count(handle = author_handle, sort = T) |>
  slice(1:10) |>
  mutate(handle = forcats::fct_reorder(handle, n)) |>
  ggplot(aes(handle, n)) +
  geom_col() +
  coord_flip() +
  theme_minimal()
```
### Recognizing Influential Voices
Volume doesn't always translate to influence. Some users may post less frequently but their contributions resonate deeply with the community.
``` r
# Identifying top 10 influential voices based on likes
rstat_posts |>
  group_by(author_handle) |>
  summarize(like_count = sum(like_count)) |>
  ungroup() |>
  arrange(desc(like_count)) |>
  slice(1:10) |>
  mutate(handle = forcats::fct_reorder(author_handle, like_count)) |>
  ggplot(aes(handle, like_count)) +
  geom_col() +
  coord_flip() +
  theme_minimal()
```
### Most Famous #rstats skeet
``` r
# Finding the standout post in the rstats feed
rstat_posts |>
  mutate(total_interactions = reply_count + repost_count + like_count) |>
  arrange(desc(total_interactions)) |>
  slice(1) |>
  select(author_handle, total_interactions, text) |>
  dplyr::glimpse() |>
  pull(text)
#> Rows: 1
#> Columns: 3
#> $ author_handle       "omearabrian.bsky.soci…
#> $ total_interactions  42
#> $ text                "New paper! \"dentist:…
#> [1] "New paper! \"dentist: Quantifying uncertainty by sampling points around maximum likelihood estimates\". Easy thing to plug into R workflows for getting better confidence intervals and detecting potential identifiability issues. #OpenAccess paper at doi.org/10.1111/2041...\n\n#Rstats #OpenSource"
```