Package ‘multinet’

October 24, 2025

Type Package

Title Analysis and Mining of Multilayer Social Networks
Version 4.3.2

Date 2025-10-24

Maintainer Matteo Magnani <matteo.magnani@it.uu.se>

Description Functions for the creation/generation and analysis of multilayer social net-
works <doi:10.18637/jss.v098.108>.

License Apache License (== 2.0)

Depends igraph (>= 1.2), Rcpp (>= 1.0), methods, RColorBrewer
LinkingTo Rcpp

RcppModules multinet

NeedsCompilation yes

Repository CRAN

Note a previous version of the library (main version number: 3) was
developed as part of the European Union's Horizon 2020 research
and innovation programme under grant agreement No. 727040
(Virt-EU). The package uses functions from Infomap
<https://www.mapequation.org>, for the Infomap community
detection method (please refer to their web site for up-to-date
code), and Howard Hinnant's date and time library
<https://github.com/HowardHinnant/date>. The code from these
libraries has been included in our source package.

Author Matteo Magnani [aut, cre],
Luca Rossi [aut] (API design),
Davide Vega [aut] (API and code design),
Obaida Hanteer [ctb] (mdlpa, flat_ec, flat_nw, some community
evaluation functions)

Date/Publication 2025-10-24 12:20:02 UTC


https://doi.org/10.18637/jss.v098.i08

2 multinet-package

Contents
multinet-package . . . . . . ... 2
multinet.actor_MEASUIES . . . . . v v v v v e e e e e e e e e e e 3
multinet.attributes . . . . . . . L. e 5
multinet.classes . . . . . . . .. 7
multinet.communities . . . . . . ... Lo e 7
multinet.community.generation . . . . . . . . ... ...l e e 9
multinet.Conversion . . . . . . . . . . . L e 11
multinet.distance . . . . . . ... e e 12
multinet.edge_directionality . . . . . . . ... ... L L o 13
multinet.generation . . . . . . ... L. Lo e 14
multinetIO . . . . . . 15
multinet.layer_comparison . . . . . . ... Lo o e 19
multinetlayout . . . . ... e 21
multinet.navigation . . . . . . . . ... e e e e e 22
multinet.plotting . . . . . . . ... e 23
multinet.predefined . . . . . . . . ... 26
multinet.properties . . . . . . .. L L e e e e e 27
multinet.transformation . . . . . . ... ... oL oL 29
multinetupdate . . . . . .. L 31
SUMIMATY .+« v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e 33

Index 34

multinet-package Multilayer social network analysis and mining
Description

This package defines a class to store multilayer networks and functions to pre-process, analyze and
mine them.

With multilayer social network we indicate a network where vertices (V) are organized into multiple
layers (L) and each node corresponds to an actor (A), where the same actor can be mapped to nodes
in different layers. Formally, a multilayer social network as implemented in this package is a graph
G =(V, E) where V is a subset of A x L.

In this manual, multinet.IO describes functions to read and write multilayer networks from/to file
and the file format. To quickly test some features of the library, some existing multilayer networks
are also included (multinet.predefined). A synthetic multilayer network can be generated using the
growing models described in multinet. generation.

Updating and getting information about the basic components of a multilayer network (layers, ac-
tors, vertices and edges) can be done using the methods described in multinet.properties, multi-
net.update and multinet.edge_directionality. multinet.navigation shows how to retrieve the neigh-
bors of a node. Attribute values can also be attached to the basic objects in a multilayer network
(actors, layers, vertices and edges). Attribute management is described in multinet.attributes.



multinet.actor_measures 3

Each individual layer as well as combination of layers obtained using the data pre-processing (flat-
tening) functions described in multinet.transformation can be analyzed as a single-layer network us-
ing the iGraph package, by converting them as shown in multinet.conversion. We can also visualize
small networks using the method described in multinet.plotting and the layouts in multinet.layout.

Multilayer network analysis measures are described in multinet.actor_measures (for single-actor,
degree-based measures), multinet.distance (for measures based on geodesic distances) and multi-
net.layer_comparison (to compare different layers).

Communities can be extracted using various clustering algorithms, described in multinet.communities.

Most of the methods provided by this package are described in the book "Multilayer Social Net-
works". These methods have been proposed by many different authors: extensive references are
available in the book, and in the documentation of each function we indicate the main reference we
have followed for the implementation. For a few methods developed after the book was published
we give specific references to the corresponding literature.

Author(s)

Matteo Magnani <matteo.magnani@it.uu.se>

References

Dickison, Magnani, and Rossi, 2016. Multilayer Social Networks. Cambridge University Press.
ISBN: 978-1107438750

Magnani, Rossi, and Vega, 2021. Analysis of Multiplex Social Networks with R. Journal of Statis-
tical Software 98(8), 1-30. doi: 10.18637/jss.v098.i08

multinet.actor_measures
Network analysis measures

Description

These functions compute network analysis measures providing a basic description of the actors in
the network.

Usage

degree_ml(n, actors = character(@), layers = character(@), mode = "all")
degree_deviation_ml(n, actors = character(@),

layers = character (@), mode = "all")
neighborhood_ml(n, actors = character(®@),layers = character(®), mode = "all")
xneighborhood_ml(n, actors = character(@),layers = character(@), mode = "all")
connective_redundancy_ml(n, actors = character(0),

layers = character(@), mode = "all")
relevance_ml(n, actors = character(@),layers = character(®), mode = "all")

xrelevance_ml(n, actors = character(®),layers = character(@), mode = "all")



4 multinet.actor_measures

Arguments
n A multilayer network.
actors An array of names of actors.
layers An array of names of layers.
mode This argument can take values "in", "out" or "all" to count respectively incoming
edges, outgoing edges or both.
Value

degree_ml returns the number of edges adjacent to the input actor restricted to the specified layers.
degree_deviation_ml returns the standard deviation of the degree of an actor on the input layers.
An actor with the same degree on all layers will have deviation 0, while an actor with a lot of
neighbors on one layer and only a few on another will have a high degree deviation, showing an
uneven usage of the layers (or layers with different densities).

neighborhood_ml returns the number of actors adjacent to the input actor restricted to the specified
layers. xneighborhood_ml returns the number of actors adjacent to the input actor restricted to the
specified layers and not present in the other layers.

connective_redundancy_ml returns 1 minus neighborhood divided by degree_

relevance_ml returns the percentage of neighbors present on the specified layers. xrelevance_ml
returns the percentage of neighbors present on the specified layers and not on others.

References

* Berlingerio, Michele, Michele Coscia, Fosca Giannotti, Anna Monreale, and Dino Pedreschi.
2011. "Foundations of Multidimensional Network Analysis." In International Conference on
Social Network Analysis and Mining (ASONAM), 485-89. IEEE Computer Society.

* Magnani, Matteo, and Luca Rossi. 2011. "The ML-Model for Multi-Layer Social Networks."
In International conference on Social Network Analysis and Mining (ASONAM), 5-12. IEEE
Computer Society.

Examples

net <- ml_aucs()

# degrees of all actors, considering edges on all layers

degree_ml(net)

# degree of actors U54 and U3, only considering layers work and coauthor
degree_ml(net,c("U54","U3"),c("work"”,"coauthor"),"in"

# an indication of whether U54 and U3 are selectively active only on some layers
degree_deviation_ml(net,c("U54","U3"))

# co-workers of U3

neighborhood_ml(net, "U3", "work")

# co-workers of U3 who are not connected to U3 on other layers
xneighborhood_ml(net, "U3", "work")

# percentage of neighbors of U3 who are also co-workers
relevance_ml(net,"U3", "work™)

# redundancy between work and lunch
connective_redundancy_ml(net,"U3",c("work”,"lunch"))

# percentage of neighbors of U3 who would no longer



multinet.attributes

# be neighbors by removing this layer
xrelevance_ml(net, "U3", "work")

multinet.attributes Managing attributes

Description

These functions are used to assign and retrieve values to/from actors, vertices.

Usage

add_attributes_ml(n, attributes, type="string”, target="actor”,

nn

layer=

, layeri=

nn

, layer2="")

attributes_ml(n, target="actor")

get_values_ml(n, attribute, actors=character(9),
vertices =character (@), edges=character(9))
set_values_ml(n, attribute, actors=character(9),
vertices=character(@), edges=character(@), values)

Arguments

n
attributes

target

type
layer

layer1

layer2
attribute

actors

vertices

edges

values

A multilayer network.
Name(s) of the attributes to be created.

Can be "actor" (attributes attached to actors), "vertex" (attributes attached to ver-
tices) or "edge" (attributes attached to edges). Layer attributes are not available
in this version.

Can be "string" or "numeric".

This can be specified only for targets "vertex" (so that the attribute exists only
for the vertices in that layer) or "edge" (in which case the attribute applies to
intra-layer edges in that layer).

This can be specified only for target "edge", together with layer2, so that the at-
tribute applies to inter-layer edges from layer1 to layer2. If layer1 and layer2
are specified, the parameter layer should not be used.

See layerl.
The name of the attribute to be updated.

A dataframe containing a vector of actor names ("actor"). If this is specified,
layers, vertices and edges should not.

A dataframe of vertices to be updated. The first column specifies actor names,
the second layer names. If this is specified, actors, layers and edges should not.

A dataframe containing the vertices to be connected. The four columns must
contain, in this order: actorl name, layerl name, actor2 name, layer2 name. If
this is specified, actors, layers and vertices should not.

A vector of values to be set for the corresponding actors, vertices or edges.



6 multinet.attributes

Value

attributes_ml returns a data frame with columns: "name", and "type". If vertex attributes are
listed, an additional "layer" column is used. If edge attributes are listed, two columns "layerl"
and "layer2" are included. get_values_ml returns a data frame with the values for the requested
objects.

See Also

multinet.properties, multinet.edge_directionality

Examples

net <- ml_aucs()
attributes_ml(net)
# actor attributes, of string type (default)
add_attributes_ml(net,c("name”,"surname"))
# a numeric attribute associated to the layers (not available in this version)
# add_attributes_ml(net, "num vertices”,type="numeric",target="1layer")
# attributes for vertices on the facebook layer
add_attributes_ml(net, "username”, type="string", target="vertex", layer="facebook")
# attributes for edges on the work layer
add_attributes_ml(net,"strength”,type="numeric"”, target="edge",layer="work")
# listing the attributes
attributes_ml(net)
# attributes_ml(net,"layer"”) # not available in this version
attributes_ml(net,"vertex")
attributes_ml(net, "edge")
# setting some values for the newly created attributes
set_values_ml(net, "name”,actors=data.frame(actor=c("U54","U139")),values=c("John","Johanna"))
e <- data.frame(

c("U139","U139"),

c("work", "work"),

c("u71","U97"),

c("work", "work"))
set_values_ml(net, "strength”,edges=e,values=.47)
# getting the values back
get_values_ml(net, "name”,actors=data.frame(actor="U139"))
get_values_ml(net, "strength”,edges=e)
# setting attributes based on network properties: create a "degree”
# attribute and set its value to the degree of each actor
actors_ml(net)$actor -> a
layers_ml(net) -> 1
degree_ml(net,actors=a,layers=1,mode="all") -> d
add_attributes_ml(net, target="actor"”,type="numeric"”,attributes="degree")
set_values_ml(net,attribute="degree", actors=data.frame(actor=a),values=d)
get_values_ml(net,attribute="degree",actors=data.frame(actor="U54"))
# select actors based on attribute values (e.g., with degree greater than 40)
get_values_ml(net,attribute="degree"”,actors=data.frame(actor=a)) -> values
a[values$degree>40]
# list all the attributes again
attributes_ml(net)



multinet.classes 7

multinet.classes Classes defined by the package

Description

The multinet package defines two classes to represent multilayer networks (RMLNetwork) and
evolutionary models for the generation of networks (REvolutionModel). Objects of these types are
used as input or returned as output of the functions provided by the package, as detailed in the
description of each function.

multinet.communities  Community detection algorithms and evaluation functions

Description

Various algorithms to compute communities in multiplex networks, based on flattening (flat_ec,
weighted, and flat_wc, unweighted), frequent itemset mining (abacus), adjacent cliques (clique per-
colation), modularity optimization (generalized louvain), random walks (infomap) and label prop-
agation (mdlp). glouvain2_ml is a more efficient implementation of the original glouvain_ml, no
longer based on matrices: it is equivalent to glouvain_ml with gamma set by default to 1.0 (apart
from undeterministic behaviour: individual executions are not guaranteed to return the same result).
get_community_list_ml is a commodity function translating the result of these algorithms into a list
of vertex identifiers, and is internally used by the plotting function.

There are also algorithms to evaluate the resulting communities: generalized modularity (as opti-
mized by glouvain) and normalized mutual information (nmi_ml) and omega index (omega_index_ml)
to compare respectively partitioning and general communities. Please consider that both compari-
son functions use the number of vertices in the network to make a computation, so the absence of
actors from some layers would change their result.

Usage

abacus_ml(n, min.actors=3, min.layers=1)

flat_ec_ml(n)

flat_nw_ml(n)

clique_percolation_ml(n, k=3, m=1)

glouvain_ml(n, gamma=1, omega=1)

infomap_ml(n, overlapping=FALSE, directed=FALSE, self.links=TRUE)
mdlp_ml(n)

modularity_ml(n, comm.struct, gamma=1, omega=1)
nmi_ml(n, coml, com2)

omega_index_ml(n, coml, com2)
get_community_list_ml(comm.struct, n)



8 multinet.communities

Arguments

n A multilayer network.

min.actors Minimum number of actors to form a community.

min.layers Minimum number of times two actors must be in the same single-layer commu-
nity to be considered in the same multi-layer community.

k Minimum number of actors in a clique. Must be at least 3.

m Minimum number of common layers in a clique. Not to be confused with num-
ber of edges, as it is meant in the summary function (here we use the notation of
the paper introducing this algorithm).

gamma Resolution parameter for modularity in the generalized louvain method.

omega Inter-layer weight parameter in the generalized louvain method.

overlapping Specifies if overlapping clusters can be returned.

directed Specifies whether the edges should be considered as directed.

self.links Specifies whether self links should be considered or not.

comm. struct The result of a community detection method.

com1 The result of a community detection method.

com2 The result of a community detection method.

Value

All community detection algorithms return a data frame where each row contains actor name, layer
name and community identifier.

abacus_ml, flat_ec_ml, flat_nw_ml, clique_percolation_ml, and glouvain_ml are only im-
plemented to work with undirected networks. clique_percolation_ml automatically considers
the network to be undirected even if the edges are directed. glouvain_ml also considers weights, if
*all* layers have a DOUBLE attribute named w_.

The evaluation functions return a number between -1 and 1. For the comparison functions, 1 indi-
cates that the two community structures are equivalent. The maximum possible value of modularity
is <= 1 and depends on the network, so modularity results should not be compared across different
networks. Also, notice that modularity is only defined for partitioning community structures.

get_community_list_ml transforms the output of a community detection function into a list by
grouping all the nodes having the same community identifier and the same layer. Notice that:
* The numbers in the result of get_community_list_ml() correspond to vertices. Number X
refers the the Xth vertex as returned by vertices_ml(ml).

* This function splits the communities by layer. That is, every community corresponds to mul-
tiple entry in the generated list (in general), all with the same value of $cid.

References

* Berlingerio, Michele, Pinelli, Fabio, and Calabrese, Francesco (2013). ABACUS: frequent
pAttern mining-BAsed Community discovery in mUItidimensional networkS. Data Mining
and Knowledge Discovery, 27(3), 294-320. (for abacus_ml())



multinet.community.generation 9

Afsarmanesh, Nazanin, and Magnani, Matteo (2018). Partial and overlapping community
detection in multiplex social networks. Social informatics (for clique_percolation_ml())

Mucha, Peter J., Richardson, Thomas, Macon, Kevin, Porter, Mason A., and Onnela, Jukka-
Pekka (2010). Community structure in time-dependent, multiscale, and multiplex networks.
Science (New York, N.Y.), 328(5980), 876-8. Data Analysis, Statistics and Probability;
Physics and Society. (for glouvain_ml())

Michele Berlingerio, Michele Coscia, and Fosca Giannotti. Finding and characterizing com-
munities in multidimensional networks. In International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pages 490-494. IEEE Computer Society Wash-
ington, DC, USA, 2011 (for flat_ec_ml() and flat_nw_ml())

De Domenico, M., Lancichinetti, A., Arenas, A., and Rosvall, M. (2015) Identifying Modular
Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected
Systems. PHYSICAL REVIEW X 5, 011027 (for infomap_ml())

Oualid Boutemine and Mohamed Bouguessa. Mining Community Structures in Multidimen-
sional Networks. ACM Transactions on Knowledge Discovery from Data, 11(4):1-36, 2017

(for mdlp_ml())

See Also

multinet.plotting

Examples

net <- ml_florentine()
abacus_ml(net)
flat_ec_ml(net)
flat_nw_ml(net)
clique_percolation_ml(net)
glouvain_ml(net)
infomap_ml(net)
mdlp_ml(net)

# evaluation

cl <- glouvain_ml(net)
modularity_ml(net, c1)

c2 <- flat_ec_ml(net)
nmi_ml(net, c1, c2)

c3 <- abacus_ml(net)
omega_index_ml(net, cl1, c2)

multinet.community.generation

Generation of multilayer networks with a predefined community struc-

ture




10 multinet.community.generation

Description

The generate_communities_ml function generates a simple community structure and a correspond-
ing network with edges sampled according to that structure. Four simple models are available at
the moment, all generating communities of equal size. In pillar community structures each actor
belongs to the same community on all layers, while in semipillar community structures the com-
munities in one layer are different from the other layers. In partitioning community structures each
vertex belongs to one community, while in overlapping community structures some vertices belong
to multiple communities. The four mode are: PEP (pillar partitioning), PEO (pillar overlapping),
SEP (semipillar partitioning), SEO (semipillar overlapping).

Usage

generate_communities_ml(type, num.actors, num.layers, num.communities, overlap=0,
pr.internal=.4, pr.external=.01)

Arguments
type Type of community structure: pep, peo, sep Or Seo.
num.actors The number of actors in the generated network.
num. layers The number of layers in the generated network.

num.communities
The number of communities in the generated network.

overlap Number of actors at the end of one community to be also included in the follow-
ing community.

pr.internal A vector with the probability of adjacency for two vertices on the same layer
and community (either a single value, or one value for each layer).

pr.external A vector with the probability of adjacency for two vertices on the same layer but
different communities (either a single value, or one value for each layer).

Value
generate_communities_ml returns a list with two elements: a multilayer network and the com-
munity structure used to generate it.

References
Matteo Magnani, Obaida Hanteer, Roberto Interdonato, Luca Rossi, and Andrea Tagarelli (2021).

Community Detection in Multiplex Networks. ACM Computing Surveys.

See Also

multinet.generation, multinet.IO



multinet.conversion 11

Examples

# we generate a network with three layers and 10 communities.

generate_communities_ml("pep”, 50, 3, 10)

# the following command also adds some overlapping (1 actor shared between consecutive communities).
generate_communities_ml("pep”, 50, 3, 10, 1)

# the following command adds 10 different communities on the last layer.
generate_communities_ml("sep”, 50, 3, 20)

# here we add some noise and make communities less dense than the defaults.
generate_communities_ml("pep”, 50, 3, 10, pr.internal=.3, pr.external=.05)

multinet.conversion Conversion to a simple or multi graph

Description

Constructs a single graph resulting from merging one or more layers of the network and converts it
into an iGraph object.

Usage

## S3 method for class 'Rcpp_RMLNetwork'

as.igraph(x, layers = NULL, merge.actors = TRUE, all.actors = FALSE, ...)
Arguments

X A multilayer network.

layers A vector of names of layers. If NULL, all layers are included in the result.

merge.actors  Whether the vertices corresponding to each actor should be merged into a single
vertex (true) or kept separated (false).

all.actors Whether all actors in the multilayer network should be included in the result
(true) or only those present in at least one of the input layers (false). This option
does not currently make any difference, as only actors who are present in at least
one layer can exist since version 4.0.

Additional arguments. None currently.

Value

An object of class iGraph.

See Also

multinet.transformation



12 multinet.distance

Examples

net <- ml_aucs()

# using the default merge.actors=TRUE we create a multigraph,

# where each actor corresponds to a vertex in the result

multigraph <- as.igraph(net)

# this is a simple graph corresponding to the facebook layer

facebookl <- as.igraph(net, "facebook")

# this includes also the actors without a facebook account

facebook2 <- as.igraph(net, "facebook"”, all.actors=TRUE)

# two layers are converted to an igraph object, where two

# vertices are used for each actor: one corresponding to the

# vertex on facebook, one to the vertex on lunch

f_l_net <- as.igraph(net, c("facebook"”,"lunch"),
merge.actors=FALSE)

multinet.distance Network analysis measures: distance based

Description

This function is based on the concept of multilayer distance. This concept generalizes single-layer
distance to a vector with the distance traveled on each layer (in the "multiplex" case). Therefore,
non-dominated path lengths are returned instead of shortest path length, where one path length
dominates another if it is not longer on all layers, and shorter on at least one. A non-dominated
path length is also known as a Pareto distance. Finding all multilayer distances can be very time-
consuming for large networks.

Usage

distance_ml(n, from, to=character(®), method="multiplex")

Arguments
n A multilayer network.
from The actor from which the distance is computed.
to The actor(s) to which the distance is computed. If not specified, all actors are
considered.
method This argument can take values "simple", "multiplex", "full". Only "multiplex"
is currently implemented.
Value

A data frame with one row for each non-dominated distance, specifying the number of steps in each
layer.



multinet.edge_directionality 13

References

Magnani, Matteo, and Rossi, Luca (2013). Pareto Distance for Multi-layer Network Analysis.
In Social Computing, Behavioral-Cultural Modeling and Prediction (Vol. 7812, pp. 249-256).
Springer Berlin Heidelberg.

See Also

multinet.actor_measures, multinet.layer_comparison

Examples

net <- ml_aucs()
distance_ml(net,"U54","U3")

multinet.edge_directionality
Controlling edge directionality

Description

Functions to get and set the edge directionality of one or more pairs of layers (that is, the direction-
ality of edges connecting nodes in those layers).

Usage

set_directed_ml(n, directionalities)
is_directed_ml(n, layersl = character(@), layers2 = character(0))

Arguments
n A multilayer network.
directionalities
A dataframe with three columns where each row contains a pair of layers (11,12)
and O or 1 (indicating resp. undirected and directed edges). Directionality is
automatically set for both (11,12) and (12,11).
layers1 The layer(s) from where the edges start. If layers1 is not provided, all layers
are considered.
layers?2 The layer(s) where the edges end. If an empty list of layers is passed (default),
the ending layers are set as equal to those in parameter layers1.
Value

is_directed_ml returns a data frame where each row contains the name of two layers and the
corresponding type of edges (directed/undirected).



14 multinet.generation

See Also

multinet.properties, multinet.attributes

Examples

net <- ml_empty()

# Adding some layers, one directed and one undirected
add_layers_ml(net,c("11","12"),c(TRUE,FALSE))

# Setting the directionality of inter-layer edges
layers = c("11","12")

dir <- data.frame(layers,layers,c(0,1))
set_directed_ml(net,dir)

# retrieving all directionalities

dir <- is_directed_ml(net)

# copying directionalities to a new network

net2 <- ml_empty()
add_layers_ml(net2,c("11","12"))
set_directed_ml(net2,dir)

multinet.generation Generation of multilayer networks

Description

The grow_ml function generates a multilayer network by letting it grow for a number of steps,
where for each step three events can happen: (1) evolution according to internal dynamics (in
which case a specific internal evolution model is used), (2) evolution importing edges from another
layer, and (3) no action. The functions evolution_pa_ml and evolution_er_ml define, respectively,
an evolutionary model based on preferential attachment and an evolutionary model where edges are
created by choosing random end points, as in the ER random graph model.

Usage

grow_ml(num.actors, num.steps, models, pr.internal, pr.external, dependency)
evolution_pa_ml(m@,m)
evolution_er_ml(n)

Arguments
num.actors The number of actors from which new nodes are selected during the generation
process.
num.steps Number of timestamps.
models A vector containing one evolutionary model for each layer to be generated. Evo-
lutionary models are defined using the evolution_x_ml functions.
pr.internal A vector with (for each layer) the probability that at each step the layer evolves

according to the internal evolutionary model.



multinet.IO 15

pr.external A vector with (for each layer) the probability that at each step the layer evolves
importing edges from another layer.

dependency A matrix LxL where element (i,j) indicates the probability that layer i will import
an edge from layer j in case an external event is triggered.
mo Initial number of nodes.
m Number of edges created for each new vertex joining the network.
n Number of vertices (created at the beginning, before starting adding edges).
Value

grow_ml returns a multilayer network. evolution_x_ml return evolutionary models that are used
by grow_ml to decide how each layer should grow.

References

Magnani, Matteo, and Luca Rossi. 2013. Formation of Multiple Networks. In Social Computing,
Behavioral-Cultural Modeling and Prediction, 257-264. Springer Berlin Heidelberg.

See Also

multinet.predefined, multinet.IO

Examples

# we generate a network with two layers, one growing according

# to the Preferential Attachment model and one growing by selecting

# new edges uniformly at random.

models <- c(evolution_pa_ml(3,1), evolution_er_ml(50))

# all the probability vectors must have the same number of

# fields, one for each layer: two in this example

# by defining pr.internal and pr.external, we are also implicitely defining
# pr.no.action (1 minus the other probabilities, for each field/layer).
pr_external <- c(.5,0)

pr_internal <- c(.5,.5)

# each layer will import edges from the other if needed

# (not the second layer in this example: it has @ probability of external events)
dependency <- matrix(c(0,1,1,0),2,2)

# 100 steps of network growing, adding actors from a pool of 100

grow_ml (100, 100, models, pr_internal, pr_external, dependency)

multinet.IO Reading and writing multilayer networks from/to file




16 multinet.IO

Description

These functions are used to store a multilayer network to a file or load it from a file.

There are two network formats accepted: multiplex (default) or multilayer. A full multiplex network
input file has the following format:

-- comment lines start with two dashes (--)

#VERSION

3.0

#TYPE

multiplex

#ACTOR ATTRIBUTES

AttributeName1l, STRING

AttributeName2,NUMERIC

-- etc.

#NODE ATTRIBUTES

LayerNamel,AttributeName1, STRING

LayerNamel,AttributeName2,NUMERIC

LayerName2,AttributeName3, STRING

-- etc.

#EDGE ATTRIBUTES

-- edge attributes can be defined for specific layers (called local attributes):
LayerNamel,AttributeName, STRING

LayerNamel,AttributeName,NUMERIC

-- or for all layers (called global attributes):
AnotherAttributeName,NUMERIC

-- etc.

#LAYERS

LayerName1,UNDIRECTED

LayerName2,DIRECTED

LayerName3,UNDIRECTED,LOOPS

-- etc.

-- LOOPS indicates that edges from one vertex to itself (called loops) are allowed on that layer
#ACTORS

ActorNamel,AttributeValuelist. ..

ActorName2,AttributeValuelList...

-- etc.

#VERTICES

ActorNamel,LayerNamel,AttributeValuelist...
ActorName1l,LayerName2,AttributeValuelist. ..

-- etc.

#EDGES
ActorName1l,ActorName2,LayerNamel,LocalAttributeValuelList,GlobalAttributeValuelList...
-- etc.

-- the attribute values must be specified in the same order in which they are defined above

If the #LAYERS section is empty, all edges are created as undirected.
If the #ACTOR ATTRIBUTES, #VERTEX ATTRIBUTES or #EDGE ATTRIBUTES sections are



multinet.IO 17

empty, no attributes are created.

The #LAYERS, #ACTORS and #VERTICES sections are useful only if attributes are present, or
if there are actors that are not present in any layer (#ACTORS), or if there are isolated vertices
(#VERTICES), otherwise they can be omitted.

If no section is specified, #EDGES is the default.

Therefore, a non attributed, undirected multiplex network file can be as simple as:
Actor1,Actor2,Layer1
Actor1,Actor3,Layer1
Actor4,Actor2,Layer?

If interlayer edges exist, then type "multilayer" must be specified, and layers and edges are formatted
in a different way:

#VERSION

3.0

#TYPE

multilayer

#ACTOR ATTRIBUTES

AttributeName1, STRING

AttributeName2,NUMERIC

-- etc.

#NODE ATTRIBUTES
LayerNamel,AttributeNamel, STRING
LayerNamel,AttributeName2,NUMERIC
LayerName2,AttributeName3, STRING

-- etc.

#EDGE ATTRIBUTES

-- edge attributes can be defined for specific layers:
LayerNamel,AttributeName, STRING
LayerNamel,AttributeName,NUMERIC

-- or for all layers (called global attributes):
AnotherAttributeName,NUMERIC

-- etc.

#LAYERS

-- LayerNamel,LayerName1,UNDIRECTED

-- LayerName2,LayerName2,DIRECTED

-- LayerName3,LayerName3,DIRECTED,LOOPS

-- LayerName1l,LayerName2,DIRECTED

-- etc.

-- all intra-layer specifications (where the first and second layers are the same)
-- should be listed first.

-- LOOPS is only allowed for intra-layer specifications.
#ACTORS

ActorNamel,AttributeValuelist...
ActorName2,AttributeValuelist...



18 multinet.IO

-- etc.

#VERTICES
ActorNamel,LayerNamel,AttributeValuelist. ..
ActorNamel,LayerName2,AttributeValuelist. ..
-- etc.

#EDGES

-- ActorName1,LayerNamel,ActorName2,LayerName2,LocalAttributeValuelList,GlobalAttributeValuelist...

-- etc.

Usage
read_ml(file, name = "unnamed”, aligned = FALSE)
write_ml(n, file, format = "multilayer"”, layers = character(9),
sep = ',", merge.actors = TRUE, all.actors = FALSE)
Arguments
file The path of the file storing the multilayer network.
name The name of the multilayer network.
n A multilayer network.
layers If specific layers are passed to the function, only those layers are saved to file.
format Either "multilayer", to use the package’s internal format, or "graphml".
sep The character used in the file to separate text fields.
aligned If true, all actors are added to all layers.

merge.actors  Whether the nodes corresponding to each single actor should be merged into
a single node (true) or kept separated (false), when format = "graphml” is
used.

all.actors Whether all actors in the multilayer network should be included in the output
file (true) or only those present in at least one of the input layers (false), when
format = "graphml” and merge.actors = TRUE are used.

Value

read_ml returns a multilayer network. write_ml does not return any value.

See Also

multinet.predefined, multinet.generation

Examples

# writing a network to file...

file <- tempfile("aucs.mpx")

net <- ml_aucs()

write_ml(net,file)

# ...and reading it back into a variable
net <- read_ml(file, "AUCS")



multinet.layer_comparison 19

net

# the following network has more nodes, because all
# actors are replicated to all graphs

net_aligned <- read_ml(file,"AUCS",aligned=TRUE)
net_aligned

multinet.layer_comparison
Network analysis measures

Description

These functions can be used to compare different layers.

Usage

layer_summary_ml(n, layer, method = "entropy.degree”, mode = "all")
layer_comparison_ml(n, layers = character (@),
method = "jaccard.edges"”", mode = "all”, K = @)

Arguments

n A multilayer network.
layer The name of a layer.

layers Names of the layers to be compared. If not specified, all layers are used.
method This argument can take several values. For layer summary: "min.degree", "max.degree",

non non non

"sum.degree", "mean.degree", "sd.degree", "skewness.degree", "kurtosis.degree",
" "

"entropy.degree"”, "CV.degree", "jarque.bera.degree”. For layer comparison:

"nons "nons

* Overlapping: "jaccard.actors", "jaccard.edges", "jaccard.triangles", "cover-
age.actors", "coverage.edges", "coverage.triangle","sm.actors", "sm.edges",
"sm.triangles", "rr.actors", "rr.edges", "rr.triangles", "kulczynski2.actors",
"kulczynski2.edges", "kulczynski2.triangles", "hamann.actors", "hamann.edges",
"hamann.triangles". The first part of the value indicates the type of com-
parison function (Jaccard, Coverage, Simple Matching, Russell Rao, Kul-
czynski, Hamann), the second part indicates the configurations to which the

comparison function is applied.

non:

* Distribution dissimilarity: "dissimilarity.degree", "KL.degree", "jeffrey.degree".
Notice that these are dissimilarity functions: 0 means highest similarity.
* Correlation:"pearson.degree” and "rho.degree".

mode This argument is used for distribution dissimilarities and correlations (that is,

those methods based on node degree) and can take values "in", "out" or "all" to
consider respectively incoming edges, outgoing edges or both.

K This argument is used for distribution dissimilarity measures and indicates the
number of histogram bars used to compute the divergence. If 0 is specified, then
a "typical" value is used, close to the logarithm of the number of actors.



20 multinet.layer_comparison

Value

A data frame with layer-by-layer comparisons. For each pair of layers, the data frame contains a
value between 0 and 1 (for overlapping and distribution dissimilarity) or -1 and 1 (for correlation).

References

Brodka, P., Chmiel, A., Magnani, M., and Ragozini, G. (2018). Quantifying layer similarity in
multiplex networks: a systematic study. Royal Sociwty Open Science 5(8)

Examples

net <- ml_aucs()

# computing similarity between layer summaries

s1 = layer_summary_ml(net,"facebook”,method="entropy.degree")
s2 = layer_summary_ml(net,"lunch”,method="entropy.degree")
relative.difference=abs(s1-s2)*2/(abs(s1)+abs(s2))

# other layer summaries

layer_summary_ml(net, "facebook"”,method="min.degree")
layer_summary_ml(net, "facebook”,method="max.degree")
layer_summary_ml(net, "facebook”,method="sum.degree")
layer_summary_ml(net, "facebook"”,method="mean.degree")
layer_summary_ml(net, "facebook”,method="sd.degree")
layer_summary_ml(net, "facebook”,method="skewness.degree")
layer_summary_ml(net, "facebook”,method="kurtosis.degree")
layer_summary_ml(net, "facebook” ,method="entropy.degree")
layer_summary_ml(net, "facebook”,method="CV.degree")
layer_summary_ml(net, "facebook"”,method="jarque.bera.degree")

# returning the number of common edges divided by the union of all
# edges for all pairs of layers (jaccard.edges)
layer_comparison_ml(net)

# returning the number of common edges divided by the union of all
# edges only for "lunch” and "facebook” (jaccard.edges)
layer_comparison_ml(net,layers=c("lunch"”,"facebook"))

# returning the percentage of actors in the lunch layer that are
# also present in the facebook layer
layer_comparison_ml(net,method="coverage.actors")

# all overlapping-based measures:
layer_comparison_ml(net,method="jaccard.actors")
layer_comparison_ml(net,method="jaccard.edges")
layer_comparison_ml(net,method="jaccard.triangles")
layer_comparison_ml(net,method="coverage.actors")
layer_comparison_ml(net,method="coverage.edges")
layer_comparison_ml(net,method="coverage.triangles")
layer_comparison_ml(net,method="sm.actors")
layer_comparison_ml(net,method="sm.edges")
layer_comparison_ml(net,method="sm.triangles")
layer_comparison_ml(net,method="rr.actors")
layer_comparison_ml(net,method="rr.edges")
layer_comparison_ml(net,method="rr.triangles")
layer_comparison_ml(net,method="kulczynski2.actors")



multinet.layout

21

layer_comparison_ml(net,method="kulczynski2.edges")
layer_comparison_ml(net,method="kulczynski2.triangles")
layer_comparison_ml(net,method="hamann.actors")
layer_comparison_ml(net,method="hamann.edges")
layer_comparison_ml(net,method="hamann. triangles")

# comparison of degree distributions (divergences)
layer_comparison_ml(net,method="dissimilarity.degree")
layer_comparison_ml(net,method="KL.degree")
layer_comparison_ml(net,method="jeffrey.degree")

# statistical degree correlation
layer_comparison_ml(net,method="pearson.degree")
layer_comparison_ml(net,method="rho.degree")

multinet.layout

Layouts

Description

These functions compute xyz coordinates for each node in the network.

Usage

layout_multiforce_ml(n, w_in = 1, w_inter = 1, gravity = 0, iterations = 100)
layout_circular_ml(n)

Arguments

n

w_in

w_inter

gravity

iterations

A multilayer network.

An array with weights for intralayer forces, or a single number if weights are
the same for all layers. When w_in is positive, vertices in the corresponding
layer will be positioned as if a force was applied to them, repelling vertices that
are close to each other and attracting adjacent vertices, all proportional to the
specified weight.

An array with weights for interlayer forces, or a single number if weights are
the same for all layers. When w_inter is positive, vertices in the correspond-
ing layer will be positioned as if a force was applied to them, trying to keep
them aligned with the vertices corresponding to the same actors on other layers,
proportionally to the specified weight.

An array with weights for gravity forces, or a single number if weights are the
same for all layers. This parameter results in the application of a force to the
vertices, directed toward the center of the plot. It can be useful when there there
are multiple components, so that they do not drift away from each other because
of the repulsion force applied to their vertices.

Number of iterations.



22

Value

multinet.navigation

These functions return a data frame with columns: actor, layer, X, y, z. Each value of z corresponds
to one layer, and x and y are the coordinates of the actor inside that layer.

References

Fatemi, Zahra, Salehi, Mostafa, & Magnani, Matteo (2018). A generalised force-based layout for
multiplex sociograms. Social Informatics

See Also

multinet.plotting

Examples

net <- ml_florentine()
layout_multiforce_ml(net)
1 <- layout_circular_ml(net)

## Not run:

plot(net,layout=1)

## End(Not run)

multinet.navigation Functions to extract neighbors of vertices, to navigate the network

Description

These functions return actors who are connected to the input actor through an edge. They can be
used to navigate the graph, following paths inside it.

Usage
neighbors_ml(n, actor, layers = character(@), mode = "all")
xneighbors_ml(n, actor, layers = character(@), mode = "all")
Arguments
n A multilayer network.
actor An actor name present in the network, whose neighbors are extracted.
layers An array of layers belonging to the network. Only the nodes in these layers are
returned. If the array is empty, all the nodes in the network are returned.
mode This argument can take values "in", "out" or "all" to indicate respectively neigh-

bors reachable via incoming edges, via outgoing edges or both.



multinet.plotting 23

Value

neighbors_ml returns the actors who are connected to the input actor on at least one of the specified
layers. xneighbors_ml (eXclusive neighbors) returns the actors who are connected to the input
actor on at least one of the specified layers, and on none of the other layers. Exclusive neighbors
are those neighbors that would be lost by removing the input layers.

References

Berlingerio, Michele, Michele Coscia, Fosca Giannotti, Anna Monreale, and Dino Pedreschi. 2011.
"Foundations of Multidimensional Network Analysis." In International Conference on Social Net-
work Analysis and Mining (ASONAM), 485-89. IEEE Computer Society.

See Also

multinet.properties

Examples

net <- ml_aucs()

# out-neighbors of U54, that is, all A such that there is an edge ("U54",A)
neigh <- neighbors_ml(net, "U54", mode="out")

# all in-neighbors of U54 on the "work” layer who are not in-neighbors

# in any other layer

xneigh <- xneighbors_ml(net, "U54", "work"”, mode="in")

# all neighbors (in- and out-) of U54 on the "work"” and "lunch"” layers

# who are not neighbors in any other layer

xneigh <- xneighbors_ml(net, "U54", c("work"”,"lunch"))

multinet.plotting Drawing a multilayer network

Description

The plot function draws a multilayer network. values2graphics is a support function translating
discrete attribute values to graphical parameters.

Usage

## S3 method for class 'Rcpp_RMLNetwork'

plot(x,

layout = NULL, grid = NULL, mai = c(.1,.1,.1,.1),

layers = NULL,

vertex.shape = 21, vertex.cex = 1, vertex.size = vertex.cex, vertex.color =1,
vertex.labels = NULL, vertex.labels.pos = 3,

vertex.labels.offset = .5, vertex.labels.cex = 1, vertex.labels.col=1,
edge.type = 1, edge.width = 1, edge.col = 1, edge.alpha=.5,

edge.arrow.length = 0.1, edge.arrow.angle = 20,

legend.x = NULL, legend.y = NULL,



24

multinet.plotting

legend.pch = 20, legend.cex = 0.5,
legend.inset = c(0, 0),

com = NULL, com.cex = 1,

show.layer.names=TRUE, layer.names.cex=1, ...)

values2graphics(values, output = "color")

Arguments

X A multilayer network.

layout A data frame indicating the position of nodes. If NULL, the function lay-
out.multiforce.ml is used to compute it.

grid A vector of size 2 indicating the number of rows and columns where to draw the
layers.

mai Percentage of each frame reserved as internal margin (left, top, right, bottom).
This only concerns vertices: text labels can be printed inside the margin or even
outside the frame depending on their offset.

layers A vector of layer names, that determine which layers and in which order are
plotted.

vertex.shape Symbol to use for nodes, corresponding to the parameter pch of the R points
function. This can either be a single character or an integer code for one of a set
of graphics symbols. See ?points for more details.

vertex.size synonim of vertex.cex.

vertex.cex Numeric *c*haracter *ex*pansion factor; multiplied by par(”cex") yields the
final node size.

vertex.color Color of the vertexes. If NULL, all vertexes in the same layer are plotted using
the same color.

vertex.labels A character vector or expression specifying the text to be written besides each
node. It corresponds to the parameter labels of the R text function.

vertex.labels.pos
A position specifier for the text. Values of '1°, ’2°, ’3” and ’4’, respectively
indicate positions below, to the left of, above and to the right of the specified
coordinates. It corresponds to the parameter pos of the R text function.

vertex.labels.offset
When vertex.labels.pos is specified, this value gives the offset of the label
from the specified coordinate in fractions of a character width. It corresponds to
the parameter of fset of the R text function.

vertex.labels.cex
Numeric *c*haracter *ex*pansion factor; multiplied by ’par("cex")’ yields the
final character size. 'NULL’ and "NA’ are equivalent to *1.0°. It corresponds to
the parameter cex of the R text function.

vertex.labels.col

Color of the labels.



multinet.plotting

edge.

edge.

edge.

edge.
edge.

edge.

type

width

col

alpha

25

Edge line type, corresponding to the ’lty’ parameter of the R par function.
Line types can either be specified as an integer (O=blank, 1=solid (default),
2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the char-
acter strings *"blank"’, *"solid"’, *"dashed"’, *"dotted"’, ’"dotdash"’, *"long-
dash"’, or *"twodash"’, where ’"blank"’ uses ’invisible lines’ (i.e., does not draw
them). See ?par for more details. It accepts a vector of values which are recy-
cled.

Edge line width, corresponding to the ’lwd’ parameter of the R "par’ function.
See ?par for more details. It accepts a vector of values which are recycled.

Color of the edges.

Transparency of the edges.

arrow.length

Length of the edges of the arrow head (in inches) - corresponding to the param-
eter of the R arrows function with the same name.

arrow.angle

Angle from the shaft of the arrow to the edge of the arrow head - corresponding
to the parameter of the R arrows function with the same name.

legend.x, legend.y

legend.pch

legend. cex

legend.inset

com

com. cex

the x and y co-ordinates to be used to position the legend. They can be specified
by keyword or in any way which is accepted by xy.coords.

the plotting symbols appearing in the legend, as numeric vector or a vector of
1-character strings

character expansion factor relative to current par("cex"). Used for text.

inset distance(s) from the margins as a fraction of the plot region when legend
is placed by keyword.

The result of a community detection algorithm. When this parameter is set, a
colored area is added behind each community.

Increases (>1) or decreases (<1) the margin around the nodes when the colored
areas are drawn around the communities.

show.layer.names

layer.names.cex

values

output

Value

if TRUE adds the name of each layer at the center bottom of it.

Increases (>1) or decreases (<1) the size of the layer names.
Other graphical parameters.
A vector with values.

The type of graphical objects the values should be translated to. It can currently
take values "color" and "shape".

plot returns no value. values2graphics returns an object with fields: legend.text, legend.pch,
legend.col and color or shape, containing respectively the text entries for the legend, their characher
shapes, their colours, and the color or shape of the entities in the values input parameter.



26 multinet.predefined

See Also

multinet.layout, multinet.communities

Examples

net <- ml_florentine()

## Not run:

plot(net)

c <- clique_percolation_ml(net)
plot(net, vertex.labels.cex=.5, com=c)

## End(Not run)

net <- ml_aucs()

## Not run:

plot(net, vertex.labels=NA)
title("AUCS network")

## End(Not run)
values2graphics(c(”a", "b", "b", "c"))

multinet.predefined Loading predefined multilayer networks

Description
Creates predefined multilayer networks from the literature.

* ml_empty returns an empty multilayer network, not containing any actor, layer, node or edge.

* ml_aucs returns the AUCS multiplex network described in Rossi and Magnani, 2015. "To-
wards effective visual analytics on multiplex networks". Chaos, Solitons and Fractals. Else-
vier.

* ml_bankwiring returns Padgett’s Florentine Families multiplex network.
* ml_florentine returns Padgett’s Florentine Families multiplex network.
* ml_monastery returns Sampson’s monastery multiplex network.

* ml_tailorshop returns Kapferer’s’ tailorshop multiplex network.

* ml_toy returns the toy network used as a running example in Dickison, Magnani and Rossi.
"Multilayer Social Networks". Cambridge University Press.

Usage

ml_empty(name="")
ml_aucs()
ml_bankwiring()
ml_florentine()
ml_monastery()
ml_tailorshop()
ml_toy()



multinet.properties 27

Arguments

name The name of the new multilayer network.

Value

All these functions return a multilayer network.

References

* Rossi, Luca, and Magnani, Matteo (2015). Towards effective visual analytics on multiplex
and multilayer networks. Chaos, Solitons and Fractals, 72, 68-76. (for ml_aucs()).

» Padgett, John F.,, and McLean, Paul D. (2006). Organizational Invention and Elite Trans-
formation: The Birth of Partnership Systems in Renaissance Florence. American Journal of
Sociology, 111(5), 1463-1568. (for ml_florentine()).

* Breiger, R. and Boorman, S. and Arabic, P. (1975). An algorithm for clustering relational data
with applications to social network analysis and comparison with multidimensional scaling.
Journal of Mathematical Psychology, 12 (for ml_monastery() and ml_bankwiring() - these
authors prepared the datasets, see multilayer.it.uu.se/datasets.html for references to the data
collectors).

» Kapferer, Bruce (1972). Strategy and Transaction in an African Factory: African Workers and
Indian Management in a Zambian Town. Manchester University Press (for ml_tailorshop()).

See Also

multinet.IO, multinet.generation

Examples

empty <- ml_empty("new network")
aucs <- ml_aucs()

bankwiring <- ml_bankwiring()
florentine <- ml_florentine()
monastery <- ml_monastery()
tailorshop <- ml_tailorshop()

multinet.properties Listing network properties

Description

These functions are used to list basic information about the components of a multilayer network
(actors, layers, vertices and edges).

The functions nodes_ml and num_nodes_ml are deprecated in the current version of the library. The
names vertex/vertices are now preferentially used over node/nodes.



28

Usage

layers_ml(n)

multinet.properties

actors_ml(n, layers = character(@), attributes = FALSE)
vertices_ml(n, layers = character(@), attributes = FALSE)
edges_ml(n, layers1 = character(®), layers2 = character(@), attributes = FALSE)

edges_idx_ml(n)

num_layers_ml(n)
num_actors_ml(n, layers = character(0))
num_vertices_ml(n, layers = character(0))

num_edges_ml(n,

Arguments

n

layers

layersi1

layers2

attributes

Value

layers1 = character(@), layers2 = character(@))

A multilayer network.

An array of names of layers belonging to the network. Only the actors/vertices
in these layers are returned. If the array is empty, all the vertices in the network
are returned. Notice that this may not correspond to the list of actors: there can
be actors that are not present in any layer. These would be returned only using
the actors_ml function.

The layer(s) from where the edges to be extracted start. If an empty list of layers
is passed (default), all the layers are considered.

The layer(s) where the edges to be extracted end. If an empty list of layers is
passed (default), the ending layers are set as equal to those in parameter layerl.

If set to TRUE, one column for each attribute is added to the data frame, with
the corresponding attribute value.

layers_ml returns an array of layer names. actors_ml returns a data frame with one column, con-
taining actors names. vertices_ml returns a data frame where each row contains the name of the
actor corresponding to that vertex and the layer of the vertex. edges_ml returns a data frame where
each row contains two actor names (i.e., an edge), the name of the two layers connected by the edge
(which can be the same layer if it is an intra-layer edge) and the type of edge (directed/undirected).

edges_idx_ml returns the index of the vertex as returned by the vertices_ml function instead of
its name - this is used internally by the plotting function.

The functions num_* compute the number of objects of the requested type.

See Also

multinet.attributes,

Examples

net <- ml_aucs()

multinet.update, multinet.edge_directionality

actors_ml(net, attributes = TRUE)

layers_ml(net)



multinet.transformation 29

vertices_ml(net, attributes = TRUE)

# only vertices in the "facebook” layer
vertices_ml(net,"facebook")

# all edges

edges_ml(net)

# Only edges inside the "lunch” layer
edges_ml(net,"lunch”,"lunch")

# Does the same as in the previous line
edges_ml(net,"lunch™)

# Returns an empty data frame, because there are no edges from the
# "lunch” layer to the "facebook” layer
edges_ml(net, "lunch”,"facebook™)

num_actors_ml(net)

num_layers_ml(net)

num_vertices_ml(net)

# Only vertices in the "facebook” layer are counted
num_vertices_ml(net, "facebook")

num_edges_ml(net)

# Only edges inside the "lunch” layer are counted
num_edges_ml(net, "lunch”,"”lunch")

# Does the same as in the previous line
num_edges_ml(net, "lunch")

# Returns @, because there are no edges from the "lunch” layer to
# the "facebook” layer

num_edges_ml(net, "lunch”,"facebook")

multinet.transformation
Functions to transform existing layers into new ones.

Description

These functions merge multiple layers into one. The new layer is added to the network. If the input
layers are no longer necessary, they must be explicitely erased.

flatten_ml adds a new layer with the actors in the input layers and an edge between A and B if
they are connected in any of the merged layers.

project_ml adds a new layer with the actors in the first input layer and an edge between A and B
if they are connected to the same actor in the second layer.

Usage
flatten_ml(n, new.layer = "flattening”, layers = character(Q),
method = "weighted"”, force.directed = FALSE, all.actors = FALSE)
project_ml(n, new.layer = "projection”, layerl, layer2,

method = "clique")



30

Arguments

n
new.layer
layers
layer1
layer2

method

force.directed

all.actors

Value

multinet.transformation

A multilayer network.

Name of the new layer.

An array of layers belonging to the network.
Name of a layer belonging to the network.
Name of a layer belonging to the network.

This argument can take values "weighted" or "or" for flatten_ml and "clique"
for project_ml. "weighted" adds an attribute to the new edges with the number
of layers where the two actors are connected.

The new layer is set as directed. If this is false, the new layer is set as directed if
at least one of the merged layers is directed.

If TRUE, then all the actors are included in the new layer, even if they are not
present in any of the merged layers.

These functions return no value: they modify the input network.

References

Dickison, Magnani, and Rossi, 2016. Multilayer Social Networks. Cambridge University Press.
ISBN: 978-1107438750

See Also

multinet.conversion

Examples

net <- ml_aucs()

# A new layer is added to the network, with a flattening of all the other layers
flatten_ml(net, layers = layers_ml(net))

# Bipartite network

from_actor=c("A","B")

to_actor=c("1","1")

from_layer=c("11","11")

to_layer=c("12","12")

edges = data.frame(from_actor, from_layer, to_actor, to_layer)

n = ml_empty()

add_edges_ml(n, edges)
project_ml(n, layer1l = "11", layer2="12")



multinet.update

31

multinet.update

Manipulation of multilayer networks

Description

Functions to add or remove objects in a multilayer network.

The functions add_vertices_ml and delete_vertices_ml add/remove the input actors to/from
the input layers. Since version 3.1, the actors in the network correspond to the union of all the
actors in the various layers (that is, the vertices).

A layer can also be added from an igraph object, where the vertex attribute name represents the actor
name, using the add_igraph_layer_ml function.

The functions add_nodes_ml and delete_nodes_ml are deprecated in the current version of the
library. The names vertex/vertices are now preferentially used over node/nodes.

Usage

add_layers_ml(n, layers, directed=FALSE)
add_vertices_ml(n, vertices)
add_edges_ml(n, edges)

add_igraph_layer_ml(n, g, name)

delete_layers_ml(n, layers)
delete_actors_ml(n, actors)
delete_vertices_ml(n, vertices)
delete_edges_ml(n, edges)

Arguments

n
layers

actors

g

name

directed

vertices

edges

A multilayer network.
An array of names of layers.
An array of names of actors.

An igraph object with simple edges and a vertex attribute called name storing
the actor name corresponding to the vertex.

Name of the new layer.

Determines if the layer(s) is (are) directed or undirected. If multiple layers are
specified, directed should be either a single value or an array with as many values
as the number of layers.

A dataframe of vertices to be updated or deleted. The first column specifies actor
names, the second layer names.

A dataframe containing the edges to be connected or deleted. The four columns
must contain, in this order: actorl name, layerl name, actor2 name, layer2
name.



32

Value

These functions return no value: they modify the input network.

See Also

multinet.properties, multinet.edge_directionality

Examples

net

# Adding some layers
add_layers_ml(net,"”11")
add_layers_ml(net,c("12","13"),c(TRUE,FALSE))

laye

<- ml_empty()

rs_ml(net)

multinet.update

# Adding some vertices (actor A3 is not present in layer 13: no corresponding vertex there)

vertices <- data.frame(
c("AT","A2" ) "A3","AT" "A2" ,"A3"),
c("11, 1, I 12, 12" 12"))
add_vertices_ml(net,vertices)
vertices <- data.frame(

add_vertices_ml(net,vertices)

vert

# Verifying that the actors have been added correctly
num_actors_ml(net)

# We create a data frame specifying two edges:

actors_ml(net)

# A2,12 -- A3, 11

# A2,12 -- A3,12

edges <- data.frame(
c("A2","A2"),
c("12","12"),
c("A3","A3"),
c("11","12"))

add_edges_ml(net,edges)

edges_ml(net)

# The following deletes layer 1, and also deletes

# all vertices from "11" and the edge with an end-point in "11"
delete_layers_ml(net,"”11")

# The following also deletes the vertices associated to

# "A1" in layers "12" and "13"

delete_actors_ml(net,"A1")

# deleting vertex A2,13 and edge A2,12 -- A3,12
delete_vertices_ml(net,data.frame("A2","13"))

edges <- data.frame("A2","12","A3","12")
delete_edges_ml(net,edges)

net

C("A‘I ", HAZH),
C(”l3”, 111311))

ices_ml(net)



summary 33

summary Summarise a multilayer network

Description

This function produces a summary of the network, flattened and layer-by-layer

Usage
## S3 method for class 'Rcpp_RMLNetwork'
summary (object, ...)
Arguments
object A multilayer network.
Not used.
Value

A data frame with the following columns: n: number of actors/vertices, m: number of edges, dir:
directionality (O:undirected, 1:directed), nc: number of components (strongly connected compo-
nents for directed graphs), slc: size of largest (strongly connected) component, dens: density, cc:
clustering coefficient (corresponding to transitivity in igraph), apl: average path length, dia: diam-
eter

Examples

net <- ml_aucs()
summary (net)



Index

* multilayer network social analysis mining
multinet-package, 2

abacus_ml (multinet.communities), 7
actors_ml (multinet.properties), 27
add_attributes_ml
(multinet.attributes), 5
add_edges_ml (multinet.update), 31
add_igraph_layer_ml (multinet.update),
31
add_layers_ml (multinet.update), 31
add_nodes_ml (multinet.update), 31
add_vertices_ml (multinet.update), 31
as.igraph.multinet
(multinet.conversion), 11
as.igraph.Rcpp_RMLNetwork
(multinet.conversion), 11
attributes_ml (multinet.attributes), 5

clique_percolation_ml
(multinet.communities), 7

connective_redundancy_ml
(multinet.actor_measures), 3

degree_deviation_ml
(multinet.actor_measures), 3
degree_ml (multinet.actor_measures), 3
delete_actors_ml (multinet.update), 31
delete_edges_ml (multinet.update), 31
delete_layers_ml (multinet.update), 31
delete_nodes_ml (multinet.update), 31
delete_vertices_ml (multinet.update), 31
distance_ml (multinet.distance), 12

edges_idx_ml (multinet.properties), 27

edges_ml (multinet.properties), 27

evolution_er_ml (multinet.generation),
14

evolution_pa_ml (multinet.generation),
14

34

flat_ec_ml (multinet.communities), 7
flat_nw_ml (multinet.communities), 7
flatten_ml (multinet.transformation), 29

generate_communities_ml
(multinet.community.generation),
9

get_community_list_ml
(multinet.communities), 7

get_values_ml (multinet.attributes), 5

glouvain_ml (multinet.communities), 7

grow_ml (multinet.generation), 14

infomap_ml (multinet.communities), 7

is_directed_ml
(multinet.edge_directionality),
13

layer_comparison_ml
(multinet.layer_comparison), 19

layer_summary_ml
(multinet.layer_comparison), 19

layers_ml (multinet.properties), 27

layout_circular_ml (multinet.layout), 21

layout_multiforce_ml (multinet.layout),
21

mdlp_ml (multinet.communities), 7
ml_aucs (multinet.predefined), 26
ml_bankwiring (multinet.predefined), 26
ml_empty (multinet.predefined), 26
ml_florentine (multinet.predefined), 26
ml_monastery (multinet.predefined), 26
ml_tailorshop (multinet.predefined), 26
ml_toy (multinet.predefined), 26
modularity_ml (multinet.communities), 7
multinet (multinet-package), 2
multinet-package, 2
multinet.actor_measures, 3,3, 13
multinet.attributes, 2, 5, 14, 28



INDEX

multinet.classes, 7
multinet.communities, 3,7, 26
multinet.community.generation, 9
multinet.conversion, 3, 11, 30
multinet.distance, 3, 12
multinet.edge_directionality, 2, 6, 13,
28, 32
multinet.generation, 2, 10, 14, 18, 27
multinet.IO, 2, 10, 15,15,27
multinet.layer_comparison, 3, 13,19
multinet.layout, 3, 21, 26
multinet.navigation, 2,22
multinet.plotting, 3,9, 22,23
multinet.predefined, 2, 15, 18, 26
multinet.properties, 2, 6, 14, 23,27, 32
multinet.transformation, 3, 71, 29
multinet.update, 2, 28, 31

neighborhood_ml
(multinet.actor_measures), 3
neighbors_ml (multinet.navigation), 22
nmi_ml (multinet.communities), 7
nodes_ml (multinet.properties), 27
num_actors_ml (multinet.properties), 27
num_edges_ml (multinet.properties), 27
num_layers_ml (multinet.properties), 27
num_nodes_ml (multinet.properties), 27
num_vertices_ml (multinet.properties),
27

omega_index_ml (multinet.communities), 7

plot (multinet.plotting), 23
project_ml (multinet.transformation), 29

Rcpp_REvolutionModel-class
(multinet.classes), 7

read_ml (multinet.IO), 15

relevance_ml (multinet.actor_measures),
3

REvolutionModel (multinet.classes), 7

RMLNetwork-class (multinet.classes), 7

set_directed_ml
(multinet.edge_directionality),
13

set_values_ml (multinet.attributes), 5

summary, 33

values2graphics (multinet.plotting), 23

35

vertices_ml (multinet.properties), 27
write_ml (multinet.IO), 15

xneighborhood_ml
(multinet.actor_measures), 3
xneighbors_ml (multinet.navigation), 22
xrelevance_ml
(multinet.actor_measures), 3
Xy .coords, 25



	multinet-package
	multinet.actor_measures
	multinet.attributes
	multinet.classes
	multinet.communities
	multinet.community.generation
	multinet.conversion
	multinet.distance
	multinet.edge_directionality
	multinet.generation
	multinet.IO
	multinet.layer_comparison
	multinet.layout
	multinet.navigation
	multinet.plotting
	multinet.predefined
	multinet.properties
	multinet.transformation
	multinet.update
	summary
	Index

