## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set(collapse = TRUE, comment = "#>", fig.width = 7, fig.height = 5, eval = FALSE) ## ----------------------------------------------------------------------------- # library(nomisdata) # library(ggplot2) # library(dplyr) # # # Fetch unemployment data over time # unemployment <- fetch_nomis( # "NM_1_1", # date = paste0("2020", c("01", "02", "03", "04", "05", "06")), # geography = "2092957697", # UK # measures = 20201, # Rate # sex = 7 # ) # # # Plot # unemployment |> # mutate(DATE = as.Date(paste0(DATE, "-01"))) |> # ggplot(aes(x = DATE, y = OBS_VALUE)) + # geom_line(linewidth = 1, colour = "#0066cc") + # geom_point(size = 2, colour = "#0066cc") + # labs( # title = "UK Unemployment Rate", # subtitle = "Claimant Count Rate, 2020", # x = NULL, # y = "Rate (%)", # caption = "Source: Nomis / ONS" # ) + # theme_minimal() + # theme( # plot.title = element_text(face = "bold", size = 14), # panel.grid.minor = element_blank() # ) ## ----------------------------------------------------------------------------- # # Fetch data for all regions # regions <- fetch_nomis( # "NM_1_1", # time = "latest", # geography = "TYPE480", # Regions # measures = 20201, # Rate # sex = 7 # ) # # # Bar chart # regions |> # arrange(desc(OBS_VALUE)) |> # ggplot(aes(x = reorder(GEOGRAPHY_NAME, OBS_VALUE), y = OBS_VALUE)) + # geom_col(fill = "#0066cc", alpha = 0.8) + # coord_flip() + # labs( # title = "Unemployment Rate by Region", # x = NULL, # y = "Claimant Count Rate (%)", # caption = "Source: Nomis / ONS" # ) + # theme_minimal() ## ----------------------------------------------------------------------------- # # Fetch data by sex # by_sex <- fetch_nomis( # "NM_1_1", # time = "latest", # geography = "TYPE499", # Countries # measures = 20201, # sex = c(5, 6) # Male, Female # ) # # # Grouped bar chart # by_sex |> # ggplot(aes(x = GEOGRAPHY_NAME, y = OBS_VALUE, fill = SEX_NAME)) + # geom_col(position = "dodge", alpha = 0.8) + # scale_fill_manual(values = c("#0066cc", "#cc0066")) + # labs( # title = "Unemployment Rate by Sex and Country", # x = NULL, # y = "Rate (%)", # fill = "Sex", # caption = "Source: Nomis / ONS" # ) + # theme_minimal() + # theme(legend.position = "top") ## ----------------------------------------------------------------------------- # library(sf) # # # Fetch spatial data # spatial_data <- fetch_spatial( # "NM_1_1", # time = "latest", # geography = "TYPE480", # measures = 20201, # sex = 7 # ) # # # Map # ggplot(spatial_data) + # geom_sf(aes(fill = OBS_VALUE), colour = "white", size = 0.3) + # scale_fill_viridis_c(option = "plasma") + # labs( # title = "Unemployment Rate by Region", # fill = "Rate (%)" # ) + # theme_void()