
Package ‘hdMTD’
November 1, 2025

Type Package

Title Inference for High-Dimensional Mixture Transition Distribution
Models

Version 0.1.3

Description Estimates parameters in Mixture Transition Distribution (MTD) models, a class of high-
order Markov chains. The set of relevant pasts (lags) is selected using either the Bayesian Infor-
mation Criterion or the Forward Stepwise and Cut algorithms. Other model parameters (e.g. tran-
sition probabilities and oscillations) can be estimated via maximum likelihood estima-
tion or the Expectation-Maximization algorithm. Additionally, 'hdMTD' includes a perfect sam-
pling algorithm that generates samples of an MTD model from its invariant distribution. For the-
ory, see Ost & Takahashi (2023) <http://jmlr.org/papers/v24/22-0266.html>.

URL https://github.com/MaiaraGripp/hdMTD

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 4.1.0)

Imports methods, dplyr, purrr, igraph

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Maiara Gripp [aut, cre],
Guilherme Ost [ths],
Giulio Iacobelli [ths]

Maintainer Maiara Gripp <maiara@dme.ufrj.br>

Repository CRAN

Date/Publication 2025-11-01 22:30:02 UTC

1

http://jmlr.org/papers/v24/22-0266.html
https://github.com/MaiaraGripp/hdMTD

2 as.MTD

Contents
as.MTD . 2
countsTab . 3
dTV_sample . 4
empirical_probs . 6
freqTab . 7
hdMTD . 8
hdMTD-methods . 10
hdMTD_BIC . 11
hdMTD_CUT . 14
hdMTD_FS . 15
hdMTD_FSC . 17
MTD-accessors . 18
MTD-methods . 20
MTDest . 21
MTDest-methods . 23
MTDmodel . 25
oscillation . 27
perfectSample . 28
plot.MTD . 29
plot.MTDest . 31
probs . 32
tempdata . 34

Index 36

as.MTD Coerce an EM fit to an MTD model

Description

Convenience coercion to rebuild an object of class "MTD" from an "MTDest" fit (or its summary).
This simply feeds the estimated parameters back into MTDmodel.

Usage

as.MTD(x, ...)

Arguments

x An object of class "MTDest" or "summary.MTDest".

... Further arguments passed to or from other methods (ignored).

Value

An object of class "MTD" as returned by MTDmodel.

countsTab 3

See Also

MTDest, MTDmodel

Examples

Not run:
set.seed(1)
MTD <- MTDmodel(Lambda = c(1, 3), A = c(0, 1), lam0 = 0.05) # generates MTD model
X <- perfectSample(MTD, N = 400) # generates MTD sample
init <- list(
p0 = c(0.4, 0.6),
lambdas = c(0.05, 0.45, 0.5),
pj = list(

matrix(c(0.2, 0.8, 0.45, 0.55), byrow = TRUE, ncol = 2),
matrix(c(0.25, 0.75, 0.3, 0.7), byrow = TRUE, ncol = 2)

)
)
fit <- MTDest(X, S = c(1, 3), init = init) # estimates parameters from sample
m <- as.MTD(fit) # generates an MTD model from estimated parameters
str(m, max.level = 1)

End(Not run)

countsTab Counts sequences of length d+1 in a sample

Description

Creates a tibble containing all unique sequences of length d+1 found in the sample, along with their
absolute frequencies.

Usage

countsTab(X, d)

Arguments

X A numeric vector, a single-column data frame, or a list with a sample from a
Markov chain. The first element must be the most recent observation.

d A positive integer specifying the number of elements in each sequence, which
will be d+1. Typically, d represents the chain order or serves as an upper limit
for it.

4 dTV_sample

Details

The function generates a tibble with d+2 columns. In the first d+1 columns, each row displays a
unique sequence of size d+1 observed in the sample. The last column, called Nxa, contains the
number of times each of these sequences appeared in the sample.

The number of rows in the output varies between 1 and |A|d+1, where |A| is the number of unique
states in X, since it depends on the number of unique sequences that appear in the sample.

Value

A tibble with all observed sequences of length d+1 and their absolute frequencies.

Examples

countsTab(c(1,2,2,1,2,1,1,2,1,2), d = 3)

Using simulated data.
set.seed(1)
M <- MTDmodel(Lambda = c(1, 3), A = c(1, 2), lam0 = 0.05)
X <- perfectSample(M, N = 400)
countsTab(X, d = 2)

dTV_sample The total variation distance between distributions

Description

Calculates the total variation distance between distributions conditioned in a given past sequence.

Usage

dTV_sample(S, j, A = NULL, base, lenA = NULL, A_pairs = NULL, x_S)

Arguments

S A numeric vector of positive integers (or NULL) representing a set of past lags.
The distributions from which this function will calculate the total variation dis-
tance are conditioned on a fixed sequence indexed by S (the user must also input
the sequence through the argument x_S).

j A positive integer representing a lag in the complement of S. The symbols
indexed by j vary along the state space A, altering the distribution through this
single lag, and the size of this change is what this function seeks to measure.

A A vector of unique nonnegative integers (state space) with at least two elements.
A represents the state space. You may leave A=NULL (default) if you provide the
function with the arguments lenA and A_pairs (see Details below).

dTV_sample 5

base A data frame with sequences of elements from A and their transition probabil-
ities. base is meant to be an output from function freqTab(), and must be
structured as such. The data frame must contain all required transitions condi-
tioned on x_S (i.e. length(A)^2 rows with sequence x_S). See Details section
for further information.

lenA An integer >= 2, representing length(A). Required if A is not provided.

A_pairs A two-column matrix with all unique pairs of elements from A. Required if A is
not provided.

x_S A vector of length length(S) or NULL. If S==NULL, x_S will be set to NULL. x_S
represents a sequence of symbols from A indexed by S. This sequence remains
constant across the conditional distributions to be compared, representing the
fixed configuration of the past.

Details

This function computes the total variation distance between distributions found in base, which is ex-
pected to be the output of the function freqTab(). Therefore, base must follow a specific structure
(e.g., column names must match, and a column named qax_Sj, containing transition distributions,
must be present). For more details on the output structure of freqTab(), refer to its documentation.

The total-variation distance is computed as

1
2

∑
a∈A

|p̂(a|x−S , x−j = b)− p̂(a|x−S , x−j = c)| ,

for each pair of symbols b, c in A using the empirical conditional probabilities obtained from
freqTab for the supplied S and j.

If you provide the state space A, the function calculates: lenA <- length(A) and A_pairs <-
t(utils::combn(A, 2)). Alternatively, you can input lenA and A_pairs directly and let A <-
NULL, which is useful in loops to improve efficiency.

Value

A single-row matrix with one column per pair of distinct elements from the state space A (so
choose(length(A), 2) columns). Each entry corresponds to the total variation distance between
a pair of distributions, conditioned on the same fixed past x_S (when S is not NULL), differing only
in the symbol indexed by j, which varies across all distinct pairs of elements in A. When S is NULL,
the row name is the empty string "".

Examples

set.seed(1)
M <- MTDmodel(Lambda = c(1, 4), A = c(1, 2, 3), lam0 = 0.1)
X <- perfectSample(M, N = 400)
ct <- countsTab(X, d = 5)

--- Case 1: S non-empty
pbase <- freqTab(S = c(1, 4), j = 2, A = c(1, 2, 3), countsTab = ct)
dTV_sample(S = c(1, 2), j = 4, A = c(1, 2, 3), base = pbase, x_S = c(2, 3))

6 empirical_probs

--- Case 2: S = NULL
pbase2 <- freqTab(S = NULL, j = 1, A = c(1, 2, 3), countsTab = ct)
dTV_sample(S = NULL, j = 1, A = c(1, 2, 3), base = pbase2)

empirical_probs Estimated transition probabilities

Description

Computes the Maximum Likelihood estimators (MLE) for an MTD Markov chain with relevant lag
set S.

Usage

empirical_probs(X, S, matrixform = FALSE, A = NULL, warn = FALSE)

Arguments

X A vector or single-column data frame containing a sample of a Markov chain
(X[1] is the most recent).

S A numeric vector of unique positive integers. Typically, S represents a set of
relevant lags.

matrixform Logical. If TRUE, the output is formatted as a stochastic transition matrix.
A A numeric vector of distinct integers representing the state space. If not pro-

vided, this function will set A <- sort(unique(X)).
warn Logical. If TRUE, the function warns the user when the state space is automati-

cally set as A <- sort(unique(X)).

Details

The probabilities are estimated as:

p̂(a|xS) =
N(xSa)

N(xS)

where N(xSa) is the number of times the sequence xS appeared in the sample followed by a, and
N(xS) is the number of times xS appeared (followed by any state). If N(xS) = 0, the probability
is set to 1/|A| (assuming a uniform distribution over A).

Value

A data frame or a matrix containing estimated transition probabilities:

• If matrixform = FALSE, the function returns a data frame with three columns:
– The past sequence xS (a concatenation of past states).
– The current state a.
– The estimated probability p̂(a|xS).

• If matrixform = TRUE, the function returns a stochastic transition matrix, where rows corre-
spond to past sequences xS and columns correspond to states in A.

freqTab 7

Examples

Simulate a chain from an MTD model
set.seed(1)
M <- MTDmodel(Lambda = c(1, 15, 30), A = c(1, 2, 3), lam0 = 0.05)
X <- perfectSample(M, N = 400)

Estimate probabilities for different subsets S
empirical_probs(X, S = c(1, 30))
empirical_probs(X, S = c(1, 15, 30), matrixform = TRUE)

freqTab A tibble containing sample sequence frequencies and estimated prob-
abilities

Description

This function returns a tibble containing the sample sequences, their frequencies and the estimated
transition probabilities.

Usage

freqTab(S, j = NULL, A, countsTab, complete = TRUE)

Arguments

S A numeric vector of positive integers or NULL. Represents a set of past lags that
must be present within the columns of the countsTab argument and are to be
considered while estimating the transition probabilities. Both S and j cannot be
NULL at the same time.

j An integer or NULL. Typically represents a lag j in the complement of S. Both
S and j cannot be NULL at the same time. See Details for further information.

A A vector with nonnegative integers. Must have at least two different entries. A
represents the state space.

countsTab A tibble or a data frame with all sequences of length d+1 that appear in the sam-
ple, and their absolute frequency. This tibble is typically generated by the func-
tion countsTab(). If using a custom data frame not generated by countsTab(),
make sure its format and column names match the expected structure; otherwise,
errors may occur in freqTab().

complete Logical. If TRUE all sequences that did not appear in the sample will be included
in the output with frequency equal to 0.

Details

The parameters S and j determine which columns of countsTab are retained in the output. Spec-
ifying a lag j is optional. All lags can be specified via S, while leaving j = NULL (default). The
output remains the same as when specifying S and j separately. The inclusion of j as a parameter
improves clarity within the package’s algorithms. Note that j cannot be an element of S.

8 hdMTD

Value

A tibble where each row represents a sequence of elements from A. The initial columns display
each sequence symbol separated into columns corresponding to their time indexes. The remain-
ing columns show the sample frequencies of the sequences and the MLE (Maximum Likelihood
Estimator) of the transition probabilities.

Examples

Reproducible simulated data
set.seed(1)
M <- MTDmodel(Lambda = c(1, 4), A = c(1, 2, 3), lam0 = 0.1)
X <- perfectSample(M, N = 400)
ct <- countsTab(X, d = 5)

Example with S non-empty and j specified
freqTab(S = c(1, 4), j = 2, A = c(1, 2, 3), countsTab = ct)

Equivalent to calling with S = c(1,2,4) and j = NULL
freqTab(S = c(1, 2, 4), j = NULL, A = c(1, 2, 3), countsTab = ct)

hdMTD Inference in MTD models

Description

This function estimates the relevant lag set in a Mixture Transition Distribution (MTD) model using
one of the available methods. By default, it applies the Forward Stepwise ("FS") method, which is
particularly useful in high-dimensional settings.

Usage

hdMTD(X, d, method = "FS", ...)

Arguments

X A vector or single-column data frame containing a chain sample.

d A positive integer representing an upper bound for the chain order.

method A character string indicating the method for estimating the relevant lag set. The
available methods are: "FS" (default), "FSC", "CUT", and "BIC". See the De-
tails section and the documentation of the corresponding method functions for
more information.

... Additional arguments for the selected method. If not specified, default values
will be used (see Details).

hdMTD 9

Details

The available methods are:

• "FS" (Forward Stepwise): selects the lags by a criterion that depends on their oscillations.

• "CUT": a method that selects the relevant lag set based on a predefined threshold.

• "FSC" (Forward Stepwise and Cut): applies the "FS" method followed by the "CUT" method.

• "BIC": selects the lag set using the Bayesian Information Criterion.

The function dynamically calls the corresponding method function (e.g., hdMTD_FSC() for method
= "FSC"). Additional parameters specific to each method can be provided via ..., and default
values are used for unspecified parameters.

This function serves as a wrapper for the method-specific functions:

• hdMTD_FS(), for method = "FS"

• hdMTD_FSC(), for method = "FSC"

• hdMTD_CUT(), for method = "CUT"

• hdMTD_BIC(), for method = "BIC"

Any additional parameters (...) must match those accepted by the corresponding method function.
If a parameter value is not explicitly provided, a default value is used. The main default parameters
are:

• S = seq_len(d): Used in "BIC" or "CUT" methods.

• alpha = 0.05, mu = 1. Used in "CUT" or "FSC" methods.

• xi = 0.5. Used in "CUT", "FSC" or "BIC" methods.

• minl = 1, maxl = length(S), byl = FALSE. Used in "BIC" method. All default values are
specified in the documentation of the method-specific functions.

BIC-specific notes. When method = "BIC", the object may carry additional BIC diagnostics:

• attr(x, "extras")$BIC_out: exactly the object returned by hdMTD_BIC() (its type depends
on BICvalue and byl: named numeric vector when BICvalue = TRUE; otherwise a character
vector of labels, possibly including "smallest: <set>").

• attr(x, "BIC_selected_value"): when BICvalue = TRUE, the numeric BIC at the selected
lag set (shown by summary()).

Value

An integer vector of class "hdMTD" (the selected lag set S ⊂ N+), with attributes:

• method, d, call, settings

• A: the state space actually used (either provided A, or sort(unique(X)) if A = NULL)

• (for method="BIC") extras: a list with BIC_out (exactly the object returned by hdMTD_BIC)

• (for method="BIC" and BICvalue = TRUE) BIC_selected_value: numeric BIC at the se-
lected set

The returned object supports print() and summary() methods.

10 hdMTD-methods

See Also

hdMTD_FS, hdMTD_FSC, hdMTD_CUT, hdMTD_BIC, S, lags

Examples

Simulate a chain from an MTD model
set.seed(1)
M <- MTDmodel(Lambda = c(1, 4), A = c(1, 3), lam0 = 0.05)
X <- perfectSample(M, N = 400)

Fit using Forward Stepwise (FS)
S_fs <- hdMTD(X = X, d = 5, method = "FS", l = 2)
print(S_fs)
summary(S_fs) # shows A used if A = NULL in the call

Fit using Bayesian Information Criterion (BIC)
hdMTD(X = X, d = 5, method = "BIC", xi = 0.6, minl = 3, maxl = 3)

hdMTD-methods Methods for objects of class "hdMTD"

Description

Printing and summarizing methods for lag-selection results returned by hdMTD.

Arguments

x An object of class "hdMTD" or "summary.hdMTD", depending on the method.
object An object of class "hdMTD".
settings Logical (summary.hdMTD only). If TRUE, the printed summary includes the

method-specific settings list. Default FALSE.
... Further arguments passed to or from other methods (ignored).

Details

An object of class "hdMTD" is an integer vector S (selected lags, elements of N+) with attributes:

• method: one of "FS", "FSC", "CUT", "BIC".
• d: upper bound for the order used in the call.
• call: the matched call that produced the object.
• settings: a (method-specific) list of the arguments actually used.
• A: the state space actually used (provided or inferred).
• (optional) BIC_selected_value for method="BIC" with BICvalue=TRUE.
• (optional) extras$BIC_out for method="BIC" (exactly the output of hdMTD_BIC()).

print() shows the method, d, and the selected set of lags in N+. summary() also prints the call,
the state space used, the estimated lag set, optional BIC diagnostics, and the settings.

hdMTD_BIC 11

Value

print.hdMTD Invisibly returns the "hdMTD" object.

summary.hdMTD An object of class "summary.hdMTD".

print.summary.hdMTD Invisibly returns the "summary.hdMTD" object.

See Also

hdMTD, hdMTD_FS, hdMTD_FSC, hdMTD_CUT, hdMTD_BIC, S, lags

Examples

Not run:
set.seed(1)
M <- MTDmodel(Lambda = c(1, 4), A = c(1, 3), lam0 = 0.05)
X <- perfectSample(M, N = 400)
S_hat <- hdMTD(X, d = 5, method = "FS", l = 2)
print(S_hat)
summary(S_hat)
S(S_hat); lags(S_hat)

End(Not run)

hdMTD_BIC The Bayesian Information Criterion (BIC) method for inference in
MTD models

Description

A function for estimating the relevant lag set Λ of a Markov chain using Bayesian Information
Criterion (BIC). This means that this method selects the set of lags that minimizes a penalized log
likelihood for a given sample, see References below for details on the method.

Usage

hdMTD_BIC(
X,
d,
S = seq_len(d),
minl = 1,
maxl = length(S),
xi = 1/2,
A = NULL,
byl = FALSE,
BICvalue = FALSE,
single_matrix = FALSE,
indep_part = TRUE,

12 hdMTD_BIC

zeta = maxl,
warn = FALSE,
...

)

Arguments

X A vector or single-column data frame containing a chain sample (X[1] is the
most recent).

d A positive integer representing an upper bound for the chain order.

S A numeric vector of positive integers from which this function will select a set
of relevant lags. Typically, S is a subset of 1:d. If S is not provided, by default
S=1:d.

minl A positive integer. minl represents the smallest length of any relevant lag set this
function might return. If minl == maxl, this function will return the subset of S
of length minl with the lowest BIC. If minl < maxl, the function will consider
subsets ranging from length minl to length maxl when searching for the subset
of S with the smallest BIC.

maxl A positive integer equal to or greater than minl but less than the number of
elements in S (maxl = length(S) is accepted but in this case the output will al-
ways be S). maxl represents the largest length of any relevant lag set this function
might return.

xi The BIC penalization term constant. Defaulted to 1/2. A smaller xi (near 0)
reduces the impact of overparameterization.

A A vector with positive integers representing the state space. If not informed, this
function will set A=sort(unique(X)).

byl Logical. If TRUE, the function will look for the set with smallest BIC by each
length (from minl to maxl), and return the set with smallest BIC for each length.
If minl==maxl setting byl=TRUE or FALSE makes no difference, since the func-
tion will only calculate the BIC for sets with maxl elements in the relevant lag
set.

BICvalue Logical. If TRUE, the function will also return the calculated values of the BIC
for the estimated relevant lag sets.

single_matrix Logical. If TRUE, the chain sample is thought to come from an MTD model
where the stochastic matrices pj are constant across all lags j ∈ Λ. In practice,
this means the user believes the stochastic matrices for every lag in S are the
same, which reduces the number of parameters in the penalization term.

indep_part Logical. If FALSE there is no independent distribution and λ0 = 0 which reduces
the number of parameters in the penalization term.

zeta A positive integer representing the number of distinct matrices pj in the MTD,
which affects the number of parameters in the penalization term. Defaulted to
maxl. See more in Details.

warn Logical. If TRUE, the function warns the user when A is set automatically.

... Additional arguments (not used in this function, but maintained for compatibility
with hdMTD().

hdMTD_BIC 13

Details

Criterion. For each candidate lag set T contained in S with size l = |T | where minl <= l <= maxl,
hdMTD_BIC() evaluates

BIC(T) = −LT + xi ∗ df(T) ∗ log(N),

where N = length(X) and

LT =
∑

xT∈AT

∑
a∈A

N(axT) ∗ log(p̂(a|xT)).

The empirical conditionals are

p̂(a|xT) = N(axT)/N(xT),

computed from the sample counts (same quantities returned by freqTab and empirical_probs).

Degrees of freedom. The parameter count df(T) is the number of free parameters of an MTD
model with lag set T and state space A, honoring the constraints single_matrix, indep_part,
and zeta:

df(T) = wdf + p0df + |A| ∗ (|A| − 1) ∗ zeta.

Here zeta is the number of distinct pj matrices allowed across lags (by default zeta = l; setting
single_matrix = TRUE forces zeta = 1). The weight and independent-part contributions are:
wdf = l if indep_part is TRUE, otherwise wdf = l − 1; p0df = |A| − 1 if indep_part is TRUE,
otherwise p0df = 0.

Scale. With xi = 1/2 (the default), BIC equals one half of the classical Schwarz BIC −2 ∗ LT +
df(T) ∗ log(N); minimizing either criterion selects the same lag set.

Note. The likelihood term LT sums over the N −max(T) effective transitions, while the penalty
uses log(N) (this matches the implementation).

Note that the upper bound for the order of the chain (d) affects the estimation of the transition
probabilities. If we run the function with a certain order parameter d, only the sequences of length
d that appeared in the sample will be counted. Therefore, all transition probabilities, and hence
all BIC values, will be calculated with respect to that d. If we use another value for d to run the
function, even if the output agrees with that of the previous run, its BIC value might change a little.

The parameter zeta indicates the the number of distinct matrices pj in the MTD. If zeta = 1, all
matrices pj are identical; if zeta = 2 there exists two groups of distinct matrices and so on. The
largest value for zeta is maxl since this is the largest number of matrices pj . When minl<maxl, for
each minl ≤ l ≤ maxl, zeta = min(zeta,l). If single_matrix = TRUE then zeta is set to 1.

Value

Returns a vector with the estimated relevant lag set using BIC. It might return more than one set
if minl < maxl and byl = TRUE. Additionally, it can return the value of the penalized likelihood for
the outputted lag sets if BICvalue = TRUE.

References

Imre Csiszár, Paul C. Shields. The consistency of the BIC Markov order estimator. The Annals of
Statistics, 28(6), 1601-1619. doi:10.1214/aos/1015957472

https://doi.org/10.1214/aos/1015957472

14 hdMTD_CUT

Examples

Simulate a chain from an MTD model
set.seed(1)
M <- MTDmodel(Lambda = c(1, 3), A = c(1, 2), lam0 = 0.05)
X <- perfectSample(M, N = 400)

Fit using BIC with a single lag
hdMTD_BIC(X, d = 6, minl = 1, maxl = 1)

Fit using BIC with lag selection and extract BIC value
hdMTD_BIC(X, d = 3, minl = 1, maxl = 2, BICvalue = TRUE)

hdMTD_CUT The CUT method for inference in MTD models

Description

A function that estimates the set of relevant lags of an MTD model using the CUT method.

Usage

hdMTD_CUT(
X,
d,
S = seq_len(d),
alpha = 0.05,
mu = 1,
xi = 0.5,
A = NULL,
warn = FALSE,
...

)

Arguments

X A vector or single-column data frame containing a chain sample (X[1] is the
most recent).

d A positive integer representing an upper bound for the chain order.

S A numeric vector of distinct positive integers from which this function will se-
lect a set of relevant lags. Should be a subset of 1:d. Default is 1:d.

alpha A positive real number used in the CUT threshold (which determines if two dis-
tributions can be considered different). The larger the alpha, the greater the
distance required to consider that there is a difference between a set of distribu-
tions.

mu A positive real number such that mu > (emu − 1)/2. mu is also a component of
the same threshold as alpha.

hdMTD_FS 15

xi A positive real number, xi is also a component of the same threshold as alpha.

A A vector with positive integers representing the state space. If not informed, this
function will set A <- sort(unique(X)).

warn Logical. If TRUE, the function warns the user when A is set automatically.

... Additional arguments (not used in this function, but maintained for compatibility
with hdMTD().

Details

The "Forward Stepwise and Cut" (FSC) is an algorithm for inference in Mixture Transition Distri-
bution (MTD) models. It consists in the application of the "Forward Stepwise" (FS) step followed
by the CUT algorithm. This method and its steps where developed by Ost and Takahashi and are
specially useful for inference in high-order MTD Markov chains. This specific function will only
apply the CUT step of the algorithm and return an estimated relevant lag set.

Value

Returns a set of relevant lags estimated using the CUT algorithm.

References

Ost, G. & Takahashi, D. Y. (2023). Sparse Markov models for high-dimensional inference. Journal
of Machine Learning Research, 24(279), 1-54. http://jmlr.org/papers/v24/22-0266.html

Examples

Simulate a chain from an MTD model
set.seed(1)
M <- MTDmodel(Lambda = c(1, 4), A = c(1, 3), lam0 = 0.05)
X <- perfectSample(M, N = 400)

Apply CUT with custom alpha, mu, and xi
hdMTD_CUT(X, d = 4, alpha = 0.02, mu = 1, xi = 0.4)

Apply CUT with selected lags and smaller alpha
hdMTD_CUT(X, d = 6, S = c(1, 4, 6), alpha = 0.08)

hdMTD_FS The Forward Stepwise (FS) method for inference in MTD models

Description

A function that estimates the set of relevant lags of an MTD model using the FS method.

Usage

hdMTD_FS(X, d, l, A = NULL, elbowTest = FALSE, warn = FALSE, ...)

http://jmlr.org/papers/v24/22-0266.html
http://jmlr.org/papers/v24/22-0266.html

16 hdMTD_FS

Arguments

X A vector or single-column data frame containing a chain sample (X[1] is the
most recent).

d A positive integer representing an upper bound for the chain order.

l A positive integer specifying the number of lags to be selected as relevant.

A A vector with positive integers representing the state space. If not informed, this
function will set A <- sort(unique(X)).

elbowTest Logical. If TRUE, the function applies an alternative stopping criterion to deter-
mine the length of the set of relevant lags. See Details for more information.

warn Logical. If TRUE, the function warns the user when A is set automatically.

... Additional arguments (not used in this function, but maintained for compatibility
with hdMTD().

Details

The "Forward Stepwise" (FS) algorithm is the first step of the "Forward Stepwise and Cut" (FSC)
algorithm for inference in Mixture Transition Distribution (MTD) models. This method was devel-
oped by Ost and Takahashi This specific function will only apply the FS step of the algorithm and
return an estimated relevant lag set of length l.

This method iteratively selects the most relevant lags based on a certain quantity ν. In the first
step, the lag in 1:d with the greatest ν is deemed important. This lag is included in the output,
and using this knowledge, the function proceeds to seek the next important lag (the one with the
highest ν among the remaining ones). The process stops when the output vector reaches length l if
elbowTest=FALSE.

If elbowTest = TRUE, the function will store these maximum ν values at each iteration, and output
only the lags that appear before the one with smallest ν among them.

Value

A numeric vector containing the estimated relevant lag set using FS algorithm.

Note

Tie-breaking: if multiple lags share the maximum ν, FS picks the most recent lag (smallest j). Up
to version 0.1.2 ties were broken at random, which could cause run-to-run differences.

References

Ost, G. & Takahashi, D. Y. (2023). Sparse Markov models for high-dimensional inference. Journal
of Machine Learning Research, 24(279), 1-54. http://jmlr.org/papers/v24/22-0266.html

Examples

Simulate a chain from an MTD model
set.seed(1)
M <- MTDmodel(Lambda = c(1, 3), A = c(1, 2), lam0 = 0.05)
X <- perfectSample(M, N = 400)

http://jmlr.org/papers/v24/22-0266.html
http://jmlr.org/papers/v24/22-0266.html

hdMTD_FSC 17

Forward Stepwise with l = 2
hdMTD_FS(X, d = 5, l = 2)

Forward Stepwise with l = 3
hdMTD_FS(X, d = 4, l = 3)

hdMTD_FSC Forward Stepwise and Cut method for inference in MTD models

Description

A function for inference in MTD Markov chains with FSC method. This function estimates the
relevant lag set Λ of an MTD model through the FSC algorithm.

Usage

hdMTD_FSC(X, d, l, alpha = 0.05, mu = 1, xi = 0.5, A = NULL, ...)

Arguments

X A vector or single-column data frame containing a chain sample (X[1] is the
most recent).

d A positive integer representing an upper bound for the chain order.

l A positive integer that sets the number of elements in the output vector.

alpha A positive real number used in the CUT threshold (which determines if two dis-
tributions can be considered different). The larger the alpha, the greater the
distance required to consider that there is a difference between a set of distribu-
tions. Defaulted to 0.05.

mu A positive real number such that mu > (emu − 1)/2. mu is also a component of
the same threshold as alpha.

xi A positive real number, xi is also a component of the same threshold as alpha.

A A vector with positive integers representing the state space. If not informed, this
function will set A <- sort(unique(X)).

... Additional arguments (not used in this function, but maintained for compatibility
with hdMTD().

Details

The "Forward Stepwise and Cut" (FSC) is an algorithm for inference in Mixture Transition Distri-
bution (MTD) models. It consists in the application of the "Forward Stepwise" (FS) step followed
by the CUT algorithm. This method and its steps where developed by Ost and Takahashi and are
specially useful for inference in high-order MTD Markov chains.

http://jmlr.org/papers/v24/22-0266.html

18 MTD-accessors

Value

Returns a vector with the estimated relevant lag set using FSC algorithm.

References

Ost, G. & Takahashi, D. Y. (2023). Sparse Markov models for high-dimensional inference. Journal
of Machine Learning Research, 24(279), 1-54. http://jmlr.org/papers/v24/22-0266.html

Examples

Simulate a chain from an MTD model
set.seed(1)
M <- MTDmodel(Lambda = c(1, 3), A = c(1, 2), lam0 = 0.05)
X <- perfectSample(M, N = 400)

Forward Stepwise and Cut with different parameters
hdMTD_FSC(X, d = 4, l = 2)
hdMTD_FSC(X, d = 4, l = 3, alpha = 0.1)

MTD-accessors Accessors for objects of classes "MTD", "MTDest", and "hdMTD"

Description

Public accessors that expose model components without relying on the internal list structure. These
accessors are available for "MTD" (model objects), "MTDest" (EM fits), and "hdMTD" (lag selection),
except transitP() which only applies to "MTD".

Usage

pj(object)

p0(object)

lambdas(object)

lags(object)

Lambda(object)

S(object)

states(object)

transitP(object)

http://jmlr.org/papers/v24/22-0266.html

MTD-accessors 19

Arguments

object An object of class "MTD", "MTDest" or "hdMTD" (as supported by each accessor).

Details

Returned lag sets follow the package convention and are shown as negative integers via lags()
(elements of Z−). For convenience, positive-index accessors are also provided: Lambda() for "MTD"
objects and S() for "MTDest" and "hdMTD" objects (elements of N+). Internally, lags may be stored
as positive integers in Lambda or S.

For computing the global transition matrix of an EM fit the user can first coerce the MTDest object
into an MTD using as.MTD and then access the matrix with transitP(as.MTD(object)).

Value

pj(object) A list of stochastic matrices (one per lag).

p0(object) A numeric probability vector for the independent component.

lambdas(object) A numeric vector of mixture weights that sums to 1.

lags(object) The lag set (elements of Z−).

Lambda(object) For "MTD", the lag set as positive integers (elements of N+).

S(object) For "MTDest" and "hdMTD", the lag set as positive integers (elements of N+).

states(object) The state space.

transitP(object) For "MTD" objects only, the global transition matrix P . Not available for
"MTDest".

See Also

MTDmodel, MTDest, hdMTD, as.MTD

Examples

Not run:
For generating an MTD model
set.seed(1)
m <- MTDmodel(Lambda = c(1, 3), A = c(0, 1))
pj(m); p0(m); lambdas(m); lags(m); Lambda(m); states(m)
transitP(m)
For an EM fit (using coef(m) as init for simplicity):
X <- perfectSample(m, N = 800)
fit <- MTDest(X, S = c(1, 3), init = coef(m))
pj(fit); p0(fit); lambdas(fit); lags(fit); S(fit); states(fit)
transitP(as.MTD(fit))
For lag selection:
S_hat <- hdMTD(X, d = 5, method = "FS", l = 2)
S(S_hat); lags(S_hat)

End(Not run)

20 MTD-methods

MTD-methods Methods for objects of class "MTD"

Description

Printing, summarizing, and coefficient-extraction methods for Mixture Transition Distribution (MTD)
model objects.

Arguments

x An object of class "MTD" or "summary.MTD", depending on the method.

object An object of class "MTD".

X A vector or single-column data frame containing an MTD chain sample (values
must be in the model’s state space).

... Further arguments passed to or from other methods (ignored).

Details

These methods operate on objects created by MTDmodel:

• print.MTD() displays a compact summary of the model: the relevant lag set (shown as nega-
tive integers) and the state space.

• summary.MTD() collects the key components of the model into a list (class "summary.MTD")
containing order, lags, state space, mixture weights, independent distribution (if present), the
dimension of the global transition matrix P , and a compact preview of its first rows.

• print.summary.MTD() prints that summary in a readable format, including lambdas, transi-
tion matrices pj , the independent distribution p0 (if present), and a guide for interpreting the
rows of the global transition matrix P .

• coef.MTD() extracts the model parameters as a list with lambdas, pj, and p0.

• logLik.MTD() computes the log-likelihood of a sample under the model. Since an object
of class "MTD" carries only the model parameters, a sample X must be supplied. The method
honors constraints such as single_matrix and an independent component (indep_part), and
returns an object of class "logLik" with appropriate attributes.

Value

print.MTD Invisibly returns the "MTD" object, after displaying its relevant lag set and state space.

summary.MTD An object of class "summary.MTD" with fields: order, states, lags, indep, lambdas,
p0 (or NULL), P_dim, and P_head.

print.summary.MTD Invisibly returns the "summary.MTD" object after printing its contents.

coef.MTD A list with model parameters: lambdas, pj, and p0.

logLik.MTD An object of class "logLik" with attributes nobs (number of transitions) and df (free
parameters), honoring model constraints such as single_matrix and the independent com-
ponent (indep_part).

MTDest 21

See Also

MTDmodel, MTDest, transitP, lambdas, pj, p0, lags, Lambda, states, MTDest-methods, oscillation,
perfectSample, logLik

Examples

Not run:
set.seed(1)
m <- MTDmodel(Lambda = c(1, 3), A = c(0, 1), lam0 = 0.05)

print(m) # compact display: lags (Z^-) and state space
s <- summary(m)
print(s)

coef(m) # list(lambdas = ..., pj = ..., p0 = ...)
transitP(m) # global transition matrix P
pj(m); p0(m); lambdas(m); lags(m); Lambda(m); states(m)

X <- perfectSample(m, N = 400)
logLik(m, X)

End(Not run)

MTDest EM estimation of MTD parameters

Description

Estimation of MTD parameters through the Expectation Maximization (EM) algorithm.

Usage

MTDest(
X,
S,
M = 0.01,
init,
iter = FALSE,
nIter = 100,
A = NULL,
oscillations = FALSE

)

Arguments

X A vector or single-column data frame containing an MTD chain sample (X[1]
is the most recent).

22 MTDest

S A numeric vector of distinct positive integers, sorted increasingly. Typically, S
represents a set of relevant lags.

M A stopping point for the EM algorithm. If M=NULL the algorithm will run for a
total of nIter iterations (i.e., no convergence check).

init A list with initial parameters: p0 (optional), lambdas (required), pj (required).
The entries in lambdas are weights for the distribution p0 and the distributions
present in the list pj. Therefore, the order in which the elements appear in the
vector lambdas is important for correct assignment. See Details.

iter Logical. If TRUE include iteration diagnostics in the output (number of up-
dates iterations; vector of absolute log-likelihood changes deltaLogLik; and
lastComputedDelta, the last delta log-likelihood compared against M).

nIter An integer positive number with the maximum number of EM iterations.

A Optional integer vector giving the state space. If omitted, defaults to sort(unique(X)).

oscillations Logical. If TRUE, also compute oscillations for the fitted model (see oscillation).

Details

Regarding the M parameter: it functions as a stopping criterion within the EM algorithm. When
the difference between the log-likelihood computed with the newly estimated parameters and that
computed with the previous parameters falls below M, the algorithm halts. Nevertheless, if the
value of nIter (which represents the maximum number of iterations) is smaller than the number of
iterations required to meet the M criterion, the algorithm will conclude its execution when nIter is
reached. To ensure that the M criterion is effectively utilized, we recommend using a higher value
for nIter, which is set to a default of 100.

Concerning the init parameter, it is expected to be a list with 2 or 3 entries. These entries consist
of: an optional vector named p0, representing an independent distribution (the probability in the
first entry of p0 must be that of the smallest element in A and so on), a required list of matrices pj,
containing a stochastic matrix for each element of S (the first matrix corresponds to the smallest lag
in S and so on), and a vector named lambdas representing the weights, the first entry must be the
weight for p0, and then one entry for each element in pj list. If your MTD model does not have an
independent distribution p0, set init$lambdas[1]=0.

Value

An S3 object of class "MTDest" (a list) with at least the following elements:

• lambdas: estimated mixture weights (independent part first, if any).

• pj: list of estimated transition matrices pj .

• p0: estimated independent distribution (if applicable).

• logLik: log-likelihood of the final fitted model.

• iterations, deltaLogLik, lastComputedDelta (optional): returned if iter = TRUE. Here,
iterations is the number of parameter updates performed; deltaLogLik stores the succes-
sive absolute log-likelihood changes for the accepted updates; and lastComputedDelta is the
last computed change (which may be below M when the loop stops by convergence).

• oscillations (optional): returned if oscillations = TRUE.

MTDest-methods 23

• call: the matched call.

• S: the lag set used for estimation.

• A: the state space used for estimation.

• n: the sample size.

• n_eff: the effective sample size used for estimation.

References

Lebre, Sophie and Bourguignon, Pierre-Yves. (2008). An EM algorithm for estimation in the
Mixture Transition Distribution model. Journal of Statistical Computation and Simulation, 78(1),
1-15. doi:10.1080/00949650701266666

See Also

Methods for fitted objects: MTDest-methods. Model constructor and related utilities: MTDmodel,
oscillation. Coercion helper: as.MTD

Examples

Simulating data.
set.seed(1)
MTD <- MTDmodel(Lambda = c(1, 10), A = c(0, 1), lam0 = 0.01)
X <- perfectSample(MTD, N = 400)

Initial Parameters:
init <- list(

'p0' = c(0.4, 0.6),
'lambdas' = c(0.05, 0.45, 0.5),
'pj' = list(

matrix(c(0.2, 0.8, 0.45, 0.55), byrow = TRUE, ncol = 2),
matrix(c(0.25, 0.75, 0.3, 0.7), byrow = TRUE, ncol = 2)

)
)

fit <- MTDest(X, S = c(1, 10), init = init, iter = TRUE)
str(fit, max.level = 1)
fit$logLik

fit2 <- MTDest(X, S = c(1, 10), init = init, oscillations = TRUE)
fit2$oscillations

MTDest-methods Methods for objects of class "MTDest"

Description

Printing, summarizing, and extracting information from EM fits of Mixture Transition Distribution
(MTD) models.

https://doi.org/10.1080/00949650701266666

24 MTDest-methods

Arguments

x An object of class "MTDest" or "summary.MTDest", depending on the method.

object An object of class "MTDest" (used by summary, coef, and logLik methods).

... Further arguments passed to or from other methods (ignored).

Details

These methods handle objects returned by MTDest (class "MTDest"):

• print.MTDest() displays a compact summary of the fitted model: the lag set (S), the state
space (A), the final log-likelihood, and, if available, the number of EM updates performed.

• summary.MTDest() collects key components of the object into a readable summary list (class
"summary.MTDest"), including lambdas, transition matrices, independent distribution (if present),
log-likelihood, oscillations (if available), and iteration diagnostics.

• print.summary.MTDest() prints the summary in a readable format, including lambdas, tran-
sition matrices, independent distribution, log-likelihood, oscillations (if available), and itera-
tion diagnostics (if available).

• coef.MTDest() extracts the estimated mixture weights (lambdas), the list of transition matri-
ces (pj), and the independent distribution (p0).

• logLik.MTDest() returns the log-likelihood as an object of class "logLik", with attributes
df (number of free parameters under the multimatrix model) and nobs (effective sample size).

Value

print.MTDest Invisibly returns the "MTDest" object, after displaying its lag set, state space, final
log-likelihood, and iteration count (if available).

print.summary.MTDest Invisibly returns the "summary.MTDest" object, after displaying its con-
tents: lambdas; transition matrices; independent distribution; log-likelihood; oscillations (if
available); and iteration diagnostics (if available).

summary.MTDest An object of class "summary.MTDest".

coef.MTDest A list with estimated lambdas, pj, and p0.

logLik.MTDest An object of class "logLik" with attributes df (number of free parameters) and
nobs (effective sample size).

See Also

MTDest, as.MTD

Examples

Not run:
set.seed(1)
MTD <- MTDmodel(Lambda = c(1, 3), A = c(0, 1), lam0 = 0.01)
X <- perfectSample(MTD, N = 200) # small N to keep examples fast
init <- list(

p0 = c(0.4, 0.6),
lambdas = c(0.05, 0.45, 0.5),

MTDmodel 25

pj = list(
matrix(c(0.2, 0.8, 0.45, 0.55), byrow = TRUE, ncol = 2),
matrix(c(0.25, 0.75, 0.3, 0.7), byrow = TRUE, ncol = 2)

)
)
fit <- MTDest(X, S = c(1, 3), init = init, iter = TRUE)
print(fit)
summary(fit)
coef(fit)
logLik(fit)
BIC(fit)

End(Not run)

MTDmodel Creates a Mixture Transition Distribution (MTD) Model

Description

Generates an MTD model as an object of class MTD given a set of parameters.

Usage

MTDmodel(
Lambda,
A,
lam0 = NULL,
lamj = NULL,
pj = NULL,
p0 = NULL,
single_matrix = FALSE,
indep_part = TRUE

)

Arguments

Lambda A numeric vector of positive integers representing the relevant lag set. The ele-
ments will be sorted from smallest to greatest. The smallest number represents
the latest (most recent) time in the past, and the largest number represents the
earliest time in the past.

A A vector with nonnegative integers representing the state space.

lam0 A numeric value in [0,1), representing the weight of the independent distribu-
tion.

lamj A numeric vector of weights for the transition probability matrices in pj. Values
must be in the range [0, 1), and their sum with lam0 must be equal to 1. The
first element in lamj must be the weight for the first element in Lambda and so
on.

26 MTDmodel

pj A list with length(Lambda) stochastic matrices, each of size length(A) x length(A).
The first matrix in pj must refer to the first element in Lambda and so on.

p0 A probability vector for the independent component of the MTD model. If NULL
and indep_part=TRUE, the distribution will be sampled from a uniform distri-
bution. If indep_part=FALSE, then there is no independent distribution and p0
entries will be set to zero. If you enter p0=0, indep_part is set to FALSE.

single_matrix Logical. If TRUE, all matrices in list pj are identical.

indep_part Logical. If FALSE, the model does not include an independent distribution and
p0 is set to zero.

Details

The resulting MTD object can be used by functions such as oscillation(), which retrieves the
model’s oscillation, and perfectSample(), which will sample an MTD Markov chain from its
invariant distribution.

Value

A list of class MTD containing:

P The transition probability matrix of the MTD model.

lambdas A vector with MTD weights (lam0 and lamj).

pj A list of stochastic matrices defining conditional transition probabilities.

p0 The independent probability distribution.

Lambda The vector of relevant lags.

A The state space.

single_matrix A logical argument, if TRUE indicates that all matrices in pj are identical.

Examples

summary(MTDmodel(Lambda=c(1,3),A=c(4,8,12)))

MM <- MTDmodel(Lambda=c(2,4,9),A=c(0,1),lam0=0.05,lamj=c(0.35,0.2,0.4),
pj=list(matrix(c(0.5,0.7,0.5,0.3),ncol=2)),p0=c(0.2,0.8),single_matrix=TRUE)
transitP(MM); pj(MM); oscillation(MM)

MM <- MTDmodel(Lambda=c(2,4,9),A=c(0,1),lam0=0.05,
pj=list(matrix(c(0.5,0.7,0.5,0.3),ncol=2)),single_matrix=TRUE,indep_part=FALSE)
p0(MM); lambdas(MM)

oscillation 27

oscillation Oscillations of an MTD Markov chain

Description

Calculates the oscillations of an MTD model object or estimates the oscillations of a chain sample.

Usage

oscillation(x, ...)

S3 method for class 'MTD'
oscillation(x, ...)

Default S3 method:
oscillation(x, S, A = NULL, ...)

Arguments

x Must be an MTD object or a chain sample.

... Ignored.

S A numeric vector of distinct positive integers. Represents a set of lags.

A Optional integer vector giving the state space. If omitted, defaults to sort(unique(x)).

Details

For an MTD model, the oscillation for lag j ({δj : j ∈ Λ}), is the product of the weight λj

multiplied by the maximum of the total variation distance between the distributions in a stochastic
matrix pj .

δj = λj max
b,c∈A

dTV (pj(·|b), pj(·|c)).

So, if x is an MTD object, the parameters Λ, A, λj , and pj are inputted through, respectively, the
entries Lambda, A, lambdas and the list pj of stochastic matrices. Hence, an oscillation δj may be
calculated for all j ∈ Λ. For estimating the oscillations from a sample, then x must be a chain, and
S, a vector representing a set of lags, must be informed. This way the transition probabilities can be
estimated.

Let p̂(·|xS) symbolize an estimated distribution in A given a certain past xS (which is a sequence
of elements of A where each element occurred at a lag in S), and p̂(·|bjxS) an estimated distribution
given past xS and that the symbol b ∈ A occurred at lag j. If N is the sample size, d =max(S) and
N(xS) is the number of times the sequence xS appeared in the sample, then

δj = max
cj ,bj∈A

1

N − d

∑
xS∈AS

N(xS)dTV (p̂(.|bjxS), p̂(.|cjxS))

is the estimated oscillation for a lag j ∈ {1, . . . , d}\S. Note that AS is the space of sequences of A
indexed by S.

28 perfectSample

Value

A named numeric vector of oscillations. If the x parameter is an MTD object, it will provide the
oscillations for each element in Lambda. If x is a chain sample, it estimates the oscillations for a
user-inputted set of lags S.

Methods (by class)

• oscillation(MTD): For an MTD object: computes δj for all j ∈ Λ.

• oscillation(default): For a chain sample: estimates δj for each j in S.

Examples

oscillation(MTDmodel(Lambda = c(1, 4), A = c(2, 3)))
oscillation(MTDmodel(Lambda = c(1, 4), A = c(2, 3), lam0 = 0.01, lamj = c(0.49, 0.5),

pj = list(matrix(c(0.1, 0.9, 0.9, 0.1), ncol = 2)),
single_matrix = TRUE))

perfectSample Perfectly samples an MTD Markov chain

Description

Samples an MTD Markov Chain from the stationary distribution.

Usage

perfectSample(object, ...)

S3 method for class 'MTD'
perfectSample(object, N, ...)

Arguments

object An object of class "MTD", see MTDmodel() for properly generating

... Additional arguments passed to methods. an MTD object.

N Positive integer. Sample size to generate. Must be > max(Lambda(object)).

Details

This perfect sample algorithm requires that the MTD model has an independent distribution (p0)
with a positive weight (i.e., lambdas(object)["lam0"]>0 which means λ0 > 0).

Value

Returns a size N sample from an MTD model (the first element is the most recent).

plot.MTD 29

Examples

M <- MTDmodel(Lambda = c(1, 3, 4), A = c(0, 2))
perfectSample(M, N = 200)

M <- MTDmodel(Lambda = c(2, 5), A = c(1, 2, 3))
perfectSample(M, N = 300)

plot.MTD Plot method for MTD objects

Description

Produces plots for an MTD object. By default, it shows the following sequence of plots: (i) barplot
of oscillations by relevant lag, (ii) barplot of mixture weights λj (including lam0 if > 0) and (iii)
graphs of pj, one graph for each lag in Lambda. When type is specified, only the requested plot is
drawn.

Usage

S3 method for class 'MTD'
plot(x, type, main, ylim, col = "gray70", border = NA, pj_index = 1, ...)

Arguments

x An object of class "MTD".

type If type is missing, all plots are shown sequentially (press Enter to proceed).
Else, type is a character string indicating what to plot: "oscillation", "lambdas"
or "pj".

main Optional main title. When type is missing, panel-specific defaults are used and
main is ignored.

ylim Optional y-axis limits. When type is missing, panel-specific defaults are used
and ylim is ignored.

col Bar fill color (passed to barplot). Defaults to "gray70".

border Bar border color (passed to barplot). Defaults to NA.

pj_index Integer index of pj(x) to plot when type = "pj" (default 1).

... Further graphical parameters: passed to barplot() when type %in% c("oscillation","lambdas")
and to plot.igraph() when type = "pj". Ignored when type is missing.

30 plot.MTD

Details

For type = "oscillation", the function calls oscillation(x) to obtain δj = λj maxb,c dTV (pj(·|b), pj(·|c))
for each lag in Lambda(x), and draws a bar plot named by the lags.

For type = "lambdas", it plots the mixture weights λj by lag. If lam0 > 0, the weight for the
independent component is included and labeled "0".

For type = "pj", the function draws the directed, weighted graph of a transition matrix pj taken
from pj(x). Vertices correspond to the states states(x). A directed edge a -> b carries weight
p_j(b | a). Edge widths and edge labels are proportional to the transition probabilities (labels
shown in the plot are rounded to two decimals). By default, self-loops (a -> a) are not drawn. The
self-loop probability at a state a can be inferred as

1−
∑
b:b ̸=a

pj(b | a).

For type = "pj", a specific matrix can be selected via pj_index (e.g., pj_index = 2 plots pj(x)[[2]]).
In automatic mode (when type is missing), graphs for all pj matrices are shown sequentially.

Value

If type is "oscillation" or "lambdas", invisibly returns the numeric vector that was plotted. If
type = "pj", invisibly returns the selected transition matrix. If type is missing, invisibly returns a
list with components oscillation and lambdas.

See Also

oscillation, lambdas, Lambda

Examples

Not run:
m <- MTDmodel(Lambda = c(1, 3), A = c(0, 1))

Automatic mode (press Enter between plots)
plot(m)

Single plot:
plot(m, type = "oscillation")
plot(m, type = "lambdas")
plot(m, type = "pj", pj_index = 2)

End(Not run)

plot.MTDest 31

plot.MTDest Plot method for MTDest objects

Description

Produces plots for an MTDest object. By default, it shows in sequence: (i) barplot of oscillations by
relevant lag, (ii) barplot of mixture weights λj (including lam0 if > 0), and (iii) graphs of pj (one
graph for each lag in Lambda). If EM diagnostics are available, a convergence panel (log-likelihood
variation per update) is shown last. When type is specified, only the requested plot is drawn.

Usage

S3 method for class 'MTDest'
plot(x, type, main, ylim, col = "gray70", border = NA, pj_index = 1, ...)

Arguments

x An object of class "MTDest".

type If type is missing, oscillation, lambdas, pj graphs and—if available—the
convergence plots are shown sequentially (press Enter to proceed). Else, type
is a character string indicating what to plot: "oscillation", "lambdas", "pj"
or "convergence".

main Optional main title. When type is missing, panel-specific defaults are used and
main is ignored.

ylim Optional y-axis limits. When type is missing, panel-specific defaults are used
and ylim is ignored.

col Bar fill color (passed to barplot). Defaults to "gray70".

border Bar border color (for bar plots). Defaults to NA.

pj_index Integer index of pj(x) to plot when type = "pj" (default 1).

... Further graphical parameters: passed to barplot() when type %in% c("oscillation","lambdas"),
to plot.igraph() when type = "pj", and to plot() when type = "convergence".
Ignored when type is missing.

Details

For type = "oscillation", the function calls oscillation(as.MTD(x)) to obtain δj = λj maxb,c dTV (pj(·|b), pj(·|c))
for each lag in Lambda(as.MTD(x)), and draws a bar plot named by the lags.

For type = "lambdas", it plots the mixture weights λj by lag. If lam0 > 0, the weight for the
independent component is included and labeled "0".

For type = "pj", the function draws the directed, weighted graph of the transition matrices pj taken
from pj(x). Vertices correspond to the states states(x). A directed edge a -> b carries weight
p_j(b | a). Edge widths and edge labels are proportional to the transition probabilities (labels

32 probs

shown in the plot are rounded to two decimals). By default, self-loops (a -> a) are not drawn. The
self-loop probability at a state a can be inferred as

1−
∑
b:b ̸=a

pj(b | a).

For type = "pj", a specific matrix can be selected via pj_index (e.g., pj_index = 2 plots pj(x)[[2]]).
In automatic mode (when type is missing), graphs for all pj matrices are shown sequentially.

If EM iteration diagnostics are available (i.e., the object was fitted with iter = TRUE and length(deltaLogLik)
> 0), a convergence panel showing the log-likelihood variation per update is displayed automatically
when type is missing. You can also request it explicitly with type = "convergence".

Value

If type is "oscillation" or "lambdas", invisibly returns the numeric vector that was plotted.
If type = "pj", invisibly returns the selected transition matrix pj(x)[[pj_index]]. If type =
"convergence", invisibly returns the numeric vector deltaLogLik. If type is missing, invisibly
returns the list produced by plot.MTD(m) (typically with components oscillation and lambdas);
if deltaLogLik is available, the returned list also includes deltaLogLik.

See Also

plot.MTD, as.MTD, MTDest

Examples

Not run:
set.seed(1)
M <- MTDmodel(Lambda = c(1, 3), A = c(0, 1), lam0 = 0.05)
X <- perfectSample(M, N = 300)
fit <- MTDest(X, S = c(1, 3), init = coef(M), iter = TRUE)

plot(fit)
plot(fit, type = "pj", pj_index = 2)
plot(fit, type = "convergence")

End(Not run)

probs Predictive probabilities for MTD / MTDest

Description

Compute one-step-ahead predictive probabilities under an MTD model or an MTDest fit.

Conventions:

• Samples are read most recent first: x[1] = X_{t-1}, x[2] = X_{t-2}, etc.

probs 33

• The global transition matrix P is indexed by row labels that list the past context from oldest to
newest. A cell at row "s_k...s_1" and column "a" is read as p(a | s_1...s_k).

• If both newdata and context are missing, probs() returns the full global transition matrix
(transitP(object) for MTD; transitP(as.MTD(object)) for MTDest).

Usage

probs(object, context = NULL, newdata = NULL, oldLeft = FALSE)

S3 method for class 'MTD'
probs(object, context = NULL, newdata = NULL, oldLeft = FALSE)

S3 method for class 'MTDest'
probs(object, context = NULL, newdata = NULL, oldLeft = FALSE)

Arguments

object An MTD or MTDest object.

context Optional vector or matrix/data.frame of contexts (rows). By default, each row
follows the "most recent first" convention; set oldLeft = TRUE if rows are sup-
plied oldest to newest. Must have exactly length(Lambda(object)) columns
for MTD or length(S(object)) for MTDest (one symbol per lag).

newdata Optional vector or matrix/data.frame of samples (rows). Columns follow the
"most recent first" convention. Must have at least max(Lambda(object)) columns
for MTD or max(S(object)) for MTDest. Only one of newdata or context can
be provided at a time. When there are extra columns, only the columns at the
model lags are used.

oldLeft Logical. If TRUE, interpret rows in newdata/context as oldest to newest (e.g.
leftmost = newdata[,1] = oldest). If FALSE (default), rows are most recent
first.

Details

All entries of newdata/context must belong to the model’s state space states(object). For
MTDest, returning the full matrix materializes transitP(as.MTD(object)), which can be large
for big state spaces or many lags.

Value

A numeric matrix of predictive probabilities with one row per input context and columns indexed
by states(object). Row names are the context labels (oldest to newest) formed by concatenat-
ing state symbols without a separator. If both newdata and context are missing, the full global
transition matrix is returned.

See Also

transitP, states, Lambda, S, as.MTD, empirical_probs

34 tempdata

Examples

set.seed(1)
m <- MTDmodel(Lambda = c(1,3), A = c(0,1), lam0 = 0.1)

Full matrix
P <- probs(m)

Using a sample row (most recent first): newdata has >= max(Lambda) columns
new_ctx <- c(1, 0, 1, 0) # X_{t-1}=1, X_{t-2}=0, X_{t-3}=1, ...
probs(m, newdata = new_ctx) # one row of probabilities

Explicit contexts (exactly |Lambda| symbols per row)
probs(m, context = c(0, 1), oldLeft = FALSE) # most recent first
probs(m, context = c(0, 1), oldLeft = TRUE) # oldest to newest

Multiple contexts (rows)
ctxs <- rbind(c(1,0,1), c(0,1,1), c(1,1,0))
probs(m, newdata = ctxs)

tempdata Maximum temperatures in the city of Brasília, Brazil.

Description

A data frame with the maximum temperature of the last hour, by each hour, in the city of Brasília,
Brazil. The data spans from 01/01/2003 to 31/08/2024.

Usage

tempdata

Format

A data frame with 189936 rows and 3 columns. Each row corresponds to a time in a day specified
in columns 2 ("TIME") and 1 ("DATE") respectively. The value in column 3 ("MAXTEMP") is the
maximum temperature measured in the last hour, in Celsius (Cº), in the city of Brasília, the capital
of Brazil, located in the central-western part of the country.

DATE The day, from 01/01/2003 to 31/08/2024

TIME The time, form 00:00 to 23:00 each day

MAXTEMP The maximum temperature measured in the last hour in Celsius

Source

Meteorological data provided by INMET (National Institute of Meteorology, Brazil). Data collected
from automatic weather station in Brasília (latitude: -15.79°, longitude: -47.93°, altitude: 1159.54
m). Available at: https://bdmep.inmet.gov.br/

https://bdmep.inmet.gov.br/

tempdata 35

Examples

data(tempdata)

Index

∗ datasets
tempdata, 34

as.MTD, 2, 19, 23, 24, 32, 33

countsTab, 3
countsTab(), 7

dTV_sample, 4

empirical_probs, 6, 13, 33

freqTab, 5, 7, 13
freqTab(), 5, 7

hdMTD, 8, 10, 11, 19
hdMTD(), 12, 15–17
hdMTD-methods, 10
hdMTD_BIC, 10, 11, 11
hdMTD_BIC(), 9
hdMTD_CUT, 10, 11, 14
hdMTD_CUT(), 9
hdMTD_FS, 10, 11, 15
hdMTD_FS(), 9
hdMTD_FSC, 10, 11, 17
hdMTD_FSC(), 9

lags, 10, 11, 21
lags (MTD-accessors), 18
Lambda, 21, 30, 33
Lambda (MTD-accessors), 18
lambdas, 21, 30
lambdas (MTD-accessors), 18
logLik, 21

MTD-accessors, 18
MTD-methods, 20
MTDest, 3, 19, 21, 21, 24, 32
MTDest-methods, 23
MTDmodel, 2, 3, 19–21, 23, 25
MTDmodel(), 28

oscillation, 21–23, 27, 30
oscillation(), 26

p0, 21
p0 (MTD-accessors), 18
perfectSample, 21, 28
perfectSample(), 26
pj, 21
pj (MTD-accessors), 18
plot.MTD, 29, 32
plot.MTDest, 31
probs, 32

S, 10, 11, 33
S (MTD-accessors), 18
states, 21, 33
states (MTD-accessors), 18

tempdata, 34
transitP, 21, 33
transitP (MTD-accessors), 18

36

	as.MTD
	countsTab
	dTV_sample
	empirical_probs
	freqTab
	hdMTD
	hdMTD-methods
	hdMTD_BIC
	hdMTD_CUT
	hdMTD_FS
	hdMTD_FSC
	MTD-accessors
	MTD-methods
	MTDest
	MTDest-methods
	MTDmodel
	oscillation
	perfectSample
	plot.MTD
	plot.MTDest
	probs
	tempdata
	Index

