## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # library(dplyr) # library(ards) # # # Initialize the ARDS # # - These values will be repeated on all rows in the ARDS dataset # init_ards(studyid = "MTCARS", # tableid = "01", adsns = "mtcars", # population = "all cars", # time = "1973") # # # Perform analysis on MPG # # - Using cylinders as a by group # analdf <- mtcars |> # select(cyl, mpg) |> # group_by(cyl) |> # summarize(n = n(), # mean = mean(mpg), # std = sd(mpg), # min = min(mpg), # max = max(mpg)) # # # View analysis data # analdf # # cyl n mean std min max # # # # 1 4 11 26.7 4.51 21.4 33.9 # # 2 6 7 19.7 1.45 17.8 21.4 # # 3 8 14 15.1 2.56 10.4 19.2 # # # Add analysis data to ARDS # # - These values will be unique for each row in the ARDS dataset # add_ards(analdf, # statvars = c("n", "mean", "std", "min", "max"), # anal_var = "mpg", trtvar = "cyl") # # # # Get the ARDS # # - Remove by-variables to make the ARDS dataset easier to read # ards <- get_ards() |> select(-starts_with("by")) # # # Uncomment to view ards # # View(ards) # ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # # Restore to wide format # res <- restore_ards(ards) # # # View results # res # # $mpg # # cyl anal_var n mean std min max # # 1 4 mpg 11 26.66364 4.509828 21.4 33.9 # # 2 6 mpg 7 19.74286 1.453567 17.8 21.4 # # 3 8 mpg 14 15.10000 2.560048 10.4 19.2 #