Package ‘mini007’

November 3, 2025

Type Package

Title Lightweight Framework for Orchestrating Multi-Agent Large
Language Models

Version 0.2.1

Description Provides tools for creating agents with persistent state using
R6 classes <https://cran.r-project.org/package=R6> and the 'ellmer’
package <https://cran.r-project.org/package=ellmer>. Tracks prompts,
messages, and agent metadata for reproducible, multi-turn large language
model sessions.

License MIT + file LICENSE
Encoding UTF-8

Imports checkmate (>=2.3.1), cli (>=3.6.5), DiagrammeR (>=1.0.11),
R6 (>=2.6.1), uuid (>= 1.2.0)

RoxygenNote 7.3.2

Suggests ellmer

NeedsCompilation no

Author Mohamed El Fodil Ihaddaden [aut, cre]

Maintainer Mohamed El Fodil Ihaddaden <ihaddaden.fodeil@gmail.com>
Repository CRAN

Date/Publication 2025-11-03 09:20:02 UTC

Contents
AZENt . . . L e e 2
LeadAgent. L e e 15
Index 34

https://cran.r-project.org/package=R6
https://cran.r-project.org/package=ellmer

2 Agent

Agent Agent: A General-Purpose LLM Agent

Description

The ‘Agent’ class defines a modular LLM-based agent capable of responding to prompts using a de-
fined role/instruction. It wraps an OpenAl-compatible chat model via the [‘ellmer ‘] (https://github.com/llrs/ellmer)
package.

Each agent maintains its own message history and unique identity.

Public fields

name The agent’s name.

instruction The agent’s role/system prompt.

1Im_object The underlying ‘ellmer::chat_openai‘ object.

agent_id A UUID uniquely identifying the agent.

model_provider The name of the entity providing the model (eg. OpenAl)
model_name The name of the model to be used (eg. gpt-4.1-mini)
broadcast_history A list of all past broadcast interactions.

budget A budget in $ that the agent should not exceed.

budget_policy A list controlling budget behavior: on_exceed and warn_at.

budget_warned Internal flag indicating whether warn_at notice was emitted.

Active bindings

messages Public active binding for the conversation history. Assignment is validated automati-
cally.

Methods

Public methods:

e Agent$new()

* Agent$invoke()

* Agent$generate_execute_r_code()

* Agent$set_budget ()

e Agent$set_budget_policy()

e Agent$keep_last_n_messages()

e Agent$clear_and_summarise_messages()
e Agent$update_instruction()

* Agent$get_usage_stats()

* Agent$add_message()

* Agent$reset_conversation_history()

Agent 3

* Agent$export_messages_history()
* Agent$load_messages_history()
e Agent$clone()

Method new(): Initializes a new Agent with a specific role/instruction.
Usage:
Agent$new(name, instruction, 1llm_object, budget = NA)

Arguments:

13

name A short identifier for the agent (e.g. ‘"translator"®).

instruction The system prompt that defines the agent’s role.

11m_object The LLM object generate by ellmer (eg. output of ellmer::chat_openai)

budget Numerical value denoting the amount to set for the budget in US$ to a specific agent,

if the budget is reached, an error will be thrown.

Examples:

An API KEY is required in order to invoke the Agent
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”

)

polar_bear_researcher <- Agent$new(
name = "POLAR BEAR RESEARCHER",
instruction = paste@(
"You are an expert in polar bears, ",
"you task is to collect information about polar bears. Answer in 1 sentence max."”

),

1lm_object = openai_4_1_mini

)

Method invoke(): Sends a user prompt to the agent and returns the assistant’s response.

Usage:
Agent$invoke(prompt)

Arguments:
prompt A character string prompt for the agent to respond to.

Returns: The LLM-generated response as a character string.

Examples:

\dontrun{
An API KEY is required in order to invoke the Agent
openai_4_1_mini <- ellmer: :chat(

name = "openai/gpt-4.1-mini”,

api_key = Sys.getenv("OPENAI_API_KEY"),

echo = "none”

Agent

)
agent <- Agent$new(
name = "translator”,
instruction = "You are an Algerian citizen”,
11lm_object = openai_4_1_mini
)
agent$invoke("Continue this sentence: 1 2 3 viva")
3

Method generate_execute_r_code(): Generate R code from natural language descriptions
and optionally validate/execute it
Usage:
Agent$generate_execute_r_code(
code_description,
validate = FALSE,
execute = FALSE,
interactive = TRUE,
env = globalenv()
)
Arguments:
code_description Character string describing the R code to generate
validate Logical indicating whether to validate the generated code syntax
execute Logical indicating whether to execute the generated code (use with caution)
interactive Logical; if TRUE, ask for user confirmation before executing generated code
env Environment in which to execute the code if execute = TRUE. Default to globalenv

Returns: A list containing the generated code and validation/execution results

Examples:
\dontrun{
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
r_assistant <- Agent$new(
name = "R Code Assistant”,

instruction = paste(”You are an expert R programmer”,
11m_object = openai_4_1_mini

)

Generate code for data manipulation

result <- r_assistant$generate_execute_r_code(
code_description = "Calculate the summary of the mtcars dataframe”,
validate = TRUE,
execute = TRUE,
interactive = TRUE

)

print(result)

}

Agent 5

Method set_budget(): Set a budget to a specific agent, if the budget is reached, an error will
be thrown

Usage:

Agent$set_budget(amount_in_usd)

Arguments:

amount_in_usd Numerical value denoting the amount to set for the budget,

Examples:

\dontrun{
An API KEY is required in order to invoke the Agent
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "translator”,
instruction = "You are an Algerian citizen”,
11m_object = openai_4_1_mini
)
agent$set_budget(amount_in_usd = 10.5) # this is equivalent to 10.5%
3

Method set_budget_policy(): Configure how the agent behaves as it approaches or exceeds
its budget. Use ‘warn_at* (0-1) to emit a one-time warning when spending reaches the specified
fraction of the budget. When the budget is exceeded, ‘on_exceed* controls behavior: abort, warn
and proceed, or ask interactively.

Usage:

Agent$set_budget_policy(on_exceed = "abort”, warn_at = 0.8)

Arguments:

on_exceed One of "abort", "warn", or "ask".
warn_at Numeric in (0,1); fraction of budget to warn at. Default 0.8.

Examples:

\dontrun{
agent$set_budget (5)
agent$set_budget_policy(on_exceed = "ask”, warn_at = 0.9)

3
Method keep_last_n_messages(): Keep only the most recent ‘n‘ messages, discarding older
ones while keeping the system prompt.

Usage:
Agent$keep_last_n_messages(n = 2)

Arguments:

n Number of most recent messages to keep.

Examples:

\dontrun{

openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”

)

agent <- Agent$new(
name = "capital finder”,
instruction = "You are an assistant.”,
11lm_object = openai_4_1_mini

)

agent$invoke("What is the capital of Algeria")
agent$invoke("What is the capital of Germany")
agent$invoke("What is the capital of Italy”)

agent$keep_last_n_messages(n = 2)

}

Agent

Method clear_and_summarise_messages(): Summarises the agent’s conversation history into
a concise form and appends it to the system prompt. Unlike ‘update_instruction()‘, this method
does not override the existing instruction but augments it with a summary for future context.

After creating the summary, the method clears the conversation history and retains only the up-
dated system prompt. This ensures that subsequent interactions start fresh but with the summary

preserved as context.
Usage:
Agent$clear_and_summarise_messages()

Examples:
\dontrun{

Requires an OpenAl-compatible LLM from ~ellmer™

openai_4_1_mini <- ellmer: :chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "summariser”,
instruction = "You are a summarising assistant”,

1lm_object = openai_4_1_mini

)

agent$invoke("The quick brown fox jumps over the lazy dog.")
agent$invoke("This is another example sentence.”)

Summarises and resets history
agent$summarise_messages()

Now only the system prompt (with summary) remains

agent$messages

Agent 7

Method update_instruction(): Update the system prompt/instruction
Usage:
Agent$update_instruction(new_instruction)

Arguments:

new_instruction New instruction to use. Not that the new instruction will override the old

one
Examples:
\dontrun{
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "assistant”,
instruction = "You are an assistant.”,
11lm_object = openai_4_1_mini
)
agent$update_instruction(”"You are a concise assistant.”)
}

Method get_usage_stats(): Get the current token count and estimated cost of the conversation

Usage:
Agent$get_usage_stats()

Returns: A list with token counts and cost information

Examples:

\dontrun{

openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”

)

agent <- Agent$new(
name = "assistant”,
instruction = "You are an assistant.”,
11lm_object = openai_4_1_mini

)

agent$set_budget (1)

agent$invoke("What is the capital of Algeria?")
stats <- agent$get_usage_stats()

stats

}

Agent

Method add_message(): Add a pre-formatted message to the conversation history

Usage:
Agent$add_message(role, content)
Arguments:

role The role of the message ("user", "assistant", or "system")
content The content of the message

Examples:
\dontrun{
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "AI assistant”,
instruction = "You are an assistant.”,
11lm_object = openai_4_1_mini
)
agent$add_message("user”, "Hello, how are you?")
agent$add_message("assistant”, "I'm doing well, thank you!")
3

Method reset_conversation_history(): Reset the agent’s conversation history while keep-
ing the system instruction

Usage:
Agent$reset_conversation_history()
Examples:
\dontrun{
openai_4_1_mini <- ellmer: :chat(
name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "AI assistant”,
instruction = "You are an assistant.”,
11lm_object = openai_4_1_mini
)

agent$invoke("Hello, how are you?")
agent$invoke("Tell me about machine learning")
agent$reset_conversation_history() # Clears all messages except system prompt

}

Method export_messages_history(): Saves the agent’s current conversation history as a
JSON file on disk.

Usage:

Agent

Agent$export_messages_history(
file_path = paste@(getwd(), "/", paste@(self$name, "_messages.json"))
)

Arguments:

file_path Character string specifying the file path where the JSON file should be saved. De-
faults to a file named ‘"<agent_name>_messages.json"‘ in the current working directory.

ne

Examples:
\dontrun{
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "capital_finder"”,
instruction = "You are an assistant.”,

11lm_object = openai_4_1_mini
)
agent$invoke("What is the capital of Algeria")
agent$invoke("What is the capital of Italy”)
agent$export_messages_history()

3

Method load_messages_history(): Saves the agent’s current conversation history as a JSON
file on disk.
Usage:
Agent$load_messages_history(
file_path = paste@(getwd(), "/", paste@(self$name, "_messages.json"))
)
Arguments:

file_path Character string specifying the file path where the JSON file is stored. Defaults to

a file named ‘"<agent_name>_messages.json"* in the current working directory.
Examples:
\dontrun{
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "capital_finder”,
instruction = "You are an assistant.”,
11m_object = openai_4_1_mini
)

agent$load_messages_history("path/to/messages. json")

10

agent$messages
agent$llm_object

3

Method clone(): The objects of this class are cloneable with this method.

Usage:

Agent$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

[load_messages_history()] for reloading a saved message history.

[export_messages_history()] for exporting the messages object to json.

Examples

e
Method ~Agent$new”
B m o

An API KEY is required in order to invoke the Agent
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”

)

polar_bear_researcher <- Agent$new(
name = "POLAR BEAR RESEARCHER",
instruction = paste@(
"You are an expert in polar bears, ",

Agent

"you task is to collect information about polar bears. Answer in 1 sentence max."

) ’
11lm_object = openai_4_1_mini
)
H m o
Method ~Agent$invoke~
B m o
Not run:

An API KEY is required in order to invoke the Agent
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none"

)
agent <- Agent$new(

Agent

name = "translator”,
instruction = "You are an Algerian citizen",
11lm_object = openai_4_1_mini

agent$invoke("Continue this sentence: 1 2 3 viva")

End(Not run)

-
Method ~Agent$generate_execute_r_code”
#H - e
Not run:
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
r_assistant <- Agent$new(
name = "R Code Assistant”,

instruction = paste(”You are an expert R programmer"”,
11lm_object = openai_4_1_mini
)
Generate code for data manipulation
result <- r_assistant$generate_execute_r_code(
code_description = "Calculate the summary of the mtcars dataframe”,
validate = TRUE,
execute = TRUE,
interactive = TRUE

)
print(result)

End(Not run)

o
Method ~Agent$set_budget”
oo

Not run:
An API KEY is required in order to invoke the Agent
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "translator”,
instruction = "You are an Algerian citizen",
11m_object = openai_4_1_mini
)
agent$set_budget(amount_in_usd = 10.5) # this is equivalent to 10.5%

End(Not run)

12

et
Method ~Agent$set_budget_policy”
B m o

Not run:
agent$set_budget(5)

agent$set_budget_policy(on_exceed = "ask", warn_at = 0.9)

End(Not run)

-
Method ~Agent$keep_last_n_messages”
#H - e
Not run:
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "capital finder"”,
instruction = "You are an assistant.”,
11lm_object = openai_4_1_mini
)

agent$invoke("What is the capital of Algeria”)
agent$invoke("What is the capital of Germany")
agent$invoke("What is the capital of Italy")
agent$keep_last_n_messages(n = 2)

End(Not run)

H mm
Method ~Agent$clear_and_summarise_messages”
B oo

Not run:
Requires an OpenAl-compatible LLM from ~ellmer-
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "summariser",
instruction = "You are a summarising assistant”,

11m_object = openai_4_1_mini

)

agent$invoke("The quick brown fox jumps over the lazy dog.")

agent$invoke("This is another example sentence."”)

Agent

Agent

Summarises and resets history
agent$summarise_messages()

Now only the system prompt (with summary) remains
agent$messages

End(Not run)

#H - e
Method ~Agent$update_instruction”
#H# - e
Not run:
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "assistant”,
instruction = "You are an assistant.”,
1lm_object = openai_4_1_mini
)

agent$update_instruction(”You are a concise assistant.”)

End(Not run)

#H# -
Method ~Agent$get_usage_stats”
-——————————
Not run:
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "assistant”,
instruction = "You are an assistant.”,
11lm_object = openai_4_1_mini
)

agent$set_budget(1)

agent$invoke("What is the capital of Algeria?")
stats <- agent$get_usage_stats()

stats

End(Not run)

B oo
Method ~Agent$add_message=

13

14

#H# -
Not run:
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "AI assistant”,
instruction = "You are an assistant.”,
11lm_object = openai_4_1_mini
)
agent$add_message("user”, "Hello, how are you?")
agent$add_message("assistant”, "I'm doing well, thank you!")

End(Not run)

#H# - e
Method ~Agent$reset_conversation_history”
-
Not run:
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "AI assistant”,
instruction = "You are an assistant.”,
11lm_object = openai_4_1_mini
)

agent$invoke("Hello, how are you?")
agent$invoke(”"Tell me about machine learning”)
agent$reset_conversation_history() # Clears all messages except system prompt

End(Not run)

#H# - e
Method ~Agent$export_messages_history”
-
Not run:
openai_4_1_mini <- ellmer::chat(
name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
agent <- Agent$new(
name = "capital_finder”,
instruction = "You are an assistant.”,

11lm_object = openai_4_1_mini

Agent

LeadAgent 15

)
agent$invoke("What is the capital of Algeria”)

agent$invoke("What is the capital of Italy")
agent$export_messages_history()

End(Not run)

-
Method ~Agent$load_messages_history”
#H - e
Not run:
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini",

api_key = Sys.getenv("OPENAI_API_KEY"),

echo = "none”
)
agent <- Agent$new(

name = "capital_finder",

instruction = "You are an assistant.”,

11lm_object = openai_4_1_mini
)
agent$load_messages_history(”path/to/messages. json")
agent$messages

agent$llm_object

End(Not run)

LeadAgent LeadAgent: A Multi-Agent Orchestration Coordinator

Description

‘LeadAgent‘ extends ‘Agent‘ to coordinate a group of specialized agents. It decomposes complex
prompts into subtasks using LLMs and assigns each subtask to the most suitable registered agent.
The lead agent handles response chaining, where each agent can consider prior results.

Details
This class builds intelligent multi-agent workflows by delegating sub-tasks using ‘delegate_prompt(),
executing them with ‘invoke()‘, and storing the results in the ‘agents_interaction® list.

Super class

mini@0@7: :Agent -> LeadAgent

16

LeadAgent

Public fields

agents A named list of registered sub-agents (by UUID).

agents_interaction A list of delegated task history with agent IDs, prompts, and responses.

plan A list containing the most recently generated task plan.

hitl_steps The steps where the workflow should be stopped in order to allow for a human inter-
action

prompt_for_plan The prompt used to generate the plan.

agents_for_plan The agents used for the plan

Methods

Public methods:

LeadAgent$new()
LeadAgent$clear_agents()
LeadAgent$remove_agents()
LeadAgent$register_agents()
LeadAgent$visualize_plan()
LeadAgent$invoke()
LeadAgent$generate_plan()
LeadAgent$broadcast ()
LeadAgent$set_hitl()
LeadAgent$judge_and_choose_best_response()
LeadAgent$clone()

Method new(): Initializes the LeadAgent with a built-in task-decomposition prompt.

Usage:
LeadAgent$new(name, llm_object)

Arguments:

name A short name for the coordinator (e.g. “"lead"*).
11m_object The LLM object generate by ellmer (eg. output of ellmer::chat_openai)

Examples:

An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”

)

lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini

)

LeadAgent 17

Method clear_agents(): Clear out the registered Agents

Usage:
LeadAgent$clear_agents()

Examples:

An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer: :chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
researcher <- Agent$new(
name = "researcher”,

instruction = pasted(

"You are a research assistant. ",

"Your job is to answer factual questions with detailed and accurate information. ",
"Do not answer with more than 2 lines”

),

11lm_object = openai_4_1_mini

)

summarizer <- Agent$new(
name = "summarizer",
instruction = paste@(
"You are an agent designed to summarise ",
"a given text into 3 distinct bullet points.”

),
11lm_object = openai_4_1_mini
)
translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
11m_object = openai_4_1_mini
)
lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini
)

lead_agent$register_agents(c(researcher, summarizer, translator))
lead_agent$agents
lead_agent$clear_agents()

lead_agent$agents

18

LeadAgent

Method remove_agents(): Remove registered agents by IDs
Usage:
LeadAgent$remove_agents(agent_ids)
Arguments:

agent_ids The Agent ID to remove from the registered Agents

Examples:

An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer: :chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(

"You are a research assistant. ",

"Your job is to answer factual questions with detailed and accurate information. ",
"Do not answer with more than 2 lines”

),

11lm_object = openai_4_1_mini

)

summarizer <- Agent$new(
name = "summarizer",
instruction = "You are agent designed to summarise a given text into 3 distinct bullet points.”,
11lm_object = openai_4_1_mini

)

translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
11lm_object = openai_4_1_mini

)

lead_agent <- LeadAgent$new(
name = "Leader”,
11m_object = openai_4_1_mini

)

lead_agent$register_agents(c(researcher, summarizer, translator))
lead_agent$agents
deleting the translator agent

id_translator_agent <- translator$agent_id

LeadAgent 19

lead_agent$remove_agents(id_translator_agent)

lead_agent$agents

Method register_agents(): Register one or more agents for delegation.
Usage:
LeadAgent$register_agents(agents)
Arguments:
agents A vector of ‘Agent‘ objects to register.
Examples:

An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer: :chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(

"You are a research assistant. ",
"Your job is to answer factual questions with detailed and accurate information. ",
"Do not answer with more than 2 lines”

),

11lm_object = openai_4_1_mini

)

summarizer <- Agent$new(
name = "summarizer”,
instruction = "You are agent designed to summarise a given text into 3 distinct bullet points.”,
11lm_object = openai_4_1_mini

)
translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
11lm_object = openai_4_1_mini
)
lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini
)

lead_agent$register_agents(c(researcher, summarizer, translator))

lead_agent$agents

20

LeadAgent

Method visualize_plan(): Visualizes the orchestration plan Each agent node is shown in
sequence (left — right), with tooltips showing the actual prompt delegated to that agent.

Usage:

LeadAgent$visualize_plan()

Method invoke(): Executes the full prompt pipeline: decomposition — delegation — invoca-
tion.

Usage:

LeadAgent$invoke(prompt, force_regenerate_plan = FALSE)

Arguments:

prompt The complex user instruction to process.
force_regenerate_plan If TRUE, regenerate a plan even if one exists, defaults to FALSE.

Returns: The final response (from the last agent in the sequence).

Examples:

\dontrun{
An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(

"You are a research assistant. ",
"Your job is to answer factual questions with detailed ",

"and accurate information. Do not answer with more than 2 lines”

),

11lm_object = openai_4_1_mini

summarizer <- Agent$new(
name = "summarizer"”,
instruction = "You are agent designed to summarise a given text into 3 distinct bullet points.”,
11lm_object = openai_4_1_mini

)

translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
11lm_object = openai_4_1_mini

)

lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini

LeadAgent 21

lead_agent$register_agents(c(researcher, summarizer, translator))

lead_agent$invoke(

pasted(
"Describe the economic situation in Algeria in 3 sentences. ",
"Answer in German"

)
)
3

Method generate_plan(): Generates a task execution plan without executing the subtasks. It
returns a structured list containing the subtask, the selected agent, and metadata.

Usage:

LeadAgent$generate_plan(prompt)

Arguments:

prompt A complex instruction to be broken into subtasks.

Returns: A list of lists containing agent_id, agent_name, model_name, model_provider, and

the assigned prompt.

Examples:

\dontrun{
An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer: :chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(

"You are a research assistant. Your job is to answer factual questions ",
"with detailed and accurate information. Do not answer with more than 2 lines”
),

11lm_object = openai_4_1_mini

)

summarizer <- Agent$new(
name = "summarizer",
instruction = "You are agent designed to summarise a given text into 3 distinct bullet points.”,
11lm_object = openai_4_1_mini

)

translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
11lm_object = openai_4_1_mini

22

LeadAgent

)

lead_agent <- LeadAgent$new(
name = "Leader”,

11lm_object = openai_4_1_mini

)

lead_agent$register_agents(c(researcher, summarizer, translator))

lead_agent$generate_plan(

pasted(
"Describe the economic situation in Algeria in 3 sentences. ",
"Answer in German"

)
)
}

Method broadcast(): Broadcasts a prompt to all registered agents and collects their responses.
This does not affect the main agent orchestration logic or history.

Usage:
LeadAgent$broadcast(prompt)
Arguments:

prompt A user prompt to send to all agents.
Returns: A list of responses from all agents.

Examples:

\dontrun{
An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”

)
openai_4_1 <- ellmer: :chat(
name = "openai/gpt-4.1",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none"

)

name = "openai_4_1_agent"”,
instruction = "You are an AI assistant. Answer in 1 sentence max.",
11lm_object = openai_4_1

openai_4_1_agent <- Agent$new(

)

name = "openai/gpt-4.1-nano”,
api_key = Sys.getenv("OPENAI_API_KEY"),

openai_4_1_nano <- ellmer::chat(

LeadAgent 23

echo = "none”

)

openai_4_1_nano_agent <- Agent$new(
name = "openai_4_1_nano_agent",
instruction = "You are an AI assistant. Answer in 1 sentence max.",
11lm_object = openai_4_1_nano
)

lead_agent <- LeadAgent$new(
name = "Leader”,
11m_object = openai_4_1_mini

)

lead_agent$register_agents(c(openai_4_1_agent, openai_4_1_nano_agent))
lead_agent$broadcast(
prompt = pasted(
"If I were Algerian, which song would I like to sing ",
"when running under the rain? how about a flower?"
)
)
3

Method set_hitl(): Set Human In The Loop (HITL) interaction at determined steps within
the workflow

Usage:
LeadAgent$set_hitl(steps)
Arguments:

steps At which steps the Human In The Loop is required?
Returns: A list of responses from all agents.

Examples:

\dontrun{
An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none"”
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(
"You are a research assistant. ",
"Your job is to answer factual questions with detailed and accurate information. ",
"Do not answer with more than 2 lines”
),
11lm_object = openai_4_1_mini

)

LeadAgent

summarizer <- Agent$new(
name = "summarizer",
instruction = paste@(
"You are agent designed to summarise a give text ",
"into 3 distinct bullet points.”

),
11m_object = openai_4_1_mini
)
translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
11lm_object = openai_4_1_mini
)
lead_agent <- LeadAgent$new(
name = "Leader”,
11m_object = openai_4_1_mini
)

lead_agent$register_agents(c(researcher, summarizer, translator))

setting a human in the loop in step 2
lead_agent$set_hitl(1)

The execution will stop at step 2 and a human will be able
to either accept the answer, modify it or stop the execution of
the workflow

lead_agent$invoke(

paste0(
"Describe the economic situation in Algeria in 3 sentences. ",
"Answer in German"

)
)
}

Method judge_and_choose_best_response(): The Lead Agent send a prompt to its registered
agents and choose the best response from the agents’ responses

Usage:
LeadAgent$judge_and_choose_best_response(prompt)

Arguments:
prompt The prompt to send to the registered agents

Returns: A list of responses from all agents, including the chosen response

Examples:
\dontrun{

LeadAgent 25

openai_4_1_mini <- ellmer: :chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”

)
openai_4_1 <- ellmer: :chat(
name = "openai/gpt-4.1",
api_key = Sys.getenv("OPENAI_API_KEY"),

echo = "none"
)
stylist <- Agent$new(
name = "stylist”,
instruction = "You are an AI assistant. Answer in 1 sentence max.",
11lm_object = openai_4_1
)
openai_4_1_nano <- ellmer::chat(
name = "openai/gpt-4.1-nano”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
stylist2 <- Agent$new(
name = "stylist2",
instruction = "You are an AI assistant. Answer in 1 sentence max.",

11m_object = openai_4_1_nano

)
lead_agent <- LeadAgent$new(
name = "Leader”,

11lm_object = openai_4_1_mini

)
lead_agent$register_agents(c(stylist, stylist2))

lead_agent$judge_and_choose_best_response("what's the best way to war a kalvin klein shirt?")

3
Method clone(): The objects of this class are cloneable with this method.
Usage:
LeadAgent$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

Examples

26

LeadAgent

Method ~LeadAgent$new”
B o

An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini
)
H m o
Method ~LeadAgent$clear_agents™
B oo

An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(

"You are a research assistant. ",

"Your job is to answer factual questions with detailed and accurate information. ",
"Do not answer with more than 2 lines”

))

1lm_object = openai_4_1_mini

summarizer <- Agent$new(
name = "summarizer”,
instruction = paste@(
"You are an agent designed to summarise ",
"a given text into 3 distinct bullet points.”

)’

11lm_object = openai_4_1_mini

translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
1lm_object = openai_4_1_mini

)

lead_agent <- LeadAgent$new(

LeadAgent 27

name = "Leader”,
11lm_object = openai_4_1_mini

)

lead_agent$register_agents(c(researcher, summarizer, translator))
lead_agent$agents
lead_agent$clear_agents()
lead_agent$agents
Y m o m
Method ~LeadAgent$remove_agents”

oo

An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(

"You are a research assistant. ",

"Your job is to answer factual questions with detailed and accurate information. ",
"Do not answer with more than 2 lines”

)’

11m_object = openai_4_1_mini

summarizer <- Agent$new(
name = "summarizer",
instruction = "You are agent designed to summarise a given text into 3 distinct bullet points.”,
11m_object = openai_4_1_mini

)

translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
11m_object = openai_4_1_mini

)

lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini

)

lead_agent$register_agents(c(researcher, summarizer, translator))

28

LeadAgent

lead_agent$agents
deleting the translator agent
id_translator_agent <- translator$agent_id
lead_agent$remove_agents(id_translator_agent)
lead_agent$agents
B oo
Method ~LeadAgent$register_agents”
o

An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(

"You are a research assistant. ",

"Your job is to answer factual questions with detailed and accurate information. ",
"Do not answer with more than 2 lines”

)!

11lm_object = openai_4_1_mini

summarizer <- Agent$new(
name = "summarizer”,

instruction = "You are agent designed to summarise a given text into 3 distinct bullet points.”,

11lm_object = openai_4_1_mini

)
translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
11lm_object = openai_4_1_mini
)
lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini
)

lead_agent$register_agents(c(researcher, summarizer, translator))

lead_agent$agents

LeadAgent 29

Method ~LeadAgent$invoke”
B o

Not run:
An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(

"You are a research assistant. ",
"Your job is to answer factual questions with detailed ",

"and accurate information. Do not answer with more than 2 lines”

))

11lm_object = openai_4_1_mini

summarizer <- Agent$new(
name = "summarizer”,
instruction = "You are agent designed to summarise a given text into 3 distinct bullet points.”,
1lm_object = openai_4_1_mini

)
translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
1lm_object = openai_4_1_mini
)
lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini
)

lead_agent$register_agents(c(researcher, summarizer, translator))

lead_agent$invoke(
pasted(
"Describe the economic situation in Algeria in 3 sentences. ",
"Answer in German"
)
)

End(Not run)

Y m o m
Method ~LeadAgent$generate_plan”

H m o

Not run:

LeadAgent

An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none"
)
researcher <- Agent$new(
name = "researcher”,

instruction = paste@(
"You are a research assistant. Your job is to answer factual questions ",
"with detailed and accurate information. Do not answer with more than 2 lines”

)’

11m_object = openai_4_1_mini

summarizer <- Agent$new(
name = "summarizer",
instruction = "You are agent designed to summarise a given text into 3 distinct bullet points.”,
11m_object = openai_4_1_mini

)
translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
11m_object = openai_4_1_mini
)
lead_agent <- LeadAgent$new(
name = "Leader”,
1lm_object = openai_4_1_mini
)

lead_agent$register_agents(c(researcher, summarizer, translator))

lead_agent$generate_plan(
pasted(
"Describe the economic situation in Algeria in 3 sentences. ",
"Answer in German"
)
)

End(Not run)

e
Method ~LeadAgent$broadcast”
H m o

Not run:
An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini",

api_key = Sys.getenv("OPENAI_API_KEY"),

echo = "none”

LeadAgent 31

)
openai_4_1 <- ellmer: :chat(
name = "openai/gpt-4.1",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”

name = "openai_4_1_agent”,
instruction = "You are an AI assistant. Answer in 1 sentence max.",
11lm_object = openai_4_1

)

openai_4_1_agent <- Agent$new(

openai_4_1_nano <- ellmer::chat(
name = "openai/gpt-4.1-nano”,
api_key = Sys.getenv("OPENAI_API_KEY"),

echo = "none”

openai_4_1_nano_agent <- Agent$new(
name = "openai_4_1_nano_agent",
instruction = "You are an AI assistant. Answer in 1 sentence max.",
1lm_object = openai_4_1_nano

)

lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini

)

lead_agent$register_agents(c(openai_4_1_agent, openai_4_1_nano_agent))
lead_agent$broadcast(
prompt = paste@(
"If I were Algerian, which song would I like to sing ",
"when running under the rain? how about a flower?"
)
)

End(Not run)

B m o
Method ~LeadAgent$set_hitl"
oo

Not run:
An API KEY is required in order to invoke the agents
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”

researcher <- Agent$new(
name = "researcher”,

32

LeadAgent

instruction = paste@(
"You are a research assistant. ",
"Your job is to answer factual questions with detailed and accurate information. ",
"Do not answer with more than 2 lines”

),

11lm_object = openai_4_1_mini

)

summarizer <- Agent$new(
name = "summarizer”,
instruction = paste@(
"You are agent designed to summarise a give text ",
"into 3 distinct bullet points.”
),

11lm_object = openai_4_1_mini

)
translator <- Agent$new(
name = "translator”,
instruction = "Your role is to translate a text from English to German”,
1lm_object = openai_4_1_mini
)
lead_agent <- LeadAgent$new(
name = "Leader”,
11lm_object = openai_4_1_mini
)

lead_agent$register_agents(c(researcher, summarizer, translator))

setting a human in the loop in step 2
lead_agent$set_hitl(1)

The execution will stop at step 2 and a human will be able
to either accept the answer, modify it or stop the execution of
the workflow

lead_agent$invoke(
pasted(
"Describe the economic situation in Algeria in 3 sentences. ",
"Answer in German"
)
)

End(Not run)

B oo
Method ~LeadAgent$judge_and_choose_best_response”
et

Not run:
openai_4_1_mini <- ellmer::chat(

name = "openai/gpt-4.1-mini",

LeadAgent 33

api_key = Sys.getenv("OPENAI_API_KEY"),

echo = "none”
)
openai_4_1 <- ellmer::chat(
name = "openai/gpt-4.1",
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
stylist <- Agent$new(
name = "stylist”,
instruction = "You are an AI assistant. Answer in 1 sentence max.",
11m_object = openai_4_1
)
openai_4_1_nano <- ellmer::chat(
name = "openai/gpt-4.1-nano”,
api_key = Sys.getenv("OPENAI_API_KEY"),
echo = "none”
)
stylist2 <- Agent$new(
name = "stylist2”,
instruction = "You are an AI assistant. Answer in 1 sentence max.",
11lm_object = openai_4_1_nano
)
lead_agent <- LeadAgent$new(
name = "Leader",
1lm_object = openai_4_1_mini

)
lead_agent$register_agents(c(stylist, stylist2))

lead_agent$judge_and_choose_best_response(”"what's the best way to war a kalvin klein shirt?")

End(Not run)

Index

Agent, 2
LeadAgent, 15

mini@@7: :Agent, 15

34

	Agent
	LeadAgent
	Index

