Package ‘arcgislayers’

October 28, 2025

Type Package
Title Harness ArcGIS Data Services
Version 0.5.2

Description Enables users of 'ArcGIS Enterprise', 'ArcGIS Online', or
'ArcGIS Platform' to read, write, publish, or manage vector and raster
data via ArcGIS location services REST API endpoints
<https://developers.arcgis.com/rest/>.

License Apache License (>= 2)

URL https://developers.arcgis.com/r-bridge,
https://github.com/R-ArcGIS/arcgislayers

BugReports https://github.com/R-ArcGIS/arcgislayers/issues
Depends R (>=4.2.0)

Imports arcgisutils (>= 0.4.0), arcpbf (>= 0.1.5), cli, httr2 (>=
1.0.5), jsonity, lifecycle, RcppSimdJson (>= 0.1.13), rlang,
sf, terra, utils

Suggests testthat (>= 3.0.0), vctrs, curl, dplyr
Config/testthat/edition 3

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation no

Author Josiah Parry [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9910-865X>),
Eli Pousson [ctb] (ORCID: <https://orcid.org/0000-0001-8280-1706>),
Kenneth Vernon [ctb] (ORCID: <https://orcid.org/0000-0003-0098-5092>),
Martha Bass [ctb] (ORCID: <https://orcid.org/0009-0004-0268-5426>),
Antony Barja [ctb] (ORCID: <https://orcid.org/0000-0001-5921-2858>)

Maintainer Josiah Parry <josiah.parry@gmail.com>
Repository CRAN
Date/Publication 2025-10-28 08:20:12 UTC

https://developers.arcgis.com/rest/
https://developers.arcgis.com/r-bridge
https://github.com/R-ArcGIS/arcgislayers
https://github.com/R-ArcGIS/arcgislayers/issues
https://orcid.org/0000-0001-9910-865X
https://orcid.org/0000-0001-8280-1706
https://orcid.org/0000-0003-0098-5092
https://orcid.org/0009-0004-0268-5426
https://orcid.org/0000-0001-5921-2858

2 add_features

Contents
add_features e 2
add_itemo e e 4
add_layer_definitiono 7
ATC_OPCI .« o v v v e e e e e e e e e e e e e e e e e e e 8
AFC_TASIET . . . v e e e e e e e e e e e 10
arc_read L e e 12
arc_Select L s 14
clear_query 16
create_feature_SEIVET v v v e e e 17
encode_field_values 19
get_layer e 20
get_layer_estimates L. 21
list_raster NS s 22
prepare_spatial_filter 23
query_layer_attachments L L L 24
set_layer_aliases L e 26
truncate_layer L e 28
update_attachments L 29
update_params e e e e e e e 31

Index 32

add_features Add Features to Feature Layer
Description
Delete features from a feature layer based on object ID, a where clause, or a spatial filter.
Usage
add_features(
X y
.data,

chunk_size = 500,

match_on = c("name”, "alias"),
rollback_on_failure = TRUE,
progress = TRUE,

token = arc_token()

)

delete_features(

X’

object_ids = NULL,
where = NULL,
filter_geom = NULL,

add_features 3

predicate = "intersects”,
rollback_on_failure = TRUE,
chunk_size = 500,

progress = TRUE,

token = arc_token()

)

update_features(
X,
.data,
chunk_size = 500,
match_on = c("name”, "alias"),
rollback_on_failure = TRUE,
progress = TRUE,
token = arc_token()

)
Arguments
X an object of class FeatureLayer
.data an object of class sf or data. frame
chunk_size the maximum number of features to add at a time
match_on whether to match on the alias or the field name. Default, the alias. See Details

for more.

rollback_on_failure
default TRUE. Specifies whether the edits should be applied only if all submitted
edits succeed.

progress default TRUE. A progress bar to be rendered by httr2 to track requests.

token default arc_token(). An httr2_token.

object_ids a numeric vector of object IDs to be deleted.

where a simple SQL where statement indicating which features should be deleted.

‘When the where statement evaluates to TRUE, those values will be deleted.

filter_geom an object of class bbox, sfc or sfg used to filter query results based on a predi-
cate function.

predicate Spatial predicate to use with filter_geom. Default "intersects"”. Possible

n o n n o n n o n n o n

options are "intersects”, "contains”, "crosses”, "overlaps”, "touches”,
and "within”.

Details

[Experimental]

For a more detailed guide to adding, updating, and deleting features, view the tutorial on the R-
ArcGIS Bridge website.

Regarding the match_on argument:when publishing an object to an ArcGIS Portal from R, the
object’s names are provided as the alias. The object’s names are subject to change according to the

https://developers.arcgis.com/r-bridge/editing/overview/
https://developers.arcgis.com/r-bridge/editing/overview/

4 add_item

standards of the ArcGIS REST API. For example. "Sepal.Length"” is changed to "Sepal_Width"
in the name field but the alias remains "Sepal.Length”. For that reason, we match on the alias
name by default. Change this argument to match based on the field name.

Value

e add_features() returns a data. frame with columns objectId, uniqueld, globalld, success

e update_features() returns a list with an element named updateResults whichisadata. frame
with columns objectId, uniqueld, globalld, success

e delete_features() returns a list with an element named deleteResults whichisadata.frame
with columns objectId, uniqueld, globalld, success

Examples

Not run:
this is pseudo-code and will not work
flayer <- arc_open(furl)

add sf objects to existing feature service
add_features(flayer, sfobj)

delete all features
delete_features(flayer, where = "1 = 1")

update features
update_features(flayer, dfobj)

End(Not run)

add_item Publish Content

Description

Publishes an sf or data. frame object to an ArcGIS Portal as a FeatureCollection.

Usage

add_item(
X,
title,
description = "",
tags = character(9),
snippet = "",
categories = character(9),
async = FALSE,
type = "Feature Service",
token = arc_token()

add_item

)

publish_item(
item_id,

publish_params = .publish_params(),
file_type = "featureCollection”,
token = arc_token()

)

publish_layer/(
X,
title,

L

publish_params = .publish_params(title, target_crs = sf::st_crs(x)),
token = arc_token()

)

.publish_params(

name = NULL,

description = NULL,
copyright = NULL,

target_crs =

3857,

max_record_count = 2000L

Arguments

X

title

description

tags
snippet
categories
async

type

token
item_id

publish_params

file_type

name

an object of class data. frame. This can be an sf object or tibble or any other
subclass of data. frame.

A user-friendly string title for the layer that can be used in a table of contents.

a length 1 character vector containing the description of the item that is being
added. Note that the value cannot be larger than 64kb.

a character vector of tags to add to the item.

alength 1 character vector with no more than 2048 characters.
a character vector of the categories of the item.

default FALSE. Cannot be changed at this time.

default "Feature Service". Must not be changed at this time.
an httr2_token as created by auth_code () or similar

the ID of the item to be published.

a list of named values of the publishParameters. Must match the values in the
/publish endpoint documentation.

default "featureCollection”. Cannot be changed
arguments passed into add_item().

a scalar character of the name of the layer. Must be unique.

https://developers.arcgis.com/rest/users-groups-and-items/publish-item.htm#GUID-9E8F8526-5D58-4706-95F3-432905CC3303

6 add_item

copyright an optional character scalar containing copyright text to add to the published
Feature Service.
target_crs the CRS of the Feature Service to be created. By default, EPSG: 3857.

max_record_count
the maximum number of records that can be returned from the created Feature
Service.

Details
[Experimental]

* add_item() takes a data.frame like object and uploads it as an item in your portal.
e publish_item() takes an ID of an item in your portal and publishes it as a feature service.

* publish_layer() is a high-level wrapper that first adds an object as an item in your portal
and subsequently publishes it for you.

e .publish_params() is a utility function to specify optional publish parameters such as copy-
right text, and the spatial reference of the published feature collection.

Note that there is only support for feature services meaning that only tables and feature layers can
be made by these functions.

Publish Parameters:

When publishing an item to a portal, a number of publish parameters can be provided. Most
importantly is the targetSR which will be the CRS of the hosted feature service. By default this
is EPSG: 3857.

publish_layer() will use the CRS of the input object, x, by default. If publishing content in
two steps with add_item() and publish_item(), use .publish_params() to craft your publish
parameters. Ensure that the CRS provided to target_crs matches that of the item you added
with add_item().

Value

A named list containing the url of the newly published service.

Examples

Not run:
nc <- sf::st_read(system.file("shape/nc.shp”, package = "sf"))
x <= nc[1:5, 13]

token <- auth_code()
set_arc_token(token)

publish_res <- publish_layer(
x, "North Carolina SIDS sample”
)

End(Not run)

https://developers.arcgis.com/rest/users-groups-and-items/publish-item.htm#GUID-9E8F8526-5D58-4706-95F3-432905CC3303

add_layer_definition 7

add_layer_definition Add, update, or delete a Feature Layer definition

Description

Each layer of a feature service is defined by a "definition." The definition describes the service such
as its fields, symbology, indexes and more.

Usage
add_layer_definition(x, ..., async = FALSE, token = arc_token())
update_layer_definition(x, ..., async = FALSE, token = arc_token())
delete_layer_definition(x, ..., async = FALSE, token = arc_token())
Arguments
X A Feature Layer, Table, or Feature Service class object.
Additional parameters for the "addToDefinition" or "updateDefinition" body of
the request.
async Default FALSE. If TRUE, support asynchronous processing for the request.
token an httr2_token as created by auth_code () or similar
Details
[Experimental]

e Use add_layer_definition() for adding fields to a feature service or otherwise adding to
the definition of a feature layer.

* Use update_layer_definition() to modify existing aspects of the definition properties.

* Use delete_layer_definition() to delete properties from the layer definition.
Examples of properties include the layer name, renderer, or field properties. Named parameters
passed to ... must have names matching supported definitions. Parameters are converted to a

JSON addToDefinition, updateDefinition, or deleteFromDefinition query parameter using
jsonify::to_json().

See the ArcGIS REST API documentation on Administer Hosted Feature Services for more details:

* see the layerDefinition object documentation.
* adding definitions for a FeatureLayer or a FeatureService
* updating definitions for a FeatureLayer or a FeatureService

¢ deleting definitions for a FeatureLayer or a FeatureService

https://developers.arcgis.com/web-map-specification/objects/layerDefinition/
https://developers.arcgis.com/rest/services-reference/online/add-to-definition-feature-layer/
https://developers.arcgis.com/rest/services-reference/online/add-to-definition-feature-service/
https://developers.arcgis.com/rest/services-reference/online/update-definition-feature-layer/
https://developers.arcgis.com/rest/services-reference/online/update-definition-feature-service-.htm
https://developers.arcgis.com/rest/services-reference/online/delete-from-definition-feature-layer/
https://developers.arcgis.com/rest/services-reference/online/delete-from-definition-feature-service/

8 arc_open

Value

If async = FALSE, return an updated "FeatureServer" or "FeatureLayer" object with the added, up-
dated, or deleted definitions. If async = TRUE, the input Feature Layer or Feature Server object x is
returned as is.

Examples

Not run:

if (interactive()) {

authenticate
set_arc_token(auth_code())

publish a layer
published <- publish_layer(penguins, "Penguin Test")

penguin_fl <- arc_open(published$services$encodedServiceURL) |>
get_layer(0)

Update the name of the layer
update_layer_definition(
penguin_f1,
name = "New Layer Name”

)

add an index on the the layer
add_layer_definition(

penguin_f1,

indexes = list(
name = "index1",
fields = "species”,

isUnique = FALSE,
isAscending = FALSE,
description = "Example index”
)
)

refresh the layer to get the updates
penguin_f1l <- refresh_layer(penguin_f1)
penguin_f1l[["indexes"]]

3

End(Not run)

arc_open Access a Data Service or Portal Item

Description

Access a resource on ArcGIS Online, Enterprise, or Location Platform.

arc_open 9

Usage

arc_open(url, host = arc_host(), token = arc_token())

Arguments
url a url to a service such as a feature service, image server, or map server. Alterna-
tively, an item ID of a portal item or portal url.
host default "https://www.arcgis.com”. The host of your ArcGIS Portal.
token an httr2_token as created by auth_code () or similar
Details

* To read the underlying attribute data from a FeaturelLayer, Table, or ImageServer use
arc_select().

* If you have a MapServer or FeatureSever access the individual layes using get_layer ().
For

» Use arc_raster() to get imagery as a terra raster object.
[Stable]

Value

Depending on item ID or URL returns a Portalltem, FeaturelLayer, Table, FeatureServer,
ImageServer, or MapServer, GeocodeServer, among other. Each of these objects is a named list
containing the properties of the service.

See Also

arc_select arc_raster get_layer

Examples

Not run:

FeatureServer ID
arc_open("3b7221d4e47740cab9235b839fa55cd7")

FeaturelLayer

furl <- paste@(
"https://services3.arcgis.com/ZvidGQkLaDJxRSJ2/arcgis/rest/services/",
"PLACES_LocalData_for_BetterHealth/FeatureServer/@"

)

arc_open(furl)

Table

furl <- paste0(
"https://services.arcgis.com/P3ePLMYs2RVChkJx/arcgis/rest/services/",
"USA_Wetlands/FeatureServer/1"

10 arc_raster

arc_open(furl)

ImageServer
arc_open(
"https://landsat2.arcgis.com/arcgis/rest/services/Landsat/MS/ImageServer"”

)

FeatureServer

furl <- paste@(
"https://services3.arcgis.com/ZvidGQkLaDIxRSJ2/arcgis/rest/services/",
"PLACES_LocalData_for_BetterHealth/FeatureServer”

arc_open(furl)

MapServer

map_url <- paste0(
"https://services.arcgisonline.com/ArcGIS/rest/services/",
"World_Imagery/MapServer”

)
arc_open(map_url)

End(Not run)

arc_raster Read from an Image Server

Description

Given an ImageServer export an image as a terra SpatRaster object. See terra: :rast.

Usage

arc_raster(
X,
xmin,
Xmax,
ymin,
ymax,
bbox_crs = NULL,
crs = sf::st_crs(x),
width = NULL,
height = NULL,
format = "tiff",
raster_fn = NULL,
token = arc_token()

arc_raster 11

Arguments
X an ImageServer as created with arc_open().
xmin the minimum bounding longitude value.
xmax the maximum bounding longitude value.
ymin that minimum bounding latitude value.
ymax the maximum bounding latitude value.
bbox_crs the CRS of the values passed to xmin, xmax, ymin, and ymax. If not specified,
uses the CRS of x.
crs the CRS of the resultant raster image and the provided bounding box defined by
xmin, xmax, ymin, ymax (passed outSR query parameter).
width default NULL. Cannot exceed x[["maxImageWidth"”]1].
height default NULL. Cannot exceed x[["maxImageHeight"]1].
format default "tiff". Mustbe one of "jpgpng", "png", "png8", "png24", "jpg", "bmp",
"gif", "tiff", "png32", "bip", "bsq", "lerc".
additional key value pairs to be passed to httr2::req_body_form().
raster_fn a scalar string with the name of the service’s raster function. See list_raster_fns()
for available raster functions.
token default arc_token() authorization token.
Details
[Experimental]
Value

An object of class SpatRaster.

Examples

Not run:
img_url <- "https://landsat2.arcgis.com/arcgis/rest/services/Landsat/MS/ImageServer”

landsat <- arc_open(img_url)

arc_raster(

landsat,

xmin = -71,

xmax = -67,

ymin = 43,

ymax = 47.5,
bbox_crs = 4326,
width = 100,
height = 100

)

End(Not run)

12

arc_read

arc_read

Read an ArcGIS FeatureLayer, Table, or ImageServer

Description

arc_read() combines the functionality of arc_open() with arc_select() or arc_raster() to
read an ArcGIS FeatureLayer, Table, or ImageServer to an sf or SpatRaster object. Option-
ally, set, check, or modify names for the returned data frame or sf object using the col_names and
name_repair parameters. For ease of use and convenience, arc_read() allows users to access
and query a FeatureLayer, Table, or ImageServer with a single function call instead of combin-
ing arc_open() and arc_select(). The conventions of col_select are based on functions for
reading tabular data in the {readr} package.

Usage

arc_read(
url,

col_names = TRUE,
col_select = NULL,
n_max = Inf,

name_repair = "unique"”,

crs = NULL,

fields = NULL,
alias = "drop",

token = arc_token()

Arguments

url

col_names

col_select

n_max

name_repair

a url to a service such as a feature service, image server, or map server. Alterna-
tively, an item ID of a portal item or portal url.

Default TRUE. Column names or name handling rule. col_names can be TRUE,
FALSE, NULL, or a character vector:

* If TRUE, use existing default column names for the layer or table. If FALSE
or NULL, column names will be generated automatically: X1, X2, X3 etc.

* If col_names is a character vector, values replace the existing column names.
col_names can’t be length O or longer than the number of fields in the re-
turned layer.

Default NULL. A character vector of the field names to be returned. By default,
all fields are returned.

Defaults to Inf or an option set with options("arcgislayers.n_max" = <max records>).
Maximum number of records to return.

Default "unique”. See vctrs: :vec_as_names() for details. If name_repair
=NULL and alias = "replace” may include invalid names.

arc_read 13

crs the spatial reference to be returned. If the CRS is different than the CRS for the
input FeaturelLayer, a transformation will occur server-side. Ignored if x is a
Table.

Additional arguments passed to arc_select() if URL is a FeaturelLayer or
Table or arc_raster() if URL is an ImagelLayer.

fields Default NULL. a character vector of the field names to returned. By default all
fields are returned. Ignored if col_names is supplied.

alias Use of field alias values. Default c("drop”, "label”, "replace"),. There
are three options:

* "drop”, field alias values are ignored.
e "label”: field alias values are assigned as a label attribute for each field.
* "replace"”: field alias values replace existing column names. col_names

token an httr2_token as created by auth_code () or similar

Details

[Experimental]

Value

An sf object, a data. frame, or an object of class SpatRaster.

See Also

arc_select(); arc_raster()

Examples

Not run:
furl <- "https://sampleserver6.arcgisonline.com/arcgis/rest/services/Census/MapServer/3"

read entire service
arc_read(furl)

apply tolower() to column names
arc_read(url, name_repair = tolower)

use paste@ to prevent CRAN check NOTE

furl <- paste0(
"https://sampleserver6.arcgisonline.com/arcgis/rest/services/",
"EmergencyFacilities/FeatureServer/0"

)

use field aliases as column names
arc_read(furl, alias = "replace")

read an ImageServer directly
img_url <- "https://landsat2.arcgis.com/arcgis/rest/services/Landsat/MS/ImageServer”

14 arc_select

arc_read(
img_url,
width = 100, height = 100,
xmin = =71, ymin = 43,

xmax = -67, ymax = 47.5,
bbox_crs = 4326
)

End(Not run)

arc_select Query a Feature Service

Description

arc_select() takes a FeatureLayer, Table, of ImageServer object and returns data from the
layer as an sf object or data. frame respectively.

Usage

arc_select(
X’

fields = NULL,

where = NULL,

crs = sf::st_crs(x),
geometry = TRUE,
filter_geom = NULL,
predicate = "intersects”,
n_max = Inf,

page_size = NULL,

token = arc_token()

)
Arguments

X an object of class FeatureLayer, Table, or ImageServer.
additional query parameters passed to the APL.

fields a character vector of the field names that you wish to be returned. By default all
fields are returned.

where a simple SQL where statement indicating which features should be selected.

crs the spatial reference to be returned. If the CRS is different than the CRS for the
input FeaturelLayer, a transformation will occur server-side. Ignored if X is a
Table.

geometry default TRUE. If geometries should be returned. Ignored for Table objects.

arc_select

filter_geom

predicate

n_max

page_size

token

Details

15

an object of class bbox, sfc or sfg used to filter query results based on a predi-
cate function.
Spatial predicate to use with filter_geom. Default "intersects"”. Possible

options are "intersects”, "contains”, "crosses”,
and "within".

n o n

overlaps”, "touches”,

the maximum number of features to return. By default returns every feature
available. Unused at the moment.

the maximum number of features to return per request. Useful when requests
return a 500 error code. See Details.

an httr2_token as created by auth_code () or similar

See reference documentation for possible arguments.

FeaturelLayers can contain very dense geometries with a lot of coordinates. In those cases, the
feature service may time out before all geometries can be returned. To address this issue, we can
reduce the number of features returned per each request by reducing the value of the page_size

parameter.

arc_select() works by sending a single request that counts the number of features that will be
returned by the current query. That number is then used to calculate how many "pages" of re-
sponses are needed to fetch all the results. The number of features returned (page size) is set to the
maxRecordCount property of the layer by default. However, by setting page_size to be smaller
than the maxRecordCount we can return fewer geometries per page and avoid time outs.

[Experimental]

Value

An sf object, or a data.frame

Examples

Not run:

define the feature layer url

furl <- paste@(

"https://services3.arcgis.com/ZvidGQkLaDJxRSJ2/arcgis/rest”,
"/services/PLACES_LocalData_for_BetterHealth/FeatureServer/0"

)

flayer <- arc_open(furl)

arc_select(
flayer,

fields = c("StateAbbr”, "TotalPopulation")

)

arc_select(
flayer,

fields = c("OBJECTID"”, "PlaceName"),

https://developers.arcgis.com/rest/services-reference/enterprise/query-feature-service-layer-.htm#GUID-BC2AD141-3386-49FB-AA09-FF341145F614

16 clear_query
where = "TotalPopulation > 1000000"
)
End(Not run)
clear_query Utility functions
Description
Utility functions
Usage
clear_query(x)
list_fields(x)
pull_field_aliases(x)
list_items(x)
refresh_layer(x)
Arguments
X an object of class FeatureLayer, Table, or ImageServer.
Details
[Experimental]
e list_fields() returns a data.frame of the fields in a FeaturelLayer or Table
e list_items() returns a data.frame containing the layers or tables in a FeatureServer or
MapServer
e clear_query() removes any saved query in a FeaturelLayer or Table object
* refresh_layer() syncs a FeaturelLayer or Table with the remote resource picking up any
changes that may have been made upstream. Returns an object of class x.
e pull_field_aliases() returns a named list of the field aliases from a FeatureLayer or
Table
Value

See Details.

create_feature_server

Examples

Not run:

furl <- paste0(
"https://services3.arcgis.com/ZvidGQkLaDIxRSJ2/arcgis/rest/services/",
"PLACES_LocalData_for_BetterHealth/FeatureServer/0"

)

flayer <- arc_open(furl)

list fields available in a layer
list_fields(flayer)

remove any queries stored in the query attribute
clear_query(update_params(flayer, outFields = "x"))

refresh metadata of an object
refresh_layer(flayer)

map_url <- paste@(
"https://services.arcgisonline.com/ArcGIS/rest/services/",
"World_Imagery/MapServer”

)

list all items in a server object
list_items(arc_open(map_url))

End(Not run)

create_feature_server Create a FeatureServer

Description

Creates an empty FeatureServer with no additional layers.

Usage

create_feature_server(
service_name,

description = "",

crs = 3857,

capabilities = c("create”, "delete”, "query"”, "update”, "editing"),
query_formats = c("json", "geojson"),

initial_extent = list(xmin = NULL, xmax = NULL, ymin = NULL, ymax = NULL),
max_record_count = 1000L,

allow_updates = TRUE,

copyright = ""

has_static_data = FALSE,

xss_prevention = xss_defaults(),

18 create_feature_server

token = arc_token()

xss_defaults()

Arguments

service_name Feature Service name.
description default blank. The description of the feature server.

crs default 3857. A coordinate reference system to set for the feature server. Must
be compatible with sf: :st_crs().

capabilities default full capabilities. Character vector of capabilities.
query_formats default json and geojson. May be restricted by site-wide settings.

initial_extent optional. A named list with element of xmin, xmax, ymin, and ymax. Values
must be in the same CRS as crs.

max_record_count
default 1000. The maximum number of records that can be retrieved from a
layer in one request.

allow_updates default TRUE. Determine if geometries can be updated.

copyright default blank. Copyright notice to provide in the Feature Server

has_static_data
default FALSE. Indicates if data is changing.

xss_prevention cross-site-scripting prevention is enabled by default. See details for more.

token an httr2_token as created by auth_code () or similar

Details

[Experimental]

Value

If a FeatureServer is created successfully, a FeatureServer object is returned based on the newly
created feature server’s url.

Examples

Not run:
set_arc_token(auth_code())
create_feature_server("My empty feature server"”)

End(Not run)

encode_field_values 19

encode_field_values Encode Domain Values

Description

encode_field_values() can replace column values based on codedValue type field domains from
a corresponding Table or FeatureLayer object created with arc_open().

Usage
encode_field_values(
.data,
.layer,
field = NULL,
codes = c("replace”, "replace-valid”, "label"),
call = rlang::caller_env()
)
Arguments
.data A data frame returned by arc_select() or arc_read().
.layer A Table or FeatureLayer object. Required.
field Optional character vector with names of fields to replace. Fields that do not have
coded value domains are ignored. Defaults to NULL to replace or label all fields
with coded value domains.
codes Use of field alias values. Defaults to "replace”. There are three options:

* "replace”: coded values replace existing column values. Users are warned
if the selected fields contain any non-coded values and these values are
replaced with NA.

* "replace-valid”: coded values replace existing valid column values. Any
non-coded values remaing in place and are coerced to character.

* "label”: coded values are applied as value labels via a "label” attribute.

call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.
Value

A data.frame with fields encoded with their respective domains.

Examples

layer <- arc_open(
"https://geodata.baltimorecity.gov/egis/rest/services/Housing/dmxOwnership/MapServer/@"

)

20 get_layer

res <- arc_select(
layer,
n_max = 100,
where = "RESPAGCY <> ' '",
fields = "RESPAGCY"
)
encoded <- encode_field_values(res, layer)
table(encoded$RESPAGCY)

get_layer Extract a layer from a Feature or Map Server

Description

These helpers provide easy access to the layers contained in a FeatureServer, MapServer, or
GroupLayer.

Usage
get_layer(x, id = NULL, name = NULL, token = arc_token())

get_all_layers(x, token = arc_token())

get_layers(x, id = NULL, name = NULL, token = arc_token())

Arguments
X an object of class FeatureServer, MapServer, or GroupLayer.
id default NULL. A numeric vector of unique ID of the layer you want to retrieve.
This is a scalar in get_layer().
name default NULL. The name associated with the layer you want to retrieve. name is
mutually exclusive with id. This is a scalar in get_layer().
token an httr2_token as created by auth_code () or similar
Details
[Experimental]

The id and name arguments must match the field values of the respective names as seen in the output
of list_items()

Value

» get_layer() returns a single FeatureLayer or Table based on its ID
» get_layers() returns a list of the items specified by the id or name argument

e get_all_layers() returns a named list with an element layers and tables. Each a list
containing FeaturelLayer and Tables respectively.

get_layer_estimates 21

Examples

Not run:
FeatureServer
furl <- paste@(
"https://services3.arcgis.com/ZvidGQkLaDIxRSJ2/arcgis/rest/services/",
"PLACES_LocalData_for_BetterHealth/FeatureServer”

)

fserv <- arc_open(furl)

fserv

get_layer(fserv, 0)

get_layers(fserv, name = c("Tracts”, "ZCTAs"))
get_all_layers(fserv)

End(Not run)

get_layer_estimates Get Estimates

Description

Get Estimates

Usage

get_layer_estimates(x, token = arc_token())

Arguments
X an object of class FeatureLayer, Table, or ImageServer.
token an httr2_token as created by auth_code () or similar
Value

A named list containing all estimate info. If extent is present, it is available as an object of class
bbox.

References

ArcGIS REST Doc

https://developers.arcgis.com/rest/services-reference/enterprise/get-estimates-feature-service-layer-.htm

22 list_raster_fns

Examples

Not run:

if (identical(Sys.getenv(”NOT_CRAN"), "true")) {

furl <- paste@(
"https://services.arcgis.com/P3ePLMYs2RVChkJIx/ArcGIS/rest/services/",
"USA_Counties_Generalized_Boundaries/FeatureServer/0"

)

county_f1 <- arc_open(furl)
get_layer_estimates(county_f1)
3

End(Not run)

list_raster_fns List Available Raster Funcitons

Description

This function returns the rasterFunctionInfos field of the ImageServer’s metadata as a data. frame.
If the field does not exist then an error is emitted.

Usage

list_raster_fns(x, arg = rlang::caller_arg(x), call = rlang::caller_call())

list_service_raster_fns(
X’
arg = rlang::caller_arg(x),
call = rlang::caller_call()

)
Arguments
X an ImageServer.
arg An argument name in the current function.
call The execution environment of a currently running function, e.g. call = caller_env().

The corresponding function call is retrieved and mentioned in error messages as
the source of the error.

You only need to supply call when throwing a condition from a helper function
which wouldn’t be relevant to mention in the message.

Can also be NULL or a defused function call to respectively not display any call
or hard-code a code to display.

For more information about error calls, see Including function calls in error
messages.

prepare_spatial_filter 23

Value

a data.frame of the available raster functions.

Examples

Not run:

use paste to avoid cran note

furl <- paste0(
"https://di-usfsdata.img.arcgis.com/arcgis/rest/services”,
"/FIA_BIGMAP_2018_Tree_Species_Aboveground_Biomass/ImageServer”

)

service <- arc_open(furl)
raster_fns <- list_service_raster_fns(service)

head(raster_fns)

End(Not run)

prepare_spatial_filter
Prepare JSON for use as a spatial filter based on feature geometry or
bounding box input

Description

prepare_spatial_filter() prepares a named list with ESRI JSON geometry for use as a spatial
filter based on a a sfc, sfg, or bbox input object.

match_spatial_rel() takes a scalar character vector with a predicate name to a type of ESRI
spatial relation.

Usage

prepare_spatial_filter(
filter_geom,
crs,
predicate,
error_call = rlang::caller_env()

)

match_spatial_rel(predicate, error_call = rlang::caller_env())

Arguments

filter_geom an object of class bbox, sfc or sfg used to filter query results based on a predi-
cate function.

crs a representation of a coordinate reference system.

24 query_layer_attachments

predicate Spatial predicate to use with filter_geom. Default "intersects"”. Possible

n o n n o n n o n n o n

options are "intersects”, "contains”, "crosses”, "overlaps”, "touches”,
and "within”.

error_call default rlang: :caller_env().

Details

Using sfc objects as filter_geom
[Experimental]

If an sfc object is provided it will be transformed to the layers spatial reference. If the sfc is missing
a CRS (or is an sfg object) it is assumed to use the same spatial reference as the FeatureLayer. If the
sf'c object has multiple features, the features are unioned with sf: :st_union(). If an sfc object
has MULTIPOLYGON geometry, the features are cast to POLYGON geometry and only the first element
is used.

Value

prepare_spatial_filter() returns a named list with the geometryType, geometry (as Esri
JSON), and spatial relation predicate.

match_spatial_rel() returns one of the following spatial binary predicates:

* esriSpatialRellntersects
* esriSpatialRelContains
* esriSpatialRelCrosses
* esriSpatialRelOverlaps
* esriSpatialRelTouches

* esriSpatialRelWithin

Examples

prepare_spatial_filter(sf::st_point(c(@, 5)), 4326, "intersects”)

query_layer_attachments
Query and Download Feature Service Attachments

Description

Query attachment information using query_layer_attachments() and download attachments us-
ing download_attachments().

query_layer_attachments 25

Usage
query_layer_attachments(
X,
definition_expression = "1=1",

attachments_definition_expression = NULL,
object_ids = NULL,

global_ids = NULL,

attachment_types = NULL,

keywords = NULL,

return_metadata = TRUE,

token = arc_token()

)

download_attachments(
attachments,
out_dir,

L

overwrite = FALSE,

.progress = TRUE,
token = arc_token()
)
Arguments
X an object of class FeatureLayer, Table, or ImageServer.

definition_expression
default 1 = 1. A SQL where clause that is applied to the layer. Only those records
that conform to this expression will be returned. This parameter is required if
neither object_ids or global_ids have been defined.

attachments_definition_expression
default NULL. A SQL where calsue that is applied to the attachment metadata.
only attachments that conform to this expression will be returned.

object_ids mutually exclusive with definition_expression and global_ids. The object
IDs of the features to query attachments of.

global_ids mutally exclusive with definition_expression and object_ids. The global
IDs of the features to query attachments of.

attachment_types
default NULL. A character vector of attachment types to filter on.

keywords default NULL. A character vector of the keywords to filter on.

return_metadata
default TRUE. Returns metadata stored in the exifInfo field.

unused
token an httr2_token as created by auth_code () or similar
attachments a data.frame created by query_layer_attachments(). Must contain the

columns name, url, and contentType.

26 set_layer_aliases

out_dir the path to the folder to download the file

overwrite default FALSE. A

.progress default TRUE. Whether a progress bar should be provided.
Value

query_layer_attachments() returns a data.frame.

download_attachments() returns a list. If an error occurs, the condition is captured and returned
in the list. Otherwise the path to the file that was downloaded is returned.

References

ArcGIS REST API Documentation

Examples

Not run:
create a url path that isn't too wide for CRAN
furl <- paste(

c(
"https://servicesl.arcgis.com/hLIJbHVT9ZrDIzK@I",
"arcgis/rest/services/v8_Wide_Area_Search_Form_Feature_Layer___a2fe9c”,
"FeatureServer/0"

),

collapse = "/"

)
connect to the layer
layer <- arc_open(furl)

get the attachment info
att <- query_layer_attachments(layer)

download them to a path
download_attachments(att, "layer_attachments”)

End(Not run)

set_layer_aliases Set column labels or names based FeatureLayer or Table data frame
field aliases

Description

set_layer_aliases() can replace or label column names based on the the field aliases from a
corresponding Table or FeaturelLayer object created with arc_open(). Optionally repair names
using vetrs: :vec_as_names().

https://developers.arcgis.com/rest/services-reference/enterprise/query-attachments-feature-service-layer/

set_layer_aliases 27

Usage
set_layer_aliases(
.data,
.layer,
name_repair = "unique"”,
alias = c("replace”, "label”),
call = rlang::caller_env()
)
Arguments
.data A data frame returned by arc_select() or arc_read().
.layer A Table or FeatureLayer object. Required.
name_repair Default "unique”. See vctrs::vec_as_names() for details. If name_repair
=NULL and alias = "replace” may include invalid names.
alias Use of field alias values. Defaults to "replace”. There are two options:
» "label"”: field alias values are assigned as a label attribute for each field.
* "replace”: field alias values replace existing column names.
call The execution environment of a currently running function, e.g. caller_env().
The function will be mentioned in error messages as the source of the error. See
the call argument of abort () for more information.
Value

A data.frame. When alias = "replace”, the column names are modified. When alias = "1abel”
each column has a new label attribute.

Examples

furl <- paste0(
"https://services.arcgis.com/P3ePLMYs2RVChkJx/ArcGIS/",
"rest/services/USA_Counties_Generalized_Boundaries/FeatureServer/0"

)

open the feature service
flayer <- arc_open(furl)

select first five rows
five_counties <- arc_select(flayer, n_max = 5)

add aliases
with_aliases <- set_layer_aliases(five_counties, flayer)

preview the new names
str(with_aliases, give.attr = FALSE)

28 truncate_layer

truncate_layer Truncate a Feature Layer

Description
Removes all features in a Feature Layer or Table and resets the object ID counter. Truncating a

Feature Layer does not change the schema of the data (does not add, remove, or alter existing
database columns, constraints, or indexes).

Usage

truncate_layer(x, async = FALSE, attachment_only = FALSE, token = arc_token())

Arguments
X an object of class FeatureLayer, Table, or ImageServer.
async default FALSE. It is recommended to set TRUE for larger datasets.

attachment_only

default FALSE. Deletes all the attachments for this layer. None of the layer fea-
tures will be deleted when TRUE.

token an httr2_token as created by auth_code () or similar

Value

a named list with the name "success" and a value of TRUE or FALSE

References

ArcGIS Developers Rest API Doc

Examples

Not run:

authorize using code flow
set_arc_token(auth_code())

create a FeaturelLayer object
flayer <- arc_open("your-feature-layer-url")

truncate it
truncate_layer(flayer)

End(Not run)

https://developers.arcgis.com/rest/services-reference/online/truncate-feature-layer-.htm

update_attachments 29

update_attachments Update Feature Service Attachments

Description

Feature Services can contain attachments that are associated with a single feature ID. update_features()
enables you to update the attachments of multiple features at once by generating multiple update
requests and performing them in parallel.

Usage

update_attachments(
X,
feature_id,
attachment_id,
path,
.progress = TRUE,
token = arc_token()

)
Arguments
X an object of class FeatureLayer, Table, or ImageServer.
feature_id a vector of object IDs that corresponds to the feature of the corresponding

attachment_id.

attachment_id the ID of the attachment—this corresponds to the id column returned from
query_layer_attachments()

path a vecetor of the same length as feature_id indicating where the attachment
exists.
.progress default TRUE. Whether a progress bar should be provided.
token an httr2_token as created by auth_code () or similar
Details

[Experimental] To rename or otherwise modify an attachment in a Feature Service, you must first
download that attachment, modify the file on disk, and then upload it again. This is a limitation of
ArcGIS Online and Enterprise. If you’d like to see this changed, please submit a community idea
at community.esri.com.

If any requests fail, the requests are added as as the errors attribute to the resultant data. frame.

Value

a data.frame with 2 columns returning the status of the update.

https://community.esri.com/t5/arcgis-online/ct-p/arcgis-online

30 update_attachments

References

See API documentation for more.

Examples

Not run:
if (interactive()) {
library(arcgisutils)

authenticate
set_arc_token(auth_user())

open a feature service

feature_layer <- arc_open("your-item-id") |>
layer ID of the feature service
get_layer(0)

query attachment layer information
attachments <- query_layer_attachments(feature_layer)

create a temporary directory
tmp <- tempdir()

download attachments to the temporary directory
download_attachments(attachments, tmp)

get original paths
fps <- file.path(tmp, attachments$name)

prepend attachments with the date
new_filenames <- paste@(Sys.Date(),

n_n

, basename(attachments$name))

create new file paths
new_fps <- file.path(dirname(fps), new_filenames)

rename the files
file.rename(fps, new_fps)

update the attachments
update_res <- update_attachments(
feature_layer,
0ID of the feature <> attachment relationship
attachments$parentObjectId,
the attachment ID
attachments$id,
the path to the attachment on disk
new_fps

End(Not run)

https://developers.arcgis.com/rest/services-reference/enterprise/update-attachment/#request-parameters

update_params

31

update_params Modify query parameters

Description

update_params() takes named arguments and updates the query.

Usage
update_params(x, ...)
Arguments
X a FeatureLayer or Table object
key value pairs of query parameters and values.
Value

An object of the same class as x

Examples

Not run:
furl <- paste@(

"https://services.arcgis.com/P3ePLMYs2RVChkJx/ArcGIS/rest/services/",

"USA_Major_Cities_/FeatureServer/0"

)

flayer <- arc_open(furl)
update_params(flayer, outFields = "NAME")

End(Not run)

Index

.publish_params (add_item), 4

abort(), 19, 27
add_features, 2
add_item, 4
add_layer_definition, 7
add_layer_definition(), 7
arc_open, 8
arc_open(), 12
arc_raster, 10
arc_raster(), 9,12, 13
arc_read, 12
arc_read(), 12
arc_select, 14
arc_select(), 9, 12-14

clear_query, 16
create_feature_server, 17

defused function call, 22
delete_features (add_features), 2
delete_layer_definition
(add_layer_definition), 7
delete_layer_definition(), 7
download_attachments
(query_layer_attachments), 24

encode_field_values, 19
encode_field_values(), 19

get_all_layers (get_layer), 20
get_layer, 20

get_layer(), 9
get_layer_estimates, 21
get_layers (get_layer), 20

httr2::req_body_form(), 11

Including function calls in error
messages, 22

32

jsonify::to_json(),7

list_fields (clear_query), 16
list_items (clear_query), 16
list_raster_fns, 22
list_raster_fns(), 11
list_service_raster_fns
(list_raster_fns), 22

match_spatial_rel
(prepare_spatial_filter), 23
match_spatial_rel(), 23, 24

prepare_spatial_filter, 23
prepare_spatial_filter(), 23, 24
publish_item (add_item), 4
publish_layer (add_item), 4
pull_field_aliases (clear_query), 16

query_layer_attachments, 24
refresh_layer (clear_query), 16

set_layer_aliases, 26
set_layer_aliases(), 26
sf::st_union(), 24

terra::rast, 10
truncate_layer, 28

update_attachments, 29
update_features (add_features), 2
update_layer_definition
(add_layer_definition), 7
update_layer_definition(), 7
update_params, 31
update_params(), 31/

vctrs: :vec_as_names(), 12, 26, 27

xss_defaults (create_feature_server), 17

	add_features
	add_item
	add_layer_definition
	arc_open
	arc_raster
	arc_read
	arc_select
	clear_query
	create_feature_server
	encode_field_values
	get_layer
	get_layer_estimates
	list_raster_fns
	prepare_spatial_filter
	query_layer_attachments
	set_layer_aliases
	truncate_layer
	update_attachments
	update_params
	Index

