autotab: Variational Autoencoders for Heterogeneous Tabular Data

Build and train a variational autoencoder (VAE) for mixed-type tabular data (continuous, binary, categorical). Models are implemented using 'TensorFlow' and 'Keras' via the 'reticulate' interface, enabling reproducible VAE training for heterogeneous tabular datasets.

Version: 0.1.1
Depends: R (≥ 4.1)
Imports: keras, magrittr, R6, reticulate, tensorflow
Suggests: caret
Published: 2025-11-24
DOI: 10.32614/CRAN.package.autotab (may not be active yet)
Author: Sarah Milligan [aut, cre]
Maintainer: Sarah Milligan <slm1999 at bu.edu>
BugReports: https://github.com/SarahMilligan-hub/AutoTab/issues
License: MIT + file LICENSE
URL: https://github.com/SarahMilligan-hub/AutoTab
NeedsCompilation: no
SystemRequirements: Python (>= 3.8); TensorFlow (>= 2.10); Keras; TensorFlow Addons
Materials: README
CRAN checks: autotab results

Documentation:

Reference manual: autotab.html , autotab.pdf

Downloads:

Package source: autotab_0.1.1.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): autotab_0.1.1.tgz, r-oldrel (arm64): autotab_0.1.1.tgz, r-release (x86_64): autotab_0.1.1.tgz, r-oldrel (x86_64): autotab_0.1.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=autotab to link to this page.