--- title: "Workflow: richCluster Example" author: "Sarah Hong" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Workflow: richCluster Example} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(richCluster) library(dplyr) library(tidyr) ``` ## Load or Generate Clustering Data ```{r load-cluster-data} load_cluster_data <- function(from_scratch=FALSE) { if (!from_scratch) { cluster_result <- readRDS(system.file("extdata", "cluster_result.rds", package = "richCluster")) } else { rr1 <- read.delim(system.file("extdata", "HF36wk_vs_HF12wk.txt", package="richCluster")) rr2 <- read.delim(system.file("extdata", "HF36wk_vs_WT12wk.txt", package="richCluster")) enrichment_results <- list(rr1, rr2) rr_names <- c('hf36_vs_hf12', 'wt36_vs_wt12') cluster_result <- richCluster::cluster( enrichment_results, df_names = rr_names, min_terms = 3, min_value=0.0001, distance_metric = "kappa", distance_cutoff = 0.5, linkage_method = "average", linkage_cutoff = 0.5 ) } return(cluster_result) } cluster_result <- load_cluster_data(from_scratch = FALSE) ``` ## Cluster-Level Visualizations ```{r cluster-hmap} c_hmap <- cluster_hmap(cluster_result) c_hmap ``` ```{r cluster-bar} c_bar <- cluster_bar(cluster_result) c_bar ``` ```{r cluster-dot} c_dot <- cluster_dot(cluster_result) c_dot ``` ## Term-Level Visualizations ```{r term-hmap} clusters <- c("blood vessel development", "response to lipoprotein particle", "positive regulation of cell death") terms <- c("myelination", "lipid oxidation") t_hmap <- term_hmap(cluster_result, clusters, terms, value_type = "Padj") t_hmap ``` ```{r term-bar} t_bar <- term_bar(cluster_result, 1) t_bar ``` ```{r term-dot} t_dot <- term_dot(cluster_result, 1) t_dot ``` ## Export Results ```{r export-cluster-df} cluster_df <- export_df(cluster_result) head(cluster_df) ```