| Type: | Package | 
| Title: | L1-Ball Prior for Sparse Regression | 
| Version: | 0.1.0 | 
| Author: | Maoran Xu and Leo L. Duan | 
| Maintainer: | Maoran Xu <maoranxu@ufl.edu> | 
| Description: | Provides function for the l1-ball prior on high-dimensional regression. The main function, l1ball(), yields posterior samples for linear regression, as introduced by Xu and Duan (2020) <doi:10.48550/arXiv.2006.01340>. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Depends: | R (≥ 3.1.0) | 
| Imports: | VGAM, stats | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.1.0 | 
| NeedsCompilation: | no | 
| Packaged: | 2020-07-20 01:52:51 UTC; maoran | 
| Repository: | CRAN | 
| Date/Publication: | 2020-07-24 17:10:02 UTC | 
Fit the L1 prior
Description
This package provides an implementation of the Gibbs sampler, for using l1-ball prior with the regression likelihood  y_i = X_i\theta+ \epsilon_i, \epsilon_i\sim {N}(0,\sigma^2).
Arguments
y | 
 A data vector, n by 1  | 
X | 
 A design matrix, n by p  | 
b_w | 
 The parameter in   | 
step | 
 Number of steps to run the Markov Chain Monte Carlo  | 
burnin | 
 Number of burn-ins  | 
b_lam | 
 The parameter in   | 
Value
The posterior sample collected from the Markov Chain:
trace_theta:
\thetatrace_NonZero: The non-zero indicator
1(\theta_i\neq 0)trace_Lam:
\lambda_itrace_Sigma:
\sigma^2
Examples
n = 60
p = 100
X <- matrix(rnorm(n*p),n,p)
d = 5
w0 <- c(rep(0, p-d), rnorm(d)*0.1+1)
y = X%*% w0 + rnorm(n,0,.1)
trace <- l1ball(y,X,steps=2000,burnin = 2000)
plot(colMeans(trace$trace_theta))