Package ‘pedtools’

October 28, 2025

Type Package
Title Creating and Working with Pedigrees and Marker Data
Version 2.9.0

Description A comprehensive collection of tools for creating,
manipulating and visualising pedigrees and genetic marker data.
Pedigrees can be read from text files or created on the fly with
built-in functions. A range of utilities enable modifications like
adding or removing individuals, breaking loops, and merging pedigrees.
An online tool for creating pedigrees interactively, based on
'pedtools', is available at <https://magnusdv.shinyapps.io/quickped>.
‘pedtools’ is the hub of the 'pedsuite’, a collection of packages for
pedigree analysis. A detailed presentation of the 'pedsuite' is given
in the book 'Pedigree Analysis in R' (Vigeland, 2021,
ISBN:9780128244302).

License GPL-3

URL https://github.com/magnusdv/pedtools,
https://magnusdv.github.io/pedsuite/

Depends R (>=4.2)

Imports kinship2, pedmut

Suggests kableExtra, knitr, rmarkdown, testthat

VignetteBuilder knitr

Encoding UTF-8

Language en-GB

RoxygenNote 7.3.3

NeedsCompilation no

Author Magnus Dehli Vigeland [aut, cre] (ORCID:
<https://orcid.org/0000-0002-9134-4962>)

Maintainer Magnus Dehli Vigeland <m.d.vigeland@medisin.uio.no>
Repository CRAN
Date/Publication 2025-10-28 06:10:22 UTC

https://magnusdv.shinyapps.io/quickped
https://github.com/magnusdv/pedtools
https://magnusdv.github.io/pedsuite/
https://orcid.org/0000-0002-9134-4962

2 Contents

Contents
addAllele e 3
as.dataframe.ped L. 4
as.matrix.ped ... oL L L L 5
as.ped ... e 6
as_kinship2_pedigree e e 8
connectedCOmMPONENtS v v it e e e e e e e e e 9
distributeMarkers 10
extractSingletons 11
famid L 12
founderInbreeding 12
freqDatabase 13
getAlleles 16
getComponNent L e e e e e e e e e 17
GetGENOLYPES . . . v v o i e e e e e e e e e e e e 18
getMap . . . L. 19
GELSEX e e e e 21
harmoniseMarkers L 22
inbreedingloops L 23
issmarker e 25
1S.ped . . e e e 25
locusAttributes e 26
marker e 28
marker_attach L e 31
marker_getattr L. e e e 33
marker_inplace L 35
Marker_prop o e e e e 38
marker_select e e 41
marker_setattr L e 42
maskPed L e e 43
mendelianCheck L L 45
mergePed L 46
newMarker 47
newPed L 48
nMarkers e 49
Ped . . . e e 50
ped_basic e 52
ped_complex 55
ped_internal L 57
ped_modify L 58
ped_subgroups 61
ped_utilso e e e 64
plot.ped e e e e e e 66
plotmethods L 70
plotPedList 75
print.nucleus L 78

printpedo L 78

addAllele

randomPed
readPed
relabel L e
setMutmod e e e e
SetSNPs e e e
SOItGENOLYPES . .« . v v v v e e e e e e e e e
SWapGENoOtyPes e e e
transferMarkers
validatePed e
writePed

Index

addAllele Add allele

Description

Extends the allele set of a marker attached to a pedigree, by adding a single allele.

Usage

addAllele(x, marker, allele, freq = 0.001, adjust = c("previous”, "all"))

Arguments
X A ped object or a list of such, or a frequency database (list of numeric vectors).
marker The name or index of a marker attached to x.
allele The name of the new allele.
freq The frequency of the new allele, by default 0.001.
adjust Either "previous" or "all", indicating how the frequencies should be adjusted so
that they sum to 1. If "previous" (default), the frequencies of the original alleles
are multiplied with 1 - freq. If "all", scaling is performed after adding the new
allele, i.e., dividing all frequencies by 1 + freq.
Value

A copy of x with modified marker attributes.

Examples

Ped input
X = nuclearPed() |>
addMarker(geno = c(NA, NA, "b/c"), afreq = c(b = 0.5, ¢ = 0.5))

y = addAllele(x, marker = 1, allele = "a")
afreq(y, 1)

z = addAllele(y, marker = 1, allele = "d", freq = 0.1, adjust = "all")

afreq(z, 1)

Database input

db = list(M1 = c(a = .2, b=.3, c =.5),
M2 = c("7" = .9, "8.3" = .1))

addAllele(db, marker = "M2", allele = "8")

as.data.frame.ped

as.data.frame.ped Convert ped to data.frame

Description

Convert a ped object to a data.frame. The first columns are id, fid, mid and sex, followed by

genotype columns for all (or a selection of) markers.

Usage
S3 method for class 'ped'
as.data.frame(x, ..., markers, sep = "/", missing = "-")
Arguments
X Object of class ped.
Further parameters
markers Vector of marker names or indices. By default, all markers are included.
sep A single string to be used as allele separator in marker genotypes.
missing A single string to be used for missing alleles.
Details

Note that the output of as.data.frame.ped() is quite different from that of as.matrix.ped().

This reflects the fact that these functions have different purposes.

Conversion to a data frame is primarily intended for pretty printing. It uses correct labels for pedi-
gree members and marker alleles, and pastes alleles to form nice-looking genotypes.

The matrix method, on the other hand, is a handy tool for manipulating the pedigree structure.
It produces a numeric matrix, using the internal index labelling both for individuals and alleles,
making it very fast. In addition, all necessary meta information (loop breakers, allele frequencies
a.s.0) is kept as attributes, which makes it possible to recreate the original ped object.

Value

A data. frame with pedsize(x) rows and 4 + nMarkers(x) columns.

as.matrix.ped 5

See Also

as.matrix.ped()

as.matrix.ped Convert ped to matrix

Description

Converts a ped object to a numeric matrix using internal labels, with additional info necessary to
recreate the original ped attached as attributes.

Usage
S3 method for class 'ped'

as.matrix(x, include.attrs = TRUE, ...)

restorePed(x, attrs = NULL, validate = TRUE)

Arguments

X a ped object. In restorePed: A numerical matrix.

include.attrs a logical indicating if marker annotations and other info should be attached as
attributes. See Value.

not used.
attrs a list containing labels and other ped info compatible with X, in the format pro-
duced by as.matrix. If NULL, the attributes of x itself are used.
validate a logical, forwarded to ped(). If FALSE, no checks for pedigree errors are
performed.
Details

restorePed is the reverse of as.matrix.ped.

Value

For as.matrix: A numerical matrix with pedsize(x) rows. If include.attrs = TRUE the follow-
ing attributes are added to the matrix, allowing x to be exactly reproduced by restorePed:
* FAMID the family identifier (a string)
LABELS the ID labels (a character vector)
UNBROKEN_LOOPS a logical indicating whether x has unbroken loops
LOOP_BREAKERS a numerical matrix, or NULL

* markerattr alist of length nMarkers(x), containing the attributes of each marker

For restorePed: A ped object.

6 as.ped

Author(s)
Magnus Dehli Vigeland

See Also
ped()

Examples

x = relabel(nuclearPed(1), letters[1:3])

To examplify the ped -> matrix -> ped trick, we show how to
reverse the internal ordering of the pedigree.
m = as.matrix(x, include.attrs = TRUE)

m[] =m[3:1,]

Must reverse the labels also:
attrs = attributes(m)
attrs$LABELS = rev(attrs$LABELS)

Restore ped:
y = restorePed(m, attrs = attrs)

Of course a simpler way is use reorderPed():
z = reorderPed(x, 3:1)
stopifnot(identical(y, z))

as.ped Conversions to ped objects

Description

Conversions to ped objects

Usage
as.ped(x, ...)

S3 method for class 'data.frame'

as.ped(
X,
famid_col = NA,
id_col = NA,
fid_col = NA,
mid_col = NA,

sex_col = NA,
marker_col = NA,

as.ped

locusAttributes = NULL,
missing = 0,

sep = NULL,

sexCodes = NULL,
addMissingFounders = FALSE,

validate = TRUE,
verbose = TRUE,

Arguments

X Any object.
Not used.

famid_col Index of family ID column. If NA, the program looks for a column named
"famid" (ignoring case).

id_col Index of individual ID column. If NA, the program looks for a column named
"id" (ignoring case).

fid_col Index of father ID column. If NA, the program looks for a column named "fid"
(ignoring case).

mid_col Index of mother ID column. If NA, the program looks for a column named
"mid" (ignoring case).

sex_col Index of column with gender codes (0 = unknown; 1 = male; 2 = female). If

marker_col

locusAttributes

NA, the program looks for a column named "sex" (ignoring case). If this is not
found, genders of parents are deduced from the data, leaving the remaining as
unknown.

Index vector indicating columns with marker alleles. If NA, all columns to the
right of all pedigree columns are used. If sep (see below) is non-NULL, each
column is interpreted as a genotype column and split into separate alleles with
strsplit(..., split =sep, fixed = TRUE).

Passed on to setMarkers() (see explanation there).

missing Passed on to setMarkers() (see explanation there).

sep Passed on to setMarkers() (see explanation there).

sexCodes A list with optional entries "male", "female" and "unknown", indicating how
non-default entries in the sex column should be interpreted. Default values:
male = 1, female = 2, unknown = 0.

addMissingFounders
A logical. If TRUE, any parent not included in the id column is added as a
founder of corresponding sex. By default, missing founders result in an error.

validate A logical indicating if the pedigree structure should be validated.

verbose A logical.

Value

A ped object or a list of such.

Examples

as_kinship2_pedigree

df = data.frame(famid = c("S1", "S2"),
id = c("A", "B"),

fid = o,
mid = 0,
sex = 1)

gives a list of two singletons
as.ped(df)

Trio

df1 = data.frame(id = 1:3, fid = ¢(0,0,1), mid = ¢(0,0,2), sex = c(1,2,1))

as.ped(df1)

Disconnected example: Trio (1-3) + singleton (4)
df2 = data.frame(id = 1:4, fid = ¢(2,0,0,0), mid = c(3,0,0,0),

as.ped(df2)

M

Two singletons
df3 = data.frame(id = 1:2, fid = @, mid = @, sex = 1)

as.ped(df3)

= c("1/2", "1/1", "2/2", "3/4"))

Add missing parents as founders
df4 = data.frame(id = 1, fid = 2, mid = 3, sex = 1)
as.ped(df4, addMissingFounders = TRUE)

as_kinship2_pedigree Convert pedigree to kinship2 format

Description

Convert pedigree to kinship2 format

Usage

as_kinship2_pedigree(

X,

deceased = NULL,
NULL,

aff =
twins
hints

Arguments

X

deceased

NULL,
NULL

A ped() object.

A vector of labels indicating deceased pedigree members.

connectedComponents 9

aff A vector of labels identifying members whose plot symbols should be filled.
(This is typically used in medical pedigrees to indicate affected members.)
twins A data frame with columns id1, id2 and code, passed on to the relation pa-
rameter of kinship2::plot.pedigree().
hints An optional list of hints passed on to kinship2::align.pedigree().
Examples

X = nuclearPed()
as_kinship2_pedigree(x)

connectedComponents Connected pedigree components

Description

Compute the connected parts of a pedigree. This is an important step when converting pedigree data
from other formats (where disconnected pedigrees may be allowed) to pedtools (which requires
pedigrees to be connected).

Usage

connectedComponents(id, fid = NULL, mid = NULL, fidx = NULL, midx = NULL)

Arguments
id A vector of ID labels (character or numeric).
fid The ID labels of the fathers (or "0" if missing).
mid The ID labels of the mothers (or "0" if missing).
fidx, midx (For internal use mostly.) Integer vectors with paternal (resp. maternal) indices.
These may be given instead of id, fid, mid.
Value

A list, where each element is a subset of id constituting a connected pedigree.

Examples

A trio (1-3) and a singleton (4)
x = data.frame(id = 1:4, fid = ¢(2,0,0,0), mid = c(3,0,0,0))
connectedComponents(xid, xfid, x$mid)

10 distributeMarkers

distributeMarkers Distribute markers evenly along a set of chromosomes

Description

Create and attach identical (empty) marker objects, distributed along a set of chromosomes.

Usage

distributeMarkers(
X,
n = NULL,
dist = NULL,
chromLen = NULL,
alleles = 1:2,

afreq = NULL,
prefix = "M"
)
Arguments
X A ped object.
n The total number of markers. Either this or dist must be NULL.
dist A positive number; the distance (in megabases) between markers.
chromLen A numeric vector indicating chromosome lengths (in Mb). By default, the

lengths of the human chromosomes 1-22 are used, as returned by sapply (ibdsim2: : loadMap("decode"

ibdsim2: :physRange).
alleles, afreq Passed onto marker().

prefix A string used as prefix for marker names. Default: "M".

Details
Note: When using the dist parameter, the function treats each chromosome separately, places one
marker at the start and then every dist megabases. (See Examples.)

Value

A copy of x with the indicated markers attached.

Examples

x = distributeMarkers(nuclearPed(), n = 10)
getMap(x)

y = distributeMarkers(nuclearPed(), dist = 100)
getMap(y)

extractSingletons 11

extractSingletons Extract singletons from pedigree

Description

Extract one or more individuals from a pedigree, returning a list of singletons. Marker data and
founder inbreeding (if present) are preserved.

Usage

extractSingletons(x, ids = NULL, simplifyl = TRUE, keepFI = TRUE)

Arguments
X A ped object or a list of such.
ids A vector of ID labels (coercible to character). If empty, all individuals are ex-
tracted.
simplify1 A logical indicating if the output should be simplified to a singleton object (i.e.,
removing the outer list structure) if ids has length 1.
keepFI A logical indicating if founder inbreeding should be preserved, if present.
Value

A list of singletons. If length(ids) ==1 and simplify1 = TRUE, a single singleton object is
returned instead.

Examples
x = nuclearPed() |> addMarker(geno = c("1/1", NA, "1/2"))

Extract father and child
extractSingletons(x, ids = c(1,3))

Extract all members
extractSingletons(x)

12 founderInbreeding

famid Family identifier

Description

Functions for getting or setting the family ID of a ped object.

Usage
famid(x, ...)

S3 method for class 'ped'
famid(x, ...)

famid(x, ...) <- value

S3 replacement method for class 'ped'

famid(x, ...) <- value
Arguments
X A ped object
(Not used)
value The new family ID, which must be (coercible to) a character string.
Examples

X = nuclearPed(1)
famid(x) # empty string

famid(x) = "trio”
famid(x)

founderInbreeding Inbreeding coefficients of founders

Description

Functions to get or set inbreeding coefficients for the pedigree founders.

Usage

founderInbreeding(x, ids, named = FALSE, chromType = "autosomal”)
founderInbreeding(x, ids, chromType = "autosomal”) <- value

setFounderInbreeding(x, ids = NULL, value, chromType = "autosomal")

freqDatabase

Arguments
X

ids

named
chromType

value

Value

13

A ped object or a list of such.

Any subset of founders(x). If ids is missing in founderInbreeding(), itis
set to founders(x).

A logical: If TRUE, the output vector is named with the ID labels.

nn

Either "autosomal" (default) or "x".

A numeric of the same length as ids, entries in the interval [@, 1]. If the vector
is named, then the names are interpreted as ID labels of the founders whose
inbreeding coefficients should be set. In this case, the ids argument should not
be used. (See examples.)

For founderInbreeding, a numeric vector of the same length as ids, containing the founder in-
breeding coefficients.

For setFounderInbreeding(), a copy of x with modified founder inbreeding.
founderInbreeding<- is an in-place version of setFounderInbreeding().

Examples

X = nuclearPed(father = "fa", mother = "mo”, child = 1)
founderInbreeding(x, "fa") =1
founderInbreeding(x, named = TRUE)

Setting all founders at once (replacement value is recycled)
founderInbreeding(x, ids = founders(x)) = 0.5
founderInbreeding(x, named = TRUE)

Alternative syntax, using a named vector
founderInbreeding(x) = c(fa = 0.1, mo = 0.2)
founderInbreeding(x, named = TRUE)

fregDatabase

Allele frequency database

Description

Functions for reading, setting and extracting allele frequency databases, in either "list" format,
"merlin" format or "allelic ladder" format.

14 freqDatabase
Usage
getFreqgDatabase(x, markers = NULL, format = c("”list”, "ladder"))
setFreqDatabase(x, database, format = c("list”, "ladder”), ...)
readFregDatabase(
filename = NULL,
df = NULL,
format = c("list”, "ladder"”, "merlin"),
fixNames = FALSE,
scalel = FALSE,
verbose = TRUE,
)
writeFreqDatabase(x, filename, markers = NULL, format = c("list”, "ladder"))
Arguments
X A ped object, or a list of such.
markers A character vector (with marker names) or a numeric vector (with marker in-
dices).
format Either "list", "ladder" or "merlin" (only in readFreqgDatabase()).
database Either a list or matrix/data frame with allele frequencies, or a file path (to be
passed on to readFregDatabase()).
Optional arguments passed on to read.table(), e.g. sep ="\t" if the file is
tab separated.
filename The path to a text file containing allele frequencies either in "list" or "allelic
ladder" format.
df A data frame of allele frequencies in either "list" or "allelic ladder" format. This
can be supplied instead of filename.
fixNames A logical, by default FALSE. If TRUE all marker names are converted to upper
case, and all periods and space characters are replaced with "_" (underscore).
scalel A logical, by default FALSE. If TRUE, all frequency vectors are scaled to ensure
that it sums to 1.
verbose A logical.
Details

A frequency database in "list" format is a list of numeric vectors; each vector named by its allele
labels, and the list itself named by its marker names.

Text files containing frequencies in "list" format should look as follows, where "M1" and "M2"
are marker names, and "al","a2",... are allele labels (which may be characters or numeric, but will
always be converted to characters):

freqDatabase 15

M1

al 0.2
a2 0.5
a3 0.3
M2

al 9.9
a2 0.1

In "merlin" format, used by the software MERLIN (Abecasis et al., 2002), the same frequency data
would be presented as follows:

M M1

A al 0.2
A a2 0.5
A a3 0.3
M M2

A al 0.9
A a2 0.1

A database in "allelic ladder" format is rectangular, i.e., a numeric matrix (or data frame), with allele
labels as row names and markers as column names. NA entries correspond to unobserved alleles.

Value

e getFreqDatabase: either a list (if format = "1ist") or a data frame (if format = "ladder").
e readfFregDatabase: a list of named numeric vectors.

e setFreqgDatabase: a modified version of x.

See Also

setlLocusAttributes(), setMarkers(), setAlleles().

Examples

loc1 = list(name = "m1", afreq = c(a = .1, b = .9))

loc2 = list(name = "m2", afreq = c("1" = .2, "10.2" = .3, "3" = .5))
x = setMarkers(singleton(1), locus = list(locl1, loc2))

db = getFregDatabase(x)

db

y = setFregDatabase(x, database = db)
stopifnot(identical(x, y))

The database can also be read directly from file
tmp = tempfile()
write("mi\na @.1\nb @.9\n\nm2\n1 ©0.2\n3 ©0.5\n10.2 0.3", tmp)

z = setFregDatabase(x, database = tmp)
stopifnot(all.equal(x, z))

16 getAlleles

getAlleles Allele matrix manipulation

Description

Functions for getting and setting the genotypes of multiple individuals/markers simultaneously
Usage

getAlleles(x, ids = NULL, markers = NULL)

setAlleles(x, ids = NULL, markers = NULL, alleles)

removeGenotypes(x, ids = NULL, markers = NULL)

Arguments
X A ped object or a list of such
ids A vector of ID labels. If NULL (default) all individuals are included.
markers A vector of indices or names of markers attaches to x. If NULL (default) all
markers are included.
alleles A character of the same format and dimensions as the output of getAlleles(x,
ids, markers), or an object which can be converted by as.matrix() into such
a matrix. See Details.
Details

If the alleles argument of setAlleles() is not a matrix, it is recycled (if necessary), and con-
verted into a matrix of the correct dimensions.

removeGenotypes() is a convenience function for removing the genotypes of specified individuals
and markers. Itis equivalent to setAlleles(. .., alleles = @). In particular, removeGenotypes(x)
removes all genotypes from the pedigree x, but leaves all locus attributes intact.

Value

getAlleles() returns a character matrix with length(ids) rows and 2 x length(markers) columns.

The ID labels of x are used as rownames, while the columns are named <m1>.1, <m1>.2, ... where
<m1> is the name of the first marker, a.s.o.

setAlleles() returns a ped object identical to x, except for the modified alleles. In particular, all
locus attributes are unchanged.

See Also

transferMarkers()

getComponent 17

Examples
Setup: Pedigree with two markers
X = nuclearPed(1)
x = addMarker(x, ~2° = "1/2", alleles = 1:2, name = "m1")
x = addMarker(x, 3% = "2/2", alleles = 1:2, name = "m2")

Extract allele matrix

matl = getAlleles(x)

mat2 = getAlleles(x, ids = 2:3, markers = "m2")
stopifnot(identical(mati[2:3, 3:4], mat2))

Remove all genotypes
y = removeGenotypes(x)
y

Setting a single genotype
z = setAlleles(y, ids = "1", marker = "m2", alleles = 1:2)

Alternative: In-place modification with ~genotype()"
genotype(y, id = "1", marker = "m2") = "1/2"
stopifnot(identical(y,z))

Manipulation of pedlist objects
s = transferMarkers(x, singleton("s"))
peds = list(x, s)

getAlleles(peds)

nan

setAlleles(peds, ids = "s", marker = "m1", alleles = 1:2)

getComponent Pedigree component

Description
Given a list of ped objects (called pedigree components), and a vector of ID labels, find the index
of the component holding each individual.

Usage

getComponent(x, ids, checkUnique = FALSE, errorIfUnknown = FALSE)

Arguments

X A ped object, or a list of such.

ids A vector of ID labels (coercible to character).

18 getGenotypes

checkUnique A logical, by default FALSE. If TRUE, an error is raised if any element of ids
occurs more than once in x.

errorIfUnknown A logical, by default FALSE. If TRUE, the function stops with an error if not all
elements of ids are found in x.
Value
An integer vector of the same length as ids, with NA entries where the corresponding label was not
found in any of the components.
See Also

internallID()

Examples

x = list(nuclearPed(1), singleton(id = "A"))
getComponent(x, c(3, "A"))

getGenotypes Genotype matrix

Description

Extract the genotypes of specified individuals and markers from a pedigree object, and return them
as a character matrix.

Usage
getGenotypes(
X)
ids = NULL,
markers = NULL,
sep = ”/H ,
missing = "-",
Xchrom = NULL
)
Arguments
X A ped object or a list of such.
ids A vector of ID labels, or a function operating on x, e.g., typedMembers(). By
default (ids = NULL) all individuals are included, also non-genotyped ones.
markers A vector of indices or names of markers attaches to x. If NULL (default) all

markers are included.

sep A single string to be used as allele separator in marker genotypes.

getMap 19

missing A single string to be used for missing alleles.

Xchrom A single logical, or NULL (default). May be used to indicate if all (or none)
markers are on X, if this is known in advance.

Value

getGenotypes () returns a character matrix with length(ids) rows and length(markers) columns.

See Also

getAlleles()

Examples

X = nuclearPed() |>

addMarker(~2° = "1/2", name = "m1") [>
addMarker (3" = "a/a", name = "m2")
getGenotypes(x)

A list of pedigrees

s = transferMarkers(x, singleton("s"))
peds = list(x, s)

getGenotypes(peds)

Using a function to select individuals
getGenotypes(x, ids = typedMembers)

getMap Tabulate marker positions

Description

Return a map of the markers attached to a pedigree.

Usage

getMap(x, markers = NULL, na.action = @, merlin = FALSE, verbose = TRUE)
setMap(x, map, matchNames = NA, ...)

hasLinkedMarkers(x)

20 getMap

Arguments
X An object of class ped or a list of such.
markers A vector of names or indices referring to markers attached to x. By default, all
markers are included.
na.action Either O (default), 1 or 2. (See Details.)
merlin A logical mostly for internal use: If TRUE the function returns a matrix instead
of a data frame.
verbose A logical.
map Either a data frame, the path to a map file, or NULL (for removing map info).
See Details regarding format.
matchNames A logical; if TRUE, pre-existing marker names of x will be used to assign chro-
mosome labels and positions from map.
Further arguments passed to read. table().
Details

The na.action argument controls how missing values are dealt with:

* na.action =0: Return map unmodified
* na.action = 1: Replace missing values with dummy values.

* na.action =2: Remove markers with missing data.
In setMap(), the map argument should be a data frame (or file) with the following columns in order:

1. chromosome
2. marker name
3. position (Mb)

Column names are ignored, as are any columns after the first three.

Value

getMap () returns a data frame with columns CHROM, MARKER and MB.
setMap() returns x with modified marker attributes.

hasLinkedMarkers() returns TRUE if two markers are located (with set position) on the same
chromosome, and FALSE otherwise.

Examples

x = singleton(1) |>
addMarker (chrom = 1, posMb = 10, name = "m1") |>
addMarker(chrom = 1, posMb = 11) [>
addMarker (chrom = 1)

Compare effect of “na.action”

getMap(x, na.action = Q)

getSex 21

getMap(x, na.action
getMap(x, na.action

»
2)

Getting and setting map are inverses
y = setMap(x, getMap(x))
stopifnot(identical(x,y))

hasLinkedMarkers(x)

getSex Get or set the sex of pedigree members

Description

Functions for retrieving or changing the sex of specified pedigree members. When used in pedigree
constructions, swapSex() is usually more convenient than setSex(), since it deals with spouses
automatically.

Usage
getSex(x, ids = NULL, named = FALSE)
setSex(x, ids = NULL, sex)

swapSex(x, ids, verbose = TRUE)

Arguments
X A ped object or a list of such.
ids A vector identifying members of x, or a function, in which case it is replaced
with ids(x) labels. If NULL, defaults to all members of x.
named A logical: return a named vector or not.
sex A numeric vector with entries 1 (= male), 2 (= female) or 0 (= unknown). If
ids is NULL, sex must be named with ID labels. If sex is unnamed and shorter
than ids it is recycled to length(ids).
verbose A logical: Verbose output or not.
Details

To set unknown sex, use setSex(x, ids, sex = 0). Note that if a nonfounder has unknown sex the
pedigree cannot be plotted in the usual way, only with plot(x, arrows = TRUE).

22 harmoniseMarkers

Value

* getSex(x, ids) returns an integer vector of the same length as ids, with entries O (unknown),
1 (male) or 2 (female).

* setSex(x, ids, sex) returns a ped object similar to x, but where the sex of ids is set accord-
ing to the entries of sex

* swapSex(x, ids) returns a ped object identical to x, but where the sex of ids (and their
spouses) are swapped (1 <-> 2). Individuals of unknown sex are ignored.

See Also
ped()

Examples

n

X = nuclearPed(father = "fa", mother = "mo"”, children = "ch")

stopifnot(all.equal(
getSex(x, named = TRUE),
c(fa=1, m=2, ch=1)
)

Make child female
setSex(x, ids = "ch", sex = 2)

Same, using a named vector
setSex(x, sex = c(ch = 2))

Same, using a function (setting all leaves to be female)
setSex(x, ids = leaves, sex = 2)

swapSex() deals with spouses automatically
swapSex(x, ids = "fa")

setting/getting sex in a pedlist

y = singletons(id = 1:3, sex = c(2,1,1))
sx = getSex(y, named = TRUE)

y2 = setSex(y, sex = sx)

stopifnot(identical(y, y2))

harmoniseMarkers Harmonise markers across components in a ped list

Description

Ensures all components of a ped list contain the same markers in identical order. Missing markers
are added with empty genotypes. Markers whose attributes differ between components are updated
to match the first occurrence of the marker. Note that this function removes all unnamed markers,
unless the input is returned unchanged (see Details).

inbreedingloops 23

Usage

harmoniseMarkers(x, verbose = TRUE)

Arguments
X A list of ped objects.
verbose A logical.

Details

If the input is a single connected pedigree, it is returned as is.

If all marker attributes are identical across all components, x is also returned unchanged.

Value

A copy of x where all components have the same markers attached, and in the same order. Unnamed
markers are removed (unless x is returned unchanged, see Details).

Examples

x = list(
singleton(1) |> addMarker(), # unnamed marker will be removed
singleton(2) |> addMarker(name = "M1", alleles = 1:2),
singleton(3) |> addMarker(name = "M1", alleles = 1:3), # will be modified
singleton(4) |> addMarker(geno = "3/3", alleles = 1:3, name = "M2")

)

harmoniseMarkers(x)

inbreedingloops Pedigree loops

Description

Functions for identifying, breaking and restoring loops in pedigrees.

Usage

inbreedingloops(x)

breakLoops(x, loopBreakers = NULL, verbose = TRUE, errorIfFail = TRUE)
tielLoops(x, verbose = TRUE)

findLoopBreakers(x)

findLoopBreakers2(x, errorIfFail = TRUE)

24 inbreedingloops

Arguments

X a ped() object.

loopBreakers either NULL (resulting in automatic selection of loop breakers) or a vector indi-
cating the individuals to be used as loop breakers.

verbose a logical: Verbose output or not?

errorIffail a logical: If TRUE an error is raised if the loop breaking is unsuccessful. If
FALSE, the pedigree is returned unchanged.

Details

Pedigree loops are usually handled (by pedtools and related packages) under the hood — using the
functions described here — without the need for explicit action from end users. When a ped object x
is created, an internal routine detects if the pedigree contains loops, in which case x$UNBROKEN_LOOPS
is set to TRUE.

In cases with complex inbreeding, it can be instructive to plot the pedigree after breaking the loops.
Duplicated individuals are plotted with appropriate labels (see examples).

The function breakLoops breaks the loops of the input pedigree by duplicating the loop breakers.
These may be given by the user; otherwise they are selected automatically. In the current imple-
mentation, only nonfounders can act as loop breakers. For automatic selection of loop breakers,
breakLoops first calls findLoopBreakers, which identifies and breaks all inbreeding loops. 1If
the resulting pedigree still has loops, findLoopBreakers? is called to handle marriage loops. In
earlier versions this required the igraph package, but now uses a custom implementation using a
depth-first search algorithm to find a cycle in the marriage node graph.

Value

For breakLoops, a ped object in which the indicated loop breakers are duplicated. The returned
object will also have a non-null LOOP_BREAKERS entry, namely a matrix with the IDs of the original
loop breakers in the first column and the duplicates in the second. If loop breaking fails, then
depending on errorIfFail either an error is raised, or the input pedigree (with loops intact) is
returned.

For tielLoops, a ped object in which any duplicated individuals (as given in the x$LOOP_BREAKERS
entry) are merged. For any ped object x, the call tieLoops(breakLoops(x)) should return x.

For inbreedingloops, a list containing all inbreeding loops (not marriage loops) found in the
pedigree. Each loop is represented as a list with elements top, bottom, pathA (individuals forming a
path from top to bottom) and pathB (creating a different path from top to bottom, with no individuals
in common with pathA). Note that the number of loops reported here counts all closed paths in the
pedigree and will in general be larger than the genus of the underlying graph.

For findLoopBreakers and findLoopBreakers2, a vector of individual labels.

Examples

X = cousinPed(1, child = TRUE)
plot(breakLoops(x))

Pedigree with marriage loop: Double first cousins

is.marker

y = doubleCousins(1, 1, child = TRUE)
findLoopBreakers(y) # --> 9
findLoopBreakers2(y) # --> 5 and 9
y2 = breakLoops(y)

plot(y2)

Or loop breakers chosen by user
y3 = breakLoops(y, 6:7)
plot(y3)

25

is.marker Test if something is a marker

Description

Functions for testing if something is a marker object, or a list of such objects.

Usage

is.marker(x)

is.markerList(x)

Arguments

X Any object

Value

A logical

is.ped Is an object a ped object?

Description

Functions for checking whether an object is a ped() object, a singleton() or a list of such.

Usage
is.ped(x)

is.singleton(x)

is.pedList(x)

26 locusAttributes

Arguments

X Any R object.

Details

Note that the singleton class inherits from ped, so if x is a singleton, is.ped(x) returns TRUE.

Value

For is.ped(): TRUE if x is a ped or singleton object, otherwise FALSE.
For is.singleton(): TRUE if x is a singleton object, otherwise FALSE.
For is.pedList(): TRUE if x is a list of ped and/or singleton objects, otherwise FALSE.

Author(s)
Magnus Dehli Vigeland

See Also
ped()

Examples

x1 nuclearPed(1)

x2 = singleton(1)

stopifnot(is.ped(x1), !is.singleton(x1),
is.ped(x2), is.singleton(x2),
is.pedList(list(x1,x2)))

locusAttributes Get or set locus attributes

Description

Retrieve or modify the attributes of attached markers

Usage
getlLocusAttributes(
X7
markers = NULL,
attribs = c("alleles”, "afreq”, "name”, "chrom”, "posMb”, "mutmod”),

checkComps = FALSE,
simplify = FALSE

locusAttributes 27

setlLocusAttributes(
X,
markers = NULL,
locusAttributes,
matchNames = NA,
erase = FALSE

)
Arguments

X A ped object, or a list of such.

markers A character vector (with marker names) or a numeric vector (with marker in-
dices). If NULL (default), the behaviour depends on matchNames, see Details.

attribs A subset of the character vector c("alleles”, "afreq"”, "name"” ,"chrom”
,"posMb”, "mutmod”, "rate").

checkComps A logical. If TRUE, and x is a list of pedigrees, an error is raised if marker
attributes differ between components.

simplify A logical. If TRUE, and attribs is a single element, the output is flattened to a
simple list.

locusAttributes
A list of lists, with attributes for each marker.

matchNames A logical, only relevant if markers = NULL. If TRUE, then the markers to be
modified are identified by the 'name’ component of each locusAttributes
entry. If FALSE, all markers attached to x are selected in order.

erase A logical. If TRUE, all previous attributes of the selected markers are erased.
If FALSE, attributes not affected by the submitted locusAttributes remain
untouched.

Details

The default setting markers = NULL selects markers automatically, depending on the matchNames
argument. If matchNames = FALSE, all markers are chosen. If matchNames = TRUE, markers will be
matched against the name entries in locusAttributes (and an error issued if any are missing).

Note that the default value NA of matchNames is changed to TRUE if all entries of locusAttributes
have a name component which matches the name of an attached marker.

Possible attributes given in locusAttributes are as follows (default values in parentheses):

* alleles: acharacter vector with allele labels

* afreq: anumeric vector with allele frequencies (rep.int(1/L, L), whereL = length(alleles))
¢ name: marker name (NA)

e chrom: chromosome number (NA)

* posMb: physical location in megabases (NA)

e mutmod: mutation model, or model name (NULL)

* rate: mutation model parameter (NULL)

28 marker

Value

e getLocusAttributes: a list of lists. If the markers have names, these are used to name the
outer list. If simplify = TRUE and attribs is a single element, the output is a simple list.

e setlLocusAttributes: a modified version of x.

Examples

x = singleton(1) |>
addMarker (name = "m1", alleles = 1:2) |>
addMarker(name = "m2", alleles = letters[1:2], chrom = "X")

By default, the markers to be modified are identified by name
locs = list(list(name = "m1"”, alleles = 1:10),
list(name = "m2", alleles = letters[1:10]))
y = setlLocusAttributes(x, locusAttributes = locs)
getMarkers(y, 1:2)

If “erase = TRUE™ attributes not explicitly given are erased
y2 = setlLocusAttributes(x, locusAttributes = locs, erase = TRUE)
chrom(y2, 2) # not "X" anymore

The getter and setter are inverses
newx = setlLocusAttributes(x, locusAttributes = getlLocusAttributes(x))
stopifnot(identical(x, newx))

marker Marker objects

Description

Creating a marker object associated with a pedigree. The function marker() returns a marker
object, while addMarker () first creates the marker and then attaches it to x.

Usage

marker (
X,
geno = NULL,
allelematrix = NULL,
alleles = NULL,

afreq = NULL,
chrom = NA,
posMb = NA,
name = NA,

mutmod = NULL,
rate = NULL,

marker

29

NAstrings = c(@, "", NA, "-"),
validate = TRUE,

validateMut =
)

addMarker(
X’

geno = NULL,
allelematrix

validate

= NULL,

alleles = NULL,

afreq = NULL,
chrom = NA,
posMb = NA,
name = NA,
mutmod = NULL
rate = NULL,

’

locusAttr = NULL,
NAstrings = c(@, "", NA, "-"),
validate = TRUE

Arguments

X

geno
allelematrix

alleles

afreq

chrom
posMb

name

mutmod, rate

A ped object.

One or more expressions of the form id = genotype, where id is the ID label
of a member of x, and genotype is a numeric or character vector of length 1 or
2 (see Examples).

A character vector of length pedsize(x), with genotypes written in the format
"a/bH.

A matrix with 2 columns and pedsize(x) rows. If this is non-NULL, then . ..
must be empty.

A vector of allele names. If not given, and afreq is named, names(afreq)
is used. Otherwise, the default action is to use all distinct alleles occurring in
allelematrix, genoor....

A numeric of the same length as alleles, indicating the population frequency
of each allele. A warning is issued if the frequencies don’t sum to 1 after round-
ing to 3 decimals. If the vector is named, and alleles is not NULL, an error
is raised if setequal (names(afreq), alleles) is not TRUE. If afreq is not
specified, all alleles are given equal frequencies.

A single integer: the chromosome number. Default: NA.

A nonnegative real number: the physical position of the marker, in megabases.
Default: NA.

A character string: the name of the marker. Default: NA.

Mutation model parameters to be passed on to pedmut: :mutationModel(); see
there for details. Note: mutmod corresponds to the model parameter. Default:
NULL (no mutation model).

30

NAstrings

validate

validateMut

locusAttr

Value

marker

A character vector containing strings to be treated as missing alleles. Default:
C("”’ ”e", NA’ ”_”)'

A logical indicating if the validity of the marker object should be checked. De-
fault: TRUE.

A logical indicating if the mutation model (if present) should be checked. De-
fault: TRUE

A list with names alleles, afreq, chrom, name, posMb, mutmod, rate (or a
subset of these). This can be used as an alternative to entering the arguments as
function parameters.

An object of class marker. This is an integer matrix with 2 columns and one row per individual,
and the following attributes:

e alleles (a character vector with allele labels)

* afreq (allele frequencies; defaults to equal frequencies)

¢ chrom (chromosome number; default = NA)

* posMb (physical location in megabases; default = NA)

¢ name (marker identifier; default = NA)

e mutmod (a list of two (male/female) mutation matrices; default = NULL)

See Also

Get/set marker attributes: marker_getattr, marker_setattr.

Retrieve various marker properties: marker_prop, nMarkers(),

Add alleles to an existing marker: addAllele()

Attach multiple markers: marker_attach

Examples

X = nuclearPed(father = "fa", mother = "mo”, children = "child")

An empty SNP with alleles "A" and "B"
marker(x, alleles = c("A", "B"))

Creating and attaching to “x

addMarker(x, alleles = c("A", "B"))

Alleles/frequencies can be given jointly or separately
stopifnot(identical(

marker(x, afreq = c(A = 0.01, B = 0.99)),

marker(x, alleles = c("A", "B"), afreq = c(0.01, 0.99)),

)

Genotypes can be assigned individually ...

addMarker(x, fa

"1/1", mo = "1/2")

marker_attach 31

... or using the “geno” vector (all members in order)
addMarker(x, geno = c("1/1", "1/2", NA))

A marker with an "equal” mutation model
y = addMarker(x, alleles = 1:2, name = "M", mutmod = "equal”, rate = 0.01)
mutmod(y, "M")

marker_attach Attach markers to pedigrees

Description

In many applications it is useful to atfach markers to their associated ped object. In particular for
bigger projects with many markers, this makes it easier to manipulate the dataset as a unit. The
function setMarkers() replaces all existing markers with the supplied ones, while addMarkers()
appends the supplied markers to any existing ones. Note that there is also the function addMarker (),
which creates and attaches a single marker in one go.

Usage
setMarkers(
X ’
m = NULL,

alleleMatrix = NULL,
locusAttributes = NULL,
missing = 0,

sep = NULL,

checkCons = TRUE

addMarkers(
X)
m = NULL,
alleleMatrix = NULL,
locusAttributes = NULL,
missing = 0,

sep = NULL,
checkCons = TRUE
)
Arguments
X A ped object

m Either a single marker object or a list of marker objects

32 marker_attach

alleleMatrix A matrix with pedsize(x) rows, containing the observed alleles for one or sev-
eral markers. The matrix must have either 1 or 2 columns per marker. If the
former, then a sep string must be given, and will be used to split all entries.

locusAttributes
A list of lists, with attributes for each marker. See Details for possible attributes.
missing A single character (or coercible to one) indicating the symbol for missing alleles.
sep If this is a single string, each entry of alleleMatrix is interpreted as a geno-
type, and will be split by calling strsplit(..., split =sep, fixed = TRUE).
If alleleMatrix contains entries with "/", this will be taken as separator by
default. (To override this behaviour, put sep = FALSE.)
checkCons A logical. If TRUE (default), each marker is checked for consistency with x.
Details

The most general format of locusAttributes is a list of lists, one for each marker, where possible
entries in the inner lists are as follows (default values in parenthesis):

e alleles: a character vector with allele labels

* afreq: a numeric vector with allele frequencies (equal)

e chrom: chromosome number (NA)

* posMb: physical location in megabases (NA)

¢ name: marker name (NA)

¢ mutmod: mutation model, or model name (NULL)

* rate: mutation model parameter (NULL)
If locusAttributes is a single list of attributes (not a list of lists), then it is repeated to match the
number of markers.

Alternative formats of locusAttributes::

* A data frame or matrix. In this case an attempt is made to interpret it as a frequency database
in allelic ladder format.

* A list of frequency vectors. All vectors should sum to 1, and be named (with allele labels)

* Shortcut for simple SNP data: The argument locusAttributes = "snp-AB" sets all markers
to be equifrequent SNPs with alleles A and B. The letters A and B may be replaced by other
single-character letters or numbers.

Value

A ped object.

See Also

addMarker ()

marker_getattr 33

Examples

x = singleton(1)
ml marker(x, ~1° = "1/2")
m2 = marker(x, ~1° = "a/b")

Attach to x
x1 = setMarkers(x, list(m1, m2))

Reversing the order of the markers
setMarkers(x, list(m2, m1))

Alternative syntax, adding one marker at a time

X2 = x |>
addMarker ("1~ = "1/2") |>
addMarker ("1~ = "a/b")

stopifnot(identical(x1, x2))

marker_getattr Get marker attributes

Description

S3 methods retrieving marker attributes. They work on single marker objects and markers attached
to ped objects (or lists of such).

Usage

genotype(x, ...)

S3 method for class 'marker
genotype(x, id, ...)

S3 method for class 'ped'
genotype(x, markers = NULL, id, ...)

mutmod(x, ...)

S3 method for class 'marker
mutmod(x, ...)

S3 method for class 'ped'
mutmod(x, marker, ...)

S3 method for class 'list'
mutmod(x, marker, ...)

34

alleles(x, ...)

S3 method for class 'marker'
alleles(x, ...)

S3 method for class 'ped'
alleles(x, marker, ...)

S3 method for class 'list'
alleles(x, marker, ...)

afreq(x, ...)

S3 method for class 'marker'
afreq(x, ...)

S3 method for class 'ped'
afreq(x, marker, ...)

S3 method for class 'list'
afreq(x, marker, ...)

name(x, ...)

S3 method for class 'marker'
name(x, ...)

S3 method for class 'ped'
name(x, markers = NULL, ...)

S3 method for class 'list'
name(x, markers = NULL, ...)

chrom(x, ...)

S3 method for class 'marker'
chrom(x, ...)

S3 method for class 'ped'
chrom(x, markers = NULL, ...)

S3 method for class 'list'
chrom(x, markers = NULL, ...)

posMb(x, ...)

S3 method for class 'marker'
posMb(x, ...)

marker_getattr

marker_inplace 35

S3 method for class 'ped'

posMb(x, markers = NULL, ...)
Arguments
X Either a marker object, a ped object or a list of ped objects.

Further arguments, not used.
id The ID label of a single pedigree member.

marker, markers The index or name of a marker (or a vector indicating several markers) attached
to x.

Value

The associated marker attributes.

See Also

Setting marker attributes: marker_setattr and marker_inplace.

Examples

X = nuclearPed(1)
x = addMarker(x) # add empty marker

Inspect default attributes
alleles(x, marker = 1)
afreq(x, marker = 1)

name(x, marker = 1) # NA
chrom(x, marker = 1) # NA

marker_inplace Set marker attributes

Description

These S3 methods perform in-place modifications of marker attributes. They work on single marker
objects and markers attached to ped objects (or lists of such). Although these functions will continue
to exist, we recommend the newer alternatives setGenotype(), setAfreq(), ... in most cases.

36 marker_inplace

Usage
genotype(x, ...) <- value

S3 replacement method for class 'marker'
genotype(x, id, ...) <- value

S3 replacement method for class 'ped'
genotype(x, marker, id, ...) <- value

mutmod(x, ...) <- value

S3 replacement method for class 'marker'
mutmod(x, ...) <- value

S3 replacement method for class 'ped'
mutmod(x, marker = NULL, ...) <- value

S3 replacement method for class 'list'
mutmod(x, marker = NULL, ...) <- value

afreq(x, ...) <- value

S3 replacement method for class 'marker'
afreq(x, ...) <- value

S3 replacement method for class 'ped'
afreq(x, marker, ...) <- value

S3 replacement method for class 'list'
afreq(x, marker, ...) <- value

name(x, ...) <- value

S3 replacement method for class 'marker'
name(x, ...) <- value

S3 replacement method for class 'ped'
name(x, markers = NULL, ...) <- value

S3 replacement method for class 'list'
name(x, markers = NULL, ...) <- value

chrom(x, ...) <- value

S3 replacement method for class 'marker
chrom(x, ...) <- value

S3 replacement method for class 'ped'

marker_inplace

chrom(x, markers = NULL, ...) <- value

S3 replacement method for class 'list'
chrom(x, markers = NULL, ...) <- value

posMb(x,

...) <- value

S3 replacement method for class 'marker'

posMb(x,

...) <- value

S3 replacement method for class 'ped'

posMb(x, markers = NULL, ...) <- value
Arguments
X Either a marker object, a ped object or a list of ped objects.
Further arguments, not used.
value Replacement value(s).
id The ID label of a single pedigree member.

marker, markers

Value

to ped. Used if x is a ped object.

These functions perform in-place modification of x.

See Also

Alternative setters (not in-place): marker_setattr. Marker attribute getters: marker_getattr.

Examples

X
X

nuclearPed(1)
addMarker(x, alleles = 1:2)

Set genotypes
genotype(x, marker = 1, id = 1) = "1/2"

Set marker name
name(x, 1) = "M"

Change allele fregs
afreq(x, "M") = c(C1° =0.1, 27 =0.9)

Set position

chrom(x, "M") =1
posMb(x, "M") = 123.45

Check result

m = marker(x, ~1° = "1/2", name = "M", afreq = c("1° =

0.1, “2° = 0.9),

37

The index or name of a marker (or a vector indicating several markers) attached

38

stopifnot(identical (x$MARKERS[L[11], m))

chrom = 1, posMb = 123.45)

marker_prop

marker_prop

Marker properties

Description

These functions are used to retrieve various properties of marker objects. Each function accepts as

input either a single marker object, a ped object, or a list of ped objects.

Usage

emptyMarker(x, ...)

Default S3 method:

emptyMarker(x, ...)

S3 method for class 'marker'
emptyMarker(x, ...)

S3 method for class 'ped'
emptyMarker(x, markers = NULL,
S3 method for class 'list'
emptyMarker(x, markers = NULL,
nTyped(x, ...)

Default S3 method:

nTyped(x, ...)

S3 method for class 'marker'
nTyped(x, ...)

S3 method for class 'ped'
nTyped(x, markers = NULL, ...)
S3 method for class 'list'
nTyped(x, markers = NULL, ...)

nAlleles(x, ...)

Default S3 method:
nAlleles(x, ...)

)

.2

marker_prop 39

S3 method for class 'marker'
nAlleles(x, ...)

S3 method for class 'ped'
nAlleles(x, markers = NULL, ...)

S3 method for class 'list'
nAlleles(x, markers = NULL, ...)

isXmarker(x, ...)

Default S3 method:
isXmarker(x, ...)

S3 method for class 'marker'
isXmarker(x, ...)

S3 method for class 'ped'
isXmarker(x, markers = NULL, ...)

S3 method for class 'list'
isXmarker(x, markers = NULL, ...)

allowsMutations(x, ...)

Default S3 method:
allowsMutations(x, ...)

S3 method for class 'marker'
allowsMutations(x, ...)

S3 method for class 'ped'
allowsMutations(x, markers = NULL, ...)

S3 method for class 'list'

allowsMutations(x, markers = NULL, ...)
Arguments
X A single marker object or a ped object (or a list of such)
Not used.
markers A vector of names or indices of markers attached to x. By default all attached

markers are selected.

Details

emptyMarker () returns TRUE for markers with no genotypes. If the input is a list of pedigrees, all
must be empty for the result to be TRUE.

40 marker_prop

nTyped() returns the number of typed individuals for each marker. Note that if the input is a list of
pedigrees, the function returns the sum over all components.

nAlleles() returns the number of alleles of each marker.
isXmarker () returns TRUE for markers whose chrom attribute is either "X" or 23.

allowsMutations returns TRUE for markers whose mutmod attribute is non-NULL and differs
from the identity matrix.

Value

If x is a single marker object, the output is a vector of length 1.

Otherwise, a vector of length nMarkers(x) (default) or length(markers), reporting the property
of each marker.

Examples

cmpl = nuclearPed(1)

cmp2 = singleton(10)

loc = list(alleles = 1:2)

x = setMarkers(list(cmp1, cmp2), locus = rep(list(loc), 3))

Hommm - nAlleles() ------------
ALl markers have 2 alleles
stopifnot(identical(nAlleles(x), c(2L,2L,2L)))

oo - emptyMarkers() ------------
Add genotype for indiv 1 at marker 1
genotype(x[[11]1, 1, 1) = "1/2"

Check that markers 2 and 3 are empty

stopifnot(identical (emptyMarker(x), c(FALSE,TRUE,TRUE)),
identical (emptyMarker(x[[1]1]), c(FALSE,TRUE,TRUE)),
identical (emptyMarker(x[[2]]), c(TRUE,TRUE,TRUE)),
identical (emptyMarker(x, markers = c(3,1)), c(TRUE,FALSE)))

oo nTyped() ------------
stopifnot(identical (nTyped(x), c(1L,0QL,0L)))

Add genotypes for third marker
genotype(x[[11], marker = 3, id = 1:3) = "1/1"
genotype(x[[2]1], marker = 3, id = 10) = "2/2"

nTyped() returns total over all components
stopifnot(identical (nTyped(x), c(1L,0L,4L)))

Homm - allowsMutations() ------------
Marker 2 allows mutations
mutmod(x, 2) = list("prop", rate = 0.1)

stopifnot(identical(allowsMutations(x), c(FALSE,TRUE,FALSE)),
identical(allowsMutations(x, markers = 2:3), c(TRUE,FALSE)))

marker_select 41

Hommm—m - isXmarker() ------------
Make marker 3 X-linked
chrom(x[[1]1]1, 3) = "X"
chrom(x[[2]1], 3) = "X"

stopifnot(identical (isXmarker(x), c(FALSE,FALSE,TRUE)))

marker_select Select or remove attached markers

Description

Functions for manipulating markers attached to ped objects.

Usage
selectMarkers(x, markers = NULL, chroms = NULL, fromPos = NULL, toPos = NULL)

getMarkers(x, markers = NULL, chroms = NULL, fromPos = NULL, toPos = NULL)
removeMarkers(x, markers = NULL, chroms = NULL, fromPos = NULL, toPos = NULL)

whichMarkers(x, markers = NULL, chroms = NULL, fromPos = NULL, toPos = NULL)

Arguments
X A ped object, or a list of such
markers Either a character vector (with marker names), a numeric vector (with marker
indices), a logical (of length nMarkers(x)), or NULL.
chroms A vector of chromosome names, or NULL
fromPos A single number or NULL
toPos A single number or NULL
Details

If markers consists of negative integers, it will be converted to its complement within 1:nMarkers(x).

Value
The return values of these functions are:

* selectMarkers(): an object identical to x, but where only the indicated markers are kept
* removeMarkers(): an object identical to x, but where the indicated markers are removed

* getMarkers(): alist of marker objects. Note: If x is a list of pedigrees, the marker objects
attached to the first component will be returned.

* whichMarkers(): an integer vector with indices of the indicated markers. If x is a list of
pedigrees an error is raised unless whichMarkers() gives the same result for all components.

42 marker_setattr

See Also

setMarkers()

marker_setattr Set marker attributes

Description
These functions set or modify various attributes of markers attached to a pedigree. They are some-
times more convenient (and pipe-friendly) than the in-place modifiers described in marker_inplace.
Usage

setGenotype(x, marker = NULL, ids = NULL, geno = NULL, id = NULL)

setAfreq(x, marker, afreq, strict = TRUE)
setAllelelLabels(x, marker, alleles)
setMarkername(x, marker = NULL, name)
setChrom(x, marker = NULL, chrom)

setPosition(x, marker = NULL, posMb)

Arguments

X A ped object or a list of ped objects.

marker A vector of indices or names of one or several markers attached to x.

geno A character vector of length pedsize(x), with genotypes written in the format
lla/bﬂ.

id, ids A vector naming one or several pedigree members, or a function (e.g., founders()).

afreq A numeric of the same length as alleles, indicating the population frequency
of each allele. A warning is issued if the frequencies don’t sum to 1 after round-
ing to 3 decimals. If the vector is named, and alleles is not NULL, an error
is raised if setequal (names(afreq), alleles) is not TRUE. If afreq is not
specified, all alleles are given equal frequencies.

strict A logical. If TRUE (default) the new frequencies cannot remove or add any
alleles.

alleles A vector of allele names. If not given, and afreq is named, names(afreq)
is used. Otherwise, the default action is to use all distinct alleles occurring in
allelematrix, genoor....

name A character of the same length as marker (recycled if length 1), with new marker

names. Use NULL or NA to remove names.

maskPed 43

chrom A character of the same length as marker (recycled if length 1), with chromo-
some labels. Use NULL or NA to remove chromosome info.

posMb A numeric of the same length as marker (recycled if length 1), containing phys-
ical marker positions in Mb. Use NULL or NA to remove position info.

Value

A copy of x with modified attributes.

Examples

X = nuclearPed() |>
addMarker(alleles = 1:2) |>
setMarkername(marker = 1, name = "M") |>
setGenotype(marker = "M", ids = 1, geno = "1/2") |>
setAfreq(marker = "M", afreq = c(C1° = 0.1, 27 =0.9)) |>
setChrom(marker = "M", chrom = 1) |>
setPosition(marker = "M"] posMb = 123.45)

Alternatively, all of this could have been done on creation:
y = addMarker (nuclearPed(),

1= /2,

afreq = c(C1° = 0.1, 27 =0.9),
name = "M",

chrom = 1,

posMb = 123.45)
stopifnot(identical(x, y))

maskPed Mask and unmask pedigree datasets

Description

The maskPed() function replaces the individual IDs, marker names and allele names with generic
labels, and randomly changes their internal order. For markers with stepwise mutation models, the
allelic ladder is simply translated to start at 1, thereby preserving the intra-allelic differences.

Usage

maskPed(
X7
ids = NULL,
markerNames = NULL,
markerShuffle = TRUE,
allelelabels = NULL,
alleleShuffle = TRUE,
seed = NULL

44 maskPed

unmaskPed(x, keys)

Arguments
X A ped object or a list of such.
ids (Optional) A named character with the new IDs, written as c(old = new, ...).
By default: 1, 2,
markerNames (Optional) A named character with the new marker names (and order), written

as c(old = new, ...). By default: M1, M2,
markerShuffle A logical: Randomly reorder the markers? (Default: TRUE)

allelelLabels (Optional) A list of character vectors. The list names should be the original
marker names. Each vector gives the new allele labels, as c(old = new, ...).
By default, each marker gets alleles 1, 2,

alleleShuffle A logical: Randomly reorder the alleles? (Default: TRUE)

seed An optional seed for the random number generator.
keys A list with entries ids, markerNames, allelelabels.
Details

Note that in order to preserve likelihoods, the allele frequencies are not modified. Thus, if the
data uses a publicly available frequency databases, the result cannot be considered to be fully
anonymised, since one could (at least in theory) deduce the original marker names and alleles from
the frequencies.)

Value

An object similar to x but with replaced ID labels, marker names and allele labels.

Examples

x = nuclearPed(father = "fa", mother = "mo", children = "ch"”) |>
addMarker (name = "myMarker"”, ch = "b/c", afreq = c(a=0.2, b=0.3, c=0.5)) |>
setMutmod(model = "proportional”, rate = 0.01)

Mask
y = maskPed(x, seed = 1729)

Unmask
z = unmaskPed(y$maskedPed, keys = y$keys)
stopifnot(identical(x, z))

With stepwise model
X2 = x |>
addMarker (name = "mySTR", ch = "7.2/8.2",
alleles = c("7", "7.2", "8", "8.2")) |>
setMutmod(marker = 2, model = "stepwise”, rate = 0.1, rate2 = le-6,
range = 0.1)

mendelianCheck 45

maskPed(x2, seed = 1729)

y2

z2

unmaskPed(y2$maskedPed, keys = y2$keys)
stopifnot(identical(x2, z2))

Check likelihoods with pedprobr:
stopifnot(setequal(likelihood(x2), likelihood(y2$maskedPed)))

mendelianCheck Check for Mendelian errors

Description

Check marker data for Mendelian inconsistencies

Usage
mendelianCheck(x, remove = FALSE, verbose = !remove)
Arguments
X a ped() object
remove a logical. If FALSE, the function returns the indices of markers found to incor-
rect. If TRUE, a new ped object is returned, where the incorrect markers have
been deleted.
verbose a logical. If TRUE, details of the markers failing the tests are shown.
Value

A numeric containing the indices of the markers that did not pass all tests, or (if remove = TRUE) a
new ped object where the failing markers are removed.

Author(s)
Magnus Dehli Vigeland

Examples
X = nuclearPed()
Add a SNP with Mendelian error

m = marker(x, '1' = "1/1", '2' ="1/1", '3' = "1/2")
= setMarkers(x, m)

x
I

mendelianCheck(x)

46 mergePed

mergePed Merge two pedigrees

Description

This function merges two pedigrees, joining them at the indicated individuals.

Usage
mergePed(x, y, by = NULL, relabel = FALSE, ...)
Arguments
X,y Two ped() objects.
by The individuals to merge by. The most general form uses a named vector with

entries of the form id.x = id.y (see Examples). If the vector is unnamed, it is
assumed that the individuals have the same labels in both pedigrees. By default
set to intersect(labels(x), labels(y)).

relabel A logical, by default FALSE. If TRUE, relabel(..., "asPlot") is run on the
merged pedigree before returning.

further arguments passed along to ped(), e.g. famid, validate and reorder.

Details

Some internal checks are done to ensure that merging individuals are compatible in terms of sex
and parents.

If relabel = FALSE, some relabelling might still be performed in order to ensure unique labels for
everyone. Specifically, this is the case if some ID labels occur in both x and y other than those given
in the by argument. In such cases, the relevant members of y get a suffix .y.

Value

A ped object.

Author(s)
Magnus Dehli Vigeland

Examples

HHHHHHEEEE

Example 1: Merge 2 trios by fusing the fathers
x1 = x2 = nuclearPed()

x = mergePed(x1, x2, by = c("1" = "1"))

plot(x)

newMarker 47

B
Example 2: Double first cousins
HHHHHHEEEEE A

First cousins, whose fathers are brothers
y = cousinPed(degree = 1)

Create two sisters
sisters = nuclearPed(2, sex = 2)

Plot to see who is who: “plot(list(y, sisters))"

Merge
z = mergePed(y, sisters, by = c("4" = 3, "6" = 4), relabel = TRUE)
plot(z)
newMarker Internal marker constructor
Description

This is the internal constructor of marker objects. It does not do any input validation and should
only be used in programming scenarios, and only if you know what you are doing. Most users are
recommended to use the regular constructor marker ().

Usage

newMarker (
alleleMatrixInt,
alleles,
afreq,
name = NA_character_,
chrom = NA_character_,
posMb = NA_real_,
mutmod = NULL,

pedmembers,

sex
)

Arguments
alleleMatrixInt
An integer matrix.

alleles A character vector.
afreq A numeric vector.
name A character of length 1.

chrom A character of length 1.

48 newPed

posMb A numeric of length 1.

mutmod A mutation model.

pedmembers A character vector.

sex An integer vector.
Details

See marker () for more details about the marker attributes.

Value

A marker object.

Examples

newMarker(matrix(c(1L, oL, 1L, 1L, oL, 2L), ncol = 2),
alleles = c("A", "B"), afreq = c(0.1, 0.9), name = "M",
pedmembers = c("1", "2", "3"), sex = c(1L, 2L, 1L))

newPed Internal ped constructor

Description

This is the internal constructor of ped objects. It does not do any validation of input other than
simple type checking. In particular it should only be used in programming scenarios where it is
known that the input is a valid, connected pedigree. End users are recommended to use the regular
constructor ped().

Usage
newPed(ID, FIDX, MIDX, SEX, FAMID, detectlLoops = TRUE)

Arguments
1D A character vector.
FIDX An integer vector.
MIDX An integer vector.
SEX An integer vector.
FAMID A string.

detectLoops A logical.

Details

See ped() for details about the input parameters.

nMarkers 49

Value

A ped object.

Examples

newPed(”a”, oL, oL, 1L, "")

nMarkers The number of markers attached to a pedigree

Description

The number of markers attached to a pedigree

Usage

nMarkers(x, compwise = FALSE)

hasMarkers(x, compwise = FALSE)

Arguments

X A ped object or a list of such.

compwise A logical, only relevant if x is a ped list. Default FALSE.
Value

nMarkers() by default returns a single number; the number of marker objects attached to x. If x is
a ped list, an error is raised if the components have different numbers of markers. This check can be
skipped by setting compwise = TRUE, in which case the function returns a vector of the component-
wise marker numbers.

The function hasMarkers(x) returns TRUE if (at least component of) x has attached markers,
otherwise FALSE. If compwise = TRUE, a logical vector of the same length as x.

Examples
X = nuclearPed() |> addMarker()
nMarkers(x) # =1

y = list(x, singleton(1))
nMarkers(y, compwise = TRUE) # c(1,0)

hasMarkers(y) # TRUE
hasMarkers(y, compwise = TRUE) # c(TRUE, FALSE)

50

ped

ped

Pedigree construction

Description

This is the basic constructor of ped objects. Utility functions for creating many common pedigree
structures are described in ped_basic. See also as.ped() and readPed(), which are more liberal
regarding the input format.

Usage

ped(
id,
fid,
mid,
sex,
famid = "",

reorder = TRUE,

validate =

TRUE,

detectlLoops = TRUE,
isConnected = FALSE,
verbose = FALSE

)

singleton(id = ‘], sex = ‘|7 famid = nn)

singletons(id, sex = 1)

Arguments
id
fid, mid
sex
famid
reorder
validate
detectLoops

isConnected

verbose

A character (or coercible to character) of individual ID labels.

Vectors of the same length as id, naming each individual’s father and mother.
Missing parents (of founders) may be entered as "0", "" or NA.

A numeric of the same length as id, describing the genders of the individuals
(in the same order as id.) Each entry must be either 1 (=male), 2 (=female) or O
(=unknown).

A character string. Default: An empty string.

A logical indicating if the pedigree should be reordered so that all parents pre-
cede their children. Default: TRUE.

A logical indicating if a validation of the pedigree structure should be performed.
Default: TRUE.

A logical indicating if the presence of loops should be detected. Setting this to
FALSE may speed up the processing of large pedigrees. Default: TRUE.

A logical indicating if the input is known to be a connected pedigree. Setting
this to TRUE speeds up the processing. Default: FALSE.

A logical.

ped

Details

51

Each individual must have either both parents specified, or no parents. Missing parents are indicated
with entries "0", "" or NA in fid and mid. Note that id,fid,mid are all converted to character vectors
before matching to establish the parent connections.

If the pedigree is disconnected, it is split into its connected components and returned as a list of ped
objects.

A singleton is a special ped object whose pedigree contains 1 individual. The class attribute of a
singleton is c('singleton', 'ped').

singletons() creates a list of singletons with the indicated labels and sexes.

Selfing, i.e. the presence of pedigree members whose father and mother are the same individual, is
allowed in ped objects. Any such "self-fertilizing" parent must have undecided sex (sex = 0).

Value

A ped object, which is essentially a list with the following entries:

ID: A character vector of ID labels. Unless the pedigree is reordered during creation, this
equals as.character(id)

FIDX: An integer vector with paternal indices: For each j = 1,2, ..., FIDX[j] is O if ID[j]
has no father; otherwise ID[FIDX[j]] is the father of ID[j].

MIDX: An integer vector with maternal indices: For each 7 = 1,2,..., MIDX[j] is O if ID[j]
has no mother; otherwise ID[MIDX[j]] is the mother of ID[j].

SEX: An integer vector with gender codes. Unless the pedigree is reordered, this equals
as.integer(sex).

FAMID: The family ID.

UNBROKEN_LOOPS: A logical indicating if the pedigree has unbroken loops, or NA if the status
is currently unknown.

LOOP_BREAKERS: A matrix with loop breaker ID’s in the first column and their duplicates in
the second column. All entries refer to the internal IDs. This is usually set by breakLoops ().

FOUNDER_INBREEDING: A list of two potential entries, "autosomal" and "x"; both numeric
vectors with the same length as founders(x). FOUNDER_INBREEDING is always NULL when
anew ped is created. See founderInbreeding().

MARKERS: A list of marker objects, or NULL.

Author(s)

Magnus Dehli Vigeland

See Also

newPed(), ped_basic, ped_modify, ped_subgroups, relabel ()

52 ped_basic

Examples

Trio
x = ped(id = 1:3, fid = c(0,0,1), mid = c(0,0,2), sex = c(1,2,1))

Female singleton
y = singleton('NN', sex = 2)

Selfing
z = ped(id = 1:2, fid = @:1, mid = 9:1, sex = 0:1)
stopifnot(hasSelfing(z))

Disconnected pedigree: Trio + singleton
ped(id = 1:4, fid = c(2,0,0,0), mid = ¢c(3,0,0,0), sex = c(1,1,2,1))

List of singletons
singletons(1:2)

ped_basic Create basic pedigrees

Description

Utility functions for creating some common pedigree structures.

Usage

nuclearPed(nch = 1, sex = 1, father = "1", mother = "2", children = NULL)

halfSibPed(

nchl =1,

nch2 = 1,

sexl =1,

sex2 = 1,

type = c("paternal”, "maternal”)
)

linearPed(n, sex = 1)

cousinPed(
degree = 1,
removal = 0,
side = c("right”, "left"),
half = FALSE,
symmetric = FALSE,
child = FALSE

ped_basic 53

avuncularPed(
top = c("uncle”, "aunt"),
bottom = c("nephew”, "niece"),
side = c("right”, "left"),
type = c("paternal”, "maternal”),
removal = 1,
half = FALSE

)

halfCousinPed(
degree = 1,
removal = 0,
side = c("right”, "left"),
symmetric = FALSE,
child = FALSE

)

ancestralPed(g)

selfingPed(s, sex = 1)

Arguments

nch The number of children, by default 1. If children is not NULL, nch is set to
length(children).

sex A vector with integer gender codes (O=unknown, 1=male, 2=female). In nuclearPed(),
it contains the genders of the children and is recycled (if necessary) to length
nch. In linearPed() it also contains the genders of the children (1 in each
generation) and should have length at most n (recycled if shorter than this). In
selfingPed() it should be a single number, indicating the gender of the last
individual (the others must necessarily have gender code 0.)

father The label of the father. Default: "1".

mother The label of the mother. Default: "2".

children A character with labels of the children. Default: c("”3", "4", ...)

nch1, nch2 The number of children in each sibship.

sex1, sex2 Vectors of gender codes for the children in each sibship. Recycled (if necessary)
to lengths nch1 and nch2 respectively.

type Either "paternal" or "maternal".

n The number of generations, not including the initial founders.

degree A non-negative integer: O=siblings, 1=first cousins; 2=second cousins, a.s.0.

removal A non-negative integer. See Details and Examples.

side Either "right" or "left"; the side on which removals should be added.

half A logical indicating if the relationship should be "half-like". Default: FALSE.

symmetric A logical, by default FALSE. If TRUE, the cousin pedigree uses female connec-

tions on the left side, giving a more symmetric appearance when plotted.

54

ped_basic
child A logical: Should an inbred child be added to the two bottom individuals?

top, bottom Strings specifying the avuncular relationships. The first must be either "uncle"
or "aunt", while the second is "nephew" or "niece". Both can be abbreviated.

g A nonnegative integer indicating the number of ancestral generations to include.
The resulting pedigree has 2*(g+1)-1 members. The case g = @ results in a
singleton.

s Either a character vector of ID labels, or a nonnegative integer indicating the

number of consecutive selfings. The case s = @ results in a singleton.

Details

halfSibPed(nch1, nch2) produces a pedigree containing two sibships (of sizes nch1 and nch2)
with the same father, but different mothers. If maternal half sibs are wanted instead, add type =
"maternal”.

cousinPed(degree = n, removal = k) creates a pedigree with two n’th cousins, k times removed.
By default, removals are added on the right side, but this can be changed by adding side = lef't.

halfCousinPed(...) is a synonym for cousinPed(. .., half = TRUE).

avuncularPed() creates uncle/aunt - nephew/niece pedigrees. The empty call avuncularPed() is
equivalent to avuncularPed("uncle", "nephew"). Note that the arguments can be abbreviated, so that
e.g. avuncularPed("a"”, "ni") produces an aunt-niece relationship. Grand (and great-grand etc)

uncles/aunts can be produced by specifying removal greater than 1.

ancestralPed(g) returns the family tree of a single individual, including all ancestors g genera-
tions back.

selfingPed(s) returns a line of s consecutive selfings.

Value

A ped object.

See Also

ped(), singleton(), ped_complex, ped_subgroups

Examples

A nuclear family with 2 boys and 3 girls
nuclearPed(5, sex = c(1, 1, 2, 2, 2))

A straight line of females
linearPed(3, sex = 2)

Paternal half brothers
halfSibPed()

Maternal half sisters
halfSibPed(sex1 = 2, sex2 = 2, type = "maternal”)

Larger half sibships: boy and girl on one side; 3 girls on the other

ped_complex 55

halfSibPed(nch1l = 2, sex = 1:2, nch2 = 3, sex2 = 2)

Grand aunt:
cousinPed(degree = @, removal = 2)

Second cousins once removed.
cousinPed(degree = 2, removal = 1)

Same, but with the 'removal' on the left side.
cousinPed(2, 1, side = "left")

A child of half first cousins.
halfCousinPed(degree = 1, child = TRUE)

The 'family tree' of a person
ancestralPed(g = 2)

ped_complex Complex pedigree structures

Description
Functions for creating a selection of pedigrees that are awkward to construct from scratch or with
the simple structures described in ped_basic.

Usage

doubleCousins(

degreel,

degree2,

removall = 0,
removal2 = @,
half1 = FALSE,
half2 = FALSE,
child = FALSE

doubleFirstCousins()
quadHalfFirstCousins()
fullSibMating(n)

halfSibStack(n)

halfSibTriangle(g)

56 ped_complex

Arguments

degreel, degree2, removall, removal2
Nonnegative integers.

half1, half2 Logicals, indicating if the fathers (resp. mothers) should be full or half cousins.

child A logical: Should a child be added to the double cousins?
n A positive integer indicating the number of crossings.
g A positive integer; the number of generations.

Details

The function doubleCousins returns a pedigree linking two individuals who are simultaneous pa-
ternal and maternal cousins. More precisely, they are:
* paternal (full or half) cousins of type (degreel, removall)

» maternal (full or half) cousins of type (degree2, removal?).

For convenience, a wrapper doubleFirstCousins is provided for the most common case, double
first cousins.

quadHalfFirstCousins produces a pedigree with quadruple half first cousins.
fullSibMating crosses full sibs consecutively n times.

halfSibStack produces a breeding scheme where the two individuals in the final generation are
simultaneous half k’th cousins, foreachk = 0,...,n-1.

halfSibTriangle produces a triangular pedigree in which every pair of parents are half siblings.

Value

A ped object.

See Also

ped_basic

Examples

Consecutive brother-sister matings.
x = fullSibMating(2)
plot(x)

H

Simultaneous half siblings and half first cousins
= halfSibStack(2)
plot(x)

H X

ETS

Double first cousins
= doubleFirstCousins()
plot(x)

H X

ES

Quadruple half first cousins
= quadHalfFirstCousins()

x

ped_internal 57

plot(x) # Weird plotting behaviour for this pedigree.

Triangular half-sib pattern
x = halfSibTriangle(4)
plot(x)

ped_internal Internal ordering of pedigree members

Description

These functions give access to - and enable modifications of - the order in which the members of a
pedigree are stored. (This is the order in which the members are listed when a ped object is printed
to the screen.)

Usage
reorderPed(x, neworder = NULL, internal = FALSE)

parentsBeforeChildren(x)
hasParentsBeforeChildren(x)
foundersFirst(x)

internalID(x, ids, errorIfUnknown = TRUE)

Arguments

X A ped object. Most of these functions also accepts ped lists.

neworder A permutation of labels(x) (or a subset of this), indicating the new internal
ordering. If internal = TRUE, neworder refers to the internal ordering, so must
be numeric. By default, the natural order of the ID labels is used.

internal A logical (default: FALSE). If TRUE, neworder is interpreted as referring to
the internal ordering.

ids A character vector (or coercible to one) of original ID labels.

errorIfUnknown A logical. If TRUE (default), the function stops with an error if not all elements
of ids are recognised as names of members in x.

Details

While the internal pedigree ordering rarely matters, it is occasionally important. The function
reorderPed() permutes the internal ordering as specified by the user. The most common use of
this function is perhaps in parentsBeforeChildren(), which ensures that all parents precede their
children. This is required by many pedigree-traversing algorithms.

58 ped_modify

It should be noted that ped() by default calls parentsBeforeChildren() whenever a pedigree is
created, unless explicitly avoided with reorder = FALSE.

hasParentsBeforeChildren() can be used as a quick test to decide if it is necessary to call
parentsBeforeChildren().

The foundersFirst() function reorders the pedigree so that all the founders come first.

The utility internalID() converts ID labels to indices in the internal ordering. If x is a list of
pedigrees, the output is a data frame containing both the component number and internal ID (within
the component).

See Also

ped()

Examples

x = ped(id = 3:1, fid = ¢(1,0,0), mid = c(2,0,0), sex = c(1,2,1), reorder = FALSE)
X
The 'ids' argument is converted to character, hence these are the same:

internalID(x, ids = 3)
internalID(x, ids = "3")

hasParentsBeforeChildren(x)

Put parents first
parentsBeforeChildren(x)

Typical use of reorderPed: Swap sibling plot order
y = nuclearPed(2) |> reorderPed(4:3)
plot(y)

If labels are numeric, argument “internal” is important

z = singleton(1) |> addParents(1)

z

reorderPed(z, 1:3, internal = FALSE) # ID order = "1",6"2","3"

reorderPed(z, 1:3, internal = TRUE) # index order: 1,2,3 (i.e., no change)

ped_modify Add/remove pedigree members

Description

Functions for adding or removing individuals in a *ped’ object.

ped_modify 59

Usage

addChildren(
X,
father = NULL,
mother = NULL,

nch = NULL,
sex = 1L,

ids = NULL,
verbose = TRUE

)

addChild(x, parents, id = NULL, sex = 1, verbose = TRUE)
addSon(x, parents, id = NULL, verbose = TRUE)
addDaughter(x, parents, id = NULL, verbose = TRUE)

addParents(x, id, father = NULL, mother = NULL, verbose = TRUE)

removelndividuals(
X,
ids,
remove = c("descendants”, "ancestors"),

returnLabs = FALSE,
verbose = TRUE

)

trim(x, uninformative, verbose = TRUE)
branch(x, id)

S3 method for class 'ped'

subset(x, subset, ...)
Arguments
X A ped object, or a list of such.

father, mother Single ID labels. At least one of these must be an existing member of x. The
other may be (i) another existing member, (ii) a new founder to be created, or
(iii) missing (i.e., NULL), in which case the other parent is created and given a
suitable name.

nch A positive integer indicating the number of children to be created. Default: 1.
sex Gender codes of the created children (recycled if needed).
ids A vector of ID labels. In addChildren() these are the children to be created. If

NULL (default) given, automatic labels are generated.

verbose A logical: Verbose output or not.

60

ped_modify

parents A vector of 1 or 2 ID labels, of which at least one must be an existing member
of x.

id The ID label of a pedigree member.

remove Either "ancestors" or "descendants" (default), dictating the method of removing
pedigree members. Abbreviations are allowed.

returnLabs A logical, by default FALSE. If TRUE, removeIndividuals() returns only the
labels of all members to be removed, instead of actually removing them.

uninformative A vector naming individuals considered "uninformative", or a function (typi-
cally a helper function like untypedMembers()). Uninformative leaves are re-
moved iteratively until no more can be found.

subset A character vector (or coercible to such) with ID labels forming a connected
sub-pedigree.

Not used.

Details

In addChildren() and addParents(), labels of added individuals are generated automatically if
they are not specified by the user. The automatic labelling uses the smallest integers not already in
use.

addChild(), addSon() and addDaughter () are convenient wrappers for the most common use of
addChildren(), namely adding a single child to a pedigree. Note that the parents can be given in
any order. If only one parent is supplied, the other is created as a new individual.

removeIndividuals() removes the individuals indicated with ids along with all of their ancestors
OR descendants, depending on the remove argument. Leftover spouses disconnected from the
remaining pedigree are also removed.

The branch() function extracts the sub-pedigree formed by id and all his/her spouses and descen-
dants.

The trim() function iteratively removes uninformative leaves (i.e., members without children)
from the pedigree. Note that the definition of "uninformative" is entirely user-defined. For example,
trim(x, untypedMembers), will remove untyped individuals from the bottom until the process
stops.

Finally, subset() can be used to extract any connected sub-pedigree. (Note that in the current
implementation, the function does not actually check that the indicated subset forms a connected
pedigree; failing to comply with this may lead to obscure errors.)

Value

The modified ped object.

See Also

ped(), relabel (), swapSex()

ped_subgroups

Examples

X = nuclearPed(1) |>
addSon(3) |>
addParents(4, father = 6, mother = 7) |>
addChildren(father = 6, mother = 7, nch = 3, sex = c(2,1,2))

Remove 6 and 7 and their descendants
y1 = removelIndividuals(x, 6:7)

Remove 8-10 and their parents
y2 = removelndividuals(x, 8:1@, remove = "ancestors")

Adding a child across components
z = singletons(1:2, sex = 1:2) |> addDaughter(1:2)

61

ped_subgroups Pedigree subgroups

Description

A collection of utility functions for identifying pedigree members with certain properties.

Usage

founders(x, internal = FALSE)
nonfounders(x, internal = FALSE)
leaves(x, internal = FALSE)
males(x, internal = FALSE)
females(x, internal = FALSE)
typedMembers(x, internal = FALSE)
untypedMembers(x, internal = FALSE)

father(x, id, internal = FALSE)

mother(x, id, internal FALSE)
children(x, id, internal = FALSE)

spouses(x, id, internal = FALSE)

62 ped_subgroups

unrelated(x, id, internal = FALSE)

parents(x, id, internal = FALSE)

grandparents(x, id, degree = 2, internal = FALSE)

siblings(x, id, half = NA, internal = FALSE)

nephews_nieces(x, id, removal = 1, half = NA, internal = FALSE)

niblings(x, id, half

NA, internal FALSE)

NA, internal = FALSE)

piblings(x, id, half
ancestors(x, id, maxGen = Inf, inclusive = FALSE, internal = FALSE)
commonAncestors(x, ids, maxGen = Inf, inclusive = FALSE, internal = FALSE)
descendants(x, id, maxGen = Inf, inclusive = FALSE, internal = FALSE)
commonDescendants(x, ids, maxGen = Inf, inclusive = FALSE, internal = FALSE)

descentPaths(x, ids = founders(x), internal = FALSE)

Arguments
X A ped() object or a list of such.
internal A logical indicating whether id (or ids) refers to the internal order.
id, ids A character (or coercible to character) of one or more ID labels. If internal is

TRUE, id and ids should be positive integers.
degree, removal Non-negative integers.

half alogical or NA. If TRUE (resp. FALSE), only half (resp. full) siblings/cousins/nephews/nieces
are returned. If NA, both categories are included.

maxGen The number of generations to include. Default: Inf (no limit).

inclusive A logical indicating whether an individual should be counted among his or her
own ancestors/descendants

Value

The functions founders, nonfounders, males, females, leaves each return a vector containing
the IDs of all pedigree members with the wanted property. (Recall that a founder is a member
without parents in the pedigree, and that a leaf is a member without children in the pedigree.)

The functions father, mother, parents, children, siblings, grandparents, spouses, niblings
(nephews + nieces), piblings (aunts

* uncles) and unrelated, each returns a vector naming all pedigree members with the specified
relationship to id.

ped_subgroups 63

The commands ancestors(x, id) and descendants(x, id) return vectors containing the IDs of
all ancestors (resp. descendants) of the individual id within the pedigree x. If inclusive = TRUE,
id is included in the output, otherwise not. To cut off at a specific number of generations, use
maxGen.

For commonAncestors(x, ids) and commonDescendants(x, ids), the output is a vector contain-
ing the IDs of common ancestors (descendants) to all of ids.

Finally, descentPaths(x, ids) returns a list of lists, containing all pedigree paths descending from
each individual in ids (by default all founders).

Author(s)

Magnus Dehli Vigeland

Examples

x = ped(id = 2:9,

fid = c(0,0,2,0,4,4,0,2),
mid = c(9,9,3,90,5,5,0,8),
sex = ¢(1,2,1,2,1,2,2,2))

spouses(x, id = 2) # 3, 8

children(x, 2) # 4,9

siblings(x, 4) # 9 (full or half)
unrelated(x, 4) #5, 8

father(x, 4) # 2

mother(x, 4) # 3

FALSE) # none
TRUE) # 9

siblings(x, 4, half
siblings(x, 4, half

niblings(x, 9) # 6,
niblings(x, 9, half

~

FALSE) # none

piblings(x, 6) # 9
piblings(x, 6, half = FALSE) # none

ancestors(x, 6) #2, 3, 4,5
ancestors(x, 6, maxGen = 2, inclusive = TRUE) # 4, 5, 6

descendants(x, 2) # 4,6, 7
descendants(x, 2, maxGen = 2, inclusive = TRUE) # 2, 4, 9

leaves(x) #6,7,9
founders(x) #2, 3,5, 8

64 ped_utils

ped_utils Pedigree utilities

Description

Various utility functions for ped objects.

Usage

pedsize(x)
generations(x, what = c("max”, "compMax", "indiv", "depth"))

nChildren(x, ids = labels(x), named = FALSE)

hasUnbrokenLoops(x)
hasInbredFounders(x, chromType = "autosomal”)
hasSelfing(x)
hasCommonAncestor (x)
subnucs(x)
peelingOrder(x)
Arguments
X A ped object, or (in some functions - see Details) a list of such.
what Either "max", "compMax", "indiv" or "depth" (See Value.)
ids A vector of individual IDs.
named A logical.
chromType Either "autosomal" (default) or "x".
Value

* pedsize(x) returns the number of pedigree members in each component of x.

* generations(x) by default returns the number of generations in x, defined as the number of
individuals in the longest line of parent-child links. (Note that this is well-defined also if x has
loops and/or cross-generational marriages.) For individual generation numbers, use what =
"indiv"” (generation numbering as in the plot) or what = "depth” (length of the longest chain up to a founder;
the function returns a vector with the generation count from each component.

* nChildren(x, ids) returns an integer vector containing the number of children of each
indicated individual. It is equivalent to, but more efficient than, lengths(lapply(ids,
function(id) children(x, id))).

ped_utils 65

* hasUnbrokenLoops(x) returns TRUE if x has loops, otherwise FALSE. (No computation is
done here; the function simply returns the value of x$UNBROKEN_LOOPS).

* hasInbredFounders(x) returns TRUE is founder inbreeding is specified for x and at least
one founder has positive inbreeding coefficient. See founderInbreeding() for details.

* hasSelfing(x) returns TRUE if the pedigree contains selfing events. This is recognised by
father and mother begin equal for some child. (Note that for this to be allowed, the gender
code of the parent must be 0.)

* hasCommonAncestor (x) computes a logical matrix A whose entry A[1, j] is TRUE if pedigree
members i and j have a common ancestor in x, and FALSE otherwise. By convention, A[i,1i]
is TRUE for all 1.

* subnucs(x) returns a list of all nuclear sub-pedigrees of x, wrapped as nucleus objects. Each
nucleus is a list with entries father, mother and children.

* peelingOrder(x) calls subnucs(x) and extends each entry with a 1ink individual, indicating
a member linking the nucleus to the remaining pedigree. One application of this function is
the fact that if fails to find a complete peeling order if and only if the pedigree has loops.
(In fact it is called each time a new ped object is created by ped() in order to detect loops.)
The main purpose of the function, however, is to prepare for probability calculations in other
packages, as e.g. in pedprobr: :likelihood.

Examples

x = fullSibMating(1)
stopifnot(pedsize(x) == 6)
stopifnot (hasUnbrokenLoops(x))
stopifnot(generations(x) == 3)

All members have common ancestors except the grandparents
CA = hasCommonAncestor(x)
stopifnot(!CA[1,2], !CA[2,1], sum(CA) == length(CA) - 2)

Effect of breaking the loop
y = breakLoops(x)
stopifnot(!hasUnbrokenLoops(y))
stopifnot(pedsize(y) == 7)

A pedigree with selfing (note the necessary “sex = 07)
z1 = singleton(1, sex = @)

z2 = addChildren(z1, father = 1, mother = 1, nch = 1)
stopifnot(!hasSelfing(z1), hasSelfing(z2))

Nucleus sub-pedigrees
stopifnot(length(subnucs(z1)) == 0)
peelingOrder(cousinPed(1))

Plot with generation numbers as labels
w = cousinPed(1)

g = generations(w, what = "indiv")

labs = setNames(labels(w), g)

plot(w, labs = labs)

66 plot.ped

... compare with
plot(relabel(w, "generations"))

plot.ped Plot pedigree

Description

This is the main function for plotting pedigrees. Many options are available for controlling the
appearance of pedigree symbols and accompanying labels. The most important ones are illustrated
in the Examples section below; for a complete overview, see the separate page plotmethods, which
also explains the plotting procedure in more detail.

Usage
S3 method for class 'ped'
plot(x, draw = TRUE, keep.par = FALSE, ...)
drawPed(alignment, annotation = NULL, scaling = NULL, keep.par = FALSE, ...)

S3 method for class 'pedList'
plot(x, ...)

S3 method for class 'list'

plot(x, ...)
Arguments

X A ped() object or a list of such.

draw A logical, by default TRUE. If FALSE, no plot is produced, only the plotting
parameters are returned.

keep.par A logical, by default FALSE. If TRUE, the graphical parameters are not reset
after plotting, which may be useful for adding additional annotation.
Arguments passed on to the internal plot functions. For a complete list of param-
eters, see plotmethods. The most important ones are illustrated in the Examples
below.

alignment List of alignment details, as returned by .pedAlignment().

annotation List of annotation details as returned by . pedAnnotation().

scaling List of scaling parameters as returned by .pedScaling().

plot.ped 67

Details

The main pedigree layout is calculated with the kinship2 package, see kinship2::align.pedigree for
details. Unlike kinship2, the implementation here also supports singletons, and plotting pedigrees
as DAGs. In addition, some minor adjustments have been made to improve scaling and avoid
unneeded duplications.

If x is a list of ped objects, these are plotted next to each other, vertically centred in the plotting
window. For finer control, and possibly nested lists of pedigrees, use plotPedList ().
Value

A list of three lists with various plot details: alignment, annotation, scaling.

See Also

plotPedList(), kinship2::plot.pedigree(). Plot options are documented in plotmethods.

Examples

Singleton
plot(singleton(1))

Trio
x = nuclearPed(father = "fa", mother = "mo", child = "boy")
plot(x)

#' # Modify margins
plot(x, margins = 6)
plot(x, margins = ¢(0,0,6,6)) # b,1,t,r

Larger text and symbols
plot(x, cex = 1.5)

Enlarge symbols only
plot(x, symbolsize = 1.5)

Various annotations
plot(x, hatched = "boy", starred = "fa", deceased = "mo", title = "Fam 1")

Swap spouse order
plot(x, spouseOrder = c("mo", "fa"))

Label only some members
plot(x, labs = c("fa", "mo"))

Label males only
plot(x, labs = males)

Rename some individuals
plot(x, labs = c(FATHER = "fa", "boy"))

68

plot.ped

By default, long names are folded to width ~12 characters
plot(x, labs = c("Very long father's name" = "fa"), margin = 2)

Folding width may be adjusted ...

plot(x, labs = c("Very long father's name” = "fa"), foldLabs = 6)
... or switched off (requires larger margin!)
plot(x, labs = c("Very long father's name” = "fa"), foldlLabs = FALSE)

By default, labels are trimmed for initial/trailing line breaks ...
plot(x, labs = c("\nFA" = "fa"))

... but this can be overridden
plot(x, labs = c("\nFA" = "fa"), trimLabs = FALSE)
#H---—- Colours -----

plot(x, col = c(fa = "red"), fill = c(mo = "green"”, boy = "blue"))

Non-black hatch colours are specified with the ~fill™ argument
plot(x, hatched = labels, fill = c(boy = "red"))

Use functions to specify colours
plot(x, fill = list(red = leaves, blue = ancestors(x, "boy")))

Dotted, thick symbols
plot(x, 1ty = 3, lwd = 4, cex = 2)

Detailed specification of line types and width
plot(x, 1ty = list(dashed = founders), lwd = c(boy = 4))

x = nuclearPed(father = "fa", mother = "mo”, child = "boy") [>
addMarker(fa = "1/1", boy = "1/2", name = "SNP") |>
addMarker (boy = "a/b")

Show genotypes for first marker
plot(x, marker = 1)

Show empty genotypes for untyped individuas
plot(x, marker = 1, showEmpty = TRUE)

Markers can also be called by name
plot(x, marker = "SNP")

Multiple markers
plot(x, marker = 1:2)

plot.ped

Founder inbreeding is shown by default
xinb = x |> setFounderInbreeding(”"mo"”, value = 0.1)
plot(xinb)

... but can be suppressed
plot(xinb, foulnb = NULL)

Text can be placed around and inside symbols
plot(x, textAnnot = list(topright = 1:3, inside = LETTERS[1:3]))

Use lists to add further options; see “?text()"
plot(x, margin = 2, textAnnot = list(
topright = list(1:3, cex = 0.8, col = 2, font = 2, offset = 0.1),
left = list(c(boy = "comment”), cex = 2, col = 4, offset = 2, srt = 20)))

Exhaustive list of annotation positions

plot(singleton(1), cex = 3, textAnnot = list(top="top"”, left="left",
right="right"”, bottom="bottom", topleft="topleft”, topright="topright",
bottomleft="bottomleft"”, bottomright="bottomright”, inside="inside"))

Plot as DAG (directed acyclic graph)
plot(x, arrows = TRUE, title = "DAG")

Medical pedigree
plot(x, carrier = "mo", aff = "boy"”, proband = "boy")

Miscarriage
plot(x, miscarriage = "boy"”, deceased = "boy"”, labs = founders)

Affected child of first cousins
y = cousinPed(1, symmetric = TRUE, child = TRUE)
plot(y, aff = leaves, proband = leaves)

Same, with straight legs
plot(y, aff = leaves, proband = leaves, straight = TRUE)

Twins

z = nuclearPed(children = c("twl"”, "tw2", "tw3"))

plot(z, twins = data.frame(idl = "twl"”, id2 = "tw2", code = 1)) # MZ
plot(z, twins = data.frame(idl = "twl", id2 = "tw2", code = 2)) # DZ

Triplets

plot(z, twins = data.frame(idl = c("twl", "tw2"),
id2 = c("tw2", "tw3"),
code = 2))

Selfing
plot(selfingPed(2))

Complex pedigree: Quadruple half first cousins

70 plotmethods

plot(quadHalfFirstCousins())

Lists of multiple pedigree
plot(list(singleton(1), nuclearPed(1), linearPed(2)))

Use of “drawPed()"
dat = plot(nuclearPed(), draw = FALSE)
drawPed(dat$alignment, dat$annotation, dat$scaling)

plotmethods Internal plot methods

Description

The main purpose of this page is to document the many options for pedigree plotting. Most of
the arguments shown here may be supplied directly in plot(x, ...), where x is a pedigree. See
plot.ped() for many examples.

Usage

.pedAlignment(
x = NULL,
plist = NULL,
arrows = FALSE,
twins = NULL,
miscarriage = NULL,
packed = TRUE,

width = 10,
straight = FALSE,
align = NULL,
spouseOrder = NULL,
hints = NULL,

)

.pedAnnotation(
X,
title = NULL,
marker = NULL,
sep = "/",
missing = "-",

showEmpty = FALSE,
labs = labels(x),
foldLabs = 12,
trimLabs = TRUE,
col =1,

fill = NA,

plotmethods
1ty =1,
lwd = 1,

)

hatched = NULL,
hatchDensity = 25,
aff = NULL,
carrier = NULL,
deceased = NULL,

starred = NULL,
proband = NULL,
textAnnot = NULL,

textInside = NULL,
textAbove = NULL,
foulnb = "autosomal”,

.pedScaling(

)

.drawPed(alignment, annotation, scaling)

alignment,
annotation,

cex =1,
symbolsize = 1,
margins = 1,

addSpace = 0,
xlim = NULL,
ylim = NULL,

vsep2 = FALSE,
autoScale = FALSE,
minsize = 0.15,
debug = FALSE,

.annotatePed(

alignment,
annotation,
scaling,

font = NULL,

fam = NULL,

col = NULL,
colUnder = 1,
colInside = 1,
colAbove = 1,
cex.main = NULL,
font.main = NULL,
col.main = NULL,
line.main = NA,

71

72

Arguments

X
plist

arrows

twins

miscarriage

plotmethods

A ped() object.
Alignment list with format similar to kinship2::align.pedigree().

A logical (default = FALSE). If TRUE, the pedigree is plotted as a DAG, i.e.,
with arrows connecting parent-child pairs.

A data frame with columns id1, id2 and code, passed on to the relation pa-
rameter of kinship2::plot.pedigree().

A vector of labels indicating miscarriages, shown as triangles in the pedigree
plot.

packed, width, align

straight

spouseOrder

hints

title

marker

sep
missing
showEmpty
labs

foldLabs

trimLabs

col

fill

Parameters passed on to kinship2::align.pedigree(). Can usually be left
untouched.

A logical, indicating if the plot should (attempt to) use straight lines everywhere.
Default: FALSE.

An optional vector (or list of vectors) indicating plot ordering for spouses. (This
is converted into a matrix and forward as hints; see below.)

An optional list of hints passed on to kinship2::align.pedigree().
Further parameters passed between methods.
The plot title. If NULL (default) or ”, no title is added to the plot.

Either a vector of names or indices referring to markers attached to x, a marker
object, or a list of such. The genotypes for the chosen markers are written below
each individual in the pedigree, in the format determined by sep and missing.
See also showEmpty. If NULL (the default), no genotypes are plotted.

A character of length 1 separating alleles for diploid markers.
The symbol (integer or character) for missing alleles.
A logical, indicating if empty genotypes should be included.

A vector or function controlling the individual labels in the plot. By default,
labels(x) are used. See Details for valid formats.

A number or function controlling the folding of long labels. If a number, line
breaks are inserted at roughly this width, trying to break at break-friendly char-
acters. If a function, this is applied to each label.

A logical, by default TRUE. Removes line breaks and tabs from both ends of
the labels (after adding genotypes, if marker is not NULL).

A vector or list specifying outline colours for the pedigree members. See Details
for valid formats.

A vector or list specifying fill/hatch colours for the pedigree members. See De-
tails for valid formats. Note that if fill is unnamed, and either aff or hatched
are given, then the fill colour is applied only to those.

plotmethods

1ty, 1wd

hatched
hatchDensity
aff

carrier
deceased
starred
proband

textAnnot

73

Vectors or lists specifying linetype and width of pedigree symbol outlines. See
Details for valid formats.

A vector of labels identifying members whose plot symbols should be hatched.
A number specifying the hatch density in lines per inch. Default: 25.

A vector of labels identifying members whose plot symbols should be filled.
(This is typically used in medical pedigrees to indicate affected members.)

A vector of labels identifying members whose plot symbols should be marked
with a dot. (This is typically used in medical pedigrees to indicate unaffected
carriers of the disease allele.)

A vector of labels indicating deceased pedigree members.

A vector of labels indicating pedigree members that should be marked with a
star in the pedigree plot.

A vector of labels indicating proband individuals, to be marked with an arrow in
the plot.

A list specifying further text annotation around or inside the pedigree symbols.
See Details for more information.

textInside, textAbove

foulnb

alignment
annotation

cex

symbolsize

margins

addSpace

xlim, ylim

vsep?2
autoScale

minsize
debug

scaling
font, fam

Character vectors of text to be printed inside or above pedigree symbols. [Soft
deprecated; replaced by textAnnot.]

Either "autosomal" (default), "x" or NULL. If "autosomal" or "x", inbreeding
coefficients are added to the plot above the inbred founders. If NULL, or if no
founders are inbred, nothing is added.

List of alignment details, as returned by .pedAlignment().
List of annotation details as returned by . pedAnnotation().

Expansion factor controlling font size. This also affects symbol sizes, which by
default have the width of 2.5 characters. Default: 1.

Expansion factor for pedigree symbols. Default: 1.

A numeric indicating the plot margins. If a single number is given, it is recycled
to length 4.

A numeric of length 4, indicating extra padding (in inches) around the pedigree
inside the plot region. Default: 0.

Numeric vectors of length 2, used to set par("usr") explicitly. Rarely needed
by end users.

A logical; for internal use.

A logical. It TRUE, an attempt is made to adjust cex so that the symbol dimen-
sions are at least minsize inches. Default: FALSE.

A positive number, by default 0.15. (See autoScale.)

A logical, turning on messages from the autoscale algorithm.
List of scaling parameters as returned by .pedScaling().
Arguments passed on to text().

colUnder, colInside, colAbove

Colour vectors.

cex.main, line.main, col.main, font.main

Parameters passed on to title().

74

Details

plotmethods

The workflow of plot.ped(x, ...) is approximately as follows:

Calculate plot parameters

align = .pedAlignment(x, ...)
annot = .pedAnnotation(x, ...)
scale = .pedScaling(align, annot, ...)

Produce plot
.drawPed(align, annot, scale)
.annotatePed(align, annot, scale) # if “annot™ contains text annotation etc

The 1

abs argument controls the individual ID labels printed below the pedigree symbols. By default

the output of 1abels(x) is used, but there are several alternative forms:

If labs is a vector with nonempty intersection with labels(x), only these individuals will
be labelled. If the vector is named, then the names are used instead of the ID label. (See
Examples.)

If 1abs is the word "num", then all individuals are numerically labelled following the internal
ordering.

Use labs = NULL to remove all labels.

If 1abs is a function, it is replaced with 1labs(x) and handled as above. (See Examples.)

The argument textAnnot allows customised annotation around and inside each symbol. This takes
a list of lists, whose names may include "topleft", "topright", "left", "right", "bottomleft", "bottom",
"bottomright" and "inside". Each inner list should contain a character vector as its first element (with
the text to be printed), followed by further arguments passed to text (). For example, textAnnot =
list(left =1list(c(A="1"), cex =2)) prints a large number "1" to the left of individual A (if
such an individual exists in the pedigree). See Examples.

The arguments col, fill, 1ty and lwd can all be indicated in a number of ways:

An unnamed vector. This will be recycled and applied to all members. For example, 1ty = 2
gives everyone a dashed outline.

A named vector. Only pedigree members appearing in the names are affected. Example: fill
=c("1" ="red"”, foo ="blue") fills individual 1 red and foo blue.

A list of ID vectors, where the list names indicate the parameter values. Example: col =
list(red=1:2, blue =3:5).

List entries may also be functions, taking the pedigree x as input and producing a vector of ID
labels. The many built-in functions in ped_subgroups are particularly handy here, e.g.: fill
=1list(red = founders, blue = leaves).

Examples
X = nuclearPed()
align = .pedAlignment(x)
annot = .pedAnnotation(x)

plotPedList

75

scale = .pedScaling(align, annot)

drawPed(align, annot, scale)

plotPedList

Plot a collection of pedigrees.

Description

This function creates a row of pedigree plots, each created by plot.ped(). Any parameter accepted
by plot.ped() can be applied, either to all plots simultaneously, or to individual plots. Some effort
is made to guess a reasonable window size and margins, but in general the user must be prepared to
do manual resizing of the plot window. See various examples in the Examples section below.

Usage
plotPedList(
plots,
widths = NULL,
groups = NULL,
titles = NULL,

grouptitlesArgs = NULL,

frames
fmar =
source

TRUE,

NULL,

NULL,

dev.height = NULL,
dev.width = NULL,

newdev lis.null(dev.height) || !'is.null(dev.width),
verbose = FALSE,
)
Arguments
plots A list of lists. Each element of plots is a list, where the first element is a pedi-
gree, and the remaining elements are passed on to plot.ped. These elements
must be correctly named. See examples below.
widths A numeric vector of relative widths of the subplots. Recycled to length(plots)
if necessary, before passed on to layout (). Note that the vector does not need
to sum to 1.
groups A list of vectors, each consisting of consecutive integers, indicating subplots to
be grouped. By default the grouping follows the list structure of plots.
titles A character vector of titles for each group. Overrides titles given in individuals
subplots.
grouptitlesArgs

A list of arguments passed on to mtext () for titles.

76

frames
fmar

source

dev.height, dev.

newdev

verbose

Details

plotPedList

A logical indicating if groups should be framed.
A single number in the interval [0, 0.5) controlling the position of the frames.

NULL (default), or the name or index of an element of plots. If given, marker
data is temporarily transferred from this to all the other pedigrees. This may
save some typing when plotting the same genotypes on several pedigrees.
width

The dimensions of the new plot window. If these are NA suitable values are
guessed from the pedigree sizes.

A logical, indicating if a new plot window should be opened.

A logical.

Further arguments passed on to each call to plot.ped().

Note that for tweaking dev.height and dev.width the function dev.size() is useful to determine the
size of the active device.

Author(s)

Magnus Dehli Vigeland

See Also
plot.ped()

Examples

I

Basic examples

#

A

Simples use: Just give a list of ped objects.
peds = list(nuclearPed(3), cousinPed(2), singleton(12), halfSibPed())

plotPedList(peds,

newdev = TRUE)

Override automatic determination of relative widths
w=-c(2, 3,1, 2

plotPedList(peds,

widths = w)

In most cases the guessed dimensions are ok but not perfect.
Resize plot window manually and re-plot with “newdev = FALSE™ (default)
plotPedList(peds, widths = w)

Remove frames

plotPedList(peds,

widths = w, frames = FALSE)

Non-default grouping

plotPedList(peds,

widths = w, groups = list(1, 2:3, 4), titles = 1:3)

Parameters added in the main call are used in each sub-plot

plotPedList

plotPedList(peds, widths = w, labs = leaves, hatched = leaves,
col = list(blue = males, red = females), symbolsize = 1.3)

dev.off()

AR AR
Example of automatic grouping
HHHHHHARHEEH A
H1 = nuclearPed()

H2 = singletons(id = c(1,3))

plotPedList(list(H1, H2), dev.height = 3, dev.width = 4,
titles = c(expression(H[1]), expression(H[2])),
cex = 1.5, cex.main = 1.3)

dev.off()

AR AR AR
Complex example with individual parameters for each plot
B g S

For more control of individual plots, each plot and all
its parameters can be specified in its own list.

x1 = nuclearPed(nch = 3) |>
addMarker (3~ = "1/2")
plot1 = list(x1, title = "Plot 1", marker = 1, deceased = 1:2, cex = 1.3,
margins = c(7, 4, 7, 4))

X2 = cousinPed(2) |>
addMarker(C11° = "A/A", 127 = "A/A")
plot2 = list(x2, title = "Family"”, marker = 1, symbolsize = 1.2, labs = NULL,
margins = c(3, 4, 2, 4))

x3 = singleton("NN")
plot3 = list(x3, cex = 2, carrier = "NN", 1ty = c(NN = 2))

x4 = halfSibPed()

plot4 = list(x4, title = "Half sibs"”, cex =1
col = list(red = founders), fill
margins = c(7, 4, 7, 4))

.3, hatched = leaves,
= list(blue = leaves),

plotPedList(list(plotl, plot2, plot3, plot4), widths = c(2,3,1,2),
fmar = .03, groups = list(1, 2:3, 4), newdev = TRUE,
cex.main = 1.5)

dev.off()

HHHEHHAEEEEE A
Example with large pedigrees
HHHEHHAREEEE AR

Important to set device dimensions here

78 print.ped

plotPedList(list(halfCousinPed(4), cousinPed(7)),
titles = c("Large”, "Very large"”), widths = c(1, 1.3),
dev.height = 8, dev.width = 6, margins = 1.5)

dev.off()
print.nucleus S3 methods
Description
S3 methods
Usage
S3 method for class 'nucleus'
print(x, ...)
Arguments
X An object
Not used
print.ped Printing pedigrees
Description

Print a ped object using original labels.

Usage

S3 method for class 'ped'

print(x, ..., markers, verbose = TRUE)
Arguments

X object of class ped.

(optional) arguments passed on to print.data.frame().

markers (optional) vector of marker indices. If missing, and x has less than 10 markers,
they are all displayed. If x has 10 or more markers, the first 5 are displayed.

verbose If TRUE, a message is printed if only the first 5 markers are printed. (See above).

randomPed 79

Details

This first calls as.data.frame.ped() and then prints the resulting data.frame. The data.frame is
returned invisibly.

randomPed Random pedigree

Description

Generate a random connected pedigree by applying random mating starting from a finite population.

Usage

randomPed(n, founders = 2, maxDirectGap = 1, selfing = FALSE, seed = NULL)

Arguments
n A positive integer: the total number of individuals. Must be at least 3.
founders A positive integer: the number of founders. Must be at least 2 unless selfing is

allowed.

maxDirectGap An integer; the maximum distance between direct descendants allowed to mate.
For example, the default value of 1 allows parent-child mating, but not grandparent-
grandchild. Use Inf or NULL for no restrictions.

selfing A logical indicating if selfing is allowed. Default: FALSE.
seed An integer seed for the random number generator (optional).
Details

Starting from an initial set of founders, a sequence of n - founders random matings is simulated.
The sampling of parents in each mating is set up to ensure that the final result is connected.

Value

A connected pedigree returned as a ped object.
Examples
plot(randomPed(n = 7, seed = 12))

Disallow mating between direct descendants
plot(randomPed(n = 7, seed = 12, maxDirectGap = 0))

No restrictions on mating between direct descendants
plot(randomPed(n = 7, seed = 12, maxDirectGap = Inf))

Allow selfing
y = randomPed(5, seed = 2, selfing = TRUE)

80

hasSelfing(y)

y

plot(y, arrows

= TRUE)

readPed

readPed

Read a pedigree from file

Description

Reads a text file in pedigree format, or something fairly close to it.

Usage
readPed(

pedfile,

colSep = R
header = NA,
famid_col = NA,
id_col = NA,
fid_col = NA,
mid_col = NA,
sex_col = NA,

marker_col = NA,
locusAttributes = NULL,
missing = 0,

sep = NULL,
colSkip = NULL,
sexCodes = NULL,
addMissingFounders = FALSE,
validate = TRUE,
)
Arguments
pedfile A file name
colSep
separation in genotypes.)
header
contains both "id" and "sex" as part of some entries (ignoring case).
famid_col
"famid" (ignoring case).
id_col

A column separator character, passed on as the sep argument of read. table().
The default is to separate on white space, that is, one or more spaces, tabs,
newlines or carriage returns. (Note: the parameter sep is used to indicate allele

A logical. If NA, the program will interpret the first line as a header line it

Index of family ID column. If NA, the program looks for a column named

Index of individual ID column. If NA, the program looks for a column named

"id" (ignoring case).

readPed

fid_col

mid_col

sex_col

marker_col

locusAttributes

81

Index of father ID column. If NA, the program looks for a column named "fid"
(ignoring case).

Index of mother ID column. If NA, the program looks for a column named
"mid" (ignoring case).

Index of column with gender codes (0 = unknown; 1 = male; 2 = female). If
NA, the program looks for a column named "sex" (ignoring case). If this is not
found, genders of parents are deduced from the data, leaving the remaining as
unknown.

Index vector indicating columns with marker alleles. If NA, all columns to the
right of all pedigree columns are used. If sep (see below) is non-NULL, each
column is interpreted as a genotype column and split into separate alleles with
strsplit(..., split =sep, fixed = TRUE).

Passed on to setMarkers() (see explanation there).

missing Passed on to setMarkers() (see explanation there).

sep Passed on to setMarkers() (see explanation there).

colSkip Columns to skip, given as a vector of indices or columns names. If given, these
columns are removed directly after read. table(), before any other processing.

sexCodes A list with optional entries "male", "female" and "unknown", indicating how
non-default entries in the sex column should be interpreted. Default values:
male = 1, female = 2, unknown = 0.

addMissingFounders
A logical. If TRUE, any parent not included in the id column is added as a
founder of corresponding sex. By default, missing founders result in an error.

validate A logical indicating if the pedigree structure should be validated.
Further parameters passed on to read. table(), e.g. comment.char and quote.

Details

If there are no headers, and no column information is provided by the user, the program assumes
the following column order:

family ID (optional; guessed from the data)

individual ID

father’s ID
mother’s ID

Sex

marker data (remaining columns)

Reading SNP data:

Adding the argument locusAttributes = "snp-AB", sets all markers to be equifrequent SNPs
with alleles A and B. Moreover, the letters A and B may be replaced by other single-character
letters or numbers, e.g., "snp-12" gives alleles 1 and 2.

82 readPed

Value

A ped object or a list of such.

Examples
tf = tempfile()

Write and read a trio

trio = data.frame(id = 1:3, fid = c(0,0,1), mid = c(0,0,2), sex = c(1,2,1))
write.table(trio, file = tf, row.names = FALSE)

readPed(tf)

With marker data in one column

trio.marker = cbind(trio, M = c("1/1", "2/2", "1/2"))
write.table(trio.marker, file = tf, row.names = FALSE)
readPed(tf)

With marker data in two allele columns

trio.marker2 = cbind(trio, M.1 = c¢(1,2,1), M.2 = ¢(1,2,2))
write.table(trio.marker2, file = tf, row.names = FALSE)
readPed(tf)

Two singletons in the same file
singles = data.frame(id = c("S1", "S2"),
fid = ¢(0,0), mid = c(0,0), sex = c(2,1),
M= c("9/14.2", "9/9"))
write.table(singles, file = tf, row.names = FALSE)
readPed(tf)

Two trios in the same file
trio2 = cbind(famid = rep(c("triol”, "trio2"), each = 3), rbind(trio, trio))

With column names
write.table(trio2, file
readPed(tf)

tf, col.names = TRUE, row.names = FALSE)

Without column names
write.table(trio2, file = tf, col.names = FALSE, row.names = FALSE)
readPed(tf)

With non-standard ~sex” codes
trio3 = data.frame(id = 1:3, fid = ¢(0,0,1), mid = c(9,90,2),
sex = c("male”,"female","?"))
write.table(trio3, file = tf, row.names = FALSE)
readPed(tf, sexCodes = list(male = "male”, female = "female”, unknown = "?"))

Cleanup
unlink(tf)

relabel

83

relabel

Get or modify pedigree labels

Description

Functions for getting or changing the ID labels of pedigree members.

Usage

relabel(
X,
new =
old =
reorder =

returnLabs =

"asPlot"”,
labels(x),
FALSE,
FALSE,

.alignment = NULL

)

S3 method for class 'ped'

labels(object,

S3 method for class

labels(object,

Arguments

X

new

old

reorder

returnLabs

.alignment

object

unlist

.2

'list’
., unlist = TRUE)

A ped object or a list of such.
The following values are valid (see Details and Examples):

* a character vector containing new labels. If named, interpreted as old =
new

* a function, which should take the old labels as input and output a character
of the same length

* one of the special keywords "asPlot" (default) or "generations"

A vector of ID labels, of the same length as new. (Ignored if new is one of the
special words.) If not given, taken from the names of new if these exist.

A logical. If TRUE, reorderPed() is called on x after relabelling. Default:
FALSE.

A logical. If TRUE, the new labels are returned as a named character vector.

A list of alignment details for x, used if new equals "asPlot" or "generations". If
not supplied, this is computed internally with . pedAlignment().

A ped object.
Not used.
A logical; if TRUE (default), the output is unlisted to a single character vector.

84 setMutmod

Details

By default, relabel(x) relabels everyone as 1, 2, ..., in the order given by the plot (top to bottom;
left to right).

Alternatively, relabel(x, "generations”) labels the members in the top generation I-1, I-2, ...,
in the second generation II-1, II-2, ..., etc.

Value

* labels() returns a character vector containing the ID labels of all pedigree members. If the
input is a list of ped objects, the output is a list of character vectors.

* relabel() by default returns a ped object similar to x, but with modified labels. If returnLabs
is TRUE, the new labels are returned as a named character vector

See Also
ped()

Examples

X = nuclearPed()
X
labels(x)

y = relabel(x, new = "girl”, old = 3)
y

Back to the numeric labels

z = relabel(y)

stopifnot(identical(x,z))

Generation labels
relabel(x, "generations”)

setMutmod Set a mutation model

Description

This function offers a convenient way to set or modify mutation models to markers attached to a
pedigree. It wraps pedmut: :mutationModel (), which does the main work of creating the models,
but relieves the user from having to loop through the markers in order to supply the correct alleles
and frequencies for each marker.

Usage
setMutmod(x, markers = NULL, ..., update = FALSE)

setMutmod 85

Arguments
X A ped object or a list of such.
markers A vector of names or indices referring to markers attached to x. (Default: All
markers.)
Arguments forwarded to pedmut: :mutationModel (), e.g., model, rate, etc.
update A logical. If TRUE, existing mutation models (if present) are updated with
the parameters specified in If FALSE (default), any previous models are
ignored, and new mutation models are created from the parameters in
Details

Currently, the following models are supported:

Value

equal: All mutations equally likely; probability 1 - rate of no mutation
proportional: Mutation probabilities are proportional to the target allele frequencies

onestep: A simple model for microsatellite markers, in which mutations are only allowed to
the nearest neighbours in the allelic ladder. For example, 10’ may mutate to either 9’ or 11’
(unless "10’ is the lowest allele, in which case 11’ is the only option). Not applicable to loci
with non-integral microvariants.

stepwise: A common model for microsatellite markers. Mutation rates depend on the step
size in the allelic ladder, and also the allelic classes: integral repeats like *16’, versus non-
integer microvariants like 16.3’.

custom: Allows any mutation matrix to be provided by the user, in the matrix parameter

random: This produces a matrix of random numbers, where each row is normalised so that it
sums to 1

trivial: The identity matrix; no mutations are possible

An object similar to x.

Examples

#iH#

Example requires the pedmut package ###

if (requireNamespace("pedmut”, quietly = TRUE)){

A
X:

pedigree with 1 empty marker; attach 'equal' mutation model
nuclearPed(1) |[>

addMarker() |>
setMutmod(model = "equal”, rate = 0.01)

mutmod(x, 1)

Update rate (but still "equal” model)

y =

setMutmod(x, rate = 0.05, update = TRUE)

mutmod(y, 1)

86

setSNPs

Change to stepwise model

z = setMutmod(x, model = "stepwise",
rate = list(female = 0.01, male = 0.02),
range = 0.1, rate2 = le-6)

mutmod(z, 1)

Remove mutation model
w = setMutmod(x, model = NULL)
mutmod(w, 1)

}

setSNPs Attach SNP loci to a pedigree

Description

Create and attach a list of empty SNP markers with specified position and allele frequencies.

Usage

setSNPs(x, snpData)

Arguments

X A ped object.

snpData A data frame with at least 6 columns. See Details.
Details

The first 6 columns of snpData should be as follows, in order. (The column names do not matter.)

CHROM: Chromosome (character)
MARKER: Marker name (character)

* MB: Physical position in megabases (numeric)

AT1: First allele (single-letter character)
* A2: Second allele (single-letter character)

FREQ1: Allele frequency of AT (number in [0,1])

Each column must be of the stated type, or coercible to it. (For example, CHROM, A1 and A2 may be
given as numbers, but will be internally converted to characters.)

Subsequent columns are assumed to contain genotypes. These columns must be named with the
IDs matching individuals in x. The genotypes must use the alleles given in A1 and A2, and can be
formatted with or without separator, e.g. A/C or AC.

sortGenotypes 87
Value

A copy of x with the indicated SNP markers attached.

Examples

snps = data.frame(

CHROM = 1:2,

MARKER = c("M1", "M2"),

MB = c(1.23, 2.34),

Al = c("A", "G"),

A2 = c("c", "c"y,

FREQ1 = c(0.7, 0.12),

t2° = c("A/C", "G/C"),

check.names = FALSE) # Note: “check.names = FALSE™!

x = setSNPs(nuclearPed(), snpData = snps)
X
Inspect the results:

getMap(x)
getFreqDatabase(x)

sortGenotypes Sort the alleles in each genotype

Description

Ensure that all genotypes are sorted internally. For example, if a marker attached to x has alleles 1
and 2, then running this function will replace all genotypes "2/1" by "1/2".

Usage

sortGenotypes(x)
Arguments

X A ped object or a list of such
Value

An object identical to x except that the all genotypes are sorted.

88 swapGenotypes
Examples

x = singleton(1)

Various markers with misordered genotypes

ml = marker(x, ~1° = "2/1")

m2 = marker(x, ~1° = "b/a")

m3 = marker(x, ~1° = "100.3/99.1")

x = setMarkers(x, list(ml, m2, m3))

Sort all genotypes

y = sortGenotypes(x)

y

Also works when input is a list of peds

sortGenotypes(list(x, x))

swapGenotypes Swap genotypes between individuals

Description

Swap genotypes between individuals
Usage

swapGenotypes(x, ids = NULL)
Arguments

X A ped object or a list of such.

ids A vector of 2 members of x.
Value

An object identical to x, except that the genotypes of the ids pair have been swapped.
See Also

transferMarkers()
Examples

X = nuclearPed() |>
addMarker(geno = c("1/1", "2/2", "3/3"))

swapGenotypes(x, ids = 1:2)

transferMarkers

89

transferMarkers

Transfer marker data

Description

Transfer marker data between pedigrees. Any markers attached to the target are overwritten.

Usage
transferMarkers(
from,
to,
ids = NULL,

idsFrom = ids,

idsTo = ids,

erase = TRUE,
matchNames = TRUE,
checkSex = FALSE,

checkAttrs =

Arguments

from
to

ids

idsFrom, idsTo

erase

matchNames

checkSex

checkAttrs

Details

TRUE

A ped or singleton object, or a list of such objects.
A ped or singleton object, or a list of such objects.

A vector of ID labels. This should be used only if the individuals have the same
name in both pedigrees; otherwise use idsFrom and idsTo instead.

Vectors of equal length, denoting source individuals (in the from pedigree) and
target individuals (in the to pedigree), respectively.

A logical. If TRUE (default), all markers attached to to are erased prior to trans-
fer, and new marker objects are created with the same attributes as in from. If
FALSE no new marker objects are attached to to. Only the genotypes of the
ids individuals are modified, while genotypes for other pedigree members - and
marker attributes - remain untouched.

A logical, only relevant if erase = FALSE. If matchNames = TRUE (default) marker
names are used to ensure that genotypes are transferred into the right markers.
The output only contains markers present in from, and in the same order. An
error is raised if the markers are not named.

A logical. If TRUE, it is checked that fromIds and toIds have the same sex.
Default: FALSE.

A logical. If TRUE, and from is a list of pedigrees, an error is raised if marker
attributes differ between components. Default: TRUE.

By default, genotypes are transferred between all individuals present in both pedigrees.

90 validatePed

Value

A ped object (or a list of such) similar to to, but where all individuals also present in from have
marker genotypes copied over. Any previous marker data is erased.

Examples
X = nuclearPed(fa = "A", mo = "B", child = "C")
x = addMarker(x, A = "1/2", B = "1/1", C = "1/2", name = "M1")
y = list(singleton("A"), nuclearPed(fa = "D", mo = "B", child = "C"))

By default all common individuals are transferred
transferMarkers(x, y)

Transfer data for the boy only
transferMarkers(x, y, ids = "C")

Transfer without first erasing the target markers
z = nuclearPed(fa = "A", mo = "B", child = "C")
z = addMarker(z, A = "1/1", alleles = 1:2, name = "M1")

transferMarkers(x, z, ids = "C", erase = FALSE)
transferMarkers(x, z, ids = "C", erase = TRUE) # note the difference
validatePed Pedigree errors
Description

Validate the internal pedigree structure. The input may be either a (possibly malformed) ped()
object, or its defining vectors id, fid, mid, sex.

Usage

validatePed(x = NULL, id = NULL, fid = NULL, mid = NULL, sex = NULL)

Arguments
X A ped object.
id A character (or coercible to character) of individual ID labels.
fid, mid Vectors of the same length as id, naming each individual’s father and mother.
Missing parents (of founders) may be entered as "0", "" or NA.
sex A numeric of the same length as id, describing the genders of the individuals

(in the same order as id.) Each entry must be either 1 (=male), 2 (=female) or 0
(=unknown).

writePed 91

Value

If no errors are detected, the function returns NULL invisibly. Otherwise, messages describing the
errors are printed to the screen and an error is raised.

Examples

X = nuclearPed()
validatePed(x)

Various errors
validatePed(id = c(1,2), fid = c(2,0), mid = c(0,1), sex = c(1,2))

writePed Write a pedigree to file

Description

Write a pedigree to file

Usage
writePed(
X)
prefix,
what = "ped”,
famid = is.pedList(x),
header = TRUE,

merlin = FALSE,
verbose = TRUE

)
Arguments

X A ped object

prefix A character string giving the prefix of the files. For instance, if prefix = "myped”
andwhat = c("ped”, "map"), the output files are "myped.ped" and "myped.map"
in the current directory. Paths to other folder may be included, e.g. prefix =
"path-to-my-dir/myped”.

what A subset of the character vector c("ped”, "map”, "dat”, "freq"), indicating
which files should be created. By default only the "ped" file is created. This
option is ignored if merlin = TRUE.

famid A logical indicating if family ID should be included as the first column in the

ped file. The family ID is taken from famid(x). If x is a list of pedigrees, the
family IDs are taken from names(x), or if this is NULL, the component-wise
famid() values. Missing values are replaced by natural numbers. This option is
ignored if merlin = TRUE.

92 writePed

header A logical indicating if column names should be included in the ped file. This
option is ignored if merlin = TRUE.

merlin A logical. If TRUE, "ped", "map", "dat" and "freq" files are written in a for-
mat readable by the MERLIN software. In particular MERLIN requires non-
numerical allele labels in the frequency file.

verbose A logical.

Value

A character vector with the file names.

Examples

nuclearPed(1)
addMarker(x, "3" = "a/b", name = "m1")

Write to file
fn = writePed(x, prefix = tempfile("test"))

Read
y = readPed(fn)

stopifnot(identical(x, y))

Index

.annotatePed (plotmethods), 70
.drawPed (plotmethods), 70
.pedAlignment (plotmethods), 70
.pedAlignment(), 66, 73, 83
.pedAnnotation (plotmethods), 70
.pedAnnotation(), 66, 73
.pedScaling (plotmethods), 70
.pedScaling(), 66, 73

addAllele, 3

addAllele(), 30

addChild (ped_modify), 58
addChildren (ped_modify), 58
addDaughter (ped_modify), 58
addMarker (marker), 28
addMarker (), 31, 32
addMarkers (marker_attach), 31
addParents (ped_modify), 58
addSon (ped_modify), 58

afreq (marker_getattr), 33
afreq<- (marker_inplace), 35
alleles (marker_getattr), 33
allowsMutations (marker_prop), 38
ancestors (ped_subgroups), 61
ancestralPed (ped_basic), 52
as.data.frame.ped, 4
as.data.frame.ped(), 4, 79
as.matrix.ped, 5
as.matrix.ped(),4, 5
as.ped, 6

as.ped(), 50
as_kinship2_pedigree, 8
avuncularPed (ped_basic), 52

branch (ped_modify), 58
breakLoops (inbreedingloops), 23
breakLoops(), 51

children (ped_subgroups), 61
chrom (marker_getattr), 33

93

chrom<- (marker_inplace), 35
commonAncestors (ped_subgroups), 61
commonDescendants (ped_subgroups), 61
connectedComponents, 9

cousinPed (ped_basic), 52

descendants (ped_subgroups), 61
descentPaths (ped_subgroups), 61
dev.size(), 76
distributeMarkers, 10

doubleCousins (ped_complex), 55
doubleFirstCousins (ped_complex), 55
drawPed (plot.ped), 66

emptyMarker (marker_prop), 38
extractSingletons, 11

famid, 12

famid<- (famid), 12

father (ped_subgroups), 61

females (ped_subgroups), 61

findLoopBreakers (inbreedingloops), 23

findLoopBreakers2 (inbreedinglLoops), 23

founderInbreeding, 12

founderInbreeding(), 51, 65

founderInbreeding<-
(founderInbreeding), 12

founders (ped_subgroups), 61

founders(), 42

foundersFirst (ped_internal), 57

fregDatabase, 13

fullSibMating (ped_complex), 55

generations (ped_utils), 64
genotype (marker_getattr), 33
genotype<- (marker_inplace), 35
getAlleles, 16

getAlleles(), 19

getComponent, 17

getFregDatabase (fregDatabase), 13

94

getGenotypes, 18

getlLocusAttributes (locusAttributes), 26
getMap, 19

getMarkers (marker_select), 41

getSex, 21

grandparents (ped_subgroups), 61

halfCousinPed (ped_basic), 52
halfSibPed (ped_basic), 52
halfSibStack (ped_complex), 55
halfSibTriangle (ped_complex), 55
harmoniseMarkers, 22
hasCommonAncestor (ped_utils), 64
hasInbredFounders (ped_utils), 64
hasLinkedMarkers (getMap), 19
hasMarkers (nMarkers), 49
hasParentsBeforeChildren
(ped_internal), 57
hasSelfing (ped_utils), 64
hasUnbrokenLoops (ped_utils), 64

inbreedinglLoops, 23
internallD (ped_internal), 57
internallD(), I8
is.marker, 25

is.markerList (is.marker), 25
is.ped, 25

is.pedList (is.ped), 25
is.singleton (is.ped), 25
isXmarker (marker_prop), 38

kinship2::align.pedigree, 67
kinship2::align.pedigree(), 9, 72
kinship2::plot.pedigree(), 9, 67, 72

labels.list (relabel), 83
labels.ped (relabel), 83
layout(), 75

leaves (ped_subgroups), 61
linearPed (ped_basic), 52
locusAttributes, 26

males (ped_subgroups), 61
marker, 28
marker(), 10, 47, 48
marker_attach, 30, 31
marker_getattr, 30, 33, 37
marker_inplace, 35, 35, 42
marker_prop, 30, 38

INDEX

marker_select, 41
marker_setattr, 30, 35, 37,42
maskPed, 43
mendelianCheck, 45
mergePed, 46

mother (ped_subgroups), 61
mtext(), 75

mutmod (marker_getattr), 33
mutmod<- (marker_inplace), 35

nAlleles (marker_prop), 38
name (marker_getattr), 33
name<- (marker_inplace), 35
nChildren (ped_utils), 64
nephews_nieces (ped_subgroups), 61
newMarker, 47

newPed, 48

newPed(), 51

niblings (ped_subgroups), 61
nMarkers, 49

nMarkers(), 30

nonfounders (ped_subgroups), 61
nTyped (marker_prop), 38
nuclearPed (ped_basic), 52

parents (ped_subgroups), 61

parentsBeforeChildren (ped_internal), 57

ped, 50, 56, 82

ped(), 5, 6, 8, 22, 24-26, 45, 46, 48, 54, 58,
60, 62, 65, 66,72, 84, 90

ped_basic, 50, 51, 52, 55, 56

ped_complex, 54, 55

ped_internal, 57

ped_modify, 51, 58

ped_subgroups, 51, 54, 61, 74

ped_utils, 64

pedmut: :mutationModel(), 29, 84, 85

pedsize (ped_utils), 64

peelingOrder (ped_utils), 64

piblings (ped_subgroups), 61

plot.list (plot.ped), 66

plot.ped, 66

plot.ped(), 70, 75, 76

plot.pedList (plot.ped), 66

plotmethods, 66, 67, 70

plotPedList, 75

plotPedList(), 67

posMb (marker_getattr), 33

posMb<- (marker_inplace), 35

INDEX

print.data.frame(), 78
print.nucleus, 78
print.ped, 78

quadHalfFirstCousins (ped_complex), 55

randomPed, 79

read. table(), 14, 80, 81
readFregDatabase (freqDatabase), 13
readPed, 80

readPed(), 50

relabel, 83

relabel (), 51, 60

removeGenotypes (getAlleles), 16
removeIndividuals (ped_modify), 58
removeMarkers (marker_select), 41
reorderPed (ped_internal), 57
reorderPed(), 83

restorePed (as.matrix.ped), 5

selectMarkers (marker_select), 41
selfingPed (ped_basic), 52
setAfreq (marker_setattr), 42
setAfreq(), 35
setAllelelabels (marker_setattr), 42
setAlleles (getAlleles), 16
setAlleles(), 15
setChrom (marker_setattr), 42
setFounderInbreeding
(founderInbreeding), 12
setFreqDatabase (freqDatabase), 13
setGenotype (marker_setattr), 42
setGenotype(), 35

setLocusAttributes (locusAttributes), 26

setLocusAttributes(), 15

setMap (getMap), 19
setMarkername (marker_setattr), 42
setMarkers (marker_attach), 31
setMarkers(), 7, 15,42, 81
setMutmod, 84

setPosition (marker_setattr), 42
setSex (getSex), 21

setSNPs, 86

siblings (ped_subgroups), 61
singleton (ped), 50
singleton(), 25, 54

singletons (ped), 50
sortGenotypes, 87

spouses (ped_subgroups), 61

subnucs (ped_utils), 64
subset.ped (ped_modify), 58
swapGenotypes, 88

swapSex (getSex), 21
swapSex(), 60

text(), 73, 74

tieLoops (inbreedinglLoops), 23
title(), 73

transferMarkers, 89
transferMarkers(), 16, 88

trim (ped_modify), 58
typedMembers (ped_subgroups), 61
typedMembers(), 18

unmaskPed (maskPed), 43

unrelated (ped_subgroups), 61
untypedMembers (ped_subgroups), 61
untypedMembers (), 60

validatePed, 90

whichMarkers (marker_select), 41
writeFreqDatabase (fregDatabase), 13
writePed, 91

95

	addAllele
	as.data.frame.ped
	as.matrix.ped
	as.ped
	as_kinship2_pedigree
	connectedComponents
	distributeMarkers
	extractSingletons
	famid
	founderInbreeding
	freqDatabase
	getAlleles
	getComponent
	getGenotypes
	getMap
	getSex
	harmoniseMarkers
	inbreedingLoops
	is.marker
	is.ped
	locusAttributes
	marker
	marker_attach
	marker_getattr
	marker_inplace
	marker_prop
	marker_select
	marker_setattr
	maskPed
	mendelianCheck
	mergePed
	newMarker
	newPed
	nMarkers
	ped
	ped_basic
	ped_complex
	ped_internal
	ped_modify
	ped_subgroups
	ped_utils
	plot.ped
	plotmethods
	plotPedList
	print.nucleus
	print.ped
	randomPed
	readPed
	relabel
	setMutmod
	setSNPs
	sortGenotypes
	swapGenotypes
	transferMarkers
	validatePed
	writePed
	Index

