| Type: | Package | 
| Title: | Power Analysis for PLS Classification | 
| Version: | 0.2.1 | 
| Description: | It estimates power and sample size for Partial Least Squares-based methods described in Andreella, et al., (2024), <doi:10.48550/arXiv.2403.10289>. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.3.2 | 
| Imports: | compositions, FKSUM, nipals, MASS, foreach, parallel, simukde, ks, mvtnorm, pROC, caret | 
| Language: | en-US | 
| BugReports: | https://github.com/angeella/powerPLS/issues | 
| URL: | https://github.com/angeella/powerPLS | 
| Depends: | R (≥ 2.10) | 
| NeedsCompilation: | no | 
| Packaged: | 2025-03-05 18:24:57 UTC; Andreella | 
| Author: | Angela Andreella  | 
| Maintainer: | Angela Andreella <angela.andreella@unitn.it> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-03-06 00:00:02 UTC | 
AUC test
Description
Performs permutation-based test based on AUC
Usage
AUCTest(X, Y, nperm = 100, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE,...)
Arguments
X | 
 data matrix where columns represent the   | 
Y | 
 data matrix where columns represent the two classes and
rows the   | 
nperm | 
 number of permutations. Default to 200.  | 
A | 
 number of score components  | 
randomization | 
 Boolean value. Default to   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
cross.validation | 
 Boolean value. Default   | 
... | 
 additional arguments related to   | 
Value
List with the following objects:
- pv
 raw p-value. It equals
NAifrandomization = FALSE- pv_adj
 adjusted p-value. It equals
NAifrandomization = FALSE- test
 estimated test statistic
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, sensitivityTest,F1Test, R2Test,
specificityTest, FMTest.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- AUCTest(X = datas$X, Y = datas$Y, A = 1)
out
F1 test
Description
Performs permutation-based test based on F1
Usage
F1Test(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE,cross.validation = FALSE,...)
Arguments
X | 
 data matrix where columns represent the   | 
Y | 
 data matrix where columns represent the two classes and
rows the   | 
nperm | 
 number of permutations. Default to 200.  | 
A | 
 number of score components  | 
randomization | 
 Boolean value. Default to   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
cross.validation | 
 Boolean value. Default   | 
... | 
 additional arguments related to   | 
Value
List with the following objects:
- pv
 raw p-value. It equals
NAifrandomization = FALSE- pv_adj
 adjusted p-value. It equals
NAifrandomization = FALSE- test
 estimated test statistic
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, sensitivityTest,AUCTest, R2Test,
specificityTest, FMTest.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(15,15),m = 6,nvar_rel = 5,A = 1)
out <- F1Test(X = datas$X, Y = datas$Y, A = 1)
out
FM test
Description
Performs permutation-based test based on FM
Usage
FMTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE,cross.validation = FALSE,...)
Arguments
X | 
 data matrix where columns represent the   | 
Y | 
 data matrix where columns represent the two classes and
rows the   | 
nperm | 
 number of permutations. Default to 200.  | 
A | 
 number of score components  | 
randomization | 
 Boolean value. Default to   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
cross.validation | 
 Boolean value. Default   | 
... | 
 additional arguments related to   | 
Value
List with the following objects:
- pv
 raw p-value. It equals
NAifrandomization = FALSE- pv_adj
 adjusted p-value. It equals
NAifrandomization = FALSE- test
 estimated test statistic
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, sensitivityTest,AUCTest, R2Test,
specificityTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 1)
out <- FMTest(X = datas$X, Y = datas$Y, A = 1)
out
Iteration Deflation Algorithm
Description
Performs Iteration Deflation Algorithm
Usage
IDA(X, Y, W)
Arguments
X | 
 Data matrix where columns represent the   | 
Y | 
 Vector of class probabilities  | 
W | 
 Weight matrix where columns represent the   | 
Value
Returns a matrix of scores vectors Tscore.
Author(s)
Angela Andreella
References
Stocchero, M., & Paris, D. (2016). Post-transformation of PLS2 (ptPLS2) by orthogonal matrix: a new approach for generating predictive and orthogonal latent variables. Journal of Chemometrics, 30(5), 242-251.
See Also
PLS classification
Description
Performs Partial Least Squares classification
Usage
PLSc(X, Y, A, scaling = 'auto-scaling', post.transformation = TRUE,
eps = 0.01, Y.prob = FALSE, transformation = 'ilr')
Arguments
X | 
 Data matrix where columns represent the   | 
Y | 
 Data matrix where columns represent the two classes and
rows the   | 
A | 
 Number of score components  | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
eps | 
 Default 0.01.   | 
Y.prob | 
 Boolean value. Default   | 
transformation | 
 Transformation used to map   | 
Value
List with the following objects:
- W
 Matrix of weights
- X_loading
 Matrix of
Xloading- Y_loading
 Matrix of
Yloading- X
 Matrix of
Xdata (predictor variables)- Y
 Matrix of
Ydata (dependent variable)- T_score
 Matrix of scores
- Y_fitted
 Fitted
Ymatrix- B
 Matrix regression coefficients
- M
 Number of orthogonal components if
post.transformation=TRUEis applied.
Author(s)
Angela Andreella
References
Stocchero, M., De Nardi, M., & Scarpa, B. (2021). PLS for classification. Chemometrics and Intelligent Laboratory Systems, 216, 104374.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- PLSc(X = datas$X, Y = datas$Y, A = 3)
R2 test
Description
Performs permutation-based test based on R2
Usage
R2Test(X, Y, nperm = 100, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE, seed = 123, ...)
Arguments
X | 
 data matrix where columns represent the   | 
Y | 
 data matrix where columns represent the two classes and
rows the   | 
nperm | 
 number of permutations. Default to 200.  | 
A | 
 number of score components  | 
randomization | 
 Boolean value. Default to   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
cross.validation | 
 Boolean value. Default   | 
seed | 
 Seed value  | 
... | 
 additional arguments related to   | 
Value
List with the following objects:
- pv
 raw p-value. It equals
NAifrandomization = FALSE- pv_adj
 adjusted p-value. It equals
NAifrandomization = FALSE- test
 estimated test statistic
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
sensitivityTest, specificityTest,AUCTest, dQ2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- R2Test(X = datas$X, Y = datas$Y, A = 1)
out
Aqueous Humour data
Description
59 post-mortem aqueous humor samples collected from closed and opened sheep eyes
Usage
aqueous_humour
Format
A data frame with 59 rows and 45 variables:
- ID
 ID observation
- group
 class membership (C, O)
- R1
 metabolic values
- R2
 metabolic values
- R3
 metabolic values
- R4
 metabolic values
- R5
 metabolic values
- R6
 metabolic values
- R7
 metabolic values
- R8
 metabolic values
- R9
 metabolic values
- R10
 metabolic values
- R11
 metabolic values
- R12
 metabolic values
- R13
 metabolic values
- R14
 metabolic values
- R15
 metabolic values
- R16
 metabolic values
- R17
 metabolic values
- R18
 metabolic values
- R19
 metabolic values
- R20
 metabolic values
- R21
 metabolic values
- R22
 metabolic values
- R23
 metabolic values
- R24
 metabolic values
- R25
 metabolic values
- R26
 metabolic values
- R27
 metabolic values
- R28
 metabolic values
- R29
 metabolic values
- R30
 metabolic values
- R31
 metabolic values
- R32
 metabolic values
- R33
 metabolic values
- R34
 metabolic values
- R35
 metabolic values
- R36
 metabolic values
- R37
 metabolic values
- R38
 metabolic values
- R39
 metabolic values
- R40
 metabolic values
- R41
 metabolic values
- R42
 metabolic values
- R43
 metabolic values
Author(s)
Angela Andreella angela.andreella@unive.it
References
https://link.springer.com/article/10.1007/s11306-019-1533-2
Power estimation
Description
Estimates power for a given sample size, type I error level and number of score components.
Usage
computePower(X, Y, A, n, seed = 123,
Nsim = 100, nperm = 200, alpha = 0.05,
scaling = 'auto-scaling', test = 'R2',
Y.prob = FALSE, eps = 0.01, post.transformation = TRUE,
fast = FALSE, transformation = 'clr', ncores = NULL)
Arguments
X | 
 Data matrix where columns represent the   | 
Y | 
 Data matrix where columns represent the two classes and
rows the   | 
A | 
 Number of score components  | 
n | 
 Sample size  | 
seed | 
 Seed value  | 
Nsim | 
 Number of simulations  | 
nperm | 
 Number of permutations  | 
alpha | 
 Type I error level  | 
scaling | 
 Type of scaling, one of
  | 
test | 
 Type of test statistic, one of   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
post.transformation | 
 Boolean value.   | 
fast | 
 Use the function   | 
transformation | 
 Transformation used to map   | 
ncores | 
 Number of cores, default NULL.  | 
Value
Returns a matrix of estimated power for each number of components and tests selected.
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
Examples
## Not run: 
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- computePower(X = datas$X, Y = datas$Y, A = 3, n = 20, test = 'R2')
## End(Not run)
Sample size estimation
Description
Compute optimal sample size
Usage
computeSampleSize(n, X, Y, A, alpha, beta,
nperm, Nsim, seed, test = 'R2',...)
Arguments
n | 
 Vector of sample sizes to consider  | 
X | 
 Data matrix where columns represent the   | 
Y | 
 Data matrix where columns represent the two classes and
rows the   | 
A | 
 Number of score components  | 
alpha | 
 Type I error level. Default to 0.05  | 
beta | 
 Type II error level. Default to 0.2.  | 
nperm | 
 Number of permutations. Default to 100.  | 
Nsim | 
 Number of simulations. Default to 100.  | 
seed | 
 Seed value  | 
test | 
 Type of test, one of   | 
... | 
 Further parameters.  | 
Value
Returns a data frame that contains the estimated power for each sample size and number of components considered
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Examples
## Not run: 
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- computeSampleSize(X = datas$X, Y = datas$Y, A = 2, A = 3, n = 20, test = 'R2')
## End(Not run)
Compute weight and score matrices from PLSc
Description
Compute weight and score matrices for Partial Least Squares classification
Usage
computeWT(X, Y, A)
Arguments
X | 
 Data matrix where columns represent the   | 
Y | 
 Data matrix where columns represent the two classes and
rows the   | 
A | 
 Number of score components  | 
Value
List with the following objects:
- W
 Matrix of weights
- T_score
 Matrix of
Yscores- R
 Matrix of
Yresiduals
Author(s)
Angela Andreella
dQ2 test
Description
Performs permutation-based test based on dQ2
Usage
dQ2Test(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, class = 1, cross.validation = FALSE, ...)
Arguments
X | 
 data matrix where columns represent the   | 
Y | 
 data matrix where columns represent the two classes and
rows the   | 
nperm | 
 number of permutations. Default to 200.  | 
A | 
 number of score components  | 
randomization | 
 Boolean value. Default to   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
class | 
 Numeric value. Specifiy the reference class. Default   | 
cross.validation | 
 Boolean value. Default   | 
... | 
 additional arguments related to   | 
Value
List with the following objects:
- pv
 raw p-value. It equals
NAifrandomization = FALSE- pv_adj
 adjusted p-value. It equals
NAifrandomization = FALSE- test
 estimated test statistic
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
sensitivityTest, specificityTest,AUCTest, R2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 1)
out <- dQ2Test(X = datas$X, Y = datas$Y, A = 1)
out
MCC test
Description
Performs permutation-based test based on Matthews Correlation Coefficient
Usage
mccTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE, seed = 123, ...)
Arguments
X | 
 data matrix where columns represent the   | 
Y | 
 data matrix where columns represent the two classes and
rows the   | 
nperm | 
 number of permutations. Default to 200.  | 
A | 
 number of score components  | 
randomization | 
 Boolean value. Default to   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
cross.validation | 
 Boolean value. Default   | 
seed | 
 Seed value  | 
... | 
 additional arguments related to   | 
Value
List with the following objects:
- pv
 raw p-value. It equals
NAifrandomization = FALSE- pv_adj
 adjusted p-value. It equals
NAifrandomization = FALSE- test
 estimated test statistic
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: AUCTest, scoreTest,
dQ2Test, sensitivityTest,AUCTest, R2Test,
specificityTest, FMTest.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(15,15),m = 6,nvar_rel = 5,A = 1)
out <- mccTest(X = datas$X, Y = datas$Y, A = 1)
out
post transformed PLS
Description
Performs post transformed Partial Least Squares
Usage
ptPLSc(X, Y, W)
Arguments
X | 
 Data matrix where columns represent the   | 
Y | 
 Vector of class probabilities  | 
W | 
 Weight matrix where columns represent the   | 
Value
List with the following objects:
- W
 Matrix of weights
- G
 Post transformation matrix
- M
 Number of orthogonal components
Author(s)
Angela Andreella
References
Stocchero, M., & Paris, D. (2016). Post-transformation of PLS2 (ptPLS2) by orthogonal matrix: a new approach for generating predictive and orthogonal latent variables. Journal of Chemometrics, 30(5), 242-251.
See Also
Repeated k-Fold Cross-Validation with Custom Test Metrics
Description
This function performs repeated k-fold cross-validation and computes a selected performance metric across all repetitions and folds. It allows for different types of performance tests, such as MCC, sensitivity, specificity, R2, F1, and more.
Usage
repeatedCV_test(
  data,
  labels,
  k_folds = 5,
  repeats = 3,
  A = 1,
  test_type = "mccTest",
  seed = 1234
)
Arguments
data | 
 A data frame or matrix of features (predictor variables).  | 
labels | 
 A vector of class labels corresponding to the rows of   | 
k_folds | 
 An integer specifying the number of cross-validation folds (default = 5).  | 
repeats | 
 An integer specifying the number of times the cross-validation is repeated (default = 3).  | 
A | 
 number of score components  | 
test_type | 
 A character string specifying the type of test to use. Options include: 
 Default is 'mccTest'.  | 
seed | 
 An integer for setting the random seed to ensure reproducibility (default = 1234).  | 
Value
A numeric value representing the average performance metric across the outer folds.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(15,15),m = 6,nvar_rel = 5,A = 1)
data <- datas$X
labels <- datas$Y
mean_mcc <- repeatedCV_test(data, labels, A = 1, test_type = 'mccTest')
cat('Mean MCC:', mean_mcc, '\n')
mean_score <- repeatedCV_test(data, labels, A = 1, test_type = 'scoreTest')
cat('Mean Sensitivity:', mean_score, '\n')
Score test
Description
Performs permutation-based test based on predictive score vector
Usage
scoreTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE, seed = 123, ...)
Arguments
X | 
 data matrix where columns represent the   | 
Y | 
 data matrix where columns represent the two classes and
rows the   | 
nperm | 
 number of permutations. Default to 200.  | 
A | 
 number of score components  | 
randomization | 
 Boolean value. Default to   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
cross.validation | 
 Boolean value. Default   | 
seed | 
 Seed value  | 
... | 
 additional arguments related to   | 
Value
List with the following objects:
- pv
 raw p-value. It equals
NAifrandomization = FALSE- pv_adj
 adjusted p-value. It equals
NAifrandomization = FALSE- test
 estimated test statistic
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, R2Test,
sensitivityTest, specificityTest,AUCTest, dQ2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- scoreTest(X = datas$X, Y = datas$Y, A = 1)
out
sensitivity test
Description
Performs permutation-based test based on sensitivity
Usage
sensitivityTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE, cross.validation = FALSE, ...)
Arguments
X | 
 data matrix where columns represent the   | 
Y | 
 data matrix where columns represent the two classes and
rows the   | 
nperm | 
 number of permutations. Default to 200.  | 
A | 
 number of score components  | 
randomization | 
 Boolean value. Default to   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
cross.validation | 
 Boolean value. Default   | 
... | 
 additional arguments related to   | 
Value
List with the following objects:
- pv
 raw p-value. It equals
NAifrandomization = FALSE- pv_adj
 adjusted p-value. It equals
NAifrandomization = FALSE- test
 estimated test statistic
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, specificityTest,AUCTest, R2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 1)
out <- sensitivityTest(X = datas$X, Y = datas$Y, A = 1)
out
Simulate pilot data
Description
Simulate data matrix under the alternative hypothesis with n observations by kernel density estimation
Usage
sim_XY(out, n, seed = 123, post.transformation = TRUE, A, fast = FALSE)
Arguments
out | 
 Output from   | 
n | 
 Number of observations to simulate  | 
seed | 
 Seed value  | 
post.transformation | 
 Boolean value. Default to   | 
A | 
 Number of score components used in   | 
fast | 
 Use the function   | 
Value
Returns a list:
- Y_H1
 dependent variable, matrix with 2 columns and
nrows (observations)- X_H1
 predictor variables, matrix with
nrows (observations) and number of columns equal toout$X(i.e., original dataset)
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Examples
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
out <- PLSc(X = datas$X, Y = datas$Y, A = 3)
out_sim <- sim_XY(out = out, n = 10, A = 3)
Simulate pilot data
Description
Simulate cluster pilot data
Usage
simulatePilotData(seed = 123, nvar, clus.size, nvar_rel,m, A = 2, S1 = NULL, S2 = NULL)
Arguments
seed | 
 Seed value  | 
nvar | 
 Number of variables  | 
clus.size | 
 Vector of two elements, specifying the size of classes (only two classes are considered)  | 
nvar_rel | 
 Number of variables relevant to predict the dependent variable  | 
m | 
 Effect size of separation between classes  | 
A | 
 Oracle number of score components  | 
S1 | 
 Covariance matrix for the first class. Default   | 
S2 | 
 Covariance matrix for the second class. Default  | 
Author(s)
Angela Andreella @return List with the following objects:
- X
 matrix of predictor variables with
nvarcolumns and the sum ofclus.sizevalues as number of rows.- Y
 vector of dependent variable with the sum of
clus.sizevalues as length
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
Examples
datas <- simulatePilotData(nvar = 10, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 2)
specificity test
Description
Performs permutation-based test based on specificity
Usage
specificityTest(X, Y, nperm = 200, A, randomization = FALSE,
Y.prob = FALSE, eps = 0.01, scaling = 'auto-scaling',
post.transformation = TRUE,cross.validation = FALSE,...)
Arguments
X | 
 data matrix where columns represent the   | 
Y | 
 data matrix where columns represent the two classes and
rows the   | 
nperm | 
 number of permutations. Default to 200.  | 
A | 
 number of score components  | 
randomization | 
 Boolean value. Default to   | 
Y.prob | 
 Boolean value. Default   | 
eps | 
 Default 0.01.   | 
scaling | 
 Type of scaling, one of
  | 
post.transformation | 
 Boolean value.   | 
cross.validation | 
 Boolean value. Default   | 
... | 
 additional arguments related to   | 
Value
List with the following objects:
- pv
 raw p-value. It equals
NAifrandomization = FALSE- pv_adj
 adjusted p-value. It equals
NAifrandomization = FALSE- test
 estimated test statistic
Author(s)
Angela Andreella
References
For the general framework of power analysis for PLS-based methods see:
Andreella, A., Fino, L., Scarpa, B., & Stocchero, M. (2024). Towards a power analysis for PLS-based methods. arXiv preprint https://arxiv.org/abs/2403.10289.
See Also
Other test statistics implemented: mccTest, scoreTest,
dQ2Test, sensitivityTest,AUCTest, R2Test,
FMTest, F1Test.
Examples
datas <- simulatePilotData(nvar = 30, clus.size = c(5,5),m = 6,nvar_rel = 5,A = 1)
out <- specificityTest(X = datas$X, Y = datas$Y, A = 1)
out
Wheezing data
Description
32 urine samples from children at risk of early-onset asthma and those with transient wheezing.
Usage
wheezing
Format
A data frame with 32 rows and 176 variables
Author(s)
Angela Andreella angela.andreella@unive.it