks as input and returns labels as output

A string giving the formatting specification for the labels. Codes are defined in
strftime. If both labels and date_labels are specified, date_labels wins.

One of:

¢ NULL for no minor breaks

* waiver() for the default breaks (one minor break between each major
break)

* A numeric vector of positions

scale_identity 195

* A function that given the limits returns a vector of minor breaks.

date_minor_breaks
A string giving the distance between minor breaks like "2 weeks", or "10 years".
If both minor_breaks and date_minor_breaks are specified, date_minor_breaks
wins.

limits A numeric vector of length two providing limits of the scale. Use NA to refer to
the existing minimum or maximum.

expand A numeric vector of length two giving multiplicative and additive expansion
constants. These constants ensure that the data is placed some distance away
from the axes. The defaults are c(0.05, @) for continuous variables, and c (@,
0.6) for discrete variables.

See Also

scale_continuous for continuous position scales.

Examples

last_month <- Sys.Date() - 0:29

df <- data.frame(
date = last_month,
price = runif(30)

)

base <- ggplot(df, aes(date, price)) +
geom_line()

The date scale will attempt to pick sensible defaults for

major and minor tick marks. Override with date_breaks, date_labels
date_minor_breaks arguments.

base + scale_x_date(date_labels = "%b %d")

base + scale_x_date(date_breaks = "1 week”, date_labels = "%W")

base + scale_x_date(date_minor_breaks = "1 day")

Set limits
base + scale_x_date(limits = c(Sys.Date() - 7, NA))

scale_identity Use values without scaling.

Description

Use values without scaling.

Usage

scale_colour_identity(..., guide = "none")

scale_fill_identity(..., guide = "none")

196 scale_identity

scale_shape_identity(..., guide = "none")

scale_linetype_identity(..., guide = "none")

scale_alpha_identity(..., guide = "none")

scale_size_identity(..., guide = "none")
Arguments

Other arguments passed on to discrete_scale or continuous_scale

guide Guide to use for this scale - defaults to "none".

Examples

ggplot(luv_colours, aes(u, v)) +
geom_point(aes(colour = col), size = 3) +
scale_color_identity() +
coord_equal()

df <- data.frame(

X = 1:4,
y = 1:4,
colour = c("red”, "green", "blue", "yellow")

)
ggplot(df, aes(x, y)) + geom_tile(aes(fill = colour))
ggplot(df, aes(x, y)) +
geom_tile(aes(fill = colour)) +
scale_fill_identity()

To get a legend guide, specify guide = "legend”
ggplot(df, aes(x, y)) +
geom_tile(aes(fill = colour)) +
scale_fill_identity(guide = "legend")
But you'll typically also need to supply breaks and labels:
ggplot(df, aes(x, y)) +
geom_tile(aes(fill = colour)) +
scale_fill_identity("trt"”, labels = letters[1:4], breaks = df$colour,
guide = "legend")

cyl scaled to appropriate size
ggplot(mtcars, aes(mpg, wt)) + geom_point(aes(size = cyl))

cyl used as point size

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(size = cyl)) +
scale_size_identity()

scale_linetype 197

scale_linetype Scale for line patterns.

Description
Default line types based on a set supplied by Richard Pearson, University of Manchester. Line types
can not be mapped to continuous values.

Usage

scale_linetype(..., na.value = "blank")
scale_linetype_continuous(...)

scale_linetype_discrete(..., na.value = "blank")

Arguments

common discrete scale parameters: name, breaks, labels, na.value, limits
and guide. See discrete_scale for more details

na.value The linetype to use for NA values.

Examples

base <- ggplot(economics_long, aes(date, value@1l))
base + geom_line(aes(group = variable))
base + geom_line(aes(linetype = variable))

See scale_manual for more flexibility

scale_manual Create your own discrete scale.

Description

Create your own discrete scale.

Usage
scale_colour_manual(..., values)
scale_fill_manual(..., values)
scale_size_manual(..., values)

scale_shape_manual(..., values)

198 scale_shape

scale_linetype_manual(..., values)
scale_alpha_manual(..., values)
Arguments

common discrete scale parameters: name, breaks, labels, na.value, limits
and guide. See discrete_scale for more details

values a set of aesthetic values to map data values to. If this is a named vector, then the
values will be matched based on the names. If unnamed, values will be matched
in order (usually alphabetical) with the limits of the scale. Any data values that
don’t match will be given na.value.

Examples

p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = factor(cyl)))

p + scale_colour_manual(values = c("red”,"blue”, "green"))
p + scale_colour_manual(
values = c("8" = "red”,"4" = "blue”,”6" = "green"))

With rgb hex values
p + scale_colour_manual(values = c("#FFQ00Q", "#0QQOFF", "#00OFF00"))

As with other scales you can use breaks to control the appearance

of the legend

cols <- c("8" = "red”,"4" = "blue”,"6" = "darkgreen”, "10" = "orange")
p + scale_colour_manual(values = cols)

p + scale_colour_manual(values = cols, breaks = c("4", "6", "8"))
p + scale_colour_manual(values = cols, breaks = c("8", "6", "4"))
p + scale_colour_manual(values = cols, breaks = c("4", "6", "8"),

labels = c("four”, "six", "eight"))

And limits to control the possible values of the scale
p + scale_colour_manual(values = cols, limits = c("4", "8"))
p + scale_colour_manual(values = cols, limits = c("4", "6", "8", "10"))

Notice that the values are matched with limits, and not breaks
p + scale_colour_manual(limits = c(6, 8, 4), breaks = c(8, 4, 6),
values = c("grey50", "grey80", "black"))

scale_shape Scale for shapes, aka glyphs.

Description

A continuous variable can not be mapped to shape.

scale_size

Usage

scale_shape(...

Arguments

solid

Examples

199

, solid = TRUE)

common discrete scale parameters: name, breaks, labels, na.value, limits
and guide. See discrete_scale for more details

Are the shapes solid, TRUE, or hollow FALSE?

dsmall <- diamonds[sample(nrow(diamonds), 100), 1]

(d <- ggplot(dsmall, aes(carat, price)) + geom_point(aes(shape = cut)))
d + scale_shape(solid = TRUE) # the default

d + scale_shape(solid = FALSE)

d + scale_shape(name = "Cut of diamond")

d + scale_shape(name = "Cut of\ndiamond")

To change order of levels, change order of
underlying factor
levels(dsmall$cut) <- c("Fair”, "Good", "Very Good"”, "Premium”, "Ideal")

Need to recreate plot to pick up new data
ggplot(dsmall, aes(price, carat)) + geom_point(aes(shape = cut))

Or for short:

d %t+% dsmall

scale_size

Scale size (area or radius).

Description

scale_size scales area, scale_radius scales radius. The size aesthetic is most commonly used
for points and text, and humans perceive the area of points (not their radius), so this provides for
optimal perception. scale_size_area ensures that a value of 0 is mapped to a size of 0.

Usage

scale_radius(

name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),

trans

"identity",

guide = "legend”

200

)
scale_size(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = NULL,
range = c(1, 6),
trans = "identity",
guide = "legend”
)
scale_size_area(..., max_size = 6)
Arguments
name The name of the scale. Used as axis or legend title. If NULL, the default, the
name of the scale is taken from the first mapping used for that aesthetic.
breaks One of:
* NULL for no breaks
* waiver() for the default breaks computed by the transformation object
* A numeric vector of positions
* A function that takes the limits as input and returns breaks as output
labels One of:
* NULL for no labels
* waiver() for the default labels computed by the transformation object
* A character vector giving labels (must be same length as breaks)
* A function that takes the breaks as input and returns labels as output
limits A numeric vector of length two providing limits of the scale. Use NA to refer to
the existing minimum or maximum.
range a numeric vector of length 2 that specifies the minimum and maximum size of
the plotting symbol after transformation.
trans Either the name of a transformation object, or the object itself. Built-in trans-
formations include "asn", "atanh", "boxcox", "exp", "identity", "log", "log10",
"loglp", "log2", "logit", "probability", "probit", "reciprocal"”, "reverse" and "sqrt".
A transformation object bundles together a transform, it’s inverse, and methods
for generating breaks and labels. Transformation objects are defined in the scales
package, and are called name_trans, e.g. boxcox_trans. You can create your
own transformation with trans_new.
guide Name of guide object, or object itself.
Other arguments passed on to continuous_scale to control name, limits, breaks,
labels and so forth.
max_size Size of largest points.

scale_size

scale_size_animint 201

See Also

scale_size_area if you want O values to be mapped to points with size 0.

Examples

p <- ggplot(mpg, aes(displ, hwy, size = hwy)) +
geom_point()

p

p + scale_size("Highway mpg")

p + scale_size(range = c(0@, 10))

If you want zero value to have zero size, use scale_size_area:
p + scale_size_area()

This is most useful when size is a count
ggplot(mpg, aes(class, cyl)) +
geom_count() +
scale_size_area()

If you want to map size to radius (usually bad idea), use scale_radius
p + scale_radius()

scale_size_animint Scale point sizes using circle area, but specifying the radius in pixels.

Description

Scale point sizes using circle area, but specifying the radius in pixels.

Usage

scale_size_animint(pixel.range = c(2, 20), ...)
Arguments

pixel.range min and max circle radius in pixels.

passed to continuous_scale.

202

scale_x_discrete

scale_x_discrete Discrete position.

Description

You can use continuous positions even with a discrete position scale - this allows you (e.g.) to place
labels between bars in a bar chart. Continuous positions are numeric values starting at one for the
first level, and increasing by one for each level (i.e. the labels are placed at integer positions). This

is

what allows jittering to work.

Usage
scale_x_discrete(..., expand = waiver())
scale_y_discrete(..., expand = waiver())
Arguments
common discrete scale parameters: name, breaks, labels, na.value, limits
and guide. See discrete_scale for more details
expand anumeric vector of length two giving multiplicative and additive expansion con-
stants. These constants ensure that the data is placed some distance away from
the axes.
Examples

ggplot(diamonds, aes(cut)) + geom_bar()

#
#

The discrete position scale is added automatically whenever you
have a discrete position.

(d <- ggplot(subset(diamonds, carat > 1), aes(cut, clarity)) +

#

geom_jitter())

+ scale_x_discrete("Cut")

+ scale_x_discrete("Cut”, labels = c("Fair"” = "F","Good" = "G",
”Very Good" = HVGH’”Perf'ectH = HP”’HIdealﬂ = ”I"))

Use limits to adjust the which levels (and in what order)

are displayed
+ scale_x_discrete(limits = c("Fair","Ideal”))

you can also use the short hand functions xlim and ylim
+ xlim("Fair","Ideal”, "Good")

+ ylim("I11", "IF")

See ?reorder to reorder based on the values of another variable

ggplot(mpg, aes(manufacturer, cty)) + geom_point()

seals 203

ggplot(mpg, aes(reorder(manufacturer, cty), cty)) + geom_point()
ggplot(mpg, aes(reorder(manufacturer, displ), cty)) + geom_point()

Use abbreviate as a formatter to reduce long names
ggplot(mpg, aes(reorder(manufacturer, displ), cty)) +
geom_point() +
scale_x_discrete(labels = abbreviate)

seals Vector field of seal movements.

Description

This vector field was produced from the data described in Brillinger, D.R., Preisler, H.K., Ager,
A.A. and Kie, J.G. "An exploratory data analysis (EDA) of the paths of moving animals". J. Statis-
tical Planning and Inference 122 (2004), 43-63, using the methods of Brillinger, D.R., "Learning a
potential function from a trajectory", Signal Processing Letters. December (2007).

Usage

seals

Format

A data frame with 1155 rows and 4 variables

References

https://www.stat.berkeley.edu/~brill/Papers/jspifinal.pdf

selectSSandCS Separate .variable/.value selectors

Description

Separate .variable/.value selectors

Usage

selectSSandCS(aesthetics_list)

Arguments

aesthetics_list
aesthetics mapping of the layer

https://www.stat.berkeley.edu/~brill/Papers/jspifinal.pdf

204

Value

Modified aes.list list with separated showSelected.variable/value

split_recursive

setPlotSizes Set plot width and height for all plots

Description

Set plot width and height for all plots

Usage

setPlotSizes(meta, Al1PlotsInfo)

Arguments

meta meta object with all information

AllPlotsInfo plot info list

Value

NULL. Sizes are stored in meta object

split_recursive Split data.frame into recursive list of data.frame.

Description

Split data.frame into recursive list of data.frame.

Usage

split_recursive(x, vars)

Arguments

X data.frame.

vars character vector of variable names to split on.
Value

recursive list of data.frame.

stat_ecdf

205

stat_ecdf

Empirical Cumulative Density Function

Description

Empirical Cumulative Density Function

Usage

stat_ecdf(

mapping = NULL,

data = NULL,

geom = "step”,
position = "identity"”,

n = NULL,
pad = TRUE,

na.rm = FALSE,

show.legend =

NA,

inherit.aes = TRUE

Arguments

mapping

data

geom

position

pad

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.
The geometric object to use display the data

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

if NULL, do not interpolate. If not NULL, this is the number of points to inter-
polate with.

If TRUE, pad the ecdf with additional points (-Inf, 0) and (Inf, 1)

206

na.rm

show. legend

inherit.aes

stat_ellipse

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and

shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Computed variables

X X in data

y cumulative density corresponding x

Examples

df <- data.frame(x
ggplot(df, aes(x))

rnorm(1000))
stat_ecdf (geom = "step")

df <- data.frame(x
g

c(rnorm(100, @, 3), rnorm(100, 0, 10)),
gl(2, 100))

ggplot(df, aes(x, colour = g)) + stat_ecdf()

stat_ellipse Plot data ellipses.

Description
The method for calculating the ellipses has been modified from car
2011)

Usage

stat_ellipse(
mapping = NULL,

data = NULL,

geom = "path”,
position = "identity"”,
type = "t",

level = 0.95,

segments = 51,

na.rm = FALSE,
show. legend
inherit.aes

NA,
TRUE

::ellipse (Fox and Weisberg,

stat_ellipse 207

Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

type The type of ellipse. The default "t" assumes a multivariate t-distribution, and
"norm” assumes a multivariate normal distribution. "euclid” draws a circle
with the radius equal to level, representing the euclidean distance from the
center. This ellipse probably won’t appear circular unless coord_fixed() is
applied.

level The confidence level at which to draw an ellipse (default is 0.95), or, if type="euclid",
the radius of the circle to be drawn.

segments The number of segments to be used in drawing the ellipse.

na.rm If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

References

John Fox and Sanford Weisberg (2011). An R Companion to Applied Regression, Second Edition.
Thousand Oaks CA: Sage.

Examples

ggplot(faithful, aes(waiting, eruptions)) +
geom_point() +
stat_ellipse()

208

ggplot(faithful, aes(waiting, eruptions, color
geom_point() +
stat_ellipse()

ggplot(faithful, aes(waiting, eruptions, color
geom_point() +
stat_ellipse(type =
stat_ellipse(type =

"norm”, linetype = 2) +
gy

ggplot(faithful, aes(waiting, eruptions, color
geom_point() +
stat_ellipse(type =

stat_ellipse(type =

coord_fixed()

"norm”, linetype = 2) +
"euclid”, level = 3) +

eruptions > 3)) +

eruptions > 3)) +

eruptions > 3)) +

ggplot(faithful, aes(waiting, eruptions, fill = eruptions > 3)) +
stat_ellipse(geom =

"polygon™)

stat_function

stat_function

Superimpose a function.

Description

Superimpose a function.

Usage

stat_function(
mapping = NULL,

data = NULL,

geom = "path”,
position = "identity"”,
fun,

xlim = NULL,

n =101,

args = list(),

na.rm

FALSE,

show.legend = NA,

inherit.aes = TRUE

Arguments

mapping

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of

the plot. You must supply mapping if there is no plot mapping.

stat_function

data

geom

position

fun

xlim

args

na.rm

show. legend

inherit.aes

Aesthetics

209

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The geometric object to use display the data

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

function to use

Optionally, restrict the range of the function to this range.
number of points to interpolate along

list of additional arguments to pass to fun

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

stat_functionunderstands the following aesthetics (required aesthetics are in bold):

*y

Computed variables

x x’s along a grid

y value of function evaluated at corresponding x

Examples

set.seed(1492)

df <- data.frame(
X = rnorm(100)

)

x <- df$x

base <- ggplot(df, aes(x)) + geom_density()

base + stat_funct

ion(fun = dnorm, colour = "red")

210 stat_identity

base + stat_function(fun = dnorm, colour = "red"”, args = list(mean = 3))

Plot functions without data
Examples adapted from Kohske Takahashi

Specify range of x-axis
ggplot(data.frame(x = c(0, 2)), aes(x)) +
stat_function(fun = exp, geom = "line")

Plot a normal curve
ggplot(data.frame(x = c(-5, 5)), aes(x)) + stat_function(fun = dnorm)

To specify a different mean or sd, use the args parameter to supply new values
ggplot(data.frame(x = c(-5, 5)), aes(x)) +
stat_function(fun = dnorm, args = list(mean = 2, sd = .5))

Two functions on the same plot

f <- ggplot(data.frame(x = c(0, 10)), aes(x))

f + stat_function(fun = sin, colour = "red") +
stat_function(fun = cos, colour = "blue")

Using a custom function
test <- function(x) {x * 2 + x + 20}
f + stat_function(fun = test)

stat_identity Identity statistic.

Description

The identity statistic leaves the data unchanged.

Usage

stat_identity(
mapping = NULL,

data = NULL,
geom = "point”,
position = "identity"”,

L

show.legend = NA,

inherit.aes = TRUE
)
Arguments
mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes

= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

stat_qq 211

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.
A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

geom The geometric object to use display the data

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

Examples

p <- ggplot(mtcars, aes(wt, mpg))
p + stat_identity()

stat_qq Calculation for quantile-quantile plot.

Description

Calculation for quantile-quantile plot.

Usage

stat_qq(
mapping = NULL,
data = NULL,
geom = "point”,
position = "identity"”,
distribution = stats::gnorm,
dparams = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

212

)

geom_qq(

stat_qq

mapping = NULL,

data = NULL,

geom = "point”,

position = "identity”,
distribution = stats::qgnorm,
dparams = list(),

na.rm = FALSE,

show.legend = NA,
inherit.aes = TRUE

Arguments

mapping

data

geom

position

distribution
dparams

na.rm

show. legend

inherit.aes

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The geometric object to use display the data

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

Distribution function to use, if x not specified
Additional parameters passed on to distribution function.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

stat_summary_2d 213

Aesthetics

stat_qqunderstands the following aesthetics (required aesthetics are in bold):

* sample
* X

*y

Computed variables

sample sample quantiles

theoretical theoretical quantiles

Examples

df <- data.frame(y = rt(200, df = 5))
p <- ggplot(df, aes(sample = y))

p + stat_qq()

p + geom_point(stat = "qgq")

Use fitdistr from MASS to estimate distribution params
params <- as.list(MASS::fitdistr(df$y, "t")$estimate)
ggplot(df, aes(sample = y)) +

stat_qq(distribution = qt, dparams = params["df"])

Using to explore the distribution of a variable
ggplot(mtcars) +

stat_qq(aes(sample = mpg))
ggplot(mtcars) +

stat_qq(aes(sample = mpg, colour = factor(cyl)))

stat_summary_2d Bin and summarise in 2d (rectangle & hexagons)

Description

stat_summary_2d is a 2d variation of stat_summary. stat_summary_hex is a hexagonal variation
of stat_summary_2d. The data are divided into bins defined by x and y, and then the values of z in
each cell is are summarised with fun.

Usage

stat_summary_2d(
mapping = NULL,
data = NULL,
geom = "tile",
position = "identity"”,

214

L

bins = 30,

stat_summary_2d

binwidth = NULL,

drop = TRUE,
fun "mean”,
fun.args =

list(),

na.rm = FALSE,

show.legend =

NA,

inherit.aes = TRUE

)

stat_summary_hex(
mapping = NULL,

data = NULL,

geom = "hex",

position = "identity",
bins = 30,

binwidth = NULL,

drop = TRUE,

fun = "mean”,

fun.args = list(),
na.rm = FALSE,

show.legend =

NA,

inherit.aes = TRUE

Arguments

mapping

data

geom

position

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame., and will be used as the layer data.

The geometric object to use display the data

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

stat_summary_2d

bins

binwidth

drop
fun
fun.args

na.rm

show. legend

inherit.aes

Aesthetics

215

numeric vector giving number of bins in both vertical and horizontal directions.
Set to 30 by default.

Numeric vector giving bin width in both vertical and horizontal directions. Over-
rides bins if both set.

drop if the output of fun is NA.
function for summary.
A list of extra arguments to pass to fun

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

* x: horizontal position

* y: vertical position

* z: value passed to the summary function

Computed variables

x,y Location

value Value of summary statistic.

See Also

stat_summary_hex for hexagonal summarization. stat_bin2d for the binning options.

Examples

d <- ggplot(diamonds, aes(carat, depth, z = price))
d + stat_summary_2d()

Specifying function
d + stat_summary_2d(fun = function(x) sum(x"2))
d + stat_summary_2d(fun = var)

d + stat_summary_2d(fun

"quantile”, fun.args = list(probs = 0.1))

if (requireNamespace("hexbin")) {
d + stat_summary_hex()

}

216 stat_summary_bin

stat_summary_bin Summarise y values at unique/binned x x.

Description
stat_summary operates on unique x; stat_summary_bin operators on binned x. They are more
flexible versions of stat_bin: instead of just counting, they can compute any aggregate.

Usage

stat_summary_bin(
mapping = NULL,

data = NULL,
geom = "pointrange”,
position = "identity"”,

fun.data = NULL,
fun.y = NULL,
fun.ymax = NULL,
fun.ymin = NULL,
fun.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

stat_summary(
mapping = NULL,

data = NULL,
geom = "pointrange”,
position = "identity"”,

fun.data = NULL,
fun.y = NULL,
fun.ymax = NULL,
fun.ymin = NULL,
fun.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

Arguments

mapping Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

stat_summary_bin

data

geom

position

fun.data

217

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The geometric object to use display the data

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

A function that is given the complete data and should return a data frame with
variables ymin, y, and ymax.

fun.ymin, fun.y, fun.ymax

fun.args

na.rm

show. legend

inherit.aes

Aesthetics

Alternatively, supply three individual functions that are each passed a vector of
x’s and should return a single number.

Optional additional arguments passed on to the functions.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

stat_summaryunderstands the following aesthetics (required aesthetics are in bold):

* X

°y

Summary functions

You can either supply summary functions individually (fun.y, fun.ymax, fun.ymin), or as a single
function (fun.data):

fun.data Complete summary function. Should take numeric vector as input and return data frame

as output

fun.ymin ymin summary function (should take numeric vector and return single number)

fun.y y summary function (should take numeric vector and return single number)

fun.ymax ymax summary function (should take numeric vector and return single number)

218

stat_unique

A simple vector function is easiest to work with as you can return a single number, but is somewhat
less flexible. If your summary function computes multiple values at once (e.g. ymin and ymax), use

fun.data.

If no aggregation functions are suppled, will default to mean_se.

See Also

geom_errorbar, geom_pointrange, geom_linerange, geom_crossbar for geoms to display sum-

marised data

stat_unique

Remove duplicates.

Description

Remove duplicates.

Usage

stat_unique(

mapping = NULL,

data = NULL,
geom = "point”,
position = "identity",

L

na.rm = FALSE,
show.legend = NA,

inherit.aes

Arguments

mapping

data

geom

position

TRUE

Set of aesthetic mappings created by aes or aes_. If specified and inherit.aes
= TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot.

A data.frame, or other object, will override the plot data. All objects will
be fortified to produce a data frame. See fortify for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data. frame., and will be used as the layer data.

The geometric object to use display the data

Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

switch_axes

na.rm

show. legend

inherit.aes

Examples

ggplot(mtcars, aes(vs, am)) + geom_point(alpha

219

other arguments passed on to layer. These are often aesthetics, used to set an
aesthetic to a fixed value, like color = "red” or size = 3. They may also be
parameters to the paired geom/stat.

If FALSE (the default), removes missing values with a warning. If TRUE silently
removes missing values.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders.

0.1)

ggplot(mtcars, aes(vs, am)) + geom_point(alpha = 0.1, stat="unique")

switch_axes

Flip axes in case of coord_flip Switches column names. Eg. xmin to
ymin, yntercept to xintercept etc.

Description

Flip axes in case of coord_flip Switches column names. Eg. xmin to ymin, yntercept to xintercept

etc.

Usage

switch_axes(col.names)

Arguments

col.names

Value

Column names which need to be switched

Column names with x and y axes switched

220 theme

theme Set theme elements

Description

Use this function to modify theme settings.

Usage
theme(..., complete = FALSE, validate = TRUE)
Arguments
a list of element name, element pairings that modify the existing theme.
complete set this to TRUE if this is a complete theme, such as the one returned by theme_grey().
Complete themes behave differently when added to a ggplot object.
validate TRUE to run validate_element, FALSE to bypass checks.
Details

Theme elements can inherit properties from other theme elements. For example, axis.title.x
inherits from axis.title, which in turn inherits from text. All text elements inherit directly or
indirectly from text; all lines inherit from line, and all rectangular objects inherit from rect.

For more examples of modifying properties using inheritance, %+replace.

To see a graphical representation of the inheritance tree, see the last example below.

Theme elements

The individual theme elements are:

line all line elements (element_line)

rect all rectangular elements (element_rect)

text all text elements (element_text)

title all title elements: plot, axes, legends (element_text; inherits from text)
aspect.ratio aspect ratio of the panel

axis.title label of axes (element_text; inherits from text)

axis.title.x x axis label (element_text; inherits from axis.title)
axis.title.y y axis label (element_text; inherits from axis.title)
axis.text tick labels along axes (element_text; inherits from text)
axis.text.x x axis tick labels (element_text; inherits from axis. text)
axis.text.y y axis tick labels (element_text; inherits from axis. text)
axis.ticks tick marks along axes (element_line; inherits from line)
axis.ticks.x x axis tick marks (element_line; inherits from axis. ticks)
axis.ticks.y y axis tick marks (element_line; inherits from axis. ticks)
axis.ticks.length length of tick marks (unit)

axis.line lines along axes (element_line; inherits from line)

theme

axis.line.x
axis.line.y
legend.background
legend.margin
legend.key
legend.key.size
legend.key.height
legend.key.width
legend.text
legend.text.align
legend.title
legend.title.align
legend.position
legend.direction
legend.justification
legend.box
legend.box.just
panel.background
panel.border
panel.margin
panel.margin.x
panel.margin.y
panel.grid
panel.grid.major
panel.grid.minor
panel.grid.major.x
panel.grid.major.y
panel.grid.minor.x
panel.grid.minor.y
panel.ontop
plot.background
plot.title
plot.subtitle
plot.caption
plot.margin
strip.background
strip.text
strip.text.x
strip.text.y
strip.switch.pad.grid
strip.switch.pad.wrap

See Also

%+replace
rel

element_blank

221

line along x axis (element_line; inherits from axis.line)

line along y axis (element_line; inherits from axis.line)

background of legend (element_rect; inherits from rect)

extra space added around legend (unit)

background underneath legend keys (element_rect; inherits from rect)
size of legend keys (unit; inherits from legend.key.size)

key background height (unit; inherits from legend.key.size)

key background width (unit; inherits from legend.key.size)

legend item labels (element_text; inherits from text)

alignment of legend labels (number from 0 (left) to 1 (right))

title of legend (element_text; inherits from title)

alignment of legend title (number from O (left) to 1 (right))

the position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector)
layout of items in legends ("horizontal" or "vertical")

anchor point for positioning legend inside plot ("center" or two-element numeric vector)

arrangement of multiple legends ("horizontal" or "vertical")

justification of each legend within the overall bounding box, when there are multiple legends ("top", "
background of plotting area, drawn underneath plot (element_rect; inherits from rect)

border around plotting area, drawn on top of plot so that it covers tick marks and grid lines. This shou
margin around facet panels (unit)

horizontal margin around facet panels (unit; inherits from panel.margin)

vertical margin around facet panels (unit; inherits from panel.margin)

grid lines (element_line; inherits from line)

major grid lines (element_line; inherits from panel.grid)

minor grid lines (element_line; inherits from panel.grid)

vertical major grid lines (element_line; inherits from panel.grid.major)

horizontal major grid lines (element_line; inherits from panel.grid.major)

vertical minor grid lines (element_line; inherits from panel.grid.minor)

horizontal minor grid lines (element_line; inherits from panel.grid.minor)

option to place the panel (background, gridlines) over the data layers. Usually used with a transparent
background of the entire plot (element_rect; inherits from rect)

plot title (text appearance) (element_text; inherits from title) left-aligned by default

plot subtitle (text appearance) (element_text; inherits from title) left-aligned by default

caption below the plot (text appearance) (element_text; inherits from title) right-aligned by defaul
margin around entire plot (unit with the sizes of the top, right, bottom, and left margins)

background of facet labels (element_rect; inherits from rect)

facet labels (element_text; inherits from text)

facet labels along horizontal direction (element_text; inherits from strip. text)

facet labels along vertical direction (element_text; inherits from strip.text)

space between strips and axes when strips are switched (unit)

space between strips and axes when strips are switched (unit)

222 theme

element_line
element_rect

element_text

Examples

p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point()
p
p + theme(panel.background = element_rect(colour = "pink"))
p + theme_bw()

Scatter plot of gas mileage by vehicle weight
p <- ggplot(mtcars, aes(wt, mpg)) +
geom_point()
Calculate slope and intercept of line of best fit
coef(Im(mpg ~ wt, data = mtcars))
p + geom_abline(intercept = 37, slope = -5)
Calculate correlation coefficient
with(mtcars, cor(wt, mpg, use = "everything”, method = "pearson”))
#annotate the plot
p + geom_abline(intercept = 37, slope = -5) +

geom_text(data = data.frame(), aes(4.5, 30, label = "Pearson-R = -.87"))
Change the axis labels

Original plot

p

p + labs(x = "Vehicle Weight"”, y = "Miles per Gallon")

Or

p + labs(x = "Vehicle Weight"”, y = "Miles per Gallon")

Change title appearance

<- p + labs(title = "Vehicle Weight-Gas Mileage Relationship")

Set title to twice the base font size

+ theme(plot.title = element_text(size = rel(2)))

+ theme(plot.title = element_text(size = rel(2), colour = "blue"))

T T % T +H

Add a subtitle and adjust bottom margin
+ labs(title = "Vehicle Weight-Gas Mileage Relationship”,
subtitle = "You need to wrap long subtitleson manually"”) +
theme(plot.subtitle = element_text(margin = margin(b = 20)))

©

Changing plot look with themes
DF <- data.frame(x = rnorm(400))
m <- ggplot(DF, aes(x = x)) +
geom_histogram()

Default is theme_grey()

Compare with

#
m
#
m + theme_bw()

H

Manipulate Axis Attributes

theme

theme(axis.line = element_line(size = 3, colour = "red”, linetype = "dotted"))
theme(axis.text = element_text(colour = "blue"))

theme(axis.text.y = element_blank())

theme(axis.ticks = element_line(size = 2))

theme(axis.title.y = element_text(size = rel(1.5), angle = 90))
theme(axis.title.x = element_blank())

theme(axis.ticks.length = unit(.85, "cm"))

3 3333 3 3
+ + + 4+ + o+ +

H

Legend Attributes
<- ggplot(mtcars, aes(wt, mpg)) +
geom_point(aes(colour = factor(cyl)))

N

+ theme(legend.position = "none")
+ theme(legend.position = "bottom")
Or use relative coordinates between @ and 1
+ theme(legend.position = c(.5, .5))
Add a border to the whole legend
+ theme(legend.background = element_rect(colour = "black"))
Legend margin controls extra space around outside of legend:
+ theme(legend.background = element_rect(),
legend.margin = unit(1, "cm"))
z + theme(legend.background = element_rect(),
legend.margin = unit(@, "cm"))

N &+ N #F N # N N N

Or to just the keys
z + theme(legend.key = element_rect(colour = "black"))
z + theme(legend.key = element_rect(fill = "yellow"))
z + theme(legend.key.size = unit(2.5, "cm"))
z + theme(legend.text = element_text(size = 20, colour = "red”, angle = 45))
z + theme(legend.title = element_text(face = "italic"))
To change the title of the legend use the name argument
in one of the scale options
z + scale_colour_brewer(name = "My Legend")
z + scale_colour_grey(name = "Number of \nCylinders")
Panel and Plot Attributes
z + theme(panel.background = element_rect(fill = "black"))
z + theme(panel.border = element_rect(linetype = "dashed”, colour = "black"))
z + theme(panel.grid.major = element_line(colour = "blue"))
z + theme(panel.grid.minor = element_line(colour = "red”, linetype = "dotted"))
z + theme(panel.grid.major = element_line(size = 2))
z + theme(panel.grid.major.y = element_blank(),
panel.grid.minor.y = element_blank())
+ theme(plot.background = element_rect())

z + theme(plot.background = element_rect(fill = "green"))

Faceting Attributes
set.seed(4940)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
k <- ggplot(dsmall, aes(carat, ..density..)) +
geom_histogram(binwidth = 0.2) +
facet_grid(. ~ cut)
k + theme(strip.background = element_rect(colour = "purple”, fill = "pink”,

223

224 theme_animint

size = 3, linetype = "dashed"))
k + theme(strip.text.x = element_text(colour = "red”, angle = 45, size = 10,
hjust = 0.5, vjust = 0.5))
k + theme(panel.margin = unit(5, "lines"))
k + theme(panel.margin.y = unit(@, "lines"))

Put gridlines on top
meanprice <- tapply(diamonds$price, diamonds$cut, mean)
cut <- factor(levels(diamonds$cut), levels = levels(diamonds$cut))
df <- data.frame(meanprice, cut)
g <- ggplot(df, aes(cut, meanprice)) + geom_bar(stat = "identity")
g + geom_bar(stat = "identity") +
theme(panel.background = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.ontop = TRUE)

Modify a theme and save it
mytheme <- theme_grey() + theme(plot.title = element_text(colour = "red"))
p + mytheme

theme_animint theme for passing animint specific params

Description
Theme without checks. This allows us to write theme_animint (width=500), instead of theme (animint.width=500)
which gives an error in ggplot2 because users should be informed if they mis-type standard theme
element names. https://github.com/hadley/ggplot2/issues/938

Usage

theme_animint(...)

Arguments
theme options such as width. Use update_axes=c("x", "y") to update the
axes of plots. Works for single selection variables.

Value

ggplot theme list with names such as animint.width.

Author(s)
Toby Dylan Hocking

theme_update 225

Examples

mtcars$cyl <- as.factor(mtcars$cyl)
p <- ggplot() +

geom_point(aes(x=wt, y=mpg, colour=cyl),

data=mtcars) +

set width and height values and update both axes

theme_animint(width=600, height=600, update_axes=c("x", "y"))
viz <- list(plot=p, selector.types=list(cyl="single"))
animint2dir(viz)

theme_update Get, set and update themes.

Description

Use theme_get to get the current theme, and theme_set to completely override it. theme_update

and theme_replace are shorthands for changing individual elements in the current theme. theme_update
uses the + operator, so that any unspecified values in the theme element will default to the values

they are set in the theme. theme_replace will completely replace the element, so any unspecified
values will overwrite the current value in the theme with NULLs.

Usage

theme_update(...)
theme_replace(...)
theme_get ()

theme_set (new)

Arguments
named list of theme settings
new new theme (a list of theme elements)
See Also
%+replaced
Examples

p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point()

p

old <- theme_set(theme_bw())

p
theme_set (old)

226

p

#theme_replace NULLs out the fill attribute of panel.background,

#resulting in a white background:
theme_get () $panel.background

old <- theme_replace(panel.background = element_rect(colour

theme_get () $panel.background

p
theme_set (old)

#theme_update only changes the colour attribute, leaving the others intact:
old <- theme_update(panel.background = element_rect(colour = "pink"))

theme_get () $panel.background
p

theme_set (old)
theme_get ()

ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(color = mpg)) +

theme(legend.position = c(0.95, 0.95),
legend. justification = c(1, 1))

last_plot() +

theme(legend.background = element_rect(fill = "white", colour = "white", size

toRGB

3

toRGB Convert R colors to RGB hexadecimal color values

Description

Convert R colors to RGB hexadecimal color values

Usage

toRGB(x)

Arguments

X character

Value

hexadecimal color value or "transparent” if is.na

transform_shape 227

transform_shape Function to transform R shapes into d3 shapes...

Description

Function to transform R shapes into d3 shapes...

Usage

transform_shape(dframe)

Arguments

dframe Data frame with columns shape, fill, colour.

Value

Data frame transformed so that shape corresponds to d3 shape. Also includes Rshape column for
debugging.

translate_qgplot_ggplot
Translating between gplot and ggplot

Description

Within ggplot2, there are two basic methods to create plots, with gplot() and ggplot(). gplot() is
designed primarily for interactive use: it makes a number of assumptions that speed most cases, but
when designing multilayered plots with different data sources it can get in the way. This section
describes what those defaults are, and how they map to the fuller ggplot() syntax.

Examples

By default, gplot() assumes that you want a scatterplot,
i.e., you want to use geom_point()
gplot(x, y, data = data)

#
#
#
ggplot(data, aes(x, y)) + geom_point()

H+

Using Aesthetics

If you map additional aesthetics, these will be added to the defaults. With
gplot() there is no way to use different aesthetic mappings (or data) in
different layers

gplot(x, y, data = data, shape = shape, colour = colour)

ggplot(data, aes(x, y, shape = shape, colour = colour)) + geom_point()

T R RN

Aesthetic parameters in gplot() always try to map the aesthetic to a

228

E T T S

* o

ET T T * o3 o o % o

++ o o o **

H

* % o H

translate_qplot_ggplot

variable. If the argument is not a variable but a value, effectively a new column
is added to the original dataset with that value. To set an aesthetic to a

value and override the default appearance, you surround the value with I() in
gplot(), or pass it as a parameter to the layer.

gplot(x, y, data = data, colour = I("red"))

ggplot(data, aes(x, y)) + geom_point(colour = "red")

Changing the geom parameter changes the geom added to the plot
gplot(x, y, data = data, geom = "line")
ggplot(data, aes(x, y)) + geom_line()

Not all geoms require both x and y, e.g., geom_bar() and geom_histogram().
For these two geoms, if the y aesthetic is not supplied, both gplot and
ggplot commands default to "count” on the y-axis

ggplot(data, aes(x)) + geom_bar()

gplot(x, data = data, geom = "bar")

If a vector of multiple geom names is supplied to the geom argument, each
geom will be added in turn

gplot(x, y, data = data, geom = c("point”, "smooth"))

ggplot(data, aes(x, y)) + geom_point() + geom_smooth()

Unlike the rest of ggplot2, stats and geoms are independent
gplot(x, y, data = data, stat = "bin")
ggplot(data, aes(x, y)) + geom_point(stat = "bin")

Any layer parameters will be passed on to all layers. Most layers will ignore
parameters that they don't need

gplot(x, y, data = data, geom = c("point”, "smooth”), method = "Im")
ggplot(data, aes(x, y)) + geom_point(method = "1m") + geom_smooth(method = "1Im")

Scales and axes

You can control basic properties of the x and y scales with the xlim, ylim,
xlab and ylab arguments

gplot(x, y, data = data, xlim = c(1, 5), xlab = "my label”)

ggplot(data, aes(x, y)) + geom_point() +

scale_x_continuous("my label”, limits = c(1, 5))

gplot(x, y, data = data, xlim = c(1, 5), ylim = c(10, 20))
ggplot(data, aes(x, y)) + geom_point() +
scale_x_continuous(limits = c(1, 5)) + scale_y_continuous(limits = c(10, 20))

Like plot(), gplot() has a convenient way of log transforming the axes.
gplot(x, y, data = data, log = "xy")

ggplot(data, aes(x, y)) + geom_point() + scale_x_logl1@() + scale_y_loglo()
There are many other possible transformations, but not all are

accessible from within gplot(), see ?scale_continuous for more

Plot options

gplot() recognises the same options as plot does, and converts them to their
ggplot2 equivalents. See ?theme for more on ggplot options

translate_gqplot_lattice 229

gplot(x, y, data = data, main="title", asp = 1)
ggplot(data, aes(x, y)) + geom_point() + labs(title = "title") + theme(aspect.ratio = 1)

translate_gplot_lattice
Translating between gplot and lattice

Description

The major difference between lattice and ggplot2 is that lattice uses a formula based interface.
ggplot2 does not because the formula does not generalise well to more complicated situations.

Examples

library(lattice)

if (require("ggplot2movies”)) {
xyplot(rating ~ year, data=movies)
gplot(year, rating, data=movies)

xyplot(rating ~ year | Comedy + Action, data = movies)
gplot(year, rating, data = movies, facets = ~ Comedy + Action)
Or maybe

gplot(year, rating, data = movies, facets = Comedy ~ Action)

While lattice has many different functions to produce different types of
graphics (which are all basically equivalent to setting the panel argument),
ggplot2 has gplot().

stripplot(~ rating, data = movies, jitter.data = TRUE)
gplot(rating, 1, data = movies, geom = "jitter")

histogram(~ rating, data = movies)
gplot(rating, data = movies, geom = "histogram")

xyplot(wt ~ mpg, mtcars, type = c("p”,"smooth"))
gplot(mpg, wt, data = mtcars, geom = c("point”,"smooth"))
3

The capabilities for scale manipulations are similar in both ggplot2 and
lattice, although the syntax is a little different.

xyplot(wt ~ mpg | cyl, mtcars, scales = list(y = list(relation = "free")))
gplot(mpg, wt, data = mtcars) + facet_wrap(~ cyl, scales = "free")

xyplot(wt ~ mpg | cyl, mtcars, scales = list(log = 10))
gplot(mpg, wt, data = mtcars, log = "xy")
xyplot(wt ~ mpg | cyl, mtcars, scales = list(log = 2))

gplot(mpg, wt, data = mtcars) +

230 txhousing

scale_x_continuous(trans = scales::log2_trans()) +
scale_y_continuous(trans = scales::log2_trans())

xyplot(wt ~ mpg, mtcars, group = cyl, auto.key = TRUE)
Map directly to an aesthetic like colour, size, or shape.
gplot(mpg, wt, data = mtcars, colour = cyl)

xyplot(wt ~ mpg, mtcars, xlim = c(20,30))

Works like lattice, except you can't specify a different limit
for each panel/facet

gplot(mpg, wt, data = mtcars, xlim = c(20,30))

Both lattice and ggplot2 have similar options for controlling labels on the plot.

xyplot(wt ~ mpg, mtcars, xlab = "Miles per gallon”, ylab = "Weight",
main = "Weight-efficiency tradeoff")

gplot(mpg, wt, data = mtcars, xlab = "Miles per gallon”, ylab = "Weight",
main = "Weight-efficiency tradeoff”)

xyplot(wt ~ mpg, mtcars, aspect = 1)
gplot(mpg, wt, data = mtcars, asp = 1)

par.settings() is equivalent to + theme() and trellis.options.set()

and trellis.par.get() to theme_set() and theme_get().

More complicated lattice formulas are equivalent to rearranging the data
before using ggplot2.

txhousing Housing sales in TX.

Description

Information about the housing market in Texas provided by the TAMU real estate center.

Usage

txhousing

Format

A data frame with 8602 observations and 9 variables:

city Name of MLS area
year,month,date Date
sales Number of sales
volume Total value of sales

median Median sale price

update_gallery 231

listings Total active listings

inventory "Months inventory": amount of time it would take to sell all current listings at current
pace of sales.

update_gallery Update gallery

Description

A gallery is a collection of meta-data about animints that have been published to github pages.
A gallery is defined as a github repo that should have two source files in the gh-pages branch:
repos.txt (list of github repositories, one owner/repo per line) and index.Rmd (source for web page
with links to animints). To perform the update, first repos.txt is read, then we clone each repo which
is not already present in meta.csv, and parse meta-data (title, source, Capture.PNG) from the gh-
pages branch, and write the meta.csv/error.csv/Capture. PNG files, render index.Rmd to index.html,
commit, and push origin. For an example, see the main gallery, https://github.com/animint/
gallery/tree/gh-pages which is updated using this function.
Usage

update_gallery(gallery_path = "~/R/gallery”)

Arguments

gallery_path path to local github repo with gh-pages active.

Value

named list of data tables (meta and error).

Author(s)
Toby Dylan Hocking

update_geom_defaults Modify geom/stat aesthetic defaults for future plots

Description

Modify geom/stat aesthetic defaults for future plots

Usage

update_geom_defaults(geom, new)

update_stat_defaults(stat, new)

https://github.com/animint/gallery/tree/gh-pages
https://github.com/animint/gallery/tree/gh-pages

232 update_labels

Arguments
new Named list of aesthetics.
stat, geom Name of geom/stat to modify (like "point” or "bin"), or a Geom/Stat object
(like GeomPoint or StatBin).
Examples

update_geom_defaults("point”, list(colour = "darkblue"))
ggplot(mtcars, aes(mpg, wt)) + geom_point()
update_geom_defaults(”"point”, list(colour = "black"))

update_labels Update axis/legend labels

Description

Update axis/legend labels

Usage

update_labels(p, labels)

Arguments

p plot to modify

labels named list of new labels
Examples

p <- ggplot(mtcars, aes(mpg, wt)) + geom_point()
update_labels(p, list(x = "New x"))

update_labels(p, list(x = expression(x / y * 2)))
update_labels(p, list(x = "New x", y = "New Y"))
update_labels(p, list(colour = "Fail silently"))

UStornadoes 233

UStornadoes Tornadoes in the United States from 1950 to 2012

Description

Each row documents 1 tornado.

Usage

data(UStornadoes)

Format
A data frame with 41620 observations on the following 32 variables.

fips a numeric vector

ID a numeric vector

year anumeric vector

month a numeric vector

day a numeric vector

date factor

time a numeric vector

tz a numeric vector

state factor

state.tnum a numeric vector

f anumeric vector

injuries a numeric vector
fatalities a numeric vector
propertylLoss a numeric vector
croplLoss a numeric vector
startlLat anumeric vector
startlLong a numeric vector
endLat a numeric vector
endLong a numeric vector
trackLength a numeric vector
trackWidth a numeric vector
numStatesAffected a numeric vector
stateNumber a numeric vector
segmentNumber a numeric vector

FipsCounty1 a numeric vector

234 varied.chunk

FipsCounty2 anumeric vector
FipsCounty3 a numeric vector
FipsCounty4 a numeric vector
TotalPop2012 a numeric vector
LandArea anumeric vector
TornadoesSgMile a numeric vector

weight a numeric vector

Source

NOAA SVRGIS data (Severe Report Database + Geographic Information System) http://www.spc.noaa.gov/gis/svrgis/

varied.chunk Extract subset for each data.frame in a list of data.frame

Description

Extract subset for each data.frame in a list of data.frame

Usage

varied.chunk(dt.or.list, cols)

Arguments
dt.or.list a data.table or a list of data.table.
cols cols that each data.frame would keep.
Value

list of data.frame.

WorldBank 235

WorldBank Demographics by country from 1960 to 2012

Description

Each row is one year of demographics for one country.

Usage

data(WorldBank)

Format

A data frame with 11342 observations on the following 15 variables.

iso2c a character vector

country a character vector

year a numeric vector

fertility.rate anumeric vector
life.expectancy anumeric vector

population a numeric vector
GDP.per.capita.Current.USD a numeric vector
15.t0.25.yr.female.literacy anumeric vector
iso3c factor

region factor

capital factor

longitude factor

latitude factor

income factor

lending factor

Source

Copied from the googleVis package.

236 worldPop

worldPop World population by subcontinent

Description
World population data are used as a simple example on the polychart.js website, and so these data
can be used to recreate that example using animint.

Usage

data(worldPop)

Format
A data frame with 294 observations on the following 4 variables.

subcontinent factor: the subcontinent name
year integer: year of measurement
population integer: number of people in that subcontinent during that year

type factor with levels actual estimate

Source

https://github.com/Polychart/polychart2/blob/master/example/population.coffee

Index

+ datasets
breakpoints, 30
diamonds, 43
economics, 44
faithfuld, 53
FluView, 53
generation.loci, 58
graphical-units, 138
intreg, 148
luv_colours, 160
midwest, 166
mpg, 167
msleep, 168
presidential, 174
seals, 203
txhousing, 230
UStornadoes, 233
WorldBank, 235
worldPop, 236

x facet labeller
labeller, 151

x facet
labellers, 153

* guides
guide_colourbar, 140
guide_legend, 143
guides, 139

+ hplot
print.gganimintplot, 175

* position adjustments
position_dodge, 170
position_fill, 171
position_identity, 172
position_jitter, 172
position_jitterdodge, 173
position_nudge, 174

+.gganimint, 7

.pt (graphical-units), 138

.stroke (graphical-units), 138

237

%+% (+.gganimint), 7
%treplace% (+.gganimint), 7
%treplace%, 220, 221, 225

add_theme, 10

addShowSelectedForLegend, 9

addSSandCSasAesthetics, 9

aes, 10, 11, 12, 59, 62, 65, 66, 68, 70, 73, 75,
78, 80, 84, 86, 89, 91, 94, 97, 100,
102, 105,108, 110, 113,115, 116,
119, 122, 126, 158, 205, 207, 208,
210,212,214, 216,218

aes_, 11, 59, 62, 65, 66, 68, 70, 73, 75, 78, 80,
84, 86, 89, 91,94, 97, 100, 102, 105,
108, 110,113,115, 116,119, 122,
126, 158, 205, 207, 208, 210, 212,
214,216,218

aes_colour_fill_alpha, 10, 12

aes_linetype_size_shape, 10, 13

aes_position, 10, 14

aes_q, 10

aes_q(aes_), 11

aes_string, 10

aes_string (aes_), 11

animint, 15

animint2dir, 18

animint2pages, 20

animintOutput, 21

annotate, 22

annotation_custom, 23

annotation_logticks, 24

annotation_map, 26

arrow, 103

as.list.gganimintproto, 27

as_labeller, 27, 152, 154, 155

autoplot, 28

bandwidth.nrd, 79
borders, 29, 57, 62, 65, 67, 68,71, 73, 76, 79,
81, 84,87, 90, 92, 94, 98, 100, 103,

238 INDEX

106,108,111, 113,115,117, 120,
123,127, 158, 206, 207, 209, 211,

facet_grid, 47, 152, 178
facet_null, 50

212,215,217,219
boxcox_trans, 191, 200
bquote, 154
breakpoints, 30

calc_element, 31

capitalize, 152
checkAnimationTimeVar, 31
checkExtraParams, 32
checkForSSandCSasAesthetics, 32
checkPlotForAnimintExtensions, 33

facet_wrap, 51, 155, 178
faithful, 53

faithfuld, 53

fill (aes_colour_fill_alpha), 12

FluView,

53

format.gganimintproto, 54

fortify,

26, 29, 54, 60, 62, 65, 66, 68, 70, 73,
75,78, 81, 84, 86, 90, 91, 94, 98,
100, 103, 105, 108, 111,113, 115,
117,119, 122, 126, 134, 158, 205,
207,209,211, 212,214,217, 218

checkPlotList, 33 fortify.Line (fortify.sp), 57
checkSingleShowSelectedValue, 34 fortify.Lines (fortify.sp), 57
color (aes_colour_fill_alpha), 12 fortify.1lm, 54,55

colors, 160 fortify.map, 56

colour (aes_colour_fill_alpha), 12 fortify.Polygon (fortify.sp), 57
continuous_scale, 182, 196, 200 fortify.Polygons (fortify.sp), 57
cooks.distance, 55 fortify.sp, 57

coord_cartesian, 34, 159
coord_equal (coord_fixed), 35
coord_fixed, 35
coord_f1lip, 36
coord_map, 37, 37

fortify.

fortify.
fortify.

SpatiallLinesDataFrame
(fortify.sp), 57
SpatialPolygons (fortify.sp), 57
SpatialPolygonsDataFrame
(fortify.sp), 57

coord_polar, 39 france, 164
coord_quickmap, 37
coord_quickmap (coord_map), 37 gam, 120

coord_trans, 25, 40

county, 164

cut, 42

cut_interval, 42
cut_number, 43

cut_number (cut_interval), 42
cut_width (cut_interval), 42

density, 76, 127
diamonds, 43

discrete_scale, 182, 183, 186, 187, 189,

196-199, 202

economics, 44

economics_long (economics), 44
element_blank, 44, 221
element_line, 45, 222
element_rect, 45, 222

element_text, 46, 141, 142, 144, 145, 222

egscplot, 35
expand_limits, 47

generation.loci, 58
geom_abline, 59

geom_area, 171

geom_area (geom_ribbon), 112
geom_bar, 61, 113, 114,171
geom_bin2d, 64
geom_blank, 47, 66
geom_contour, 67, 79
geom_count, 69
geom_crossbar, 72, 218
geom_curve (geom_segment), 116
geom_density, 75
geom_density2d (geom_density_2d), 77
geom_density_2d, 69, 77, 106
geom_dotplot, 80
geom_errorbar, 85, 218
geom_errorbar (geom_crossbar), 72
geom_errorbarh, 83
geom_freqgpoly, 77, 85
geom_hex, 89
geom_histogram, 62, 63, 77

INDEX

geom_histogram (geom_fregpoly), 85

geom_hline (geom_abline), 59

geom_jitter, 91, 106

geom_label, 93

geom_label_aligned, 97

geom_line, 60, 118

geom_line (geom_path), 101

geom_linerange, 114,218

geom_linerange (geom_crossbar), 72

geom_map, 99

geom_path, 101, 109, 118

geom_point, 69, 92, 105

geom_pointrange, 218

geom_pointrange (geom_crossbar), 72

geom_polygon, 29, 103, 108, 114

geom_qq (stat_qq), 211

geom_rect, 110

geom_ribbon, 109, 112

geom_rug, 114

geom_segment, 60, 103, 116

geom_smooth, 74, 106, 118

geom_spoke, 118, 122

geom_step (geom_path), 101

geom_tallrect, 124

geom_text (geom_label), 93

geom_tile, 37

geom_tile (geom_rect), 110

geom_violin, 77, 125, 128

geom_vline (geom_abline), 59

geom_widerect, 129

getCommonChunk, 130

getLayerName, 130

getlLayerParams, 131

getLegend, 131

getlLegendList, 132

getTextSize, 132

getUniqueAxisLabels, 133

gganimintproto, 133

gganimintproto_parent (gganimintproto),
133

gegplot, 29, 59, 62, 65, 66, 68, 70, 73,75, 78,
81, 84, 86, 89, 91, 94, 97, 100, 102,
105,108, 111,113,115, 116,119,
122, 126, 134, 158, 205, 207, 209,
211, 212,214,217, 218

ggplot_build, 176

ggsave, 135, 157

ggtheme, 137

239

ggtitle (labs), 156

glm, 121

graphical-units, 138
gray.colors, 187

guide_colorbar (guide_colourbar), 140
guide_colourbar, 139, 140, 145
guide_legend, 139, 142, 143
guides, 139, 142, 145

hmisc, 147

intreg, 148
is.gganimintproto, 148
is.rel, 149

is.rgb, 149

is.theme, 150
issueSelectorWarnings, 150
italy, 164

knit_print.animint, 151

label_both (labellers), 153

label_bquote, 154, 155, 155

label_context (labellers), 153

label_parsed (labellers), 153

label_value, 48, 51

label_value (labellers), 153

label_wrap_gen (labellers), 153

labeller, 27, 28,48, 51, 151, 155, 156

labellers, 28, 152, 153, 156

labs, 141, 144, 156

last_plot, 157

layer, 22, 60, 62, 65, 67, 68, 70, 73, 76, 78,
81, 84, 86, 90, 92, 94, 98, 100, 103,
106,108, 111,113,115,117, 119,
123, 126, 158, 205, 207, 209, 211,
212,214,217,219

lims, 159

linetype (aes_linetype_size_shape), 13

1m, 121

loess, 120, 121

luv_colours, 160

make_bar, 160
make_tallrect, 161
make_tallrect_or_widerect, 162
make_text, 163
make_widerect, 163

map, 29, 164

240

map_data, 57, 164
mapproject, 37, 38
margin, 47, 165
mean_cl_boot (hmisc), 147
mean_cl_normal (hmisc), 147
mean_sdl (hmisc), 147
mean_se, 165, 218
median_hilow (hmisc), 147
merge_recurse, 166
midwest, 166

mpg, 167

msleep, 168

newEnvironment, 169
nz, 164

parsePlot, 169

plot, 177

plot.gganimintplot
(print.gganimintplot), 175

position_dodge, 63, 170, 171-174

position_fill, 63, 170,171, 172-174

position_identity, 170, 171,172,173, 174

position_jitter, 170-172,172,173, 174

position_jitterdodge, 170-173, 173, 174

position_nudge, 170-173, 174

position_stack, 63

position_stack (position_fill), 171

predict, 7120

presidential, 174

print.animint, 175

print.gganimintplot, 175

print.gganimintproto, 176

pt.to.lines, 176

gplot, 177
quickplot (gplot), 177

RColorBrewer: :brewer.pal(), 183
rel, 179, 221

renderAnimint, 180
rescale(), 183, 186
resolution, 180

saveChunks, 181

scale_alpha, 181

scale_alpha_continuous (scale_alpha),
181

scale_alpha_discrete (scale_alpha), 181

INDEX

scale_alpha_identity (scale_identity),
195
scale_alpha_manual (scale_manual), 197
scale_color_brewer
(scale_colour_brewer), 182
scale_color_continuous
(scale_colour_gradient), 184
scale_color_discrete
(scale_colour_hue), 188
scale_color_distiller
(scale_colour_brewer), 182
scale_color_gradient
(scale_colour_gradient), 184
scale_color_gradient2
(scale_colour_gradient), 184
scale_color_gradientn
(scale_colour_gradient), 184
scale_color_grey (scale_colour_grey),
187
scale_color_hue (scale_colour_hue), 188
scale_color_identity (scale_identity),
195
scale_color_manual (scale_manual), 197
scale_colour_brewer, 182, 186, 187, 189
scale_colour_continuous
(scale_colour_gradient), 184
scale_colour_date
(scale_colour_gradient), 184
scale_colour_datetime
(scale_colour_gradient), 184
scale_colour_discrete
(scale_colour_hue), 188
scale_colour_distiller
(scale_colour_brewer), 182
scale_colour_gradient, 183, 184, 187, 189
scale_colour_gradient2
(scale_colour_gradient), 184
scale_colour_gradientn
(scale_colour_gradient), 184
scale_colour_grey, 183, 186, 187, 189
scale_colour_hue, 183, 186, 187, 188
scale_colour_identity (scale_identity),
195
scale_colour_manual (scale_manual), 197
scale_continuous, 190, 195
scale_date, 191, 193
scale_fill_brewer
(scale_colour_brewer), 182

INDEX

scale_fill_continuous
(scale_colour_gradient), 184
scale_fill_date
(scale_colour_gradient), 184
scale_fill_datetime
(scale_colour_gradient), 184
scale_fill_discrete (scale_colour_hue),
188
scale_fill_distiller
(scale_colour_brewer), 182
scale_fill_gradient
(scale_colour_gradient), 184
scale_fill_gradient2
(scale_colour_gradient), 184
scale_fill_gradientn
(scale_colour_gradient), 184
scale_fill_grey (scale_colour_grey), 187
scale_fill_hue (scale_colour_hue), 188
scale_fill_identity (scale_identity),
195
scale_fill_manual (scale_manual), 197
scale_identity, 195
scale_linetype, 197
scale_linetype_continuous
(scale_linetype), 197
scale_linetype_discrete
(scale_linetype), 197
scale_linetype_identity
(scale_identity), 195
scale_linetype_manual (scale_manual),
197
scale_manual, 197
scale_radius (scale_size), 199
scale_shape, 198
scale_shape_continuous (scale_shape),
198
scale_shape_discrete (scale_shape), 198
scale_shape_identity (scale_identity),
195
scale_shape_manual (scale_manual), 197
scale_size, 106, 199
scale_size_animint, 201
scale_size_area, 201
scale_size_area(scale_size), 199
scale_size_continuous (scale_size), 199
scale_size_date (scale_size), 199
scale_size_datetime (scale_size), 199
scale_size_discrete (scale_size), 199

241

scale_size_identity (scale_identity),
195

scale_size_manual (scale_manual), 197

scale_x_continuous (scale_continuous),
190

scale_x_date (scale_date), 193

scale_x_datetime (scale_date), 193

scale_x_discrete, 202

scale_x_log1@ (scale_continuous), 190

scale_x_reverse (scale_continuous), 190

scale_x_sqgrt (scale_continuous), 190

scale_y_continuous, 25

scale_y_continuous (scale_continuous),
190

scale_y_date (scale_date), 193

scale_y_datetime (scale_date), 193

scale_y_discrete (scale_x_discrete), 202

scale_y_logl10, 25

scale_y_logl1@ (scale_continuous), 190

scale_y_reverse (scale_continuous), 190

scale_y_sqrt (scale_continuous), 190

seals, 203

selectSSandCs, 203

seq_gradient_pal, 186

setPlotSizes, 204

shape (aes_linetype_size_shape), 13

size (aes_linetype_size_shape), 13

smean.cl.boot, /147

smean.cl.normal, 147

smean.sdl, /147

smedian.hilow, /47

split_recursive, 204

stat_bin, 63, 88, 216

stat_bin (geom_fregpoly), 85

stat_bin2d, 90, 215

stat_bin2d (geom_bin2d), 64

stat_bin_2d (geom_bin2d), 64

stat_bin_hex (geom_hex), 89

stat_binhex, 66

stat_binhex (geom_hex), 89

stat_contour, 79

stat_contour (geom_contour), 67

stat_count, 88

stat_count (geom_bar), 61

stat_density, 128

stat_density (geom_density), 75

stat_density2d (geom_density_2d), 77

stat_density_2d (geom_density_2d), 77

242

stat_ecdf, 205

stat_ellipse, 206

stat_function, 208
stat_identity, 210

stat_qq, 211

stat_smooth (geom_smooth), 118
stat_spoke (geom_spoke), 122
stat_sum, 79, 106

stat_sum (geom_count), 69
stat_summary, 74, 147, 166, 213
stat_summary (stat_summary_bin), 216
stat_summary2d (stat_summary_2d), 213
stat_summary_2d, 213,213
stat_summary_bin, 216
stat_summary_hex, 215
stat_summary_hex (stat_summary_2d), 213
stat_unique, 218

stat_ydensity (geom_violin), 125
state, 164

strftime, 194

strwrap, 154

substitute, 12

switch_axes, 219

theme, 8, 141, 142, 144, 145, 220
theme_animint, 224

theme_bw (ggtheme), 137
theme_classic (ggtheme), 137
theme_dark (ggtheme), 137
theme_get (theme_update), 225
theme_gray (ggtheme), 137
theme_grey (ggtheme), 137
theme_light (ggtheme), 137
theme_linedraw (ggtheme), 137
theme_minimal (ggtheme), 137
theme_replace (theme_update), 225
theme_set (theme_update), 225
theme_update, 225

theme_void (ggtheme), 137
toRGB, 226
trans_new, 41, 191, 200
transform_shape, 227
translate_gplot_ggplot, 227
translate_qgplot_lattice, 229
txhousing, 230

unit, 25, 142, 145
update_gallery, 231
update_geom_defaults, 231

INDEX

update_labels, 232

update_stat_defaults
(update_geom_defaults), 231

usa, 164

UStornadoes, 233

varied. chunk, 234

waiver, 141, 144
world, 164
world2, 164
WorldBank, 235
worldPop, 236

X (aes_position), 14
xend (aes_position), 14
xlab (labs), 156

xlim (lims), 159

xmax (aes_position), 14
xmin (aes_position), 14

y (aes_position), 14
yend (aes_position), 14
ylab (labs), 156
ylim(lims), 159

ymax (aes_position), 14
ymin (aes_position), 14

	+.gganimint
	addShowSelectedForLegend
	addSSandCSasAesthetics
	add_theme
	aes
	aes_
	aes_colour_fill_alpha
	aes_linetype_size_shape
	aes_position
	animint
	animint2dir
	animint2pages
	animintOutput
	annotate
	annotation_custom
	annotation_logticks
	annotation_map
	as.list.gganimintproto
	as_labeller
	autoplot
	borders
	breakpoints
	calc_element
	checkAnimationTimeVar
	checkExtraParams
	checkForSSandCSasAesthetics
	checkPlotForAnimintExtensions
	checkPlotList
	checkSingleShowSelectedValue
	coord_cartesian
	coord_fixed
	coord_flip
	coord_map
	coord_polar
	coord_trans
	cut_interval
	diamonds
	economics
	element_blank
	element_line
	element_rect
	element_text
	expand_limits
	facet_grid
	facet_null
	facet_wrap
	faithfuld
	FluView
	format.gganimintproto
	fortify
	fortify.lm
	fortify.map
	fortify.sp
	generation.loci
	geom_abline
	geom_bar
	geom_bin2d
	geom_blank
	geom_contour
	geom_count
	geom_crossbar
	geom_density
	geom_density_2d
	geom_dotplot
	geom_errorbarh
	geom_freqpoly
	geom_hex
	geom_jitter
	geom_label
	geom_label_aligned
	geom_map
	geom_path
	geom_point
	geom_polygon
	geom_rect
	geom_ribbon
	geom_rug
	geom_segment
	geom_smooth
	geom_spoke
	geom_tallrect
	geom_violin
	geom_widerect
	getCommonChunk
	getLayerName
	getLayerParams
	getLegend
	getLegendList
	getTextSize
	getUniqueAxisLabels
	gganimintproto
	ggplot
	ggsave
	ggtheme
	graphical-units
	guides
	guide_colourbar
	guide_legend
	hmisc
	intreg
	is.gganimintproto
	is.rel
	is.rgb
	is.theme
	issueSelectorWarnings
	knit_print.animint
	labeller
	labellers
	label_bquote
	labs
	last_plot
	layer
	lims
	luv_colours
	make_bar
	make_tallrect
	make_tallrect_or_widerect
	make_text
	make_widerect
	map_data
	margin
	mean_se
	merge_recurse
	midwest
	mpg
	msleep
	newEnvironment
	parsePlot
	position_dodge
	position_fill
	position_identity
	position_jitter
	position_jitterdodge
	position_nudge
	presidential
	print.animint
	print.gganimintplot
	print.gganimintproto
	pt.to.lines
	qplot
	rel
	renderAnimint
	resolution
	saveChunks
	scale_alpha
	scale_colour_brewer
	scale_colour_gradient
	scale_colour_grey
	scale_colour_hue
	scale_continuous
	scale_date
	scale_identity
	scale_linetype
	scale_manual
	scale_shape
	scale_size
	scale_size_animint
	scale_x_discrete
	seals
	selectSSandCS
	setPlotSizes
	split_recursive
	stat_ecdf
	stat_ellipse
	stat_function
	stat_identity
	stat_qq
	stat_summary_2d
	stat_summary_bin
	stat_unique
	switch_axes
	theme
	theme_animint
	theme_update
	toRGB
	transform_shape
	translate_qplot_ggplot
	translate_qplot_lattice
	txhousing
	update_gallery
	update_geom_defaults
	update_labels
	UStornadoes
	varied.chunk
	WorldBank
	worldPop
	Index

