
Package ‘redcapAPI’
October 29, 2025

Type Package

Title Interface to 'REDCap'

Version 2.11.4

Maintainer Shawn Garbett <shawn.garbett@vumc.org>

Description Access data stored in 'REDCap' databases using the Application
Programming Interface (API). 'REDCap' (Research Electronic Data CAPture;
<https://projectredcap.org>, Harris, et al. (2009) <doi:10.1016/j.jbi.2008.08.010>,
Harris, et al. (2019) <doi:10.1016/j.jbi.2019.103208>) is
a web application for building and managing online surveys and databases
developed at Vanderbilt University. The API allows users to access data
and project meta data (such as the data dictionary) from the web
programmatically. The 'redcapAPI' package facilitates the process of
accessing data with options to prepare an analysis-ready data set
consistent with the definitions in a database's data dictionary.

License GPL-2

Depends R (>= 3.5.0)

Imports checkmate, chron, curl, jsonlite, labelVector, lubridate,
mime, shelter (>= 0.2.1)

LazyLoad yes

Suggests testthat (>= 3.0.0), Hmisc, mockery

URL https://github.com/vubiostat/redcapAPI

BugReports https://github.com/vubiostat/redcapAPI/issues

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Benjamin Nutter [ctb, aut],
Shawn Garbett [cre, ctb] (ORCID:
<https://orcid.org/0000-0003-4079-5621>),

Savannah Obregon [ctb],
Thomas Obadia [ctb],
Marcus Lehr [ctb],

1

https://projectredcap.org
https://doi.org/10.1016/j.jbi.2008.08.010
https://doi.org/10.1016/j.jbi.2019.103208
https://github.com/vubiostat/redcapAPI
https://github.com/vubiostat/redcapAPI/issues
https://orcid.org/0000-0003-4079-5621

2 Contents

Brian High [ctb],
Stephen Lane [ctb],
Will Beasley [ctb],
Will Gray [ctb],
Nick Kennedy [ctb],
Tan Hsi-Nien [ctb],
Jeffrey Horner [aut],
Jeremy Stephens [ctb],
Cole Beck [ctb],
Bradley Johnson [ctb],
Philip Chase [ctb],
Paddy Tobias [ctb],
Michael Chirico [ctb],
William Sharp [ctb]

Repository CRAN

Date/Publication 2025-10-29 06:10:02 UTC

Contents
allocationTable . 4
armsMethods . 7
as.character.response . 9
assembleCodebook . 9
changedRecords . 12
checkbox_suffixes . 13
connectAndCheck . 13
constructLinkToRedcapForm . 14
createFileRepositoryFolder . 15
createRedcapProject . 17
dagAssignmentMethods . 19
dagMethods . 21
deleteRecords . 23
dropRepeatingNA . 25
eventsMethods . 25
exportBulkRecords . 28
exportDataQuality . 30
exportExternalCoding . 31
exportFieldNames . 32
exportFileRepositoryListing . 34
exportFilesMultiple . 35
exportInstruments . 38
exportLogging . 39
exportPdf . 41
exportProjectXml . 43
exportSAS . 45
exportVersion . 46
Extraction . 47

Contents 3

fieldCastingFunctions . 47
fieldChoiceMapping . 51
fieldToVar . 52
fieldValidationAndCasting . 53
fileMethods . 58
fileRepositoryMethods . 61
fileRepositoryPath . 64
filterEmptyRow . 65
fromFileRepositoryMethods . 65
getProjectIdFields . 67
importFileToRecord . 68
importRecords . 70
invalidSummary . 73
isZeroCodedCheckField . 74
logEvent . 75
makeApiCall . 77
mappingMethods . 79
metaDataMethods . 81
missingSummary . 84
parseBranchingLogic . 86
prepUserImportData . 87
preserveProject . 88
projectInformationMethods . 91
purgeRestoreProject . 93
recodeCheck . 96
reconstituteFileFromExport . 97
recordsManagementMethods . 99
recordsMethods . 100
recordsTypedMethods . 105
redcapConnection . 111
redcapDataStructures . 116
redcapFactorFlip . 117
repeatingInstrumentMethods . 118
reviewInvalidRecords . 119
splitForms . 121
stringCleanup . 122
stripHTMLandUnicode . 123
surveyMethods . 124
switchDag . 127
syncUnderscoreCodings . 128
unlockREDCap . 129
userMethods . 131
userRoleAssignmentMethods . 135
userRoleMethods . 136
validateImport . 140
vectorToApiBodyList . 141
widerRepeated . 142
writeDataForImport . 143

4 allocationTable

Index 144

allocationTable Generate Allocation Tables for the Randomization Module

Description

These methods enable the user to generate allocation tables for the REDCap randomization module.
Randomization may be stratified by other (categorical) variables in the data set as well as by Data
Access Group. Additionally, randomization may be blocked to ensure balanced groups throughout
the allocation

Usage

allocationTable(
rcon,
random,
strata = NULL,
group = NULL,
dag.id = NULL,
replicates,
block.size,
block.size.shift = 0,
seed.dev = NULL,
seed.prod = NULL,
weights = NULL,
...

)

S3 method for class 'redcapApiConnection'
allocationTable(
rcon,
random,
strata = NULL,
group = NULL,
dag.id = NULL,
replicates,
block.size,
block.size.shift = 0,
seed.dev = NULL,
seed.prod = NULL,
weights = c(1, 1),
...

)

allocationTable_offline(
meta_data,
random,

allocationTable 5

strata = NULL,
group = NULL,
dag.id = NULL,
replicates,
block.size,
block.size.shift = 0,
seed.dev = NULL,
seed.prod = NULL,
weights = c(1, 1),
...

)

Arguments

rcon A redcapConnection object.

random character(1). The field name to be randomized.

strata character. Field names by which to stratify the randomization.

group character(1). A field name giving a group by which randomization should be
stratified. This could also be listed in strata, but the argument is provided to
remain consistent with the REDCap user interface.

dag.id integerish. Data Access Group IDs.

replicates integerish(1). The number of randomizations to perform within each stratum

block.size integerish. Block size for the randomization. Blocking is recommended to
ensure balanced groups throughout the randomization. This may be a vector to
indicate variable block sizes throughout the randomization.

block.size.shift

numeric on the interval [0, 1]. A vector the same length as block.size where
the first element is 0. This controls when the block size changes as a proportion
of the total sample size. When block.size=c(8, 4, 2) and block.size.shift
= c(0, .5, .9), the first half of the randomization is performed in blocks of 8,
then the next 40 percent of the randomization is performed in blocks of 4, with
the last ten percent performed in blocks of 2.

seed.dev integerish. At least one value is required. If only one value is given, it will
be converted to a vector with length equal to the number of strata. Values will
be incremented by 100 to provide independent randomizations. This may also
have length equal to the number of strata.

seed.prod integerish. Same as seed.dev, but used to seed the production allocation. No
pairwise elements of seed.dev and seed.prod may be equal. This guarantees
that the two randomization schemes are unique.

weights An optional vector giving the sampling weights for each of the randomization
groups. There must be one number for each level of the randomization variable.
If named, the names must match the group labels. If unnamed, the group la-
bels will be assigned in the same order they appear in the data dictionary. The
weights will be normalized, so they do not need to sum to 1.0. In other words,
weights=c(3, 1) can indicate a 3:1 sampling ratio.

... Arguments to pass to other methods

6 allocationTable

meta_data character(1). For the offline method, a text string giving the location of the
data dictionary downloaded from REDCap.

Details

Each element in block.size must be a multiple of the number of groups in the randomized variable.

The ’offline’ version of the function operates on the data dictionary file downloaded from REDCap.
This is made available for instances where the API cannot be accessed for some reason (such as
waiting for API approval from the REDCap administrator).

The value of replicates controls how many allocations are generated. It is possible to get slightly
more replicates than requested if your blocking design cannot exactly match replicates. For exam-
ple, if the users asks for 30 replicates in blocks of 8, a warning will be printed and 32 replicates will
be returned in the randomization table.

Value

Returns a list with the elements

dev_allocation data.frame with the randomization allocations for the development environment.
prod_allocation data.frame with the randomization allocations for the production environment.
dev_seed The random seed values for the development environment.
prod_seed The random seed values for the production environment.
blocks Blocking scheme used to generate the randomization.
weights Weighting scheme for the randomization.

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

allocationTable(rcon,
random = "treatment_assignment",
strata = c("demographic_group", "hospital_group"),
replicates = 12,
block.size = 4,
seed.dev = 12345,
seed.prod = 54321)

End(Not run)

armsMethods 7

armsMethods Export, Import, and Delete Arms from a Project

Description

These methods enable the user to export the current arms from a project, import new arms, and
modify or delete existing arms.

Usage

exportArms(rcon, ...)

importArms(rcon, data, override = FALSE, ...)

deleteArms(rcon, arms, ...)

S3 method for class 'redcapApiConnection'
exportArms(rcon, arms = character(0), ...)

S3 method for class 'redcapApiConnection'
importArms(rcon, data, override = FALSE, ...)

S3 method for class 'redcapApiConnection'
deleteArms(rcon, arms, ...)

Arguments

rcon A redcapConnection object.

arms character or integerish identifying the arm numbers to export or delete.

data A data.frame with two columns. The first column (arm_num) is an integerish
value . The second (name) is a character value. For backward compatibility, this
may also be passed as arms_data.

override logical(1). By default, data will add to or modify existing arms data. When
TRUE, all the existing arms data is deleted and replaced with the contents of data.

... Arguments to pass to other methods

Details

Exporting arms is not supported for classical REDCap projects. If the user attempts to export arms
for a classical project, a data frame will be returned with zero rows.

When importing, arms are added when the value of arm_num does not already exist in the project.

Arm names may be modified by altering the name value associated with an existing arm_num value.

Deleting arms–whether by deleteArms or importArms with override = TRUE–is a destructive act
that also deletes events and records associated with the arm. This is irreversible data loss. REDCap
will only permit these actions to occur in projects in Development status.

8 armsMethods

Value

exportArms returns a data.frame with columns:

arm_num The ID number for the arm in the project.
name The display name of the arm.

importArms invisibly returns the number of arms imported.

deleteArms invisibly returns the number of arms deleted.

Functions

• exportArms(): Export the arms defined in a project.

• importArms(): Import and modify the arms definitions in a project.

• deleteArms(): Delete arms from a project.

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export all of the Arms
exportArms(rcon)

Export only a subset of arms
exportArms(rcon,

arms = c(1, 3))

Import a new arms
Assume arms 1, 2, and 3 exist in the project already
NewData <- data.frame(arm_num = 4,

name = "Arm Four Name")
importArms(rcon,

data = NewData)

Change the name of an existing arm
NewData <- data.frame(arm_num = 1,

name = "New Arm Name")
importArms(rcon,

data = NewData)

Delete all arms and replace with a new specification
NewData <- data.frame(arm_num = c(1, 2),

name = c("Treatment Arm", "Control Arm"))
importArms(rcon,

as.character.response 9

data = NewData,
override = TRUE)

Delete an existing arm
deleteArms(rcon,

arms = 4)

Delete multiple existing arm
deleteArms(rcon,

arms = c(2, 3))

End(Not run)

as.character.response S3 method to turn curl response into character

Description

Converts a raw curl response into a character string.

Usage

S3 method for class 'response'
as.character(x, ...)

Arguments

x response from curl to render to character

... If type=’text/csv’ this is passed to read.csv. If type=’application/json’ this is
sent to jsonlite::fromJSON

assembleCodebook Assemble Codebook From the Data Dictionary

Description

This method enables the user to construct a code book similar in style to the REDCap project
codebook. The codebook is similar in nature to the data dictionary, but multiple choice fields are
represented with one line per coding.

10 assembleCodebook

Usage

assembleCodebook(
rcon,
fields = NULL,
forms = NULL,
drop_fields = NULL,
field_types = NULL,
include_form_complete = TRUE,
expand_check = FALSE,
...

)

S3 method for class 'redcapConnection'
assembleCodebook(
rcon,
fields = NULL,
forms = NULL,
drop_fields = NULL,
field_types = NULL,
include_form_complete = TRUE,
expand_check = FALSE,
...

)

S3 method for class 'redcapCodebook'
as.list(x, ...)

Arguments

rcon A redcapConnection object.

fields character or NULL. When character, the code book will be limited to the
intersection of the fields designated by fields and forms. When NULL, all fields
are included.

forms character or NULL. When character, the code book will be limited to the
intersection of the fields designated by fields and forms. When NULL, all forms
are included.

drop_fields character or NULL. When given, fields named will be removed from the code
book.

field_types character or NULL. When given, only the field types listed will be included
in the code book. This will supercede the intersection of fields and forms.
Matching of field types is performed against the values in the field_type col-
umn of the meta data.

include_form_complete

logical(1). When TRUE, the [form name]_complete fields will be included
in the codebook.

expand_check logical(1). When FALSE, the codebook for checkbox fields will be similar
to the codebook for dropdown and radio fields, with one line per user-defined

assembleCodebook 11

option. When TRUE, each checkbox option will be represented in two fields, one
each for 0 (Unchecked) and 1 (Checked).

... Arguments to pass to other methods

x A redcapCodebook object as returned by assembleCodebook.

Value

Returns a redcapCodebook object. This inherits the data.frame class and has the columns

• field_name - The name of the field.

• form - The name of the form on which the field is located.

• field_type - The field type.

• code - For multiple choice fields, the coding for the option.

• label - For multiple choice fields, the label for the option.

• min - For date and numeric fields, the minimum value in the validation, if any.

• max - For date and numeric fields, the maximum value in the validation, if any.

• branching_logic - For fields with branching logic, the string denoting the logic applied.

• field_order - The numeric order of the field in the data dictionary.

• form_order - The numeric order of the form in the data dictionary.

See Also

exportMetaData()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

codebook for the entire project
assembleCodebook(rcon)

codebook for multiple choice fields
assembleCodebook(rcon,

field_types = c("dropdown", "radio", "checkbox",
"yesno", "truefalse"))

End(Not run)

12 changedRecords

changedRecords returns a list of record IDs changed (adds, updates, deletes)

Description

This is a convenience function that scans logs and returns record IDs of changed records.

Usage

changedRecords(rcon, ...)

Arguments

rcon A redcapConnection object.

... Arguments passed to exportLogging()

Details

Makes a call to exportLogging with passed arguments. Returns filtered list or records IDs with
update, delete or create events.

Value

Returns a list with the elements

updated character vector of updated record IDs
deleted character vector of deleted record IDs
created character vector of created record IDs

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Changes in last 24 hours
changedRecords(rcon, beginTime=as.POSIXct(Sys.time()-86400))

End(Not run)

checkbox_suffixes 13

checkbox_suffixes Checkbox Suffixes

Description

Checkbox variables return one vector of data for each option defined in the variable. The variables
are returned with the suffix ___[option]. exportRecords needs these suffixes in order to retrieve
all of the variables and to apply the correct labels.

Usage

checkbox_suffixes(fields, meta_data)

Arguments

fields The current field names of interest

meta_data The metadata data frame.

connectAndCheck Connect to REDCap and verify connection

Description

A function that given an API_KEY and a url will create a redcapConnection object and verify that
it is working with a version call. If the API key is invalid it will return NULL. If the URL is invalid
or there are multiple redirects it will call stop.

Usage

connectAndCheck(key, url, ...)

Arguments

key The API key used to connect.

url The url of the REDCap server.

... Additional arguments passed to redcapConnection

Value

redcapConnection established or NULL if key is invalid.

See Also

redcapConnection()

14 constructLinkToRedcapForm

Examples

Not run:
connectAndCheck("<AN API KEY HERE>", "<REDCAP URL HERE>")

End(Not run)

constructLinkToRedcapForm

Construct a Link to a REDCap Form

Description

Uses information from the project and a record to link to the form on which a data element is
recorded. This is intended to be used within the report of invalid results when exporting or importing
records. It should be noted that when importing records, the records may not yet exist and the links
may not work.

Usage

constructLinkToRedcapForm(rcon, form_name, record_id, event_id = NULL, ...)

S3 method for class 'redcapApiConnection'
constructLinkToRedcapForm(rcon, form_name, record_id, event_id = NULL, ...)

S3 method for class 'redcapOfflineConnection'
constructLinkToRedcapForm(rcon, form_name, record_id, event_id = NULL, ...)

Arguments

rcon A redcapConnection object.

form_name character. The name of the form on which the field name exists.

record_id character. The ID of the record being linked to. If passed as a numeric value,
it will be coerced to character. Must have the same length as form_name.

event_id character or NULL. For classical projects, use either NULL or NA (NA support is
permitted to assist with vectorization). For longitudinal projects, the ID of the
unique event. If passed as a numeric value, it will be coerced to character.

... Arguments to pass to other methods

Details

Constructing a link to a REDCap form requires knowledge of the following:

• The REDCap instance url (usually ’redcap.institution.domain’).

• The REDCap instance version number.

• The REDCap project ID number

createFileRepositoryFolder 15

• The record ID

• The form name

• The event ID number (if the project is longitudinal).

If any of these items in unknown, a missing value will be returned. For redcapOfflineConnections,
the user will need to provide the version number, the project information, and the events (if the
project is longitudinal) as part of the call to offlineConnection. Note that the REDCap User
Interface does not include the event ID number with the file download for events.

Value

Returns a character vector the same length of form_name.

createFileRepositoryFolder

Create a Folder in the File Repository

Description

This method enables the user to create a folder in the file repository. The folder created may also be
a subfolder of an existing folder.

Usage

createFileRepositoryFolder(
rcon,
name,
folder_id = numeric(0),
dag_id = numeric(0),
role_id = numeric(0),
...

)

S3 method for class 'redcapApiConnection'
createFileRepositoryFolder(
rcon,
name,
folder_id = numeric(0),
dag_id = numeric(0),
role_id = numeric(0),
...

)

16 createFileRepositoryFolder

Arguments

rcon A redcapConnection object.

name character(1) The name of the folder. If a folder by this name already exists,
no action will be taken.

folder_id integerish(0/1). The ID of the parent folder. When length is 0, the new
folder is placed in the top-level.

dag_id integerish(0/1) The ID of a data access group. When provided, access to the
folder will be restricted to the DAG.

role_id integerish(0/1) The ID of a role. When provided, access to the folder will
be restricted to users with that role.

... Arguments to pass to other methods

Value

Returns a data frame with the columns

folder_id The REDCap assigned ID value for the newly created folder.
name The name assigned to the folder by the user.

See Also

exportFromFileRepository(),
importToFileRepository(),
deleteFromFileRepository(),
exportFileRepository(),
importFileRepository(),
deleteFileRepository(),
exportFileRepositoryListing()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Create a folder in the top-level directory
createFileRepositoryFolder(rcon,

name = "New Folder Name")

Create a folder in a subfolder
createFileRepositoryFolder(rcon,

name = "New Folder Name",
folder_id = 12345)

createRedcapProject 17

Create a folder assigned to a Data Access Group
createFileRepositoryFolder(rcon,

name = "New Folder Name",
dag_id = 678)

End(Not run)

createRedcapProject Create REDCap Project

Description

These methods enable a user with a 64-character Super API token to create a new REDCap project.

Usage

createRedcapProject(
rcon,
project_title,
purpose = REDCAP_PROJECT_PURPOSE,
purpose_other = NULL,
is_longitudinal = FALSE,
surveys_enabled = FALSE,
record_autonumbering_enabled = FALSE,
xml = NULL,
...

)

S3 method for class 'redcapApiConnection'
createRedcapProject(
rcon,
project_title,
purpose = REDCAP_PROJECT_PURPOSE,
purpose_other = NULL,
is_longitudinal = FALSE,
surveys_enabled = FALSE,
record_autonumbering_enabled = FALSE,
xml = NULL,
...

)

Arguments

rcon A redcapConnection object.

project_title character(1). Title for the new project.

18 createRedcapProject

purpose character, one of c("Practice/just for fun", "Other", "Research", "Quality
Improvement", "Operational Support")

purpose_other character(1) or NULL. Ignored unless purpose = "Other", in which case this
becomes a required argument.

is_longitudinal

logical(1). When TRUE the project will be set as a longitudinal project.
surveys_enabled

logical(1). When TRUE surveys are enabled for the project. (This will not add
any survey instruments, only enable them).

record_autonumbering_enabled

logical(1). When TRUE if auto numbering will be enabled in the project.

xml character(1) or NULL an XML string in CDISC ODM XML format that con-
tains project metadata (fields, forms, events, arms) and might optionally contain
data to be imported as well. When not NULL, all other arguments are ignored.
See Details.

... Arguments to pass to other methods

Details

The user creating the project will automatically be added to the project as a user with full user
privileges and a project-level API token, which could then be used for subsequent project-level API
requests.

When the project is created, it will automatically be given all the project-level defaults just as if it
had been created via the web user interface, such as automatically creating a single data collection
instrument seeded with a single Record ID field and Form Status field, as well as (for longitudinal
projects) one arm with one event.

If the user intends to populate the project with arms and events immediately after creating the
project, it is recommended that override = TRUE be used in importArms and importEvents so
that the default arm and event are removed.

The xml argument must be in CDISC ODM XML format. It may come from a REDCap Project
XML export file from REDCap itself (see exportProjectXml()), or may come from another sys-
tem that is capable of exporting projects and data in CDISC ODM format. If the xml argument is
used in the API request, it will use the XML to import its contents into the newly created project.
This will not only create the project with the API request, but also to import all fields, forms, and
project attributes (and events and arms, if longitudinal) as well as record data all at the same time.

Only users with a 64-character Super API Tokens can utilize this method (the standard API token
is 32 characters). Users can only be granted a super token by a REDCap administrator (using the
API Tokens page in the REDCap Control Center). Please be advised that users with a Super API
Token can create new REDCap projects via the API without any approval needed by a REDCap
administrator.

Value

Returns a character(1) the 32-character, project level API token assigned to the user that created
the project. This token is intended to be used for further project configuration using the API.

dagAssignmentMethods 19

See Also

exportProjectXml()

Examples

Not run:
The token must be a 64-character token
super_token <- redcapConnection(url = "your_redcap_url",

token = "[64-character-super-api-token]")

Create a new project
createRedcapProject(super_token,

project_title = "New Project Name",
purpose = "Quality Improvement",
is_longitudinal = FALSE,
surveys_enabled = TRUE)

Copy an existing project into a new project
unlockREDCap(connections = c(rcon = "token_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

xml_file <- tempfile(file.ext = ".xml")
exportProjectXml(rcon,

file = xml_file)

xml_text <- paste0(readLines(xml_file), collapse = " ")
createRedcapProject(super_token,

xml = xml_text)

End(Not run)

dagAssignmentMethods Export and Import Users Assigned to Data Access Groups

Description

These methods enable the user to export existing assignments of users to Data Access Groups, or
import new or updated assignments to the project.

Usage

exportUserDagAssignments(rcon, ...)

importUserDagAssignments(rcon, data, ...)

20 dagAssignmentMethods

S3 method for class 'redcapApiConnection'
exportUserDagAssignments(rcon, ...)

S3 method for class 'redcapApiConnection'
importUserDagAssignments(rcon, data, ...)

Arguments

rcon A redcapConnection object.

data data.frame with the columns username and redcap_data_access_group. The
should only be one row per user name.

... Arguments to pass to other methods

Details

When modifying existing assignments using the import method, the user must provide the unique
user name and the group name. If the redcap_data_access_group column is not provided, the
REDCap user will not be assigned to any group.

Value

exportUserDagAssignments method returns a data frame with two columns:

username The unique user name for each user in the project.
redcap_data_access_group The unique Data Access Group name to which the user is assigned.

importUserDagAssignments invisibly returns the number of assignments imported.

Functions

• exportUserDagAssignments(): Export current User-DAG Assignments

• importUserDagAssignments(): Import new or modified User-DAG Assignments.

See Also

exportDags(),
importDags(),
deleteDags(),
switchDag()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",

dagMethods 21

envir = globalenv())

Export the current assignments
exportUserDagAssignments(rcon)

Assign a user to a Data Access Group
ForImport <- data.frame(username = "user1",

redcap_data_access_group = "facility_one")
importUserDagAssigments(rcon,

data = ForImport)

Assign a multiple users to a Data Access Group
ForImport <- data.frame(username = c("user1", "user2", "user3"),

redcap_data_access_group = c("facility_one",
"facility_one",
"facility_two"))

importUserDagAssigments(rcon,
data = ForImport)

Remove a user from all Data Access Groups
ForImport <- data.frame(username = "user1",

redcap_data_access_group = NA_character_)
importUserDagAssigments(rcon,

data = ForImport)

End(Not run)

dagMethods Export, Import, Delete Data Access Groups from a Project

Description

These methods enable the user to export existing Data Access Groups, import new Data Access
Groups, or delete Data Access Groups from a project.

Usage

exportDags(rcon, ...)

importDags(rcon, data, ...)

deleteDags(rcon, dags, ...)

S3 method for class 'redcapApiConnection'
exportDags(rcon, ...)

S3 method for class 'redcapApiConnection'
importDags(rcon, data, ...)

22 dagMethods

S3 method for class 'redcapApiConnection'
deleteDags(rcon, dags, ...)

Arguments

rcon A redcapConnection object.

dags character vector of names matching the unique_group_name.

data A data.frame with two columns: data_access_group_name and unique_group_name.

... Arguments to pass to other methods

Details

To import new data access groups, the user must provide a value for data_access_group_name
with no value (NA) for unique_group_name.

To modify a group name, provide a new value for data_access_group_name with the associated
unique_group_name. If unique_group_name is provided, it must match a value currently in the
project.

Value

exportDags with the columns

data_access_group_name The human readable name for the data access group.
unique_group_name The internal unique group name.
data_access_group_id The internal numeric identifier.

importDags invisibly returns the number of Data Access Groups imported.

deleteDags invisibly returns the number of Data Access Groups deleted.

Functions

• exportDags(): Export Data Access Groups from a REDCap Project

• importDags(): Import Data Access Groups to a project.

• deleteDags(): Delete Data Access Groups from a project.

See Also

switchDag(),
exportUserDagAssignments(),
importUserDagAssignments()

deleteRecords 23

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

exportDags(rcon)

Import a new Data Access Group
NewData <- data.frame(data_access_group_name = "New DAG Name",

unique_group_name = NA_character_)
importDags(rcon,

data = NewData)

Modify an existing Data Access Group Name
The user will need to match the unique_group_name to the existing DAGs
ChangeData <- data.frame(data_access_group_name = "Altered DAG Name",

unique_group_name = "new_dag_name")
importDags(rcon,

data = ChangeData)

Delete a Data Access Group
deleteDags(rcon,

dags = c("new_dag_name"))

End(Not run)

deleteRecords Delete Records from a Project

Description

These methods enable the user to delete records from a project.

Usage

deleteRecords(
rcon,
records,
arm = NULL,
instrument = NULL,
event = NULL,
repeat_instance = NULL,
delete_logging = FALSE,
...

)

24 deleteRecords

S3 method for class 'redcapApiConnection'
deleteRecords(
rcon,
records,
arm = NULL,
instrument = NULL,
event = NULL,
repeat_instance = NULL,
delete_logging = FALSE,
...

)

Arguments

rcon A redcapConnection object.

records character or integerish. Record ID’s to be returned.

arm integerish. the arm number of the arm in which the record(s) should be
deleted. This can only be used if the project is longitudinal with more than
one arm. If the arm parameter is not provided, the specified records will be
deleted from all arms in which they exist. Whereas, if arm is provided, they will
only be deleted from the specified arm.

instrument character(1) Optional instrument to delete records from.

event character(1) Optional event to delete records from.
repeat_instance

numeric(1) optional repeat instance to delete records from.

delete_logging logical. Should the logging for this record be delete as well. Default to
FALSE.

... Arguments to pass to other methods

Value

deleteRecords invisibly returns a character value giving the number of records deleted.

See Also

exportRecords(),
importRecords(),
exportRecordsTyped()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

dropRepeatingNA 25

Delete records
deleteRecords(rcon,

records = c("1", "2"))

End(Not run)

dropRepeatingNA Drop Row Where Repeat Instrument Is NA

Description

Drops rows where the repeat instrument is NA. Returns a data frame of records where repeat instru-
ments have a value.

Usage

dropRepeatingNA(Records, rcon, quiet = FALSE)

Arguments

Records A data.frame containing the records from exportRecordsTyped()

rcon A redcapConnection object.

quiet logical(1). When FALSE, a message is printed indicating how many rows were
in Records at the start and completion of the subset.

See Also

exportRecordsTyped(),
exportReportsTyped()

eventsMethods Export, Import, and Delete Event Settings

Description

These methods enable the user to export event settings, import new events, update settings for
existing events, or delete events.

26 eventsMethods

Usage

exportEvents(rcon, ...)

importEvents(rcon, data, override = FALSE, ...)

deleteEvents(rcon, events = NULL, ...)

S3 method for class 'redcapApiConnection'
exportEvents(rcon, arms = NULL, ...)

S3 method for class 'redcapApiConnection'
importEvents(rcon, data, override = FALSE, ...)

S3 method for class 'redcapApiConnection'
deleteEvents(rcon, events = NULL, ...)

Arguments

rcon A redcapConnection object.

arms character or integerish identifying the arm numbers for which event data
will be exported.

events character giving the unique event names of the events to be deleted.

data data.frame. Must have columns event_name and arm_num. To modify exist-
ing events, it must also have a column unique_event_name. It may optionally
have columns for days_offset, offset_min, offset_max. For backward com-
patibility, this argument may be passed as event_data.

override logical(1). By default, data will add to or modify existing arms data. When
TRUE, all the existing arms data is deleted and replaced with the contents of data.

... Arguments to pass to other methods

Details

Exporting events is not supported for classical REDCap projects. If the user attempts to export arms
for a classical project, a data frame will be returned with zero rows.

Additionally, in order for events to be exported, the project must be longitudinal, have at least one
arm, and at least one event defined. When these conditions are not satifisfied, exportEvents will
return a data frame with zero rows.

To import new events, the user must provide data with the unique_event_name set to NA (REDCap
assigns the unique event name automatically from the user provided event_name).

To modify existing events, the user must provide the unique_event_name. The other fields in the
data provided will overwrite the current values for the matching event.

Deleting events–whether by deleteEvents or importEvents with override = TRUE–is a destruc-
tive act that also deletes arms and records associated with the event. This is irreversible data loss.
REDCap will only permit these actions to occur in projects in Development status.

eventsMethods 27

Value

exportEvents returns a data frame with the columns:

event_name The user provided name for the event.
arm_num The arm number the event is associated with.
unique_event_name The REDCap generated event name.
custom_event_label An optional user provided label that may be used in place of the event name.
event_id REDCap’s internal event identifier.
days_offset The number of days since time zero (start of the study or project period) an event is scheduled to occur. This field is only provided when the scheduling module is enabled.
offset_min The number of days before the days_offset during which the event may occur. This field is only provided when the scheduling module is enabled.
offset_max The number of days before the days_offset during which the event may occur. This field is only provided when the scheduling module is enabled.

importEvents invisibly returns the number of events added or modified.

deleteEvents invisibly returns the number of events deleted.

Functions

• exportEvents(): Export events from a REDCap project.

• importEvents(): Add events to a project or modify existing events.

• deleteEvents(): Delete events from a project.

See Also

exportMappings(),
importMappings()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export all events
exportEvents(rcon)

Export events for a subset of arms
exportEvents(rcon,

arms = c(1, 3))

Import new events
NewEvents <- data.frame(event_name = c("Event 1",

"Event 2"),
arm_num = c(1, 1))

importEvents(rcon,
data = NewEvents)

28 exportBulkRecords

Modify existing events
UpdateEvents <- data.frame(event_name = "Event 2 New Name",

arm_num = 1,
unique_event_name = "event_2_arm_1",
custom_event_label = "The second visit")

importEvents(rcon,
data = UpdateEvents)

Replace all events with a new set
NewEvents <- data.frame(event_name = c("Event 1",

"Event 2",
"Event 1"),

arm_num = c(1, 1, 2))
importEvents(rcon,

data = NewEvents,
override = TRUE)

Delete events
deleteEvents(rcon,

events = c("event_1_arm_1", "event_1_arm_2"))

End(Not run)

exportBulkRecords A helper function to export multiple records and forms using a single
call.

Description

Exports records from multiple REDCap Databases using multiple calls to exportRecordsTyped()

Usage

exportBulkRecords(
lcon,
forms = NULL,
envir = NULL,
sep = "_",
post = NULL,
...

)

Arguments

lcon A named list of connections. The name is used as a prefix for data.frame names
in the environment specified. It may also be used as a reference from the forms
argument.

exportBulkRecords 29

forms A named list that is a subset of rcon’s names. A specified rcon will provide a
list of forms for repeated calls to exportRecordsType. If a connection refer-
ence is missing it will default to all forms. To override this default specify a
connection’s forms with NA to just get all data.

envir A environment to write the resulting Records in as variables given by their name
in rcon or if from a form their rcon named pasted to their form name joined by
sep. If not specified the function will return a named list with the results. Will
accept a number of the environment.

sep A character string to use when joining the rcon name to the form name for
storing variables.

post A function that will run on all returned sets of Records.

... Any additional variables to pass to exportRecordsTyped().

Value

Will return a named list of the resulting records if envir is NULL. Otherwise will assign them to
the specified envir.

See Also

Other records exporting functions:
exportRecordsTyped(),
exportRecords(),
exportReports()

Field validations and casting:
fieldValidationAndCasting(),
reviewInvalidRecords()

Post-processing functionality:
recastRecords(),
guessCast(),
guessDate(),
castForImport(),
mChoiceCast(),
splitForms(),
widerRepeated()

Vignettes:
vignette("redcapAPI-offline-connection")
vignette("redcapAPI-casting-data")
vignette("redcapAPI-missing-data-detection")
vignette("redcapAPI-data-validation)
vignette("redcapAPI-faq)

30 exportDataQuality

Examples

Not run:
unlockREDCap(c(test_conn = 'TestRedcapAPI',

sandbox_conn = 'SandboxAPI'),
keyring = 'MyKeyring',
envir = globalenv(),
url = 'https://<REDCAP_URL>/api/')

After user interaction to unlock the local encrypted keyring
the global environment will contain the REDCap connections
`test_conn` and `sandbox_conn`
#
Next the user wants to bulk specify importing all the forms
of interest and post process

exportBulkRecords(
rcon = list(test = test_conn,

sand = sandbox_conn),
forms = list(test = c('form1', 'form2'),
envir = globalenv(),
post = function(Records, rcon)

{
Records |>
mChoiceCast(rcon) |>
guessDat(rcon) |>
widerRepeating(rcon)

}
)

The environment now contains the data.frames: `test.form1`, `test.form2`, `sand`.
Each of these were retrieved, possibly using the forms argument and all were
post processed in the same manner as specified by `post`.

End(Not run)

exportDataQuality A helper function to export data queries from the Data Quality RED-
Cap module.

Description

Exports Data Quality queries by record. The Data Quality module must be enabled on the Control
Center of REDCap to use this function. Additionally, this module must be enabled on each project
before it can be used.

Usage

exportDataQuality(rcon, prefix, ...)

exportExternalCoding 31

Arguments

rcon A REDCap connection object as generated by redcapConnection.

prefix A string from your REDCap institutions Data Quality module url. The module
prefix can be found by exporting module settings under External Modules in
REDCap. At VUMC the prefix is ’vanderbilt_dataQuality’.

... additional arguments that are ignored.

exportExternalCoding Export Codebook Mappings for Fields with External Dependencies

Description

These methods enable redcapAPI to obtain a mapping of codes and associated labels for fields that
have external dependencies. The fields include SQL fields (dependent on another project) or fields
that utilize the BioPortal Ontology modules.

Usage

exportExternalCoding(rcon, fields, ...)

S3 method for class 'redcapApiConnection'
exportExternalCoding(rcon, fields = NULL, ..., batch_size = 1000)

Arguments

rcon A redcapConnection object.

fields character or NULL. Vector of fields to be returned. If NULL, all fields are re-
turned (unless forms is specified).

... Arguments to pass to other methods

batch_size integerish(1) or NULL. When NULL, all records are pulled. Otherwise, the
records all pulled in batches of this size.

Details

These methods operate by executing two API calls to export first the coded values and then the
labeled values of fields with external dependencies. The two exports are then used to generate the
code-label mappings for use in casting data.

Fields of type sql are dropdown fields that are populated by a SQL query to another project.

Fields of type bioportal are text fields that have the BioPortal Ontology module enabled as the
validation method.

32 exportFieldNames

Value

Returns a named list of named character vectors.

Each element is in the list is named for the field it maps.

The character vectors are name-value pairs where the name is the labeled data and the value is the
coded data.

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

exportExternalCoding(rcon)

End(Not run)

exportFieldNames Export the Complete Field Names for a REDCap Project

Description

This method enables the user to access the complete field names utilized during export and import
methods. These are expecially relevant when working with checkbox fields.

Usage

exportFieldNames(rcon, ...)

S3 method for class 'redcapApiConnection'
exportFieldNames(rcon, fields = character(0), ...)

Arguments

rcon A redcapConnection object.

fields NULL or character. Field name to be returned. By default, all fields are re-
turned.

... Arguments to pass to other methods

exportFieldNames 33

Details

exportFieldNames returns a data frame of the field names the user may use when performing
export and import functions. This is most useful when working with checkbox fields, which have
a different field name than the one used in the Meta Data. The exported/imported field names for
checkbox fields have the pattern [field_name]___[coded_checkbox_value] (there are exactly
three underscores separating the field name and the coded value).

Fields of types "calc", "file", and "descriptive" are not included in the export. (Signature fields also
have the "file" type and are not included)

Value

exportFieldNames returns a data frame with the columns:

original_field_name The field name as recorded in the data dictionary
choice_value represents the raw coded value for a checkbox choice. For non-checkbox fields, this will always be NA.
export_field_name The field name specific to the field. For non-checkbox fields, this is the same as original_field_name. For checkbox fields, it is the field name appended with ___[choice_value].

See Also

exportMetaData(),
importMetaData(),
exportInstruments(),
exportMappings(),
importMappings(),
exportPdf()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export all of the field names
exportFieldNames(rcon)

Export MetaData for a specific field
exportFieldNames(rcon,

fields = "checkbox_test")

End(Not run)

34 exportFileRepositoryListing

exportFileRepositoryListing

Export a Listing of Folders and Files in the File Repository

Description

This method enables the user to export a list of folders and files saved to the File Repository. The
listing may optionally include contents of subfolders.

Usage

exportFileRepositoryListing(
rcon,
folder_id = numeric(0),
recursive = FALSE,
...

)

S3 method for class 'redcapApiConnection'
exportFileRepositoryListing(
rcon,
folder_id = numeric(0),
recursive = FALSE,
...

)

Arguments

rcon A redcapConnection object.

folder_id integerish(0/1). The folder ID of a specific folder in the File Repository for
which a list of files and subfolders will be exported. By default, the top-level
directory of the File Repository will be used.

recursive logical(1). When TRUE, content of subfolders will be retrieved until a full
listing is produced. If FALSE, only the contents of the requested folder will be
returned.

... Arguments to pass to other methods

Value

Returns a data frame with the columns

folder_id The REDCap assigned ID value for the folder. Will be NA if the item is a file.
doc_id The REDCap assigned ID value for the file. Will be NA if the item is a folder.
name The name of the folder of file.
parent_folder The ID of the parent folder of the item. The top-level folder is represented as 0.

exportFilesMultiple 35

See Also

exportFromFileRepository(),
importToFileRepository(),
deleteFromFileRepository(),
exportFileRepository(),
importFileRepository(),
deleteFileRepository(),
createFileRepositoryFolder()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export the top-level listing of the File Repository
exportFileRepositoryListing(rcon)

Export the complete listing of the File Repository
exportFileRepositoryListing(rcon,

recursive = TRUE)

Export the listing of a subfolder in the File Repository
exportFileRepositoryListing(rcon,

folder_id = 12345)

End(Not run)

exportFilesMultiple Export Multiple Files From a Project

Description

This method enables the user to export multiple files from a REDCap project with a single call. The
REDCap API only allows for one file to be exported per call, and the exportFiles() methods are
written to mirror that limitation. This extension allows the user to pass vectors of arguments for
records, fields, events, or repeat instances. Files that can be matched to any combination of these
values will be exported.

36 exportFilesMultiple

Usage

exportFilesMultiple(
rcon,
record,
field,
event = NULL,
dir,
file_prefix = TRUE,
...

)

S3 method for class 'redcapApiConnection'
exportFilesMultiple(
rcon,
record,
field,
event = NULL,
dir,
file_prefix = TRUE,
repeat_instance = NULL,
...,
quiet = TRUE

)

Arguments

rcon A redcapConnection object.

record character or integerish. The record ID in which the desired file is stored.

field character. The field name in which the file is stored.

event character or NULL. The event name for the file. This applies only to longitudi-
nal projects. If the event is not supplied for a longitudinal project, the API will
return an error message

dir character(1). A directory/folder to which the file will be saved. By default,
the working directory is used.

file_prefix logical(1). Determines if a prefix is appended to the file name. The prefix
takes the form [record_id]-[event_name]-[file_name]. The file name is
always the same name of the file as it exists in REDCap.

... Arguments to pass to other methods

repeat_instance

integerish or NULL. The repeat instance number of the repeating event or the
repeating instrument. When available in your instance of REDCap, and passed
as NULL, the API will assume a value of 1.

quiet logical(1). When TRUE, any errors encountered while exporting files will be
converted to messages.

exportFilesMultiple 37

Details

exportFilesMultiple will construct all combinations of the record, field, event, and repeat_instance
arguments and attempt to export the file associated with each combination. Should any of these
combinations produce an error (for example, if a record does not have a third repeat instance), the
error is captured and returned with the output.

Value

Invisibly returns a data.frame with the following columns:

Column Description
record The record ID
field The name of the field in which the file is stored.
event The name of the event associated with the file.
repeat_instance For repeat instances, the instance associated with the file.
is_exported logical indicating if the file was successfully exported.
saved_to The file path to which the file was saved.
error If an error was encountered, the text of the error.

See Also

exportFiles()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

save_to_dir <- tempdir()

Export files for multiple records
Results are returned invisibly - saving to an object is
helpful to be able to view the results

Export <-
exportFilesMultiple(rcon,

record = 1:4,
field = "file_upload_field",
event = "event_1_arm_1",
dir = save_to_dir)

Export

Export files for multiple instances

Export <-
exportFilesMultiple(rcon,

record = 1,

38 exportInstruments

field = "file_upload_field",
event = "event_1_arm_1",
repeat_instance = 1:4,
dir = save_to_dir)

Export

Export files for multiple records, fields, events, and instances

Export <-
exportFilesMultiple(rcon,

record = 1:10,
field = c("registration", "waiver"),
events = c("event_1_arm_1", "event_2_arm_1"),
repeat_instance = 1:3,
dir = save_to_dir)

Export

End(Not run)

exportInstruments Export Instruments Defined in a Project

Description

These methods enable the user to view the instruments defined in the project.

Usage

exportInstruments(rcon, ...)

S3 method for class 'redcapApiConnection'
exportInstruments(rcon, ...)

Arguments

rcon A redcapConnection object.

... Arguments to pass to other methods

Value

Returns a data frame with the columns:

instrument_name The REDCap generated instrument name.
instrument_label The user provided instrument label.

exportLogging 39

See Also

exportMetaData(),
importMetaData(),
exportInstruments(),
exportMappings(),
importMappings(),
exportPdf()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

exportInstruments(rcon)

End(Not run)

exportLogging Export Logging Records

Description

These methods enable to user to export the logging (audit trail) of all changes made to a project,
including data exports, data changes, project metadata changes, modification of user rights, etc.

Usage

exportLogging(
rcon,
logtype = character(0),
user = character(0),
record = character(0),
dag = character(0),
beginTime = as.POSIXct(character(0)),
endTime = as.POSIXct(character(0)),
batchInterval = NULL,
...

)

S3 method for class 'redcapApiConnection'
exportLogging(
rcon,
logtype = character(0),

40 exportLogging

user = character(0),
record = character(0),
dag = character(0),
beginTime = as.POSIXct(character(0)),
endTime = as.POSIXct(character(0)),
batchInterval = NULL,
...

)

Arguments

rcon A redcapConnection object.

logtype character(0/1). The log event types to export. When the length is zero, all
event types are exported. Otherwise, it must be one of c("export", "manage",
"user", "record", "record_add", "record_edit", "record_delete", "lock_record",
"page_view")

user character(0/1). Users for whom to return logs. By default logs for all users
are returned.

record character(0/1). Record ID for which logs are to be returned. By default, logs
are returned for all records.

dag character(0/1). Data access group ID for which to return logs. By default,
logs are returned for all data access groups.

beginTime POSIXct(0/1). When given, only logs recorded on or after this time will be
returned. The time specified is rounded to minutes and ignores the timezone.
This can cause issues if the caller and server computers are configured in dif-
ferent timezones. Least surprising behavior is making sure the date specified is
encoded in the timezone of the REDCap server.

endTime POSIXct(0/1). When given, only logs recorded on or before this time will be
returned. If using batchInterval it will only be before this time. See beginTime
for details on time encoding.

batchInterval integerish(1). When provided will batch log pulls to intervals of this many
days. Requires that beginTime is specified.

... Arguments to pass to other methods

Value

Returns a data frame with columns

timestamp The date/time of the logging record.
username The user name of the user that performed the action being logged.
action The classification of action being logged.
details Details of the action being logged.
record The record ID associated with the action being logged. When not related to a record, this will be NA

exportPdf 41

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export all of the logging events
exportLogging(rcon)

Export all of the events for record '2'
exportLogging(rcon,

record = "2")

Export all of the events where a record was deleted
exportLoging(rcon,

logtype = "record_delete")

End(Not run)

exportPdf Export PDF file of Data Collection Instruments

Description

These methods allow the user to download PDF files of data collection instruments. The download
may be with or without collected data; and may return a single record, multiple records, or all
records.

Usage

exportPdf(
rcon,
dir,
filename = "redcap_forms_download",
record = NULL,
events = NULL,
instruments = NULL,
all_records = FALSE,
...

)

S3 method for class 'redcapApiConnection'
exportPdf(
rcon,
dir,
filename = "redcap_forms_download",
record = NULL,

42 exportPdf

events = NULL,
instruments = NULL,
all_records = FALSE,
...

)

Arguments

rcon A redcapConnection object.

dir character(1). The directory into which the file should be saved.

filename character(1). The base of the file name. When record = NULL, it will be
appended with "_blank.pdf". When record has a value, it will be appended
with "_record_[record id].pdf"

record character(1), integerish(1), or NULL. The record id for which forms should
be downloaded.

events character. The events for which forms should be downloaded

instruments character. The instruments for which forms should be downloaded

all_records logical(1). When TRUE forms for all records are downloaded. When TRUE,
this overrides the records argument.

... Arguments to pass to other methods

Details

These methods mimics the behavior of "Download PDF of Instruments" button on the REDCap
user interface. They permit the user to export a PDF file for:

1. A single collection instrument (blank)c

2. All instruments (blank)

3. A single instrument (with data from a single record)c

4. All instruments (with data from a single record)

5. All instruments (with data from all records)

Value

exportPdf invisibly returns the location on the local system to whihc the files is saved.

See Also

exportMetaData(),
importMetaData(),
exportFieldNames(),
exportInstruments(),
exportMappings(),
importMappings()

exportProjectXml 43

exportProjectXml Export Entire Project as REDCap XML File

Description

These methods enable the user to export a project’s settings as an XML file in CDISC ODM format.
This file may be used to transfer the project to another project, REDCap instance, or any other
CDISC ODM compliant database.

Usage

exportProjectXml(
rcon,
file,
return_metadata_only = TRUE,
records = NULL,
fields = NULL,
events = NULL,
survey = FALSE,
dag = FALSE,
export_files = FALSE,
...

)

S3 method for class 'redcapApiConnection'
exportProjectXml(
rcon,
file,
return_metadata_only = TRUE,
records = NULL,
fields = NULL,
events = NULL,
survey = FALSE,
dag = FALSE,
export_files = FALSE,
...

)

Arguments

rcon A redcapConnection object.
file character(1) The file to which the XML export will be saved.
return_metadata_only

logical(1). When TRUE (default) only meta data values are returned. When
FALSE, project records data are also exported.

records character or integerish. A vector of study id’s to be returned. When NULL,
all subjects are returned.

44 exportProjectXml

fields character. Vector of fields to be returned. When NULL, all fields are returned
(unless forms is specified).

events A character. Vector of events to be returned from a longitudinal database.
When NULL, all events are returned.

survey logical(1). When TRUE the survey identifier fields (e.g., redcap_survey_identifier)
or survey timestamp fields (e.g., [form_name]_timestamp) will be included in
the export when surveys are utilized in the project.

dag logical(1). When TRUE the redcap_data_access_group field is exported
when data access groups are utilized in the project.

export_files logical(1). When TRUE will cause the XML returned to include all files up-
loaded for File Upload and Signature fields for all records in the project. Setting
this option to TRUE can make the export very large and may prevent it from
completing if the project contains many files or very large files.

... Arguments to pass to other methods

Details

The entire project (all records, events, arms, instruments, fields, and project attributes) can be down-
loaded as a single XML file, which is in CDISC ODM format (ODM version 1.3.1). This XML file
can be used to create a clone of the project (including its data, optionally) on this REDCap server
or on another REDCap server (it can be uploaded on the Create New Project page). Because it is
in CDISC ODM format, it can also be used to import the project into another ODM-compatible
system.

When the return_metadata_only parameter is set to FALSE, the Data Export user rights will be
applied to any data returned. For example, if the user has ’De-Identified’ or ’Remove All Identifier
Fields’ data export rights, then some data fields might be removed and filtered out of the data set.
To make sure that no data is unnecessarily filtered out of the API request, the user should have ’Full
Data Set’ export rights in the project.

See Also

createRedcapProject()

Examples

Not run:
unlockREDCap(connections = c(rcon = "token_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

xml_file <- tempfile(file.ext = ".xml")
exportProjectXml(rcon,

file = xml_file)

End(Not run)

exportSAS 45

exportSAS Export the REDCap data as a SAS importable set of files.

Description

This creates a csv for each form and a SAS script that will load all the data into SAS.

Usage

exportSAS(rcon, directory = NULL, ...)

Arguments

rcon A redcapConnection object.

directory NULL or character(1). Directory to write files into. Defaults to current work-
ing directory.

... Arguments to pass to other methods

Details

This function is experimental and needs feedback/suggestions to flesh it out fully. If this feature is
important to you, please consider opening an issue on github to suggest improvements.

This function relies on exportBulkRecords to do the bulk of the export before formatting for SAS.
. . . are supplied to exportBulkRecords so full user inversion of control still applies.

Value

A vector of exported data set names.

See Also

exportBulkRecords()

Examples

Not run:
exportSAS(rcon)

End(Not run)

46 exportVersion

exportVersion Export the REDCap Version Number

Description

These methods enable the user to export the REDCap instance version number.

Usage

exportVersion(rcon, ...)

S3 method for class 'redcapApiConnection'
exportVersion(rcon, ...)

Arguments

rcon A redcapConnection object.

... Arguments to pass to other methods

Value

Returns a character value giving the version number.

IF this function is used in a version of REDCap that does not support the method (prior to ver-
sion 6.0.0), the value "5.12.2" will be returned. This is done solely for the convenience of always
returning a value that can be compared against other versions.

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export the version number
exportVersion(rcon)

End(Not run)

Extraction 47

Extraction Extraction and Assignment for redcapFactors

Description

Extract elements and make assignments to redcapFactors

Usage

S3 method for class 'redcapFactor'
x[..., drop = FALSE]

S3 method for class 'redcapFactor'
print(x, ...)

Arguments

x an object of class redcapFactor

... additional arguments to pass to other methods

drop logical. If TRUE, unused levels are dropped.

fieldCastingFunctions Functions for Casting Fields After Export (Post Processing)

Description

The functions provided here allow for recasting fields after records have been exported. They
generally have a similar interface to the casting strategy of exportRecordsTyped(), though they
may not each offer all the same options.

Usage

recastRecords(
data,
rcon,
fields,
cast = list(),
suffix = "",
warn_zero_coded = TRUE

)

castForImport(
data,
rcon,
fields = NULL,

48 fieldCastingFunctions

na = list(),
validation = list(),
cast = list(),
warn_zero_coded = TRUE

)

guessCast(
data,
rcon,
na = isNAorBlank,
validation,
cast,
quiet = FALSE,
threshold = 0.8

)

guessDate(
data,
rcon,
na = isNAorBlank,
validation = valRx("^[0-9]{1,4}-(0?[1-9]|1[012])-(0?[1-9]|[12][0-9]|3[01])$"),
cast = function(x, ...) as.POSIXct(x, format = "%Y-%m-%d"),
quiet = FALSE,
threshold = 0.8

)

mChoiceCast(data, rcon, style = "labelled", drop_fields = TRUE)

Arguments

data data.frame with the data fields to be recoded.

rcon A redcapConnection object.

fields character/logical/integerish. A vector for identifying which fields to re-
code. When logical, the length must match the number of columns in data
(i.e., recycling not permitted). A message is printed if any of the indicated
fields are not a multiple choice field; no action will be taken on such fields. For
this function, yes/no and true/false fields are considered multiple choice fields.
Fields of class mChoice are quietly skipped.

cast A named list of user specified class casting functions. The same named keys
are supported as the na argument. The function will be provided the variables
(x, field_name, coding). The function must return a vector of logical match-
ing the input length. The cast should match the validation, if one is using
raw_cast, then validation=skip_validation is likely the desired intent. See
fieldValidationAndCasting()

suffix character(1). An optional suffix to provide if the recoded variables should be
returned as new columns. For example, if recoding a field forklift_brand and
suffix = "_labeled", the result will have one column with the coded values
(forklift_brand) and one column with the labeled values (forklift_brand_labeled).

fieldCastingFunctions 49

warn_zero_coded

logical(1). Turn on or off warnings about zero coded fields. Default is TRUE.

na A named list of user specified functions to determine if the data is NA. This
is useful when data is loaded that has coding for NA, e.g. -5 is NA. Keys
must correspond to a truncated REDCap field type, i.e. date_, datetime_, date-
time_seconds_, time_mm_ss, time_hh_mm_ss, time, float, number, calc, int,
integer, select, radio, dropdown, yesno, truefalse, checkbox, form_complete,
sql, system. The function will be provided the variables (x, field_name, coding).
The function must return a vector of logicals matching the input. It defaults to
isNAorBlank() for all entries.

validation A named list of user specified validation functions. The same named keys are
supported as the na argument. The function will be provided the variables (x,
field_name, coding). The function must return a vector of logical matching the
input length. Helper functions to construct these are valRx() and valChoice().
Only fields that are not identified as NA will be passed to validation functions.

quiet Print no messages if triggered, Default=FALSE.

threshold numeric(1). The threshold of non-NA data to trigger casting.

style character. One of "labelled" or "coded". Default is "labelled"

drop_fields character or NULL. A vector of field names to remove from the data.

Details

recastRecords is a post-processing function motivated initially by the need to switch between
codes and labels in multiple choice fields. Field types for which no casting function is specified will
be returned with no changes. It will not attempt to validate the content of fields; fields that cannot
be successfully cast will be quietly returned as missing values.

castForImport is written with defaults that will return data in a format ready to be imported to
a project via importRecords. All fields are returned as character vectors. If any values fail to
validation check, are report is returned as an attribute named invalid. This attribute may be re-
trieved using reviewInvalidRecords(). These are then set to NA, which will be imported as blanks
through the API.

guessCast is a helper function to make a guess at casting uncast columns. It will do a type cast if
a validation is met above a threshold ratio of non-NA records. It modifies the existing invalid
attribute to reflect the cast. This attribute may be retrieved using reviewInvalidRecords().
guessDate is a special cast of guessCast that has defaults set for casting a date field.

mChoiceCast is a helper function that adds the Hmisc::mChoice multiple choice class. It adds a
column for a multiple choice checkbox that is cast to the Hmisc::mChoice class. Requires Hmisc
to be loaded.

Zero-Coded Check Fields

A zero-coded check field is a field of the REDCap type checkbox that has a coding definition of
0, [label]. When exported, the field names for these fields is [field_name]___0. As in other
checkbox fields, the raw data output returns binary values where 0 represent an unchecked box and
1 represents a checked box. For zero-coded checkboxes, then, a value of 1 indicates that 0 was
selected.

50 fieldCastingFunctions

This coding rarely presents a problem when casting from raw values (as is done in exportRecordsTyped).
However, casting from coded or labeled values can be problematic. In this case, it becomes inde-
terminate from context if the intent of 0 is ’false’ or the coded value ’0’ (’true’) ...

The situations in which casting may fail to produce the desired results are

Code Label Result
0 anything other than "0" Likely to fail when casting from coded values
0 0 Likely to fail when casting from coded or labeled values

Because of the potential for miscast data, casting functions will issue a warning anytime a zero-
coded check field is encountered. A separate warning is issued when a field is cast from coded or
labeled values.

When casting from coded or labeled values, it is strongly recommended that the function castCheckForImport()
be used. This function permits the user to state explicitly which values should be recognized as
checked, avoiding the ambiguity resulting from the coding.

See Also

Exporting records:
exportRecordsTyped(),
exportReportsTyped(),
fieldValidationAndCasting(),
reviewInvalidRecords()

Other Post Processing Functions:
splitForms(),
widerRepeated()

Vignettes:
vignette("redcapAPI-offline-connection", package = "redcapAPI")
vignette("redcapAPI-casting-data")
vignette("redcapAPI-missing-data-detection")
vignette("redcapAPI-data-validation)

Examples

Not run:
Using recastRecords after export
Recs <-

exportRecordsTyped(rcon) |>
recastRecords(rcon,

fields = "dropdown_test",
cast = list(dropdown = castCode))

Using castForImport
castForImport(Records,

rcon)

fieldChoiceMapping 51

Using castForImport to recast zero-coded checkbox values
castForImport(Records,

rcon,
cast = list(checkbox = castCheckForImport(c("0", "Unchecked"))))

Using guessCast
exportRecordsTyped(rcon,

validation=skip_validation,
cast = raw_cast) |>

guessCast(rcon,
validation=valRx("^[0-9]{1,4}-(0?[1-9]|1[012])-(0?[1-9]|[12][0-9]|3[01])$"),
cast=as.Date,
threshold=0.6)

Using mChoiceCast
exportRecordsTyped(rcon) |>

mChoiceCast(rcon)

End(Not run)

fieldChoiceMapping Split a Field Choice Mapping Into a Two Column Matrix

Description

Uses the string from the select_choices_or_calculations for the meta data to create a matrix
of codes and their mapped labels.

Usage

fieldChoiceMapping(object, field_name, ...)

S3 method for class 'character'
fieldChoiceMapping(object, field_name, ...)

S3 method for class 'redcapApiConnection'
fieldChoiceMapping(object, field_name, ...)

Arguments

object redcapConnection or character(1). When character, is matches the format
of the meta data field choices (i.e. rcon$meta_data()$select_choices_or_calculations).

52 fieldToVar

field_name character(1) gives the field name for which to make the choice mapping.

... Arguments to pass to other methods

Value

Returns a matrix with two columns, choice_value and choice_label

fieldToVar Convert a REDCap Data Field to an R Vector

Description

Converts a field exported from REDCap into a valid R vector

Usage

fieldToVar(
records,
meta_data,
factors = TRUE,
dates = TRUE,
checkboxLabels = FALSE,
labels = TRUE,
handlers = list(),
mChoice = NULL,
...

)

Arguments

records A data frame of records returned by exportRecords or exportReports

meta_data A data frame giving the data dictionary, as returned by exportMetaData

factors Logical, determines if checkbox, radio button, dropdown and yesno variables
are converted to factors

dates Logical, determines if date variables are converted to POSIXct format

checkboxLabels Logical, determines if checkbox variables are labeled as "Checked" or using the
checkbox label. Only applicable when factors = TRUE

labels Logical. Determines if the variable labels are applied to the data frame.

handlers List, Specify type conversion overrides for specific REDCap field types. E.g.,
handlers=list(date_ = as.Date). For datetime specifications the datetime
ordering directive from the tail is dropped. The following field types are sup-
ported: date_, datetime_, datetime_seconds_, time_mm_ss, time, float, num-
ber, calc, int, integer, select, radio, dropdown, yesno, truefalse, checkbox, and
form_complete.

mChoice logical; defaults to TRUE. Convert checkboxes to mChoice if Hmisc is installed.

... additional arguments that are ignored.

fieldValidationAndCasting 53

Details

This function is called internally by exportRecords and exportReports. it is not available to the
user.

fieldValidationAndCasting

Helper functions for exportRecordsTyped Validation and Casting

Description

This set of functions assists in validating that the content of fields coming from REDCap match the
MetaData, allowing for a validation report to provided. The cast helpers allow for transforming the
REDCap data into R data types and allowing the user to customize the end product.

Usage

isNAorBlank(x, ...)

valRx(rx)

valChoice(x, field_name, coding)

valPhone(x, field_name, coding)

valSkip(x, field_name, coding)

na_values(FUN)

castLabel(x, field_name, coding)

castLabelCharacter(x, field_name, coding)

castCode(x, field_name, coding)

castCodeCharacter(x, field_name, coding)

castRaw(x, field_name, coding)

castChecked(x, field_name, coding)

castCheckedCharacter(x, field_name, coding)

castCheckLabel(x, field_name, coding)

castCheckLabelCharacter(x, field_name, coding)

54 fieldValidationAndCasting

castCheckCode(x, field_name, coding)

castCheckCodeCharacter(x, field_name, coding)

castCheckForImport(checked = c("Checked", "1"))

castDpNumeric(dec_symbol = ",")

castDpCharacter(n_dec, dec_symbol = ",")

castTimeHHMM(x, field_name, coding)

castTimeMMSS(x, field_name, coding)

castLogical(x, field_name, coding)

raw_cast

default_cast_no_factor

default_cast_character

skip_validation

Arguments

x character. A vector to check.

... Consumes anything else passed to function. I.e., field_name and coding.

rx character. The regular expression pattern to check.

field_name character(1). Name of the field(s)

coding named character vector. The defined coding from the meta data.

FUN function. A function that takes a character vector.

checked character. Values to recognize as checked in a checkbox field.

dec_symbol character(1). The symbol in the field used to denote a decimal.

n_dec integerish(1). The number of decimal places permitted by the field valida-
tion.

Format

An object of class list of length 21.

An object of class list of length 25.

An object of class list of length 25.

An object of class list of length 21.

fieldValidationAndCasting 55

Details

Functions passed to the na, validation, and cast parameter of exportRecordsTyped() all take
the form of function(x, coding, field_name). na and validation functions are expected to
return a logical vector of the same length as the column processed. Helper routines are provided
here for common cases to construct these functions.

Missing Data Detection:
na_values is a helper function to create a list of functions to test for NA based on field type.
Useful for bulk override of NA detection for a project. The output can be directly passed to the
na parameter of exportRecordsTyped().
Missing data detection is performed ahead of validation. Data that are found to be missing are
excluded from validation reports.
REDCap users may define project-level missing value codes. If such codes are defined, they can
be seen in Project Setup > Additional Customizations > Missing Data Codes. They will also
be displayed in the project’s Codebook. Project-level missing data codes cannot be accessed
via the API, meaning redcapAPI is unable to assist in determining if a project has any. The
most likely symptom of project-level codes is a high frequency of values failing validation (See
vignette("redcapAPI-missing-data-detection")).

Validation Functions:
isNAorBlank returns TRUE/FALSE if field is NA or blank. Helper function for constructing na
overrides in exportRecordsTyped().
valRx constructs a validation function from a regular expression pattern. The function returns a
TRUE/FALSE if the value matches the pattern.
valChoice constructs a validation function from a set of choices defined in the MetaData. The
functions returns a TRUE/FALSE if the value matches one of the choices.
valPhone constructs a validation function for (North American) phone numbers. It removes punc-
tuation and spaces prior to validating with the regular expression.
valSkip is a function that supports skipping the validation for a field type. It returns a TRUE value
for each record, regardless of its value. Validation skipping has occasional utility when importing
certain field types (such as bioportal or sql) where not all of the eventual choices are available
in the project yet.
skip_validation is a list of functions that just returns TRUE for all data passed in.

Casting Functions:
castLabel constructs a casting function for multiple choice variables. The field will be cast to
return the choice label (generally more human readable). castLabelCharacter is an equivalent
casting function that returns a character vector instead of a factor.
castCode constructs a casting function for multiple choice variables. Similar to castLabel, but
the choice value is returned instead. The values are typically more compact and their meaning may
not be obvious. castCodeCharacter is an equivalent casting function that retuns a character
vector instead of a factor.
castRaw constructs a casting function that returns the content from REDCap as it was received.
It is functionally equivalent to identity. For multiple choice variables, the result will be coerced
to numeric, if possible; otherwise, the result is character vector.
castChecked constructs a casting function for checkbox fields. It returns values in the form of
Unchecked/Checked. castCheckedCharacter is an equivalent casting function that returns a
character vector instead of a factor.

56 fieldValidationAndCasting

castCheckLabel and castCheckCode also construct casting functions for checkbox fields. For
both, unchecked variables are cast to an empty string (""). Checked variables are cast to the option
label and option code, respectively. castCheckLabelCharacter and castCheckCodeCharacter
are equivalent casting functions that returns a character vector instead of a factor.
castCheckForImport is a special case function to allow the user to specify exactly which val-
ues are to be considered "Checked". Values that match are returned as 1 and all other values
are returned as 0. This is motivated by the special case where the coding on a checkbox in-
cludes "0, Option". In the resulting field checkbox___0, a coded value of 0 actually implies the
choice was selected. In order to perform an import on such data, it is necessary to cast it using
castCheckForImport(c("0")).
castDpNumeric is a casting function for fields that use the number_ndp_comma field type (where
n is the number of decimal places). This function will convert the values to numeric values for use
in analysis. This is a function that returns the appropriate casting function, thus the appropriate
usage when using the defaults is cast = list(number_1dp_comma = castDpNumeric()) (using
the parentheses).
castDpCharacter is a casting function to return fields that use number_ndp_comma field types to
character strings for import. This is a function that returns the appropriate casting function, thus
the appropriate usage when casting for one decimal place is cast = list(number_1dp_comma =
castDpCharacter(1)).
castTimeHHMM and castTimeMMSS are casting functions to facilitate importing data. They convert
time data into a character format that will pass the API requirements.
castLogical is a casting function that returns a logical vector for common, binary-type re-
sponses. It is well suited to changing true/false, yes/no, and checkbox fields into logical vectors,
as it returns TRUE if the value is one of c("1", "true", "yes") and returns FALSE otherwise.

Casting Lists:
raw_cast overrides all casting if passed as the cast parameter. It is important the the validation
specified matches the chosen cast. For fully raw it should be skip_validation.
default_cast_no_factor is a list of casting functions that matches all of the default casts but
with the exception that any fields that would have been cast to factors will instead be cast to charac-
ters. It is provided for the user that prefers to work absent factors. The list default_cast_character
is equivalent and is provided for those that prefer to describe their casting in terms of what the
result is (and not what it is not).

Value

Validation and casting functions return the objects indicated in the following table:

Function Name Object Type Returned
isNAOrBlank logical
valRx logical
valChoice logical
valPhone logical
valSkip logical
castLabel factor
castLabelCharacter character
castCode factor
castCodeCharacter character

fieldValidationAndCasting 57

castRaw character
castChecked factor
castCheckedCharacter character
castCheckLabel factor
castCheckLabelCharacter character
castCheckCode factor
castCheckCodeCharacter character
castCheckForImport numeric
castDpNumeric numeric
castDpCharacter character
castTimeHHMM character
castTimeMMSS character
castLogical logical

See Also

fieldCastingFunctions(),
exportRecordsTyped(),
exportReportsTyped()

Vignettes:
vignette("redcapAPI-casting-data")
vignette("redcapAPI-missing-data-detection")
vignette("redcapAPI-data-validation)
vignette("redcapAPI-faq)

Examples

Not run:
Make a custom function to give special treatment to a field.
In this function, the field "field_name_to_skip" will
be cast using `castRaw`. All other fields will be cast
using `castCode`
customCastCode <- function(x, field_name, coding){

if (field_name == "field_name_to_skip"){
castRaw(x, field_name, coding)

} else {
castCode(x, field_name, coding)

}
}

End(Not run)

58 fileMethods

fileMethods Export, Import, or Delete Files to a Field in a REDCap Project

Description

These methods enable to the user to export a file stored in a project field, import a file, or delete an
existing file.

Usage

exportFiles(
rcon,
record,
field,
event = NULL,
dir = getwd(),
file_prefix = TRUE,
...

)

importFiles(
rcon,
file,
record,
field,
event,
overwrite = TRUE,
repeat_instance = NULL,
...

)

deleteFiles(rcon, record, field, event, ...)

S3 method for class 'redcapApiConnection'
exportFiles(
rcon,
record,
field,
event = NULL,
dir = getwd(),
file_prefix = TRUE,
repeat_instance = NULL,
...

)

S3 method for class 'redcapApiConnection'
importFiles(

fileMethods 59

rcon,
file,
record,
field,
event = NULL,
overwrite = TRUE,
repeat_instance = NULL,
...

)

S3 method for class 'redcapApiConnection'
deleteFiles(
rcon,
record = NULL,
field = NULL,
event = NULL,
repeat_instance = NULL,
...

)

Arguments

rcon A redcapConnection object.

record character(1) or integerish(1). The record ID in which the desired file is
stored.

field character(1). The field name in which the file is stored.

event character(1) or NULL. The event name for the file. This applies only to longi-
tudinal projects. If the event is not supplied for a longitudinal project, the API
will return an error message

repeat_instance

integerish(1) or NULL. The repeat instance number of the repeating event or
the repeating instrument. When available in your instance of REDCap, and
passed as NULL, the API will assume a value of 1.

file character(1). The file path to the file to be imported.

overwrite logical(1). When FALSE, the function checks if a file already exists for that
record. If a file exists, the function terminates to prevent overwriting. When
TRUE, no additional check is performed.

dir character(1). A directory/folder to which the file will be saved. By default,
the working directory is used.

file_prefix logical(1). Determines if a prefix is appended to the file name. The prefix
takes the form [record_id]-[event_name]-[file_name]. The file name is
always the same name of the file as it exists in REDCap.

... Arguments to pass to other methods

Details

These functions only export, import, or delete a single file.

60 fileMethods

When exporting, the file name cannot be changed; whatever name exists in REDCap is the name
that will be used. The record ID and event name may be appended as a prefix.

Value

exportFiles invisibly returns the file path to which the exported file was saved.

importFiles invisibly returns TRUE when successful, or throws an error if the import failed.

deleteFiles invisible returns TRUE when successful, or throws an error if the deletion failed.

Functions

• exportFiles(): Export a file from a REDCap project.

• importFiles(): Import a file to a REDCap project.

• deleteFiles(): Delete a file from a REDCap project.

See Also

exportFilesMultiple(),
importFileToRecord() (can create a record to receive the file if it does yet exist)

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

save_to_dir <- tempdir()

Export a file
exportFiles(rcon,

record = 1,
field = "file_upload_test",
dir = save_to_dir)

Export a file for a specific event
exportFiles(rcon,

record = 1,
field = "file_upload_test",
event = "event_1_arm_1",
dir = save_to_dir)

Import a file
importFiles(rcon,

file = "file_to_upload.txt"
record = 1,
field = "file_upload_test")

Delete a file
deleteFiles(rcon,

fileRepositoryMethods 61

record = 1,
field = "file_upload_test")

End(Not run)

fileRepositoryMethods Export, Import, or Delete Multiple Files from the File Repository

Description

These methods enable the user to export, import, or delete entire folders of files from the file repos-
itory. These actions may be done recursively to include subfolders as well.

Usage

exportFileRepository(
rcon,
folder_id,
dir = getwd(),
dir_create = FALSE,
recursive = FALSE,
...

)

importFileRepository(rcon, dir, folder_id = numeric(0), ...)

deleteFileRepository(rcon, folder_id, recursive = FALSE, ...)

S3 method for class 'redcapApiConnection'
exportFileRepository(
rcon,
folder_id = numeric(0),
dir = getwd(),
dir_create = FALSE,
recursive = FALSE,
...

)

S3 method for class 'redcapApiConnection'
importFileRepository(
rcon,
dir,
folder_id = numeric(0),
dag_id = numeric(0),
role_id = numeric(0),
recursive = FALSE,

62 fileRepositoryMethods

...
)

S3 method for class 'redcapApiConnection'
deleteFileRepository(
rcon,
folder_id,
recursive = FALSE,
...,
confirm = c("ask", "no", "yes")

)

Arguments

rcon A redcapConnection object.

folder_id integerish(0/1) The folder ID with the files to download. If length 0, defaults
to the top-level directory.

dir character(1). A directory on the local system to which the files are to be
saved. Defaults to the working directory.

dir_create logical(1). When TRUE create the directory dir if it does not already exist.
Defaults to FALSE. If dir does not exist and dir_create = FALSE, an error is
thrown.

dag_id integerish(0/1) The ID of a data access group. When provided, access to the
folder will be restricted to the DAG.

role_id integerish(0/1) The ID of a role. When provided, access to the folder will
be restricted to users with that role.

recursive logical(1). When TRUE, export all subfolders and their files as well.

confirm character. One of c("ask", "no", "yes"). When "ask", user will be prompted
to confirm the deletion. When "no", the function will terminate with no action.
When "yes", the function will proceed without confirmation (useful for auto-
mated processes).

... Arguments to pass to other methods

Details

deleteFileRepository will only delete files and cannot delete folders.

Deleted files will remain in the recycling bin for up to 30 days.

Value

exportFileRepository returns a data frame with the locations to which the files were saved on
the local system. It has the columns:

directory The directory in which the file is saved.
filename The name of the saved file.

fileRepositoryMethods 63

importFileRepository returns a data frame with the locations to which the files were saved on
the local system. It has the columns:

directory The directory in which the file is saved.
filename The name of the saved file.

deleteFileRepository returns a data frame listing the files that were deleted from the file reposi-
tory. It has the columns:

folder_id The REDCap assigned ID number for the folder. This will be NA for files.
doc_id The REDCap assigned ID number for the file.
name The filename of the deleted files.
parent_folder The folder ID of parent folder.

Functions

• exportFileRepository(): Export multiple files from the File Repository.

• importFileRepository(): Import multiple files to the File Repository.

• deleteFileRepository(): Delete multiple files from the File Repository.

See Also

exportFromFileRepository(),
importToFileRepository(),
deleteFromFileRepository(),
exportFileRepositoryListing(),
createFileRepositoryFolder()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

save_location <- tempdir()

Export the top-level file repository folder
exportFileRepository(rcon,

folder_id = numeric(0),
dir = save_location)

64 fileRepositoryPath

Export the entire repository
exportFileRepository(rcon,

folder_id = numeric(0),
dir = save_location,
recursive = TRUE)

Export a file repository folder below the top-level
exportFileRepository(rcon,

folder_id = 12345,
dir = save_location)

Import the files from a folder to the top-level file repository
importFileRepository(rcon,

dir = "path/to/folder")

Import the files from a folder to sub folder of the file repository
importFileRepository(rcon,

dir = "path/to/folder",
folder_id = 12345)

Import the files from a folder and assign to a specific
Data Access Group
importFileRepository(rcon,

dir = "path/to/folder",
dag_id = 789)

Delete files from the top-level folder of the file repository
deleteFileRepository(rcon,

folder_id = numeric(0))

Delete all the file sfrom the file repository
deleteFileRepository(rcon,

folder_id = numeric(0),
recursive = TRUE)

End(Not run)

fileRepositoryPath Reconstruct the file repository path

Description

Reconstruct the file repository path

Usage

fileRepositoryPath(doc_id = numeric(0), folder_id = numeric(0), fileRepo)

filterEmptyRow 65

Arguments

doc_id integerish(0/1). The document ID for which the file path should be returned.
Only one of doc_id or folder_id should be specified.

folder_id integerish(0/1). The folder ID for which the file path should be returned.
Only one of doc_id or folder_id should be specified.

fileRepo data.frame with the file repository listing. Typically provided by rcon$fileRepository()

filterEmptyRow Remove Rows Containing Only Missing Values

Description

Evaluates each row of a data frame for missingness. If all fields (excluding the identifying fields) are
missing, the row is removed from the data. For the purpose of this function, redcap_data_access_group
is considered an identifying field.

Usage

filterEmptyRow(data, rcon)

Arguments

data A data.frame to be filtered.

rcon A redcapConnection object.

See Also

exportRecordsTyped(),
exportReportsTyped()

fromFileRepositoryMethods

Export, Import, and Delete Individual Files from the File Repository

Description

These methods enable the user to export, import, or delete individual files from a REDCap project’s
file repository.

66 fromFileRepositoryMethods

Usage

exportFromFileRepository(rcon, doc_id, dir = getwd(), dir_create = FALSE, ...)

importToFileRepository(rcon, file, folder_id = numeric(0), ...)

deleteFromFileRepository(rcon, doc_id, ...)

S3 method for class 'redcapApiConnection'
exportFromFileRepository(rcon, doc_id, dir = getwd(), dir_create = FALSE, ...)

S3 method for class 'redcapApiConnection'
importToFileRepository(rcon, file, folder_id = numeric(0), ...)

S3 method for class 'redcapApiConnection'
deleteFromFileRepository(rcon, doc_id, ...)

Arguments

rcon A redcapConnection object.
doc_id integerish(1). The document ID to be downloaded.
folder_id integerish(0/1). The ID of the folder into which the file is to be imported. If

length is zero, it is imported to the top-level folder.
file character(1). A file on the local system to be imported to the File Repository.
dir character(1). A directory on the local system to which the file is to be saved.

Defaults to the working directory.
dir_create logical(1). Create the directory dir if it does not already exist. Defaults to

FALSE. If dir does not exist and create = FALSE, an error is thrown.
... Arguments to pass to other methods

Details

When a file is deleted, the file will remain in the Recycle Bin folder for up to 30 days.

Value

exportFromFileRepository, importToFileRepository, and deleteFromFileRepository each
return a data frame with the columns:

directory The directory in which the file is saved.
filename The name of the saved file.

Functions

• exportFromFileRepository(): Export a file from the file repository.
• importToFileRepository(): Import a file to the file repository.
• deleteFromFileRepository(): Delete a file from the file repository.

getProjectIdFields 67

See Also

exportFileRepository(),
importFileRepository(),
deleteFileRepository(),
exportFileRepositoryListing(),
createFileRepositoryFolder()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

write_to_path <- tempdir()

Export a file from the repository
exportFromFileRepository(rcon,

doc_id = 12345,
dir = write_to_path)

Export a file and create the target directory if it does not exist
exportFromFileRepository(rcon,

doc_id = 12345,
dir = write_to_path,
dir_create = TRUE)

Import a file to the top-level directory of the file repository
importFileToRepository(rcon,

file = "file_to_import.txt")

Import a file to a specific directory of the file repository
importFileToRepository(rcon,

file = "file_to_import.txt",
folder_id = 678)

Delete a file from the file repository
deleteFileFromRepository(rcon,

doc_id = 12345)

End(Not run)

getProjectIdFields Return a vector of the Project ID Fields

68 importFileToRecord

Description

Returns a character vector listing the project ID fields. This will be at most a vector of length two.
The first element will be the first field in the meta data. The second, if provided, will be the name
of the secondary unique field specified in the project.

Usage

getProjectIdFields(rcon)

Arguments

rcon A redcapConnection object.

Value

Returns a character vector with the field names that uniquely identify an experimental unit.

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

getProjectIdFields(rcon)

End(Not run)

importFileToRecord Import a File With Option to Create A Record to Receive the File

Description

There are times when the user may desire to create a record and import a file as part of a single
action. For example, a study consent form may have been collected and needs to be stored with
the data of the new study participant. importFileToRecord extends importFiles to allow the
concurrent creation of the record in which the file will be stored.

Usage

importFileToRecord(
rcon,
file,
record = NULL,
field,
event,
overwrite = TRUE,

importFileToRecord 69

repeat_instance = NULL,
...

)

Arguments

rcon A redcapConnection object.

file character(1). The file path to the file to be imported.

record character(1) or integerish(1) or NULL. The record ID in which the desired
file is stored. When NULL, an attempt will be made to create a new record for the
file. See ’Details’

field character(1). The field name in which the file is stored.

event character(1) or NULL. The event name for the file. This applies only to longi-
tudinal projects. If the event is not supplied for a longitudinal project, the API
will return an error message

overwrite logical(1). When FALSE, the function checks if a file already exists for that
record. If a file exists, the function terminates to prevent overwriting. When
TRUE, no additional check is performed.

repeat_instance

integerish(1) or NULL. The repeat instance number of the repeating event or
the repeating instrument. When available in your instance of REDCap, and
passed as NULL, the API will assume a value of 1.

... Arguments to pass to other methods

Details

The behavior of importFileToRecord depends on

1. whether record auto numbering has been enabled in the project,

2. if the record is specified by the user

3. if the record specified by the user exists.

The following table details the actions taken based on these conditions. (force_auto_number is an
argument to importRecords()).

Autonumbering enabled record Record Exists Action
Yes NULL No Create a new record (using force_auto_number = TRUE) and import the file to the new record
Yes Specified Yes Import the file to the existing record
Yes Specified No Create a new record (using force_auto_number = TRUE)and import the file to the new record
No NULL No Error: record must be provided when auto numbering is not enabled
No Specified Yes Import the file to the existing record
No Specified No Create the record (using force_auto_number = FALSE) and import the file to the new record.

See Also

importFiles(),
importRecords()

70 importRecords

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

importFileToRecord(rcon,
file = "file_to_upload.txt"
record = NULL,
field = "file_upload_test")

End(Not run)

importRecords Import Records to a Project

Description

These methods enable the user to import new records or update existing records to a project.

Usage

importRecords(
rcon,
data,
overwriteBehavior = c("normal", "overwrite"),
returnContent = c("count", "ids", "nothing", "auto_ids"),
returnData = FALSE,
logfile = "",
...

)

S3 method for class 'redcapApiConnection'
importRecords(
rcon,
data,
overwriteBehavior = c("normal", "overwrite"),
returnContent = c("count", "ids", "nothing", "auto_ids"),
returnData = FALSE,
logfile = "",
force_auto_number = FALSE,
...,
batch.size = -1

)

importRecords 71

Arguments

rcon A redcapConnection object.

data A data.frame to be imported to the project.
overwriteBehavior

character(1). One of c("normal", "overwrite"). "normal" prevents blank
fields from overwriting populated fields. "overwrite" causes blanks to over-
write data in the database.

returnContent character(1). One of c("count", "ids", "nothing", "auto_ids"). ’count’
returns the number of records imported; ’ids’ returns the record ids that are im-
ported; ’nothing’ returns no message; ’auto_ids’ returns a list of pairs of all
record IDs that were imported. If used when force_auto_number = FALSE, the
value will be changed to 'ids'.

returnData logical(1). When TRUE, prevents the REDCap import and instead returns the
data frame that would have been given for import. This is sometimes helpful if
the API import fails without providing an informative message. The data frame
can be written to a csv and uploaded using the interactive tools to troubleshoot
the problem.

logfile character(1). An optional filepath (preferably .txt) in which to print the log of
errors and warnings about the data. When "", the log is printed to the console.

... Arguments to pass to other methods
force_auto_number

logical(1). If record auto-numbering has been enabled in the project, it may
be desirable to import records where each record’s record name is automatically
determined by REDCap (just as it does in the user interface). When TRUE, the
record names provided in the request will not be used (although they are still
required in order to associate multiple rows of data to an individual record in
the request); instead those records in the request will receive new record names
during the import process. It is recommended that the user use returnContent
= "auto_ids" when force_auto_number = TRUE

batch.size integerish(1). Specifies the number of subjects to be included in each batch
of a batched export or import. Non-positive numbers export/import the entire
operation in a single batch. Batching may be beneficial to prevent tying up
smaller servers. See Details.

Details

importRecords prevents the most common import errors by testing the data before attempting the
import. Namely

1. Check that all variables in data exist in the REDCap data dictionary.

2. Check that the record id variable exists

3. Force the record id variable to the first position in the data frame (with a warning)

4. Remove calculated fields (with a warning)

5. Verify that REDCap date fields are represented in the data frame as either character, POSIXct,
or Date class objects.

72 importRecords

6. Determine if values are within their specified validation limits.

See the documentation for validateImport() for detailed explanations of the validation.

A ’batched’ import is one where the export is performed over a series of API calls rather than one
large call. For large projects on small servers, this may prevent a single user from tying up the
server and forcing others to wait on a larger job.

BioPortal Fields:
Text fields that are validation enabled using the BioPortal Ontology service may be imported by
providing the coded value. Importing the coded value does not, however, guarantee that the la-
beled value will be immediately available. Labels for BioPortal values are cached on the REDCap
server in a process that occurs when viewing data in the user interface. Thus, if the label has not
be previously cached on the server, the code will be used to represent both the code and the label.

Value

importRecords, when returnData = FALSE, returns the content from the API response designated
by the returnContent argument.

importRecords, when returnData = TRUE, returns the data frame that was internally prepared for
import. This data frame has values transformed from R objects to character values the API will
accept.

See Also

exportRecords(),
deleteRecords(),
exportRecordsTyped()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Import records
NewData <- data.frame(record_id = c(1, 2, 3),

age = c(27, 43, 32),
date_of_visit = rep(Sys.Date(), 3))

importRecords(rcon,
data = NewData)

Import records and save validation info to a file
NewData <- data.frame(record_id = c(1, 2, 3),

age = c(27, 43, 32),
date_of_visit = rep(Sys.Date(), 3))

importRecords(rcon,
data = NewData,
logfile = "import-validation-notes.txt")

invalidSummary 73

End(Not run)

invalidSummary Helper functions for formatting validation failure report

Description

exportRecordsTyped() may have an invalid attribute if validations fail. This data has some
routines which help locate the failing records.

Usage

S3 method for class 'invalid'
format(x, ...)

S3 method for class 'invalid'
print(x, ...)

S3 method for class 'invalid'
summary(object, ...)

Arguments

x The invalid class object.

... additional arguments to print

object The invalid class object.

Examples

Not run:
rcon <- redcapConnection(url=[YOUR_REDCAP_URL], token=[API_TOKEN])

rec <- exportRecordsTyped(rcon)

attr(rec, "invalid")

End(Not run)

74 isZeroCodedCheckField

isZeroCodedCheckField Identify Check Fields with a Zero Coded Option

Description

Check fields that have 0 as a coding option can confuse certain data processing steps because it can
be difficult to differentiate if a 0 value represents an unchecked or checked option. Identifying these
fields is important to handling them correctly.

Usage

isZeroCodedCheckField(field_name)

warnOfZeroCodedCheckCasting(field_name, x)

warnZeroCodedFieldPresent(field_names, warn_zero_coded)

Arguments

field_name character(1) The name of a field to be tested.

x atomic object.

field_names character vector of field names.
warn_zero_coded

logical(1). Turn on or off warnings about zero coded fields. Defaults to TRUE.

Value

isZeroCodedCheckField returns a logical(1)

warnOfZeroCodedCheckCasting has no return and issues a warning if the field name appears to be
zero-coded.

warnZeroCodedFieldPresent has no return and issues a warning if any of the fields passed appear
to be zero-coded.

Zero-Coded Check Fields

A zero-coded check field is a field of the REDCap type checkbox that has a coding definition of
0, [label]. When exported, the field names for these fields is [field_name]___0. As in other
checkbox fields, the raw data output returns binary values where 0 represent an unchecked box and
1 represents a checked box. For zero-coded checkboxes, then, a value of 1 indicates that 0 was
selected.

This coding rarely presents a problem when casting from raw values (as is done in exportRecordsTyped).
However, casting from coded or labeled values can be problematic. In this case, it becomes inde-
terminate from context if the intent of 0 is ’false’ or the coded value ’0’ (’true’) ...

The situations in which casting may fail to produce the desired results are

logEvent 75

Code Label Result
0 anything other than "0" Likely to fail when casting from coded values
0 0 Likely to fail when casting from coded or labeled values

Because of the potential for miscast data, casting functions will issue a warning anytime a zero-
coded check field is encountered. A separate warning is issued when a field is cast from coded or
labeled values.

When casting from coded or labeled values, it is strongly recommended that the function castCheckForImport()
be used. This function permits the user to state explicitly which values should be recognized as
checked, avoiding the ambiguity resulting from the coding.

Examples

Not run:
isZeroCodedCheckField("check_field___x")

isZeroCodedCheckField("check_field___0")

x <- factor(c(1, 0, 1, 0, 0),
levels = 0:1)

warnOfZeroCodedCheckCasting(field_name = "check_field___0",
x = x)

warnZeroCodedFieldPresent(c("check_field___x", "check_field___0"), TRUE)

End(Not run)

logEvent Log event

Description

This is one of the more complex integration of services into the ‘redcapAPI“ package. It’s purpose
is to provide the ability for a system administrator (or user) to integrate logging into a report or
application. The ability to inject a logging framework without a developer’s code being altered.

Usage

logEvent(severity, ...)

createSplunkFUN(
token = Sys.getenv("SPLUNK_TOKEN"),
url = Sys.getenv("SPLUNK_URL"),
project = Sys.getenv("SPLUNK_PROJECT"),
allowDebug = FALSE

76 logEvent

)

logWarning(...)

logStop(...)

logMessage(...)

Arguments

severity string One of the following: ’TRACE’, ’DEBUG’, ’INFO’, ’WARN’, or ’ER-
ROR’

... Information to include in the log event. Each argument must have a name.

token string The API_KEY for calling logger.

url string The url of the logging server

project string The project name to appear in the logs

allowDebug logical(1) Should debug mode be allowed when using the default SPLUNK
function. Defaults to FALSE.

Details

To do this the callback function is pulled from the option redcapAPI_logger which defaults to
doing nothing.

When the package starts up, it checks to see if SPLUNK_TOKEN and SPLUNK_URL ENV vari-
ables are set and if so, it automatically redirects the redcapAPI_logger to point at Splunk. It will
also use SPLUNK_PROJECT if defined, otherwise the project will be the directory name that the
code is executing from.

There are also two helper functions logWarning and logStop which will call logging if enabled
first, then warn or stop as requested.

The function createSplunkFUN will create a SPLUNK logger callback function. It will pull ’SPLUNK_TOKEN’,
’SPLUNK_URL’ and ’SPLUNK_PROJECT’ from ENV if the corresponding arguments are not
specified.

Examples

Not run:
options(redcapAPI_logger=function(severity, ...) {cat(severity, ' ', dput(list(...)), '\n')})
logEvent("INFO", "This is a logged event")

End(Not run)

makeApiCall 77

makeApiCall Make REDCap API Calls

Description

Constructs and executes API calls to the REDCap API. These are left deliberately abstract in order
to be flexible enough to support the redcapAPI functions, but also allow users to execute calls for
new REDCap features that are not yet implemented.

Usage

makeApiCall(
rcon,
body = list(),
url = NULL,
success_status_codes = 200L,
redirect = TRUE,
...

)

Arguments

rcon A redcapConnection object.

body list List of parameters to be passed to curl::curl’s body argument

url character(1) A url string to hit. Defaults to rcon$url.
success_status_codes

integerish A vector of success codes to ignore for error handling. Defaults to
c(200L).

redirect logical(1) Is redirection on the request allowed?

... This will capture api_param (if specified) which will modify the body of the
the specified body of the request. It also captures config which will get passed
to curl::handle_setopt.

Details

The intent of this function is to provide an approach to execute calls to the REDCap API that is both
consistent and flexible. Importantly, this provides a framework for making calls to the API using
features that the R package does not yet support (redcapAPI will always lag behind when REDCap
adds new features).

The API call consists of two components: the "body" and the "config." The body of the call con-
tains all of the arguments being passed to the API. When building body components, be sure
to review the documentation. options to the API that require an array need to be built using
vectorToApiBodyList; options that are not an array can be entered directly (see examples).

The config list is a list of parameter overrides that reflect the curl request object. The most com-
monly used elements of this list is options or maybe headers.

78 makeApiCall

Using the settings stored in the redcapConnection object, a response code of 408 (Request Time-
out), 500 (Internal Server Error), 502 (Bad Gateway), 503 (Service Unavailable), or 504 (Gateway
Timeout) will prompt reattempts at calling the API. See redcapConnection() for details. If the
API reaches its attempt limit without resolving to any other code, the last response is returned. If
any other response code is returned at any point in the retry loop, the loop breaks and returns that
response.

Examples

Not run:
unlockREDCap(c(rcon="My Project Name"), "http://apiurlhere", "mykeyringname")

MetaData <-
makeApiCall(rcon = rcon,

body = list(content = "metadata",
format = "csv",
returnFormat = "csv"))

MetaData <- utils::read.csv(text = as.character(MetaData),
stringsAsFactors = FALSE,
na.strings = "")

Call to export Meta Data (Data Dictionary) for specific fields

fields <- vectorToApiBodyList(vector = c("row_purpose",
"prereq_radio"),

parameter_name = "fields")
MetaData <-

makeApiCall(rcon = rcon,
body = c(list(content = "metadata",

format = "csv",
returnFormat = "csv"),

fields))
MetaData <- read.csv(text = as.character(MetaData),

stringsAsFactors = FALSE,
na.strings = "")

Basic call to export records

Records <- makeApiCall(rcon = rcon,
body = list(content = "record",

format = "csv",
returnFormat = "csv",
type = "flat"))

Records <- read.csv(text = as.character(Records),
stringsAsFactors = FALSE,
na.strings = "")

mappingMethods 79

Call to export records for a single form.
Note that even though we are interested in a single form, the
API requires an array, so we use vectorToApiBodyList

export_form <- vectorToApiBodyList("branching_logic",
parameter_name = "forms")

Records <- makeApiCall(rcon = rcon,
body = c(list(content = "record",

format = "csv",
returnFormat = "csv",
type = "flat"),

export_form))
Records <- read.csv(text = as.character(Records),

stringsAsFactors = FALSE,
na.strings = "")

Call to export records with a pipe delimiter.

Records <- makeApiCall(rcon = rcon,
body = list(content = "record",

format = "csv",
returnFormat = "csv",
type = "flat",
csvDelimiter = "|"))

Records <- read.csv(text = as.character(Records),
stringsAsFactors = FALSE,
na.strings = "",
sep = "|")

Call to export records created/modified after 25 Dec 2022 14:00.

Records <- makeApiCall(rcon = rcon,
body = list(content = "record",

format = "csv",
returnFormat = "csv",
type = "flat",
dateRangeBegin = "2022-12-25 14:00:00"))

Records <- read.csv(text = as.character(Records),
stringsAsFactors = FALSE,
na.strings = "")

End(Not run)

mappingMethods Export and Import Instrument-Event Mappings

80 mappingMethods

Description

These methods enable the user to export and add/modify the mappings between instruments and
events. The information provided with the methods corresponds to what is provided in the ’Desig-
nate Instruments for My Events’ page in the user interface.

Usage

exportMappings(rcon, arms, ...)

importMappings(rcon, data, ...)

S3 method for class 'redcapApiConnection'
exportMappings(rcon, arms = NULL, ...)

S3 method for class 'redcapApiConnection'
importMappings(rcon, data, ...)

Arguments

rcon A redcapConnection object.

arms integerish or character. A vector of arm numbers. When given, mappings
are only exported for the given arms.

data data.frame with columns arm_num, unique_event_name, and form. See De-
tails

... Arguments to pass to other methods

Details

These methods are only applicable to longitudinal projects. If the project information reports that
the project is not longitudinal, a data frame with 0 rows is returned without calling the API.

Value

exportMappings returns a data frame with the columns:

arm_num The arm number for the unique event mapped to the instrument.
unique_event_name The unique event name to which the instrument is assigned.
form The REDCap assigned instrument name mapped to the event.

importMappings invisible returns the number of mappings added or edited.

Functions

• exportMappings(): Export instrument-event mappings.

• importMappings(): Import instrument-event mappings to the project.

metaDataMethods 81

See Also

exportFieldNames(),
exportInstruments(),
exportMetaData(),
importMetaData(),
exportPdf()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export all mappings
exportMappings(rcon)

Export mappings for a specific arm
exportMappings(rcon,

arms = 1)

Import mappings
NewMapping <-

data.frame(arm_num = c(1, 1, 2),
unique_event_name = c("event_1_arm_1",

"event_2_arm_1",
"event_1_arm_2"),

form = c("registration",
"follow_up",
"registration"))

importMapping(rcon,
data = NewMapping)

End(Not run)

metaDataMethods Export and Import the Project Meta Data (Data Dictionary)

Description

These methods provide the user access to a REDCap project’s data dictionary. The data dictionary
may be exported or altered via the import.

82 metaDataMethods

Usage

exportMetaData(rcon, ...)

importMetaData(rcon, data, ...)

S3 method for class 'redcapApiConnection'
exportMetaData(rcon, fields = character(0), forms = character(0), ...)

S3 method for class 'redcapApiConnection'
importMetaData(
rcon,
data,
...,
field_types = REDCAP_METADATA_FIELDTYPE,
validation_types = REDCAP_METADATA_VALIDATION_TYPE

)

Arguments

rcon A redcapConnection object.

fields character vector of field names for which the metadata is to be retrieved.

forms character vector of forms for which the metadata is to be retrieved. If a form
name is given, all of the fields on that form will be returned, regardless of
whether it is included in fields or not. Form names should match those in
the second column of the data dictionary, and not the display names shown on
the web interface.

data data.frame with the Meta Data to import.

... Arguments to pass to other methods

field_types character giving the acceptable field types when validating the field_type
column. This

validation_types

character giving the acceptable values for the text_validation_or_show_slider_number
column.

Details

When importing meta data, the following conditions apply:

Field names may start with a letter, have any number of letters, numbers, or underscores, and end
in either a letter or a number. All letters must be lowercase (the function will coerce them to lower
before checking for duplicate field names).

Form names may start with a letter, have any number of letters, numbers, or underscores, and end
in either a letter or a number. All letters must be lowercase (the function will coerce them to lower
before checking for duplicate field names).

Field types may be one of REDCAP_METADATA_FIELDTYPE. In the event that a new field type is
added to REDCap and redcapAPI is not yet updated, the user may add additional values via
c(REDCAP_METADATA_FIELDTYPE, "new_type").

metaDataMethods 83

Validation types may be one of REDCAP_METADATA_VALIDATION_TYPE or NA. As with field types,
additional values can be appended if necessary. Only fields that have a field type of "text" or "slider"
should have a validation type. "slider" fields should be either NA (do not display the selected number)
or "number".

For multiple choice fields, the selection choices take the format of "code1, label1 | ... | coden,
labeln". For slider fields, the format is "left_value | mid_value | right_value". Any of those
values may be an empty character, but the two pipes are required, nonetheless.

For calculated fields, the values in "select_choices_or_calculations" are currently unvali-
dated.

All of the values between brackets in the branching logic must be either a field name or an existing
unique event name (such as "event_1_arm_1")

Value

exportMetaData returns a data frame. Not all 18 (or more) columns are documented here, but
the most commonly used within redcapAPI are (these may appear in a different order in the data
frame):

field_name The name of a field in the project.
filed_label The human-readable form of the field name.
form_name The name of the form on which the field is found.
field_type One of two fields used to determine how a field is transformed into an R object.
select_choices_or_calculations The second field used to determine how a field is translated into an R object.
text_validation_type_or_show_slider_number Describes how fields are validated. For slider fields, it gives the limits and center point to display.
field_annotation Contains annotations such as units of measures. Also contains action tags.

importMetaData invisibly returns the number of fields that were imported.

Functions

• exportMetaData(): Export the Meta Data (Data Dictionary) of a REDCap Project

• importMetaData(): Import New Meta Data (Data Dictionary) Definitions

See Also

exportFieldNames(),
exportInstruments(),
exportMappings(),
importMappings(),
exportPdf()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",

84 missingSummary

keyring = "API_KEYs",
envir = globalenv())

Export the MetaData from REDCap
exportMetaData(rcon)

Export MetaData for select fields only (returns two rows)
exportMetaData(rcon,

fields = c("dropdown_test", "radio_test"))

Export MetaData for select forms
exportMetaData(rcon,

forms = c("first_form", "second_form"))

MetaData my be exported for a combination of fields and forms
exportMetaData(rcon,

fields = c("dropdown_test", "radio_test"),
forms = c("first_form", "second_form"))

Alter and import new MetaData (change the record ID label)
Meta <- exportMetaData(rcon)

Meta$field_label[1] <- "A better description of the Record ID"
importMetaData(rcon,

data = Meta)

End(Not run)

missingSummary Report of Missing Values

Description

Returns a data frame of subject events with missing values.

Usage

missingSummary(rcon, excludeMissingForms = TRUE, ...)

S3 method for class 'redcapApiConnection'
missingSummary(rcon, excludeMissingForms = TRUE, ...)

missingSummary_offline(records, meta_data, excludeMissingForms = TRUE)

Arguments

rcon A redcapConnection object.

missingSummary 85

excludeMissingForms

logical(1) When TRUE, forms where all fields are missing are assumed to be
deliberately missing data and are excluded from the count of missing values.
An example when this is desirable is if a patient did not experience an adverse
event; the adverse event form would contain no data and the empty fields should
not be considered missing data.

... additional arguments passed to inner call of exportRecordsTyped.

records character(1) A filename pointing to the raw records download from REDCap.

meta_data character(1) A filename pointing to the data dictionary download from RED-
Cap.

Details

The intention of this function is to generate a list of subject events that are missing and could
potentially be values that should have been entered.

The branching logic from the data dictionary is parsed and translated into and R expression. When
a field with branching logic passes the logical statement, it is evaluated with is.na, otherwise, it is
set to FALSE (non-missing, because there was never an opportunity to provide a value). The utility
of this function is limited to simple logic where all of the data exist within the same row. Any
complex statements using events will result in a failure.

Optionally, forms that are entirely missing can be determined to be non-missing. This is applicable
when, for instance, a patient did not have an adverse event. In this case, a form dedicated to adverse
events would contain meaningless missing values and could be excluded from the report.

See Also

vignette("redcapAPI-offline-connection", package = "redcapAPI")

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Generate a summary of missing values for the entire project
missingSummary(rcon)

Generate a summary of missing values for a single form
missingSummary(rcon,

exportRecordsArgs = list(forms = "target_form"))

End(Not run)

86 parseBranchingLogic

parseBranchingLogic Parse Branching Logic

Description

Branching logic from the REDCap Data Dictionary is parsed into R Code and returned as expres-
sions. These can be evaluated if desired and allow the user to determine if missing values are truly
missing or not required because the branching logic prevented the variable from being presented.

Usage

parseBranchingLogic(l)

Arguments

l A vector of REDCap branching logic statements. These are usually passed as
the vector meta_data$branching_logic.

Details

For a study, I was asked to identify which subjects had missing values so that remaining data could
be collected. The initial pass of is.na produced a lot of subjects missing values where there was no
need to collect data because they did not qualify for some variables in the branching logic. Parsing
the logic allowed me to determine which values we expected to be missing and narrow the search
to just those subjects with legitimately missing values.

The utility of this function is limited to simple logic where all of the data exist within the same row.
Any complex statements using events will result in a failure.

Value

Returns a list of unevaluated expressions.

See Also

missingSummary()

Examples

Not run:
parseBranchingLogic("[age] > 30")
parseBranchingLogic("[dropdown_test] = 'd'")
parseBranchingLogic(c("[age] > 30",

"[dropdown_test] = 'd'"))

End(Not run)

prepUserImportData 87

prepUserImportData Prepare User Data for Import

Description

Prepares a data frame for import via the API. Allows for data to be passed in either the raw format
or the labeled data received from exportUsers.

Usage

prepUserImportData(data, rcon, consolidate = TRUE, user_role = FALSE)

Arguments

data data.frame with the structure of redcapAPI:::REDCAP_USER_STRUCTURE. It
may also have additional columns for the form and export access of each of the
instruments.

rcon A redcapConnection object.

consolidate logical(1) If TRUE, the form and data export access values will be read from
the expanded columns. Otherwise, the consolidated values (as provided by the
API export) are utilized.

user_role logical(1) If TRUE, the code will treat the data as if it is being prepared for
importing User Roles.

Value

Returns a data.frame with user settings that will be accepted by the API for import.

See Also

importUsers(),
importUserRoles()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Prep user data
NewData <- data.frame(username = "target_user",

design = 1,
api_export = "Access",
api_import = "No Access",
surveys_enabled = 0)

88 preserveProject

prepUserImportData(data = NewData,
rcon = rcon)

Prep user role data
NewData <- data.frame(unique_role_name = "target_user",

design = 1,
api_export = "Access",
api_import = "No Access",
surveys_enabled = 0)

prepUserImportData(data = NewData,
rcon = rcon)

End(Not run)

preserveProject Preserve Project Data Locally

Description

The methods enable the user to export a project data and meta data into local memory. For conve-
nience, options are provided to save the objects to files on the local machine. Files may be saved as
either .Rdata files or .csv files.

Usage

preserveProject(rcon, ..., save_as = NULL, dir, dir_create = TRUE)

S3 method for class 'redcapApiConnection'
preserveProject(rcon, ..., save_as = NULL, dir, dir_create = TRUE)

readPreservedProject(x, ...)

S3 method for class 'list'
readPreservedProject(x, ..., version = NULL, url = NULL)

S3 method for class 'character'
readPreservedProject(x, ..., version = NULL, url = NULL)

Arguments

rcon A redcapConnection object.

... arguments to pass to other methods

save_as character(1) or NULL. When "Rdata", the data objects will be saved to an
.Rdata file. When "csv", the data objects will be written to files at dir. Any
other character value will prompt an error.

dir character(1). The path to a directory in which the data objects (or files) will
be saved. Must be provided if save_as is not NULL.

preserveProject 89

dir_create logical(1). When TRUE, an attempt will be made to create the directory at dir
if it does not already exist. When FALSE, and the directory does not exist, an
error is returned.

x list or character. If a list, the list returned (or saved) by preserveProject.
If character, the directory to which the CSV files are saved by preserveProject.

version character(1) giving the instance’s REDCap version number.

url character(1). URL for the user’s REDCap database API.

Details

The options to save files to local files provide the user a convenient tool set for providing other users
with the ability to work with data offline. See the examples for suggestions on how to read data into
an offlineConnection.

When saving to an .Rdata file, the data are saved in a list named RedcapList. The list has the same
elements in the list returned when save_as = NULL and is suitable for creating an offlineConnection.
The file name it is saved to follows the pattern "project-[project_id]-RedcapList.Rdata".

When saving to a .csv file, each element of the data is saved to a file with the pattern "project-[project_id]-[data
type].csv".

readPreservedProject is a function of convenience for users who need to work using offline
connections. If given a list, it must be in the format returned by preserveProject. If given a
character, it must be the directory in which the CSV files were saved by preserveProject. If
any of the file names have been changed, readPreservedProject will fail to execute. Refer to
vignette("redcapAPI-offline-connection", package = "redcapAPI") for more details.

Value

‘preserveProject:
Whensave_as = NULL‘, returns a list is returned with the elements

• project_information

• arms

• events

• meta_data

• mappings

• repeating_instruments

• users

• user_roles

• user_role_assignments

• dags

• dag_assignments

• records

When save_as is not NULL, the logical TRUE is invisibly returned to provide an indication that the
save operation(s) are complete.

readPreservedProject:
Returns a redcapOfflineConnection object.

90 preserveProject

See Also

vignette("redcapAPI-offline-connection", package = "redcapAPI"),
offlineConnection()

purgeProject(),
restoreProject()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Save a project to the current session

projectData <- preserveProject(rcon)

Save a project to an Rdata file

save_to_dir <- tempdir()
preserveProject(rcon,

save_as = "Rdata",
dir = save_to_dir)

Create an offline connection from the Rdata file
load(file.path(save_to_dir,

"project-[project_id]-RedcapList.Rdata"))

off_conn <- readPreservedProject(RedcapList,
version = "[redcap_api_version]",
url = "[redcap_api_url]")

Save a project to CSV files

save_to_dir <- tempdir()
preserveProject(rcon,

save_as = "csv",
dir = save_to_dir)

Create an offline connection from the CSV files

off_con <-
readPreservedProject(save_to_dir,

version = "[redcap_api_version]",
url = "[redcap_api_url]")

End(Not run)

projectInformationMethods 91

projectInformationMethods

Export and Import Project Settings

Description

These methods enable the user to export or update project level settings, such as the project title, if
it is longitudinal, if surveys are enabled, etc.

Usage

exportProjectInformation(rcon, ...)

importProjectInformation(rcon, data, ...)

S3 method for class 'redcapApiConnection'
exportProjectInformation(rcon, ...)

S3 method for class 'redcapApiConnection'
importProjectInformation(rcon, data, ...)

Arguments

rcon A redcapConnection object.

data data.frame with only one row and any subset of allowable fields to be updated.
See Details.

... Arguments to pass to other methods

Details

When importing, fields that are not editable will be quietly removed prior to import. This allows
the user to use the result of exportProjectInformation as a template for the import.

For any values that are boolean, they should be represented as either a ’0’ (no/false) or ’1’ (yes/true).

It is not required for data to have all of the fields, but only the fields the user wishes to update (see
examples).

The following project attributes can be updated:

• project_title

• project_language

• purpose

• purpose_other

• project_notes

92 projectInformationMethods

• custom_record_label

• secondary_unique_field

• is_longitudinal

• surveys_enabled

• scheduling_enabled

• record_autonumbering_enabled

• randomization_enabled

• project_irb_number

• project_grant_number

• project_pi_firstname

• project_pi_lastname

• display_today_now_button

• bypass_branching_erase_field_prompt

Value

exportProjectInformation returns a data frame with the columns

project_id The internal ID number assigned to the project.
project_title The project title given to the project.
creation_time The date/time the project was created.
production_time The date/time the project was moved into production status.
in_production Boolean value indicating if the project is in production status.
project_language The language associated with the project.
purpose An integerish value identifying the purpose of the project. 0 = "Practice/Just for fun", 1 = "Other", 2 = "Research", 3 = "Quality Improvement", 4 = "Operational Support".
purpose_other The user supplied character value given when the project purpose is ’Other’.
project_notes The user supplied notes about the project.
custom_record_label The user provided custom label for the record identifier field.
secondary_unique_field The name of the secondary unique field, if this has been configured.
is_longitudinal Boolean value indicating if the project is a longitudinal project.
has_repeating_instruments_or_events Boolean value indicating if the repeating instruments or events module has been enabled.
surveys_enabled Boolean value indicating if the surveys module has been enabled.
scheduling_enabled Boolean value indicating if the scheduling module has been enabled.
record_autonumbering_enabled Boolean value indicating if the record autonumbering feature has been enabled.
randomization_enabled Boolean value indicating if the randomization module has been enabled.
ddp_enabled Boolean value indicating if dynamic data pull has been enabled for a project (may only be enabled by a REDCap administrator).
project_irb_number The user provided IRB number for the project.
project_grant_number The user provided grant number for the project.
project_pi_firstname The first name of the principal investigator.
project_pi_lastname The last name of the principal investigator.
display_today_now_button Boolean value indicating if the today/now button is displayed for date/time fields in the UI.
missing_data_codes Character value giving the missing data codes enabled for the project. They are given in the format [code],[label], with each coding separated by a pipe character.
external_modules Character value listing the external modules enabled.
bypass_branching_erase_field_prompt Boolean value indicating if the box for "Prevent branching logic from hiding fields that have values" has been checked under "Additional Customizations."

purgeRestoreProject 93

importProjectInformation invisibly returns the number of fields updated.

Functions

• exportProjectInformation(): Export project settings.

• importProjectInformation(): Import project settings.

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export Project Information
exportProjectInformation(rcon)

Import a new project title
NewData <- data.frame(project_title = "New Title Name")
importProjectInformation(rcon,

data = NewData)

Enable surveys in the project
NewData <- data.frame(surveys_enabled = 1)
importProjectInformation(rcon,

data = NewData)

Change multiple fields in the project settings
NewData <- data.frame(project_irb_number = "IRB-12345",

display_today_now_button = 0,
scheduling_enabled = 1)

importProjectInformation(rcon,
data = NewData)

End(Not run)

purgeRestoreProject Purge and Restore Project Data

Description

These functions are primarily intended to assist with testing features of redcapAPI. Purging and
restoring project data permits us to perform tests on different project structures without having to
manage multiple projects or API tokens.

94 purgeRestoreProject

When purging project data, many of these actions may only be performed with a project in devel-
opment status, as they are potentially destructive and may result in data loss. It is a good practice to
back up your data and project structure before purging a project.

Usage

purgeProject(rcon, ...)

S3 method for class 'redcapApiConnection'
purgeProject(
rcon,
arms = FALSE,
events = FALSE,
users = FALSE,
user_roles = FALSE,
dags = FALSE,
records = FALSE,
purge_all = FALSE,
flush = TRUE,
...

)

restoreProject(object, ...)

S3 method for class 'redcapApiConnection'
restoreProject(
object,
project_information = NULL,
arms = NULL,
events = NULL,
meta_data = NULL,
mappings = NULL,
repeating_instruments = NULL,
users = NULL,
user_roles = NULL,
user_role_assignments = NULL,
dags = NULL,
dag_assignments = NULL,
records = NULL,
flush = TRUE,
...

)

S3 method for class 'list'
restoreProject(object, ..., rcon)

Arguments

... Arguments to pass to other methods

purgeRestoreProject 95

arms Either logical(1) indicating if arms data should be purged from the project; or
a data.frame for restoring arms data via importArms.

events Either logical(1) indicating if events data should be purged from the project;
or a data.frame for restoring events data via importEvents

users Either logical(1) indicating if users data should be purged from the project;
or a data.frame for restoring users data via importUsers. NOT YET IMPLE-
MENTED

user_roles Either logical(1) indicating if user roles data should be purged from the project;
or a data.frame for restoring user roles data via importUserRoles. NOT YET
IMPLEMENTED

dags Either logical(1) indicating if DAG data should be purged from the project;
or a data.frame for restoring DAGs data via importDags. NOT YET IMPLE-
MENTED

records Either logical(1) indicating if records data should be purged from the project;
or a data.frame for restoring records data via importRecords

purge_all logical(1). A shortcut option to purge all data elements from a project.

flush logical(1). When TRUE, all caches in the connection object will be flushed
after completing the operation. This is highly recommended.

object, rcon A redcapConnection object. Except in restoreProject.list, where object
is a list of data frames to use in restoring the project.

project_information

data.frame for restoring data. Provides the project settings to load via importProjectInformation.

meta_data A data.frame for restoring metadata data via importMetaData. The API does
not support deleting metadata, but an import replaces the existing metadata.

mappings A data.frame for restoring instrument-event mappings via importMappings.
The API does not support deleting mappings, but an import replaces the existing
mappings.

repeating_instruments

A data.frame for restoring repeating instruments configuration via importRepeatingInstrumentsEvents().
The API does not support deleting repeating instruments, but an import replaces
the existing instruments. NOT YET IMPLEMENTED

user_role_assignments

A data.frame for restoring user-role assignments via importUserRoleAssignments.
The API does not support deleting assignments, but an import replaces the ex-
isting assignments. NOT YET IMPLEMENTED.

dag_assignments

A data.frame for restoring DAG assignments via importDagAssignments.
The API does not support deleting assignments, but an import replaces the ex-
isting assignments. NOT YET IMPLEMENTED.

Details

When restoring a project, all arguments are optional. Any argument that is NULL will result in no
import being made. The order of reconstructing the project is (purging data occurs in the reverse
order):

96 recodeCheck

1. Update project information

2. Import Arms Data

3. Import Events Data

4. Import Meta Data

5. Import Mappings

6. Import Repeating Instruments

7. Import Users

8. Import User Roles

9. Import User-Role Assignments

10. Import Data Access Groups

11. Import Data Access Group Assignments

12. Import Records

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Preserve a project
preserveProject(rcon)

Purge a project
purgeProject(rcon,

purge_all = TRUE)

Restore a project
restoreProject(rcon)

End(Not run)

recodeCheck Change labeling of checkbox variables

Description

Rewrites the labeling of checkbox variables from Checked/Unchecked to Yes/No (or some other
user specified labeling).

reconstituteFileFromExport 97

Usage

recodeCheck(
df,
vars,
old = c("Unchecked", "Checked"),
new = c("No", "Yes"),
reverse = FALSE

)

Arguments

df A data frame, presumably retrieved from REDCap, though not a strict require-
ment.

vars Optional character vector of variables to convert. If left missing, all of the vari-
ables in df that are identified as checkbox variables are relabeled. See ’Details’
for more about identifying checkbox variables.

old A character vector to be passed to factor. This indicates the levels to be re-
placed and their order.

new A character vector of labels to replace the values in levels. The first value
becomes the reference value.

reverse For convenience, if the user would prefer to reverse the order of the elements in
levels and labels, simply set this to TRUE.

Details

checkbox variables are not identified using the metadata from the REDCap database. Instead,
variables are scanned, and those variables in which every value is in levels are assumed to be
checkbox variables.

Realistically, this could be used to relabel any set of factors with identical labels, regardless of the
data source. The number of labels is not limited, but levels and labels should have the same
length.

The actual code to perform this is not particularly difficult (df[checkbox] <- lapply(df[checkbox],
factor, levels=levels, labels=labels)), but checkbox variables are common enough in RED-
Cap (and the Checked/Unchecked scheme so unpalatable) that a quick way to replace the labels was
highly desirable

reconstituteFileFromExport

Save a File to a Local Directory from a Response

Description

Converts the file from a response object and saves it to the local file directory.

98 reconstituteFileFromExport

Usage

reconstituteFileFromExport(
response,
dir,
dir_create = FALSE,
file_prefix = "",
filename = character(0)

)

Arguments

response An object of class response.

dir character(1) A directory on the local file system into which the file will be
saved.

dir_create logical(1) If TRUE and the directory does not exist, it will be created. De-
faults to FALSE. If dir does not exist and create = FALSE, an error is thrown.

file_prefix character(1) An optional prefix to prepend to the file name. This may be
desirable to explicitly associate files with a record and/or event.

filename character(0/1) An optional filename. This is used in the case where a file-
name is being provided. It this has length 0, the filename will be extracted from
the API response.

See Also

exportFiles(),
exportFromFileRepository(),
exportFileRepository(),
exportPdf()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

response <- makeApiCall(rcon,
body = list(content = 'file',
action = 'export',
record = '1',
field = 'file_upload_test',
event = 'event_1_arm_1'))

reconstituteFileFromExport(response,
dir = tempdir())

End(Not run)

recordsManagementMethods 99

recordsManagementMethods

Export Next Record Name or Rename a Record

Description

These methods enable the user to get the next record name (when auto numbering is enabled) or
rename and existing record.

Usage

exportNextRecordName(rcon, ...)

renameRecord(rcon, record_name, new_record_name, arm = NULL, ...)

S3 method for class 'redcapApiConnection'
exportNextRecordName(rcon, ...)

S3 method for class 'redcapApiConnection'
renameRecord(rcon, record_name, new_record_name, arm = NULL, ...)

Arguments

rcon A redcapConnection object.

record_name character or integerish. The name of an existing record in the project.
new_record_name

character or integerish. The new name to give to the record. Must have the
same length as record_name.

arm character or NULL, an optional arm number. If NULL, then all records with same
name across all arms on which it exists (if longitudinal with multiple arms) will
be renamed to new record name, otherwise it will rename the record only in the
specified arm. When not NULL, it must have the same length as record_name.

... Arguments to pass to other methods

Value

exportNextRecordName returns an integerish value. The value is determined by looking up the
highest record ID number in the project and incrementing it by 1.

renameRecord invisibly returns a logical vector that indicates if the operation was successful. Oth-
erwise, an error is thrown.

Functions

• exportNextRecordName(): Get the ID number for the next record to be created.

• renameRecord(): Rename an existing record.

100 recordsMethods

See Also

exportRecords(),
exportReports(),
importRecords(),
deleteRecords(),
exportRecordsTyped(),
exportReportsTyped()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Get the next record name
exportNextRecordName(rcon)

Rename an existing record
renameRecord(rcon,

record_name = "1",
new_record_name = "42")

End(Not run)

recordsMethods Export Records and Reports

Description

These methods enable the user to export records and reports from a project.

Usage

exportRecords(
rcon,
factors = TRUE,
fields = NULL,
forms = NULL,
records = NULL,
events = NULL,
labels = TRUE,
dates = TRUE,
drop = NULL,
survey = TRUE,
dag = TRUE,

recordsMethods 101

checkboxLabels = FALSE,
colClasses = character(0),
...

)

exportRecords_offline(
dataFile,
metaDataFile,
factors = TRUE,
fields = NULL,
forms = NULL,
labels = TRUE,
dates = TRUE,
checkboxLabels = FALSE,
colClasses = NA,
...,
meta_data

)

exportReports(
rcon,
report_id,
factors = TRUE,
labels = TRUE,
dates = TRUE,
drop = NULL,
checkboxLabels = FALSE,
...

)

S3 method for class 'redcapApiConnection'
exportRecords(
rcon,
factors = TRUE,
fields = NULL,
forms = NULL,
records = NULL,
events = NULL,
labels = TRUE,
dates = TRUE,
drop = NULL,
survey = TRUE,
dag = TRUE,
checkboxLabels = FALSE,
colClasses = character(0),
...,
batch.size = -1,
form_complete_auto = TRUE

102 recordsMethods

)

S3 method for class 'redcapApiConnection'
exportReports(
rcon,
report_id,
factors = TRUE,
labels = TRUE,
dates = TRUE,
drop = NULL,
checkboxLabels = FALSE,
...

)

Arguments

rcon A redcapConnection object.

report_id integerish(1). Gives the report id of the desired report. This is located on the
Report Builder page of the user interface.

factors logical(1). When TRUE, multiple choice fields will be returned as factors.
Otherwise, they are returned as character values. See ’Exporting Records’ for
more on how this interacts with the checkboxLabels argument.

fields character. Fields to be returned. When NULL, all fields are returned.

forms character. Forms to be returned. When NULL, all forms are returned.

records character or integerish. Record ID’s to be returned. When NULL, all records
are returned.

events character. Events to be returned from a longitudinal database. When NULL, all
events are returned.

labels logical(1). When TRUE, field labels are attached to each column as an at-
tribute.

dates logical(1). When TRUE, date variables are converted to POSIXct objects.

drop character. An optional vector of REDCap field names to remove from the
dataset. Ignored when NULL. Any fields in this argument that do not exist in the
project will be ignored.

survey logical(1). specifies whether or not to export the survey identifier field (redcap_survey_identifier)
or survey timestamp fields ([form_name]_timestamp) when surveys are uti-
lized in the project.

dag logical(1). When TRUE, the system field redcap_data_access_group is in-
cluded in the export. This option is only viable if the user whose token is being
used to make the API request is not in a data access group. If the user is in a
group, then this flag will revert to FALSE.

checkboxLabels logical(1). When FALSE labels are applied as "Unchecked"/"Checked". When
TRUE, they are applied as ""/[field_label] where [field_label] is the label
assigned to the level in the data dictionary.

recordsMethods 103

form_complete_auto

logical(1). When TRUE (default), the [form]_complete fields for any form
from which at least one variable is requested will automatically be retrieved.
When FALSE, these fields must be explicitly requested.

colClasses Named character vector. Column classes passed to utils::read.csv() calls.
Useful to force the interpretation of a column in a specific type and avoid an
unexpected recast.

batch.size integerish(1). Specifies the number of subjects to be included in each batch
of a batched export or import. Non-positive numbers export/import the entire
operation in a single batch. Batching may be beneficial to prevent tying up
smaller servers. See Details.

dataFile character(1). Gives the location of the dataset downloaded from REDCap.
This should be the raw (unlabeled) data set.

metaDataFile character(1). Gives the location of the data dictionary downloaded from
REDCap.

... Arguments to pass to other methods

meta_data Deprecated version of metaDataFile.

Details

It is unnecessary to include ‘"redcap_event_name"“ in the fields argument. This field is automati-
cally exported for any longitudinal database. If the user does include it in the fields argument, it is
removed quietly in the parameter checks.

There are four ways the data from checkbox variables may be represented depending on the values
of factors and checkboxLabels. The most common are the first and third rows of the table below.
When checkboxLabels = TRUE, either the coded value or the labeled value is returned if the box is
checked, or an empty string if it is not.

factors checkboxLabels Output
FALSE FALSE 0 / 1
FALSE TRUE "" / code
TRUE FALSE Unchecked / Checked
TRUE TRUE "" / label

The ’offline’ version of exportReports operates on the raw (unlabeled) data file downloaded from
REDCap along with the data dictionary. This is made available for instances where the API cannot
be accessed for some reason (such as waiting for API approval from the REDCap administrator).

A ’batched’ export (or import) is one where the export is performed over a series of API calls rather
than one large call. For large projects on small servers, this may prevent a single user from tying up
the server and forcing others to wait on a larger job. The batched export is performed by first calling
the API to export the record identifier field (the first field in the meta data). The unique ID’s are
then assigned a batch number with no more than batch.size ID’s in any single batch. The batches
are exported from the API and stacked together.

In longitudinal projects, batch.size may not necessarily be the number of records exported in
each batch. If batch.size is ten and there are four records per patient, each batch will consist

104 recordsMethods

of 40 records. Thus, if the user is concerned about tying up the server with a large, longitudinal
project, it would be prudent to use a smaller batch size.

Value

exportRecords returns a data frame with the project data. The data will be formatted consistent
with the meta data and the arguments provided by the user.

exportReports returns a data frame with the data from the requested report. The data will be
formatted consisted with the meta data and the arguments provided by the user.

Functions

• exportRecords(): Export records from a project.

• exportRecords_offline(): Format records from REDCap data file exports.

• exportReports(): Export data via a report.

See Also

exportRecordsTyped(),
exportReportsTyped(),
importRecords(),
deleteRecords(),
exportNextRecordName(),
renameRecord()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export records
exportRecords(rcon)

Export records in batches of one hundred IDs
exportRecords(rcon,

batch.size = 100)

Export records without factors
exportRecords(rcon,

factors = FALSE)

Export a report
exportReports(rcon,

report_id = 12345)

Export raw data

recordsTypedMethods 105

exportRecordsTyped(rcon,
validation = skip_validation,
cast = raw_cast)

End(Not run)

recordsTypedMethods Export Records or Reports From a Project

Description

These methods enable the user to export records from a database or from a report. These methods
have more control for casting fields to R objects than exportRecords.

Usage

exportRecordsTyped(
rcon,
fields = NULL,
drop_fields = NULL,
forms = NULL,
records = NULL,
events = NULL,
...

)

exportReportsTyped(rcon, report_id, ...)

S3 method for class 'redcapApiConnection'
exportRecordsTyped(
rcon,
fields = NULL,
drop_fields = NULL,
forms = NULL,
records = NULL,
events = NULL,
survey = TRUE,
dag = FALSE,
date_begin = NULL,
date_end = NULL,
na = list(),
validation = list(),
cast = list(),
assignment = list(label = stripHTMLandUnicode, units = unitsFieldAnnotation),
filter_empty_rows = TRUE,

106 recordsTypedMethods

warn_zero_coded = TRUE,
...,
csv_delimiter = ",",
batch_size = NULL

)

S3 method for class 'redcapOfflineConnection'
exportRecordsTyped(
rcon,
fields = NULL,
drop_fields = NULL,
forms = NULL,
records = NULL,
events = NULL,
na = list(),
validation = list(),
cast = list(),
assignment = list(label = stripHTMLandUnicode, units = unitsFieldAnnotation),
warn_zero_coded = TRUE,
...

)

S3 method for class 'redcapApiConnection'
exportReportsTyped(
rcon,
report_id,
drop_fields = NULL,
na = list(),
validation = list(),
cast = list(),
assignment = list(label = stripHTMLandUnicode, units = unitsFieldAnnotation),
warn_zero_coded = TRUE,
...,
csv_delimiter = ","

)

Arguments

rcon A redcapConnection object.

report_id integerish(1). The ID number of the report to be exported.

fields character or NULL. Vector of fields to be returned. If NULL, all fields are re-
turned (unless forms is specified).

drop_fields character or NULL. A vector of field names to remove from the export.

forms character or NULL. Vector of forms to be returned. If NULL, all forms are re-
turned (unless fields is specified.

records character or integerish. A vector of study ID’s to be returned. If NULL, all
subjects are returned.

recordsTypedMethods 107

events A character vector of events to be returned from a longitudinal database. If
NULL, all events are returned. When using a redcapOfflineConnection object,
this argument is unvalidated, and only rows that match one of the values given
are returned; misspellings may result in unexpected results.

survey logical(1). When TRUE, the survey identifier field (e.g., redcap_survey_identifier)
and survey timestamp fields (e.g., [form_name]_timestamp) will be exported
(relevant only when surveys are utilized in the project). If these fields are speci-
fied in the fields argument and this flag is set to FALSE the requested fields will
not be exported.

dag logical(1). When TRUE the redcap_data_access_group field will be in-
cluded in the export \ when data access groups are utilized in the project. This
flag is only viable if the user whose token is being used to make the API re-
quest is not in a data access group. If the user is in a group, then this flag will
revert to its default value. Data Access Groups privilege is required when creat-
ing/renaming/deleting DAGs and when importing/exporting user-DAG assign-
ments. Therefore, the default for this flag is FALSE. To export DAG information
set this flag to TRUE.

date_begin POSIXct(1) or NULL. Ignored if NULL (default). Otherwise, records created or
modified after this date will be returned.

date_end POSIXct(1) or NULL. Ignored if NULL (default). Otherwise, records created or
modified before this date will be returned.

na A named list of user specified functions to determine if the data is NA. This
is useful when data is loaded that has coding for NA, e.g. -5 is NA. Keys
must correspond to a truncated REDCap field type, i.e. date_, datetime_, date-
time_seconds_, time_mm_ss, time_hh_mm_ss, time, float, number, calc, int,
integer, select, radio, dropdown, yesno, truefalse, checkbox, form_complete,
sql, system. The function will be provided the variables (x, field_name, coding).
The function must return a vector of logicals matching the input. It defaults to
isNAorBlank() for all entries.

validation A named list of user specified validation functions. The same named keys are
supported as the na argument. The function will be provided the variables (x,
field_name, coding). The function must return a vector of logical matching the
input length. Helper functions to construct these are valRx() and valChoice().
Only fields that are not identified as NA will be passed to validation functions.

cast A named list of user specified class casting functions. The same named keys
are supported as the na argument. The function will be provided the variables
(x, field_name, coding). The function must return a vector of logical match-
ing the input length. The cast should match the validation, if one is using
raw_cast, then validation=skip_validation is likely the desired intent. See
fieldValidationAndCasting()

assignment A named list of functions. These functions are provided, field_name, label,
description and field_type and return a list of attributes to assign to the column.
Defaults to creating a label attribute from the stripped HTML and UNICODE
raw label and scanning for units={"UNITS"} in description

filter_empty_rows

logical(1). Filter out empty rows post retrieval. Defaults to TRUE.

108 recordsTypedMethods

csv_delimiter character. One of c(",", "\t", ";", "|", "^"). Designates the delimiter
for the CSV file received from the API.

batch_size integerish(1) or NULL. When NULL, all records are pulled. Otherwise, the
records all pulled in batches of this size.

warn_zero_coded

logical(1). Turn on or off warnings about potentially problematic zero coded
fields. Defaults to TRUE.

... Arguments to pass to other methods

Details

The ’offline’ method operates on the raw (unlabeled) data file downloaded from REDCap along
with the data dictionary. This is made available for instances where the API cannot be accessed for
some reason (such as waiting for API approval from the REDCap administrator).

When validating data for offlineRedcapConnection objects, links to invalid data forms will not
work if the user does not provide the url, version, project_info, and events arguments (if the
project is longitudinal). For the project_info, the values project_id and is_longitudinal are
required. The user may be able to provide as little as project_info = data.frame(project_id = [id], is_longitudinal = [0/1]).
The user should be aware that the REDCap User Interface download for events does not include the
event ID. To include the event ID, the user must construct a data frame to pass to offlineConnection.

Record Identifier (System) Fields:
In all calls, the project’s ID fields will be included–there is no option provided to prevent this. Ad-
ditionally, if the project has a secondary unique field specified, it will also be included. Inclusion
of these fields is necessary to support some post-processing functions.
By default, the system fields redcap_event_name, redcap_repeat_instrument, and redcap_repeat_instance
are exported (when they are appropriate to the project). These are automatically included by the
API. However, if the user omits any of these in fields or designates one in drop_fields, the
final result will honor those conditions. Excluding any of these identifiers may cause problems
with some post-processing functions that operate on repeating instrument data.
The combination of the project ID field, secondary unique field, and the system fields are what
uniquely identify an experimental unit. In nearly all cases, it is desirable to have them all included.
System fields are cast to labelled values by default. They may be cast to their coded values using
the override cast = list(system = castRaw). The fields affected by the system override are
redcap_event_name, redcap_repeat_instrument, and redcap_data_access_group.

BioPortal Fields:
Text fields that are validation enabled using the BioPortal Ontology service may be cast to labeled
values so long as the labels have been cached on the REDCap server. Caching is performed when
the field is viewed in a form on the web interface. However, labels are not cached when data are
imported via the API. In cases where labels are not cached, the coded value is treated as both the
code and the label.

Record Batching:
A ’batched’ export is one where the export is performed over a series of API calls rather than one
large call. For large projects on small servers, this may prevent a single user from tying up the
server and forcing others to wait on a larger job. The batched export is performed by first calling

recordsTypedMethods 109

the API to export the subject identifier field (the first field in the meta data). The unique ID’s
are then assigned a batch number with no more than batch_size ID’s in any single batch. The
batches are exported from the API and stacked together.
In longitudinal projects, batch_size may not necessarily be the number of records exported in
each batch. If batch_size is ten and there are four records per patient, each batch will consist
of 40 records. Thus, if the user is concerned about tying up the server with a large, longitudinal
project, it would be prudent to use a smaller batch size.

Inversion of Control:
The final product of calling this is a data.frame with columns that have been type cast to most
commonly used analysis class (e.g. factor). This version allows the user to override any step
of this process by specifying a different function for each of the stages of the type casting. The
algorithm is as follows:

1. Detect NAs in returned data (na argument).
2. Run validate functions for the field_types.
3. On the fields that are not NA and pass validate do the specified cast.

It is expected that the na and validate overrides should rarely be used. Their exposure via the
function parameters is to future proof against possible bugs in the defaults, and allows for things
that higher versions of REDCap add as possible field types. I.e., the overrides are for use to
continue using the library when errors or changes to REDCap occur.
The cast override is one where users can specify things that were controlled by an ever increasing
set of flags before. E.g., dates=as.Date was an addition to allow dates in the previous version to
be overridden if the user wanted to use the Date class. In this version, it would appear called as
cast=list(_date=as.Date)). See fieldValidationAndCasting() for a full listing of pack-
age provided cast functions.

Value

exportRecordsTyped returns a data frame with the formatted data.

exportReportsTyped returns a data frame with the formatted data.

Functions

• exportRecordsTyped(): Export records with type casting.

• exportReportsTyped(): Export reports with type casting.

• exportRecordsTyped(redcapOfflineConnection): Export records without API access.

Zero-Coded Check Fields

A zero-coded check field is a field of the REDCap type checkbox that has a coding definition of
0, [label]. When exported, the field names for these fields is [field_name]___0. As in other
checkbox fields, the raw data output returns binary values where 0 represent an unchecked box and
1 represents a checked box. For zero-coded checkboxes, then, a value of 1 indicates that 0 was
selected.

This coding rarely presents a problem when casting from raw values (as is done in exportRecordsTyped).
However, casting from coded or labeled values can be problematic. In this case, it becomes inde-
terminate from context if the intent of 0 is ’false’ or the coded value ’0’ (’true’) ...

110 recordsTypedMethods

The situations in which casting may fail to produce the desired results are

Code Label Result
0 anything other than "0" Likely to fail when casting from coded values
0 0 Likely to fail when casting from coded or labeled values

Because of the potential for miscast data, casting functions will issue a warning anytime a zero-
coded check field is encountered. A separate warning is issued when a field is cast from coded or
labeled values.

When casting from coded or labeled values, it is strongly recommended that the function castCheckForImport()
be used. This function permits the user to state explicitly which values should be recognized as
checked, avoiding the ambiguity resulting from the coding.

See Also

Other records exporting functions:
exportRecords(),
exportReports(),
exportBulkRecords()

Field validations and casting:
fieldValidationAndCasting(),
reviewInvalidRecords()

Post-processing functionality:
recastRecords(),
guessCast(),
guessDate(),
castForImport(),
mChoiceCast(),
splitForms(),
widerRepeated()

Vignettes:
vignette("redcapAPI-offline-connection")
vignette("redcapAPI-casting-data")
vignette("redcapAPI-missing-data-detection")
vignette("redcapAPI-data-validation)
vignette("redcapAPI-faq)

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

redcapConnection 111

Export records with default settings
exportRecordsTyped(rcon)

Export records with no factors
exportRecordsTyped(rcon,

cast = default_cast_character)

Export records for specific records
exportRecordsTyped(rcon,

records = 1:3)

Export records for specific instruments
exportRecordsTyped(rcon,

forms = c("registration", "visit_1", "medications"))

Export records using filterLogic, an API parameter not provided
in the exportRecordsTyped function signature
exportRecordsTyped(

rcon,
records = 1:3,
api_param = list(filterLogic = "[age_at_enrollment] > 25")

)

Export a report
exportReports(rcon,

report_id = 12345)

Export records using files downloaded from the user interface
rcon_off <-

offlineConnection(
meta_data =

system.file(file.path("extdata/offlineConnectionFiles",
"TestRedcapAPI_DataDictionary.csv"),

package = "redcapAPI"),
records =

system.file(file.path("extdata/offlineConnectionFiles",
"TestRedcapAPI_Records.csv"),

package = "redcapAPI"))

exportRecordsTyped(rcon_off)

End(Not run)

redcapConnection Connect to a REDCap Database

112 redcapConnection

Description

These methods enable the user to create a connection object used to access the database.

Usage

redcapConnection(
url = getOption("redcap_api_url"),
token,
config = NULL,
retries = 5,
retry_interval = 2^(seq_len(retries)),
retry_quietly = TRUE,
...

)

S3 method for class 'redcapApiConnection'
print(x, ...)

offlineConnection(
meta_data = NULL,
arms = NULL,
events = NULL,
instruments = NULL,
field_names = NULL,
mapping = NULL,
repeat_instrument = NULL,
users = NULL,
user_roles = NULL,
user_role_assignment = NULL,
dags = NULL,
dag_assignment = NULL,
project_info = NULL,
version = "14.4.0",
file_repo = NULL,
records = NULL,
url = NULL,
external_coding = list()

)

S3 method for class 'redcapOfflineConnection'
print(x, ...)

Arguments

url character(1). URL for the user’s REDCap database API.

token character(1) REDCap API token

config A list to be passed to curl::handle_setopt. This allows the user to set additional
configurations for the API calls, such as certificates, SSL version, etc. For the

redcapConnection 113

majority of users, this does not need to be altered.

retries integerish(1). Sets the number of attempts to make to the API if a timeout
error is encountered. Must be a positive value.

retry_interval numeric. Sets the intervals (in seconds) at which retries are attempted. By
default, set at a 2^r where r is the rth retry (ie, 2, 4, 8, 16, ...). For fixed
intervals, provide a single value. Values will be recycled to match the number
of retries.

retry_quietly logical(1). When FALSE, messages will be shown giving the status of the API
calls. Defaults to TRUE.

... arguments to pass to other methods

x redcapConnection object to be printed

meta_data Either a character giving the file from which the metadata can be read, or a
data.frame.

arms Either a character giving the file from which the arms can be read, or a data.frame.

events Either a character giving the file from which the events can be read, or a
data.frame.

instruments Either a character giving the file from which the instruments can be read, or a
data.frame.

field_names Either a character giving the file from which the field names can be read, or a
data.frame.

mapping Either a character giving the file from which the Event Instrument mappings
can be read, or a data.frame.

repeat_instrument

Either a character giving the file from which the Repeating Instruments and
Events settings can be read, or a data.frame. Note: The REDCap GUI does
not offer a download file of these settings (at the time of this writing).

users Either a character giving the file from which the User settings can be read, or
a data.frame.

user_roles Either a character giving the file from which the User Roles can be read, or a
data.frame.

user_role_assignment

Either a character giving the file from which the User-Role Assignments can
be read, or a data.frame.

dags Either a character giving the file from which the Data Access Groups can be
read, or a data.frame.

dag_assignment Either a character giving the file from which the Data Access Group Assign-
ments can be read, or a data.frame.

project_info Either a character giving the file from which the Project Information can be
read, or a data.frame. See Details.

version character(1) giving the instance’s REDCap version number.

file_repo Either a character giving the file from which the File Repository Listing can
be read, or a data.frame.

114 redcapConnection

records Either a character giving the file from which the Records can be read, or a
data.frame. This should be the raw data as downloaded from the API, for
instance. Using labeled or formatted data is likely to result in errors when passed
to other functions.

external_coding

Named list of named character vectors or a character giving the file from
which the external coding may be read. The list is generally obtained from the
API using exportExternalCoding(). The name of the list element should be a
field name in the data that is of type bioportal or sql. The named vectors are
code-label pairings where the value of the vector is the code and the name is the
label. If passing a file name, it should be a file with the list saved via dput.

Details

redcapConnection objects will retrieve and cache various forms of project information. This can
make metadata, arms, events, etc. available directly from the redcapConnection object. The
retrieval of these objects uses the default values of the respective export functions (excepting the
file repository, which uses recursive = TRUE).

For each of these objects, there are four methods that can be called from the redcapConnection
object:

Function type Purpose Example
[info_type] Returns the information from the connection object rcon$metadata()
has_[info_type] Returns a boolean indicating if the information is cached rcon$has_metadata()
flush_[info_type] Purges the information from the connection object rcon$flush_metadata()
refresh_[info_type] Replaces the information with a new call to the API rcon$refresh_metadata()

Information is cached for

• metadata

• arms

• events

• instruments

• fieldnames

• mapping (field-event mappings)

• repeatInstrumentEvent

• users

• user_roles

• user_role_assignment

• dags

• dag_assignment

• projectInformation

• version

redcapConnection 115

• fileRepository

• externalCoding

There is also a flush_all and refresh_all method that will purge the entire cache and refresh
the entire cache, respectively.

The externalCoding elements relate to the code-label mappings of text fields with the external
validation types (such as sql fields or text fields with BioPortal Ontology modules enabled).

Specific to API Connections:
The redcapApiConnection object also stores the user preferences for handling repeated attempts
to call the API. In the event of a timeout error or server unavailability, these settings allow a system
pause before attempting another API call. In the event all of the retries fail, the error message
of the last attempt will be returned. These settings may be altered at any time using the methods
rcon$set_retries(r), rcon$set_retry_interval(ri), and rcon$set_retry_quietly(rq).
The argument to these functions have the same requirements as the corresponding arguments to
redcapConnection.
Tokens are specific to a project, and a token must be created for each project for which the user
wishes to use the API.
Additional Curl option can be set in the config argument. See the documentation for curl::handle_setopt
for more curl options.

Specific to Offline Connections:
"Offline connections" are a tool designed to provide the users without API privileges with at
least a subset of the functionality available to API users. The offline connections are typically
constructed from the comma separated value (CSV) files downloaded from the REDCap user
interface. Alternatively, data frames may be provided with the necessary data.
Not all of the components of an offline connection are needed for most operations. Rather, the
object was built to accept the same components available to the redcapApiConnection in order
to provide a consistent interface and simplify future development.
The meta data will be required for nearly all operations. For validating and casting data, the
records data must be provided, and works best if the data are the raw, unlabeled data downloaded
from the REDCap user interface.
Other components that may prove useful when casting records are the url, version, events (if the
project is longitudinal), and a subset of the project information. The user is encouraged to review
the vignette for working with offline connections for more details.
With offline connections, the refresh methods have an important difference. The user may pass
the refresh method a file path or data frame which will be used to replace the existing component.
See examples.

See Also

For establishing connections using secure token storage.
unlockREDCap()
vignette("redcapAPI-getting-started-connecting", package = "redcapAPI")

For working with offline connections. vignette("redcapAPI-offline-connection", package
= "redcapAPI")

To prepare data for an offline user, see preserveProject() and readPreservedProject().

116 redcapDataStructures

Examples

Not run:
rcon <- redcapConnection(url = [YOUR_REDCAP_URL],

token = [API_TOKEN])

exportRecords(rcon)

Get the complete metadata for the project
rcon$metadata()

Get the fieldnames for a project
rcon$fieldnames()

remove a cached value for fieldnames
rcon$flush_fieldnames()
rcon$has_fieldnames()

Using offline connections

meta_data_file <- "path/to/meta_data_file.csv"
records_file <- "path/to/records_file.csv"
events_file <- "path/to/events_file.csv"

ProjectInfo <- data.frame(project_id = 12345,
is_longitudinal = 1)

off_conn <- offlineConnection(meta_data = meta_data_file,
records = records_file,
project_info = ProjectInfo,
version = [YOUR_REDCAP_VERSION_NUMBER],
url = [YOUR_REDCAP_URL])

off_conn$metadata()
off_conn$records()
off_conn$projectInformation()
off_conn$version()

Add or replace the data in the events component.
off_conn$refresh_events(events_file)
off_conn$events()

End(Not run)

redcapDataStructures REDCap Data Structures

Description

Utilities for recognizing and validating data structures for use with the REDCap API

redcapFactorFlip 117

Usage

validateRedcapData(data, redcap_data)

REDCAP_SYSTEM_FIELDS

REDCAP_PROJECT_PURPOSE

REDCAP_METADATA_FIELDTYPE

REDCAP_METADATA_VALIDATION_TYPE

REDCAP_REPEAT_INSTRUMENT_STRUCTURE

Arguments

data data.frame User provided data to be compared against the established REDCap
data structure.

redcap_data data.frame A data set from the redcapAPI package to use a reference for com-
paring to expected data structure.

Format

An object of class character of length 5.

An object of class character of length 5.

An object of class character of length 11.

An object of class character of length 25.

An object of class data.frame with 0 rows and 3 columns.

redcapFactorFlip Convert REDCap factors between labeled and coded

Description

Factors exported from REDCap can be toggled between the coded and labeled values with the use
of the attributes assigned to the factors during export.

Usage

redcapFactorFlip(v)

Arguments

v A factor exported from REDCap. The REDCap type may be radio, dropdown,
check, yesno, etc.

118 repeatingInstrumentMethods

Details

Each factor type variable in REDCap is given the attributes redcapLabels and redcapLevels.
With these attached to the vector, switching between the coded and labeled values can be done with
ease. This may be helpful when the coded value has importance, such as 0/1 for death, or if a yes is
worth six points (instead of one).

repeatingInstrumentMethods

Export or Import Repeating Instrument and Events Settings

Description

These methods enable the user to export the existing repeating instrument and event settings, or
import new settings to the project.

Usage

exportRepeatingInstrumentsEvents(rcon, ...)

importRepeatingInstrumentsEvents(rcon, data, ...)

S3 method for class 'redcapApiConnection'
exportRepeatingInstrumentsEvents(rcon, ...)

S3 method for class 'redcapApiConnection'
importRepeatingInstrumentsEvents(rcon, data, ...)

Arguments

rcon A redcapConnection object.

data data.frame. For classical projects, it must have the columns form_name and
custom_form_label. Longitudinal projects also require a column for event_name.

... Arguments to pass to other methods

Details

Repeating events (as opposed to repeating instruments) are provided as a row of data where the
form_name column is NA.

It is not possible to update the has_repeating_instruments_or_events property of the project
through importProjectInformation. Enabling of repeating instruments and events must be done
through the GUI.

Although the API does not provide a delete method, it is possible to remove settings by doing an
import that excludes the settings that are to be deleted. All settings can be cleared by executing
importRepeatingInstrumentsEvents(rcon, REDCAP_REPEAT_INSTRUMENT_STRUCTURE).

reviewInvalidRecords 119

Value

exportRepeatingInstrumentsEvents returns a data frame with the columns:

event_name The unique event name.
form_name The form name, as given in the second column of the Meta Data
custom_form_label A custom display string for the repeating instrument/event

importRepeatingInstrumentsEvents invisibly returns the number of rows imported.

Functions

• exportRepeatingInstrumentsEvents(): Export repeating instruments and events.

• importRepeatingInstrumentsEvents(): Import repeating instruments and events.

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export repeating instruments and events
exportRepeatingInstrumentsEvents(rcon)

Import repeating instruments and events
NewData <- data.frame(event_name = c("event_1_arm_1",

"event_2_arm_1"),
form_name = c("field_observation",

"self_assessment"),
custom_form_label = c("Instructor led field observation",

"Trainee self assessment"))

importRepeatingInstrumentsEvents(rcon,
data = NewData)

End(Not run)

reviewInvalidRecords Review Invalid Records Following Field Validation

Description

This function retrieves a summary of data elements that failed validation during field validation and
casting.

120 reviewInvalidRecords

Usage

reviewInvalidRecords(data, quiet = TRUE)

Arguments

data data.frame. The result of a function that performed field validation.

quiet logical(1). When TRUE, a message will be printed if the invalid attribute is
not found on data. Otherwise, the message is suppressed.

Details

When discussing field validation and invalid data, it is helpful to establish the following terminol-
ogy:

A Records data frame is a data frame returned by a function where the fields (columns) in the data
frame have been cast for subsequent analysis.

Some casting function also perform field validation and return an Invalid data frame, which is a
listing of data elements that have failed validation. The Invalid data frame is attached as an attribute
to the Records data frame. If no data elements fail the validation, the Invalid data frame will have
zero rows. If at least one data element fails validation, a warning is printed to notify the user so that
the user may review the Invalid data frame and mitigate the failed validations.

The Invalid data frame has an additional class (c("invalid", "data.frame")) and comes with a
print method. The print.invalid method displays the content of the Invalid data frame neatly in
both the console and within reports utilizing markdown.

Value

If data has the "invalid" attribute, an object with class c("invalid", "data.frame") is re-
turned. (NULL will be returned if data does not have the attribute).

The colums in the Invalid data frame are

row The row number from the Records data frame for which validation failed.
record_id The record ID for the failed validation.
field_name The field name (column) of the failed validation.
field_type The field type of the failed validation.
value The original value that failed validation. It will be replaced with NA in the Records data.

The Invalid data frame has additional attributes

• time - The date/time at which the validation was performed.

• version - The REDCap version number (as retrieved by exportVersion).

• project - The title of the REDCap project (as retrieved by exportProjectInformation).

splitForms 121

See Also

exportRecordsTyped(),
exportReportsTyped(),
castForImport(),
guessCast()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Review the Invalid data frame after export
Records <- exportRecordsTyped(rcon)
reviewInvalidRecords(Records)

Review Invalid data frame before import
Records <- castForImport(rcon)
reviewInvalidRecords(Records)

Access the Invalid data frame the attributes
Records <- exportRecordsTyped(rcon)
attr(Records, "invalid")
attributes(Records)$invalid

End(Not run)

splitForms Split a Data Frame into its Forms

Description

Separates a data frame from REDCap into a list of data frames where each form constitutes an
element in the list.

Usage

splitForms(Records, rcon, envir = NULL, base = NULL, post = NULL)

122 stringCleanup

Arguments

Records data.frame such as one generated by exportRecords or exportRecordsTyped

rcon A redcapConnection object.

envir environment. The target environment for the resulting list of data.frames. De-
faults to NULL which returns the a list. Use globalenv to assign the global
environment. Will accept a number of the environment.

base character(1) giving the start of the naming scheme for the elements of the
list. By default, the names of the list will be the form names. If this value is
provided, it will follow the format base.form_name.

post function to apply to each element of form data after separating them, must be
of signature function(data, rcon).

See Also

Other post-processing functions:
recastRecords(),
guessCast(),
guessDate(),
castForImport(),
mChoiceCast(),
widerRepeated()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Records <- exportRecordsTyped(rcon)

splitForms(Records, rcon)

End(Not run)

stringCleanup Remove Undesired Characters From Strings

Description

These functions are utilities to clear undesired characters from REDCap output.

stripHTMLandUnicode 123

Usage

stripHTMLTags(
x,
tags = c("p", "br", "div", "span", "b", "font", "sup", "sub"),
ignore.case = TRUE

)

stripUnicode(x)

Arguments

x character, vector of content to be cleaned.

tags character, vector of HTML tags to remove from x

ignore.case logical(1), should cases be ignored when matching patterns? Defaults to
TRUE.

Value

stripHTMLTags returns a character vector.

stripUnicode returns a character vector.

Examples

stripHTMLTags("<p>Text in a paragraph tag with bold formatting </p>")

stripUnicode("\U00B5 = 0")

stripHTMLandUnicode Helper Functions for exportRecordsType Attributes

Description

These functions assist in setting attributes for columns of the resulting type cast data.frame.

Usage

stripHTMLandUnicode(field_name, field_label, field_annotation)

unitsFieldAnnotation(field_name, field_label, field_annotation)

Arguments

field_name character. Name of the fields.

field_label character. Labels from meta data.
field_annotation

character. Annotations from meta_data.

124 surveyMethods

Details

Functions passed into the assignment argument list of exportRecordsTyped() construct attributes
on a column. They are expected to have a signature of function(field_name, field_label, field_annotation)
and return the attribute to assign or NA. They must be vectorized.

Useful utilities are provided in stringCleanup()

stripHTMLandUnicode strips both HTML and UNICODE from the field_label.

unitsFieldAnnotation pulls a units string from the field_annotation. An example of the form
searched for is units=\{"meters"\}

Value

stripHTMLandUnicode returns a character vector.

unitsFieldAnnotation returns a character vector.

See Also

exportRecordsTyped(),
exportReportsTyped(),
stripHTMLTags(),
stripUnicode()

Examples

Not run:
stripHTMLandUnicode("field_name", "Field label", "field annotation")

unitsFieldAnnotation("field", "label", "units={\"meters\"}")

End(Not run)

surveyMethods Export Survey Participant Information

Description

These methods enable the user to export information relating to survey participants.

Usage

exportSurveyParticipants(rcon, instrument, event, ...)

exportSurveyLink(rcon, record, instrument, event, repeat_instance = 1, ...)

exportSurveyQueueLink(rcon, record, ...)

surveyMethods 125

exportSurveyReturnCode(
rcon,
record,
instrument,
event,
repeat_instance = 1,
...

)

S3 method for class 'redcapApiConnection'
exportSurveyParticipants(rcon, instrument = NULL, event = NULL, ...)

S3 method for class 'redcapApiConnection'
exportSurveyLink(
rcon,
record,
instrument,
event = NULL,
repeat_instance = 1,
...

)

S3 method for class 'redcapApiConnection'
exportSurveyQueueLink(rcon, record, ...)

S3 method for class 'redcapApiConnection'
exportSurveyReturnCode(
rcon,
record,
instrument,
event = NULL,
repeat_instance = 1,
...

)

Arguments

rcon A redcapConnection object.

record character(1) or integerish(1). The record ID of a survey participant.

instrument character(1). The name of a survey instrument.

event character(1) The event name of the event for which participant information
should be exported.

repeat_instance

integerish(1). The repeat instance if the instrument is designated as a repeat-
ing instrument. Default value is 1.

... Arguments to pass to other methods

126 surveyMethods

Value

exportSurveyParticipants returns a data frame with the columns:

email The e-mail address of the participant.
email_occurrence The number of times the invitation has been sent (after the next invite).
identifier Participant identifier (if it exists) to match the survey response to a participant.
record Record ID of the participant.
invitation_sent_status Boolean value indicating if a survey invitation has been sent.
invitation_send_time Date/time the survey invitation was sent.
response_status Boolean value indicating if the participant has responded.
survey_access_code The participant’s survey access code.
survey_link The participant’s survey link.
survey_queue_link The participants’ survey queue link.

exportSurveyLink returns a character(1) giving the link for the user to access the survey form.

exportSurveyQueueLink returns a character(1) giving the survey queue link for the user.

exportSurveyReturnCode returns a character(1) giving the survey return code for the user.

Functions

• exportSurveyParticipants(): Export survey participants for a survey instrument.

• exportSurveyLink(): Export a survey participant’s survey instrument link.

• exportSurveyQueueLink(): Export a survey participant’s survey queue link.

• exportSurveyReturnCode(): Export a survey participant’s instrument return code.

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export survey participants
exportSurveyParticipants(rcon,

instrument = "survey_form")

Export survey participants for an event
exportSurveyParticipants(rcon,

instrument = "survey_form",
event = "event_1_arm_1")

Export survey link
exportSurveyLink(rcon,

record = 1,
instrument = "survey_form")

switchDag 127

Export survey queue link
exportSurveyQueueLink(rcon,

record = 1)

Export survey return code
exportSurveyReturnCode(rcon,

user = 1,
instrument = "survey_form")

End(Not run)

switchDag Switch Data Access Group Assignment for the Current User

Description

This method enables the current API user to switch (assign/reassign/unassign) their current Data
Access Group assignment if they have been assigned to multiple DAGs via the DAG Switcher page
in the project.

Usage

switchDag(rcon, dag, ...)

S3 method for class 'redcapApiConnection'
switchDag(rcon, dag, ...)

Arguments

rcon A redcapConnection object.

dag character(1) A unique data access group to which to assign the current user.
Use NA to leave the user unassigned.

... Arguments to pass to other methods

Value

Invisibly returns TRUE when the call is completed successfully. Otherwise an error is thrown.

See Also

exportDags(),
importDags(),
deleteDags(),
exportUserDagAssignments(),
importUserDagAssignments()

128 syncUnderscoreCodings

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Switch the current user to the DAG "Facility Two"
switchDag(rcon,

dag = "facility_two")

End(Not run)

syncUnderscoreCodings Synchronize coding of checkbox variables between meta data and
records field names.

Description

Due to a bug in the REDCap export module, underscores in checkbox codings are not retained in
the suffixes of the field names in the exported records. For example, if variable chk is a check-
box with a coding ’a_b, A and B’, the field name in the data export becomes chk___ab. The loss
of the underscore causes fieldToVar to fail as it cannot match variable names to the meta data.
syncUnderscoreCodings rectifies this problem by searching the suffixes and meta data for under-
scores. If a discrepancy is found, the underscores are removed from the metadata codings, restoring
harmony to the universe. This bug was fixed in REDCap version 5.5.21 and this function does not
apply to that and later versions.

Usage

syncUnderscoreCodings(records, meta_data, export = TRUE)

Arguments

records The data frame object returned from the API export prior to applying factors,
labels, and dates via the fieldToVar function.

meta_data Metadata export from exportMetaData

export Logical. Specifies if data are being synchronized for import or export

Details

syncUnderscoreCodings performs a series of evaluations. First, it determines if any underscores
are found in the checkbox codings. If none are found, the function terminates without changing
anything.

If the checkbox codings have underscores, the next evaluation is to determine if the variable names
suffixes have matching underscores. If they do, then the function terminates with no changes to the
meta data.

unlockREDCap 129

For data exports, if the prior two checks find underscores in the meta data and no underscores in the
suffixes, the underscores are removed from the meta data and the new meta data returned.

For data imports, the meta data are not altered and the checkbox_field_name_map attribute is used
to synchronize field names to the meta data and the expectations of REDCap (for import, REDCap
expects the underscore codings to be used.

Backward Compatibility

In retrospect, we realize that the way syncUnderscoreCodings is written is backward. We should
have altered the field names in the records data frame. Any scripts that make use of syncUnderscoreCodings
and were written prior to version 5.5.21 will fail because the underscores in the codings will now
be present where they were not before.

For backward compatibility of redcapAPI, we continue to alter the codings in the meta data. We
do not anticipate many problems, as most people do not use underscores in the checkbox codings

If your scripts were written under REDCap 5.5.21 or higher, there will be no backward compatibility
problems related to this issue.

unlockREDCap Open REDCap connections using cryptolocker for storage of
API_KEYs.

Description

Opens a set of connections to REDcap from API_KEYs stored in an encrypted keyring. If the
keyring does not exist, it will ask for password to this keyring to use on later requests. Next it will
ask for the API_KEYs specified in connections. If an API_KEY does not work, it will request
again. On later executions it will use an open keyring to retrieve all API_KEYs or for a password if
the keyring is currently locked.

Usage

unlockREDCap(connections, url, keyring, envir = NULL, ...)

Arguments

connections character vector. A list of strings that define the connections with associated
API_KEYs to load into environment. Each name should correspond to a RED-
Cap project for traceability, but it can be named anything one desires. The name
in the returned list is this name.

url character(1). The url of one’s institutional REDCap server api.

keyring character(1). Name of keyring.

envir environment. The target environment for the connections. Defaults to NULL
which returns the keys as a list. Use globalenv() to assign in the global envi-
ronment. Will accept a number such a ’1’ for global as well.

... Additional arguments passed to redcapConnection().

130 unlockREDCap

Details

If one forgets the password to this keyring, or wishes to start over: shelter::keyring_delete("<NAME_OF_KEY_RING_HERE>")

For production servers where the password must be stored in a readable plain text file, it will search
for ../<basename>.yml. DO NOT USE this unless one is a sysadmin, as this defeats the security
and purpose of a local encrypted file. The expected structure of this yaml file is as follows:

other-config-stuff1: blah blah
redcapAPI:
keys:
intake: THIS_IS_THE_INTAKE_DATABASE_APIKEY
details: THIS_IS_THE_DETAILS_DATABASE_APIKEY

other-config-stuff2: blah blah
other-config-stuff3: blah blah

For production servers the use of ENV variables is also supported. The connection string is con-
verted to upper case for the search of ENV. If a YAML and ENV variable both exist, the YAML
will take precedence.

IMPORTANT: Make sure that R is set to NEVER save workspace to .RData as this is writing
the API_KEY to a local file in clear text because connection objects contain the unlocked key in
memory. Tips are provided in vignette("redcapAPI-best-practices").

To debug an entire session via what is called / returned from the server, add the argument config=list(options=list(verbose=TRUE))
to the call.

Value

If envir is NULL returns a list of opened connections. Otherwise connections are assigned into the
specified envir.

See Also

redcapConnection()

Vignettes:
vignette("redcapAPI-best-practices"),
vignette("redcapAPI-getting-started-connecting")

Examples

Not run:
unlockREDCap(c(test_conn = 'TestRedcapAPI',

sandbox_conn = 'SandboxAPI'),
keyring = '<NAME_OF_KEY_RING_HERE>',
envir = globalenv(),
url = 'https://<INSTITUTIONS_REDCAP_DOMAIN>/api/')

End(Not run)

userMethods 131

userMethods Export, Import, or Delete Users and User Permissisons

Description

These methods enable the user to add and remove users from a project. They also enable the user
to modify the permissions granted to each user within the project.

Usage

exportUsers(rcon, ...)

importUsers(rcon, data, ...)

deleteUsers(rcon, users, ...)

S3 method for class 'redcapApiConnection'
exportUsers(rcon, dates = TRUE, labels = TRUE, form_rights = TRUE, ...)

S3 method for class 'redcapApiConnection'
importUsers(rcon, data, consolidate = TRUE, ...)

S3 method for class 'redcapApiConnection'
deleteUsers(rcon, users, ...)

Arguments

rcon A redcapConnection object.

dates logical(1). When TRUE, expiration dates are converted to a POSIXct object.

labels logical(1). When TRUE the data export and form access rights are converted
to factor objects.

form_rights logical(1). When TRUE, the form rights will be transformed to one column
per form. The API-provided character string is always returned with the format
[form_name]:[access_code] and a comma separating each form.

users character. Vector of unique user names to be deleted.

data data.frame. Provides the user data for import. It must have a column titled
username. All other columns are optional.

consolidate logical(1). When TRUE, the form and data export access values will be read
from the expanded columns. Otherwise, the consolidated values (as provided by
the API export) are utilized.

... Arguments to pass to other methods

132 userMethods

Details

User project access fields (those not related to forms or exports) are mapped between coded and
labeled values as:

Code Label
0 No Access
1 Access

Form access fields are mapped as:

Code Label
0 No Access
1 View records/responses and edit records (survey responses are read-only)
2 Read Only
3 Edit survey responses

Form export permission fields are mapped as:

Code Label
0 No Access
1 Full Data Set
2 De-Identified
3 Remove Identifier Fields

Importing Users/User Roles:
It is not required that the user provide a data frame with all of the fields available for modification.
Only fields that are provided will be modified. The only required field for imports is the username
field.
When setting permissions for a user project access fields, form access, and form export permis-
sions, the user may provided any of the coded or labeled values above. The user data is passed
through prepUserImportData() before sending it to the API; text values will be converted to the
numeric value.
It is also permissible to use a column for each form individually, as can be exported via exportUsers().
With consolidate = TRUE, these settings will be consolidated into the text string expected by the
API.
The REDCap API does not natively allow for modifying the rights of a user that is part of a User
Role. When an attempt to modify the rights of a user in a User Role is made with this package,
the user will be removed from the User Role, the rights modified, and then the User Role restored.
This is done silently: be aware that modifications to a user’s rights may not have an impact while
the User Role is assigned.

Limitations:
When importing via CSV, (as redcapAPI does by default) it appears that the form access rights
are imported but may not always be reflected in the exported values. The form export rights do
not appear to be imported when using the CSV format. We may be able to resolve this in the
future using a JSON format.

userMethods 133

Value

exportUsers returns a data frame with the columns:

username The unique username for a user that can access the project.
email The e-mail address associated with the user in the REDCap system.
firstname The user’s first name.
lastname The user’s last name.
expiration The date at which the user’s access to the project will expire.
data_access_group The text name of the Data Access Group to which the user is assigned.
data_access_group_id The REDCap assigned unique identifier of the Data Access Group.
design Boolean flag indicating if the user has permissions to utilize the project design modules.
alerts Boolean flag indicating if the user has permissions to utlize the alerts tools.
user_right Boolean flag indicating if the user has permissions to modify user rights.
data_access_groups Boolean flag indicating if the user has user has permission to assign user to Data Access Groups.
reports Boolean flag indicating if the user has permissions to design reports.
stats_and_charts Boolean flag indicating if the user has permissions to view the Statistics and Charts module.
manage_survey_participants Boolean flag indicating if the user has permissions to manage survey participants.
calendar Boolean flag indicating if the user has permissions to utilize the project calendar module.
data_import_tool Boolean flag indicating if the user has permissions to use the data import tool.
data_comparison_tool Boolean flag indicating if the user has permissions to use the data comparison tool.
logging Boolean flag indicating if the user has permissions to view the project logs (audit trail).
file_repository Boolean flag indicating if the user has permissions to access the project file repository.
data_quality_create Boolean flag indicating if the user has permission create new data quality rules.
data_quality_execute Boolean flag indicating if the user has permission to execute data quality rules.
api_export Boolean flag indicating if the user has API export privileges.
api_import Boolean flag indicating if the user has API import privileges.
mobile_app Boolean flag indicating if the user has permissions to use the mobile app.
mobile_app_download_data Boolean flag indicating if the user has permissions to download data on the mobile app.
record_create Boolean flag indicating if the user has permission to create new records.
record_rename Boolean flag indicating if the user has permission to rename existing records.
record_delete Boolean flag indicating if the user has permission to delete records.
lock_records_all_forms Boolean flag indicating if the user has permission to lock records across all forms.
lock_records Boolean flag indicating if the user has permission to lock a records on individual forms.
lock_records_customization Boolean flag indicating if the user has permission to customize record locking.
random_setup Boolean flag indicating if the user has permission to set up randomization rules.
random_dashboard Boolean flag indicating if the user has permission to view the randomization dashboard.
random_perform Boolean flag indicating if the user has permission to perform record randomization.
forms Character string listing form access rights for each form.
forms_export Character string listing the form export rights for each form.

When form_rights = TRUE, additional columns are created that give the form access and form
export rights in an individual column for each form. Form access rights columns have the nam-
ing pattern [form_name]_access and the form export rights columns have the naming pattern
[form_name]_export_access.

importUsers invisibly returns the number of users that were added or modified.

deleteUsers invisibly returns the number of users that were deleted.

134 userMethods

Functions

• exportUsers(): Export users affiliated with a project.

• importUsers(): Add users or modify user permissions in a project.

• deleteUsers(): Remove users from a project.

See Also

exportUserRoles(),
importUserRoles(),
deleteUserRoles(),
exportUserRoleAssignments(),
importUserRoleAssignments()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export users
exportUsers(rcon)

Export users without additional form access variables
exportUsers(rcon,

form_rights = FALSE)

Export users as raw data
exportUsers(rcon,

labels = FALSE)

Import new permissions
NewData <- data.frame(username = "target_user",

design = 0,
api_export = 1,
api_import = "No Access")

importUsers(rcon,
data = NewData)

Remove a user from a project
deleteUsers(rcon,

users = "target_user")

End(Not run)

userRoleAssignmentMethods 135

userRoleAssignmentMethods

Export or Import User-Role Assignments

Description

These methods enable the user to export the user-role assignments, add assignments, or modify
existing assignments.

Usage

exportUserRoleAssignments(rcon, ...)

importUserRoleAssignments(rcon, data, ...)

S3 method for class 'redcapApiConnection'
exportUserRoleAssignments(rcon, ...)

S3 method for class 'redcapApiConnection'
importUserRoleAssignments(rcon, data, ...)

Arguments

rcon A redcapConnection object.

data data.frame with columns username and unique_role_name. Each username
must be unique. Users without a unique_role_name will not be assigned to a
user role.

... Arguments to pass to other methods

Value

exportUserRoleAssignments returns a data frame with the columns:

username Username of a user in the project.
unique_role_name The unique role name to which the user is assigned.
data_access_group The Data Access Group to which the user is assigned.

importUserRoleAssignments invisibly returns the number of user roles assignments added or
modified.

Functions

• exportUserRoleAssignments(): Export user-role assignments from a project.

• importUserRoleAssignments(): Import user-role assignments to a project.

136 userRoleMethods

See Also

exportUsers(),
importUsers(),
deleteUsers(),
exportUserRoles(),
importUserRoles(),
deleteUserRoles()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export user-role assignments
exportUserRoleAssignments(rcon)

Import/modify a user-role assignment
NewData <- data.frame(username = "desired_user_name",

unique_role_name = "KN3430U")
importUserRolesAssignments(rcon,

data = NewData)

End(Not run)

userRoleMethods Export, Import, or Delete User Roles in a Project

Description

These methods enable the user to export user roles, add user roles, or remove user roles from a
project. They also enable the user to modify the permissions granted to a user.

Usage

exportUserRoles(rcon, ...)

importUserRoles(rcon, data, ...)

deleteUserRoles(rcon, user_roles, ...)

S3 method for class 'redcapApiConnection'
exportUserRoles(rcon, labels = TRUE, form_rights = TRUE, ...)

S3 method for class 'redcapApiConnection'

userRoleMethods 137

importUserRoles(rcon, data, consolidate = TRUE, ...)

S3 method for class 'redcapApiConnection'
deleteUserRoles(rcon, user_roles, ...)

Arguments

rcon A redcapConnection object.

labels logical(1). When TRUE the data export and form access rights are converted
to factor objects.

form_rights logical(1). When TRUE, the form rights will be transformed to one column
per form. The API-provided character string is always returned with the format
[form_name]:[access_code] and a comma separating each form.

user_roles character. Unique role names to be deleted from the project.

data data.frame. Provides the user data for import. It must have a column titled
unique_role_name. All other columns are optional.

consolidate logical(1). When TRUE, the form and data export access values will be read
from the expanded columns. Otherwise, the consolidated values (as provided by
the API export) are utilized.

... Arguments to pass to other methods

Details

User project access fields (those not related to forms or exports) are mapped between coded and
labeled values as:

Code Label
0 No Access
1 Access

Form access fields are mapped as:

Code Label
0 No Access
1 View records/responses and edit records (survey responses are read-only)
2 Read Only
3 Edit survey responses

Form export permission fields are mapped as:

Code Label
0 No Access
1 Full Data Set
2 De-Identified

138 userRoleMethods

3 Remove Identifier Fields

Importing Users/User Roles:
It is not required that the user provide a data frame with all of the fields available for modification.
Only fields that are provided will be modified. The only required field for imports is the username
field.
When setting permissions for a user project access fields, form access, and form export permis-
sions, the user may provided any of the coded or labeled values above. The user data is passed
through prepUserImportData() before sending it to the API; text values will be converted to the
numeric value.
It is also permissible to use a column for each form individually, as can be exported via exportUsers().
With consolidate = TRUE, these settings will be consolidated into the text string expected by the
API.
The REDCap API does not natively allow for modifying the rights of a user that is part of a User
Role. When an attempt to modify the rights of a user in a User Role is made with this package,
the user will be removed from the User Role, the rights modified, and then the User Role restored.
This is done silently: be aware that modifications to a user’s rights may not have an impact while
the User Role is assigned.

Limitations:
When importing via CSV, (as redcapAPI does by default) it appears that the form access rights
are imported but may not always be reflected in the exported values. The form export rights do
not appear to be imported when using the CSV format. We may be able to resolve this in the
future using a JSON format.

Value

exportUserRoles returns a data frame with the columns:

unique_role_name The REDCap assigned unique role name.
role_label The user provided label describing the role.
design Boolean flag indicating if the user has permissions to utilize the project design modules.
alerts Boolean flag indicating if the user has permissions to utlize the alerts tools.
user_right Boolean flag indicating if the user has permissions to modify user rights.
data_access_groups Boolean flag indicating if the user has user has permission to assign user to Data Access Groups.
reports Boolean flag indicating if the user has permissions to design reports.
stats_and_charts Boolean flag indicating if the user has permissions to view the Statistics and Charts module.
manage_survey_participants Boolean flag indicating if the user has permissions to manage survey participants.
calendar Boolean flag indicating if the user has permissions to utilize the project calendar module.
data_import_tool Boolean flag indicating if the user has permissions to use the data import tool.
data_comparison_tool Boolean flag indicating if the user has permissions to use the data comparison tool.
logging Boolean flag indicating if the user has permissions to view the project logs (audit trail).
file_repository Boolean flag indicating if the user has permissions to access the project file repository.
data_quality_create Boolean flag indicating if the user has permission create new data quality rules.
data_quality_execute Boolean flag indicating if the user has permission to execute data quality rules.
api_export Boolean flag indicating if the user has API export privileges.
api_import Boolean flag indicating if the user has API import privileges.

userRoleMethods 139

mobile_app Boolean flag indicating if the user has permissions to use the mobile app.
mobile_app_download_data Boolean flag indicating if the user has permissions to download data on the mobile app.
record_create Boolean flag indicating if the user has permission to create new records.
record_rename Boolean flag indicating if the user has permission to rename existing records.
record_delete Boolean flag indicating if the user has permission to delete records.
lock_records_all_forms Boolean flag indicating if the user has permission to lock records across all forms.
lock_records Boolean flag indicating if the user has permission to lock a records on individual forms.
lock_records_customization Boolean flag indicating if the user has permission to customize record locking.
random_setup Boolean flag indicating if the user has permission to set up randomization rules.
random_dashboard Boolean flag indicating if the user has permission to view the randomization dashboard.
random_perform Boolean flag indicating if the user has permission to perform record randomization.
forms Character string listing form access rights for each form.
forms_export Character string listing the form export rights for each form.

When form_rights = TRUE, additional columns are created that give the form access and form
export rights in an individual column for each form. Form access rights columns have the nam-
ing pattern [form_name]_access and the form export rights columns have the naming pattern
[form_name]_export_access.

importUserRoles invisibly returns the number of user roles that were added or modified.

deleteUserRoles invisibly returns the number of user roles that were deleted.

Functions

• exportUserRoles(): Export user roles from a project.

• importUserRoles(): Import user roles to a project.

• deleteUserRoles(): Delete user roles from a project.

See Also

exportUsers(),
importUsers(),
deleteUsers(),
exportUserRoleAssignments(),
importUserRoleAssignments()

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Export users-roles
exportUserRoles(rcon)

Export user-roles without additional form access variables

140 validateImport

exportUsersRoles(rcon,
form_rights = FALSE)

Export users as raw data
exportUserRoles(rcon,

labels = FALSE)

Import new permissions
NewData <- data.frame(unique_role_name = "KN439U",

design = 0,
api_export = 1,
api_import = "No Access")

importUserRoles(rcon,
data = NewData)

Remove a user from a project
deleteUserRoles(rcon,

user_roles = "KN439U")

End(Not run)

validateImport Validate Data Frames for Import

Description

Validates the variables in a data frame prior to attempting an import to REDCap

Usage

validateImport(data, meta_data, logfile = "")

Arguments

data data.frame being prepared for import to REDCap.

meta_data REDCap database meta data.

logfile A character string giving the filepath to which the results of the validation are
printed. If "", the results are printed in the console.

Details

validateImport is called internally by importRecords and is not available to the user.

Each variable is validated by matching they type of variable with the type listed in the REDCap
database.

vectorToApiBodyList 141

Although the log messages will indicate a preference for dates to be in mm/dd/yyyy format, the
function will accept mm/dd/yy, yyyy-mm-dd, yyyy/mm/dd, and yyyymmdd formats as well. When
possible, pass dates as Date objects or POSIXct objects to avoid confusion. Dates are also compared
to minimum and maximum values listed in the data dictionary. Records where a date is found out
of range are allowed to import and a message is printed in the log.

For continuous/numeric variables, the values are checked against the minimum and maximum al-
lowed in the data dictionary. Records where a value is found out of range are allowed to import and
a message is printed in the log.

ZIP codes are tested to see if they fit either the five digit or five digit + four format. When these
conditions are not met, the data point is deleted and a message printed in the log.

YesNo fields permit any of the values ’yes’, ’no’, ’0’, ’1’ to be imported to REDCap with 0=No,
and 1=Yes. The values are converted to lower case for validation, so any combination of lower and
upper case values will pass (ie, the data frame is not case-sensitive).

TrueFalse fields will accept ’TRUE’, ’FALSE’, 0, 1, and logical values and are also not case-
sensitive.

Radio and dropdown fields may have either the coding in the data dictionary or the labels in the data
dictionary. The validation will use the meta data to convert any matching values to the appropriate
coding before importing to REDCap. Values that cannot be reconciled are deleted with a message
printed in the log. These variables are not case-sensitive.

Checkbox fields require a value of "Checked", "Unchecked", "0", or "1". These are currently case-
sensitive. Values that do not match these are deleted with a warning printed in the log.

Phone numbers are required to be ten digit numbers. The phone number is broken into three parts:
1) a three digit area code, 2) a three digit exchange code, and 3) a four digit station code. The
exchange code must start with a number from 2-9, followed by 0-8, and then any third digit. The
exchange code starts with a number from 2-9, followed by any two digits. The station code is four
digits with no restrictions.

E-mail addresses are considered valid when they have three parts. The first part comes before the
@ symbol, and may be number of characters from a-z, A-Z, a period, underscore, percent, plus, or
minus. The second part comes after the @, but before the period, and may consist of any number of
letters, numbers, periods, or dashes. Finally, the string ends with a period then anywhere from two
to six letters.

vectorToApiBodyList Convert R Vector To List for the API Call Body

Description

Converts an R vector to a list that will be suitable for makeApiCall.

Usage

vectorToApiBodyList(vector, parameter_name)

142 widerRepeated

Arguments

vector An atomic vector.

parameter_name character(1). The REDCap API parameter name.

Examples

Not run:
vectorToApiBodyList(1:3, "records")

End(Not run)

widerRepeated Transform Data Into Wide Format

Description

Converts a dataframe into wide format given a single REDCap form. This function assumes that
the Records argument is the result of exportRecordsTyped, and that all empty values have been
previously dropped. This will only widen data frames that have a unique identification variable
(e.g. ’record_id’), "redcap_event_name" and "redcap_repeat_instrument" in the fields. Otherwise,
the data passed in will be returned unchanged.

Usage

widerRepeated(Records, rcon)

Arguments

Records data.frame containing the records from exportRecordsTyped()

rcon A redcapConnection object.

See Also

Other post-processing functions:
recastRecords(),
guessCast(),
guessDate(),
castForImport(),
mChoiceCast(),
splitForms()

writeDataForImport 143

Examples

Not run:
unlockREDCap(connections = c(rcon = "project_alias"),

url = "your_redcap_url",
keyring = "API_KEYs",
envir = globalenv())

Records <- exportRecordsTyped(rcon)

widerRepeated(Records, rcon)

End(Not run)

writeDataForImport Prepare a Data Frame for Import Through the API

Description

Converts a dataframe into a character value in the format of a CSV for import through the API.

Usage

writeDataForImport(data)

Arguments

data data.frame to be imported to the API

Index

∗ datasets
fieldValidationAndCasting, 53
redcapDataStructures, 116

[.redcapFactor (Extraction), 47

allocationTable, 4
allocationTable_offline

(allocationTable), 4
armsMethods, 7
as.character.response, 9
as.list.redcapCodebook

(assembleCodebook), 9
assembleCodebook, 9

castCheckCode
(fieldValidationAndCasting), 53

castCheckCodeCharacter
(fieldValidationAndCasting), 53

castChecked
(fieldValidationAndCasting), 53

castCheckedCharacter
(fieldValidationAndCasting), 53

castCheckForImport
(fieldValidationAndCasting), 53

castCheckForImport(), 50, 75, 110
castCheckLabel

(fieldValidationAndCasting), 53
castCheckLabelCharacter

(fieldValidationAndCasting), 53
castCode (fieldValidationAndCasting), 53
castCodeCharacter

(fieldValidationAndCasting), 53
castDpCharacter

(fieldValidationAndCasting), 53
castDpNumeric

(fieldValidationAndCasting), 53
castForImport (fieldCastingFunctions),

47
castForImport(), 29, 110, 121, 122, 142

castLabel (fieldValidationAndCasting),
53

castLabelCharacter
(fieldValidationAndCasting), 53

castLogical
(fieldValidationAndCasting), 53

castRaw (fieldValidationAndCasting), 53
castTimeHHMM

(fieldValidationAndCasting), 53
castTimeMMSS

(fieldValidationAndCasting), 53
changedRecords, 12
checkbox_suffixes, 13
connectAndCheck, 13
constructLinkToRedcapForm, 14
createFileRepositoryFolder, 15
createFileRepositoryFolder(), 35, 63, 67
createRedcapProject, 17
createRedcapProject(), 44
createSplunkFUN (logEvent), 75
curl::curl, 77
curl::handle_setopt, 112, 115

dagAssignmentMethods, 19
dagMethods, 21
default_cast_character

(fieldValidationAndCasting), 53
default_cast_no_factor

(fieldValidationAndCasting), 53
deleteArms (armsMethods), 7
deleteDags (dagMethods), 21
deleteDags(), 20, 127
deleteEvents (eventsMethods), 25
deleteFileRepository

(fileRepositoryMethods), 61
deleteFileRepository(), 16, 35, 67
deleteFiles (fileMethods), 58
deleteFromFileRepository

(fromFileRepositoryMethods), 65
deleteFromFileRepository(), 16, 35, 63

144

INDEX 145

deleteRecords, 23
deleteRecords(), 72, 100, 104
deleteUserRoles (userRoleMethods), 136
deleteUserRoles(), 134, 136
deleteUsers (userMethods), 131
deleteUsers(), 136, 139
dropRepeatingNA, 25

eventsMethods, 25
exportArms (armsMethods), 7
exportBulkRecords, 28, 45
exportBulkRecords(), 45, 110
exportDags (dagMethods), 21
exportDags(), 20, 127
exportDataQuality, 30
exportEvents (eventsMethods), 25
exportExternalCoding, 31
exportExternalCoding(), 114
exportFieldNames, 32
exportFieldNames(), 42, 81, 83
exportFieldNamesArgs

(exportFieldNames), 32
exportFileRepository

(fileRepositoryMethods), 61
exportFileRepository(), 16, 35, 67, 98
exportFileRepositoryListing, 34
exportFileRepositoryListing(), 16, 63,

67
exportFiles (fileMethods), 58
exportFiles(), 35, 37, 98
exportFilesMultiple, 35
exportFilesMultiple(), 60
exportFromFileRepository

(fromFileRepositoryMethods), 65
exportFromFileRepository(), 16, 35, 63,

98
exportInstruments, 38
exportInstruments(), 33, 39, 42, 81, 83
exportLogging, 39
exportLogging(), 12
exportMappings (mappingMethods), 80
exportMappings(), 27, 33, 39, 42, 83
exportMetaData (metaDataMethods), 81
exportMetaData(), 11, 33, 39, 42, 81
exportNextRecordName

(recordsManagementMethods), 99
exportNextRecordName(), 104
exportPdf, 41
exportPdf(), 33, 39, 81, 83, 98

exportProjectInformation
(projectInformationMethods), 91

exportProjectXml, 43
exportProjectXml(), 18, 19
exportRecords (recordsMethods), 100
exportRecords(), 24, 29, 72, 100, 110
exportRecords_offline (recordsMethods),

100
exportRecordsTyped

(recordsTypedMethods), 105
exportRecordsTyped(), 24, 25, 28, 29, 47,

50, 55, 57, 65, 72, 73, 100, 104, 121,
124, 142

exportRepeatingInstrumentsEvents
(repeatingInstrumentMethods),
118

exportReports (recordsMethods), 100
exportReports(), 29, 100, 110
exportReportsTyped

(recordsTypedMethods), 105
exportReportsTyped(), 25, 50, 57, 65, 100,

104, 121, 124
exportSAS, 45
exportSurveyLink (surveyMethods), 124
exportSurveyParticipants

(surveyMethods), 124
exportSurveyQueueLink (surveyMethods),

124
exportSurveyReturnCode (surveyMethods),

124
exportUserDagAssignments

(dagAssignmentMethods), 19
exportUserDagAssignments(), 22, 127
exportUserRoleAssignments

(userRoleAssignmentMethods),
135

exportUserRoleAssignments(), 134, 139
exportUserRoles (userRoleMethods), 136
exportUserRoles(), 134, 136
exportUsers (userMethods), 131
exportUsers(), 132, 136, 138, 139
exportVersion, 46
Extraction, 47

fieldCastingFunctions, 47
fieldCastingFunctions(), 57
fieldChoiceMapping, 51
fieldToVar, 52
fieldValidationAndCasting, 53

146 INDEX

fieldValidationAndCasting(), 29, 48, 50,
107, 109, 110

fileMethods, 58
fileRepositoryMethods, 61
fileRepositoryPath, 64
filterEmptyRow, 65
format.invalid (invalidSummary), 73
fromFileRepositoryMethods, 65

getProjectIdFields, 67
globalenv(), 129
guessCast (fieldCastingFunctions), 47
guessCast(), 29, 110, 121, 122, 142
guessDate (fieldCastingFunctions), 47
guessDate(), 29, 110, 122, 142

importArms (armsMethods), 7
importDags (dagMethods), 21
importDags(), 20, 127
importEvents (eventsMethods), 25
importFileRepository

(fileRepositoryMethods), 61
importFileRepository(), 16, 35, 67
importFiles (fileMethods), 58
importFiles(), 69
importFileToRecord, 68
importFileToRecord(), 60
importMappings (mappingMethods), 80
importMappings(), 27, 33, 39, 42, 83
importMetaData (metaDataMethods), 81
importMetaData(), 33, 39, 42, 81
importProjectInformation

(projectInformationMethods), 91
importRecords, 70
importRecords(), 24, 69, 100, 104
importRepeatingInstrumentsEvents

(repeatingInstrumentMethods),
118

importRepeatingInstrumentsEvents(), 95
importToFileRepository

(fromFileRepositoryMethods), 65
importToFileRepository(), 16, 35, 63
importUserDagAssignments

(dagAssignmentMethods), 19
importUserDagAssignments(), 22, 127
importUserRoleAssignments

(userRoleAssignmentMethods),
135

importUserRoleAssignments(), 134, 139

importUserRoles (userRoleMethods), 136
importUserRoles(), 87, 134, 136
importUsers (userMethods), 131
importUsers(), 87, 136, 139
invalidSummary, 73
isNAorBlank

(fieldValidationAndCasting), 53
isNAorBlank(), 49, 107
isZeroCodedCheckField, 74

logEvent, 75
logMessage (logEvent), 75
logStop (logEvent), 75
logWarning (logEvent), 75

makeApiCall, 77
mappingMethods, 79
mChoiceCast (fieldCastingFunctions), 47
mChoiceCast(), 29, 110, 122, 142
metaDataMethods, 81
metaDataMethodsArgs (metaDataMethods),

81
missingSummary, 84
missingSummary(), 86
missingSummary_offline

(missingSummary), 84

na_values (fieldValidationAndCasting),
53

offlineConnection (redcapConnection),
111

offlineConnection(), 90

parseBranchingLogic, 86
prepUserImportData, 87
prepUserImportData(), 132, 138
preserveProject, 88
preserveProject(), 115
print.invalid (invalidSummary), 73
print.redcapApiConnection

(redcapConnection), 111
print.redcapFactor (Extraction), 47
print.redcapOfflineConnection

(redcapConnection), 111
projectInformationMethods, 91
purgeProject (purgeRestoreProject), 93
purgeProject(), 90
purgeRestoreProject, 93

INDEX 147

raw_cast (fieldValidationAndCasting), 53
readPreservedProject (preserveProject),

88
readPreservedProject(), 115
recastRecords (fieldCastingFunctions),

47
recastRecords(), 29, 110, 122, 142
recodeCheck, 96
reconstituteFileFromExport, 97
recordsManagementMethods, 99
recordsMethods, 100
recordsTypedMethods, 105
REDCAP_METADATA_FIELDTYPE

(redcapDataStructures), 116
REDCAP_METADATA_VALIDATION_TYPE

(redcapDataStructures), 116
REDCAP_PROJECT_PURPOSE

(redcapDataStructures), 116
REDCAP_REPEAT_INSTRUMENT_STRUCTURE

(redcapDataStructures), 116
REDCAP_SYSTEM_FIELDS

(redcapDataStructures), 116
redcapConnection, 111
redcapConnection(), 13, 78, 129, 130
redcapDataStructures, 116
redcapFactorFlip, 117
renameRecord

(recordsManagementMethods), 99
renameRecord(), 104
repeatingInstrumentEventMethods

(repeatingInstrumentMethods),
118

repeatingInstrumentMethods, 118
restoreProject (purgeRestoreProject), 93
restoreProject(), 90
reviewInvalidRecords, 119
reviewInvalidRecords(), 29, 49, 50, 110

skip_validation
(fieldValidationAndCasting), 53

splitForms, 121
splitForms(), 29, 50, 110, 142
stringCleanup, 122
stringCleanup(), 124
stripHTMLandUnicode, 123
stripHTMLTags (stringCleanup), 122
stripHTMLTags(), 124
stripUnicode (stringCleanup), 122
stripUnicode(), 124

summary.invalid (invalidSummary), 73
surveyMethods, 124
switchDag, 127
switchDag(), 20, 22
switchDagArgs (switchDag), 127
syncUnderscoreCodings, 128

unitsFieldAnnotation
(stripHTMLandUnicode), 123

unlockREDCap, 129
unlockREDCap(), 115
userMethods, 131
userRoleAssignmentMethods, 135
userRoleMethods, 136
utils::read.csv(), 103

valChoice (fieldValidationAndCasting),
53

valChoice(), 49, 107
validateImport, 140
validateImport(), 72
validateRedcapData

(redcapDataStructures), 116
valPhone (fieldValidationAndCasting), 53
valRx (fieldValidationAndCasting), 53
valRx(), 49, 107
valSkip (fieldValidationAndCasting), 53
vectorToApiBodyList, 141

warnOfZeroCodedCheckCasting
(isZeroCodedCheckField), 74

warnZeroCodedFieldPresent
(isZeroCodedCheckField), 74

widerRepeated, 142
widerRepeated(), 29, 50, 110, 122
writeDataForImport, 143

	allocationTable
	armsMethods
	as.character.response
	assembleCodebook
	changedRecords
	checkbox_suffixes
	connectAndCheck
	constructLinkToRedcapForm
	createFileRepositoryFolder
	createRedcapProject
	dagAssignmentMethods
	dagMethods
	deleteRecords
	dropRepeatingNA
	eventsMethods
	exportBulkRecords
	exportDataQuality
	exportExternalCoding
	exportFieldNames
	exportFileRepositoryListing
	exportFilesMultiple
	exportInstruments
	exportLogging
	exportPdf
	exportProjectXml
	exportSAS
	exportVersion
	Extraction
	fieldCastingFunctions
	fieldChoiceMapping
	fieldToVar
	fieldValidationAndCasting
	fileMethods
	fileRepositoryMethods
	fileRepositoryPath
	filterEmptyRow
	fromFileRepositoryMethods
	getProjectIdFields
	importFileToRecord
	importRecords
	invalidSummary
	isZeroCodedCheckField
	logEvent
	makeApiCall
	mappingMethods
	metaDataMethods
	missingSummary
	parseBranchingLogic
	prepUserImportData
	preserveProject
	projectInformationMethods
	purgeRestoreProject
	recodeCheck
	reconstituteFileFromExport
	recordsManagementMethods
	recordsMethods
	recordsTypedMethods
	redcapConnection
	redcapDataStructures
	redcapFactorFlip
	repeatingInstrumentMethods
	reviewInvalidRecords
	splitForms
	stringCleanup
	stripHTMLandUnicode
	surveyMethods
	switchDag
	syncUnderscoreCodings
	unlockREDCap
	userMethods
	userRoleAssignmentMethods
	userRoleMethods
	validateImport
	vectorToApiBodyList
	widerRepeated
	writeDataForImport
	Index

