| Type: | Package | 
| Title: | M-Estimator for Threshold Spatial Dynamic Panel Data Model | 
| Version: | 0.2 | 
| Author: | Junyue Wu | 
| Maintainer: | Junyue Wu <wu.junyue.p1@dc.tohoku.ac.jp> | 
| Description: | M-estimator for threshold and non-threshold spatial dynamic panel data model. Yang, Z (2018) <doi:10.1016/j.jeconom.2017.08.019>. Wu, J., Matsuda, Y (2021) <doi:10.1007/s43071-021-00008-1>. | 
| License: | MIT + file LICENSE | 
| Imports: | Rcpp (≥ 1.0.5), rCMA, matrixcalc, rJava, Matrix | 
| LinkingTo: | Rcpp, RcppArmadillo | 
| LazyData: | true | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.1.1 | 
| Depends: | R (≥ 2.10) | 
| NeedsCompilation: | yes | 
| Packaged: | 2021-03-21 05:15:20 UTC; wjyzx | 
| Repository: | CRAN | 
| Date/Publication: | 2021-03-22 15:20:02 UTC | 
sdpdth
Description
M-estimator for threshold and non-threshold spatial dynamic panel data model.
Author(s)
Junyue Wu <wu.junyue.p1@dc.tohoku.ac.jp>
A simulated data set for testing
Description
A simulated data set for testing
Usage
data_n
Format
An object of class list of length 4.
A simulated data set for testing
Description
A simulated data set for testing
Usage
data_nw
Format
An object of class matrix with 12 rows and 12 columns.
A simulated data set for testing
Description
A simulated data set for testing
Usage
data_th
Format
An object of class list of length 8.
A simulated data set for testing
Description
A simulated data set for testing
Usage
data_w
Format
An object of class matrix with 16 rows and 16 columns.
M-estimator for spatial dynamic panel data model
Description
Estimating the spatial dynamic panel data model with M-estimator
Usage
msdpd(
  y,
  x,
  w1,
  correction = TRUE,
  hessian_er = FALSE,
  true_range = FALSE,
  max_try = 5,
  w2 = w1,
  w3 = w1,
  no_tf = FALSE,
  model = "full",
  rcpp = TRUE,
  cma_pop_multi = 1
)
Arguments
y | 
 matrix, containing regional index (first column), time index (second column, numeric) and dependent variable (third column, numeric).  | 
x | 
 matrix, containing regional index (first column), time index (second column, numeric) and regressors (numeric).  | 
w1 | 
 matrix, the spatial weight matrix. If w2 and w3 are supplied, the spatial weight matrix for spatial lag.  | 
correction | 
 logical, whether to use adjusted score function. Default value is TRUE.  | 
hessian_er | 
 logical, whether to output hessian based se. Ignored if correction is set to False. Default value is FALSE.  | 
true_range | 
 logical, whether to used the accurate stationary check. Default value is FALSE due to performance reasons.  | 
max_try | 
 integer, maximum attempt for the solver. Default value is 5.  | 
w2 | 
 matrix, the spatial weight matrix for spatio-temporal lag. Default value is the same as w1.  | 
w3 | 
 matrix, the spatial weight matrix for spatial error. Default value is the same as w1.  | 
no_tf | 
 logical, whether to account for time effect. Default value is TRUE.  | 
model | 
 character, indicates the model used for estimation, can be "full", "slm", "sem", "sltl". See Details.  | 
rcpp | 
 logical, whether to use the rcpp implementation to calculate the score function. Default value is TRUE.  | 
cma_pop_multi | 
 integer, multiplier for the population size used in CMA-ES. Default value is 1.  | 
Details
Estimating the spatial dynamic panel data model with Yang(2018)'s M-estimator
	y_{ti} = \mu_{i}+\alpha_t + x_{ti}\beta + \rho y_{t-1,i} + \lambda_1 \sum_{j =1}^{n}w_{1,ij}y_{tj} + \lambda_2 \sum_{j =1}^{n}w_{2,ij}y_{t-1,j} +  u_{ti},\\ 
u_{ti} = \lambda_3\sum_{j =1}^{n}w_{3,ij}u_{tj} + v_{ti}, i=1,\ldots,n,t=1,\ldots,T
The minimum number of time-periods is 4. Make sure the rows and columns of w1, w2, and w3 are lined up with the regional index. Sub-models can be specified by argument "model"
"full" Full model
"slm"
\lambda_2 = \lambda_3 = 0"sem"
\lambda_1 = \lambda_2 = 0"sltl"
\lambda_3 = 0
Some suggestions when the optimizer fails:
-  
Increase max_try
 -  
Increase cma_pop_multi
 -  
try a different submodel
 
Value
A list of estimation results of S3 class "msdpd"
"coefficient" list, coefficients and standard errors
"model" character, model used for estimation
"vc_mat" matrix, variance-covariance matrix
"hessian" matrix, optional, hessian matrix
References
Yang, Z. (2018). Unified M-estimation of fixed-effects spatial dynamic models with short panels. Journal of Econometrics, 205(2), 423-447.
Examples
data(data_n, data_nw)
result <- msdpd(y = data_n$y, x = data_n$x, w1 = data_nw)
M-estimator for threshold spatial dynamic panel data model
Description
Estimating threshold spatial dynamic panel data model with M-estimator
Usage
msdpdth(
  y,
  x,
  w1,
  th,
  correction = TRUE,
  max_try = 5,
  all_er = FALSE,
  true_range = FALSE,
  residual = FALSE,
  w3 = w1,
  w2 = w1,
  no_tf = FALSE,
  model = "full",
  th_type = "row",
  ini_val = NULL,
  rcpp = TRUE,
  cma_pop_multi = 1
)
Arguments
y | 
 matrix, containing regional index (first column), time index (second column) and dependent variable (third column).  | 
x | 
 matrix, containing regional index (first column), time index (second column) and regressors.  | 
w1 | 
 matrix, the spatial weight matrix. If w2 and w3 are supplied, the spatial weight matrix for spatial lag.  | 
th | 
 data.frame, containing regional index (first column, numeric) and grouping indicator(second column, logical). The number of rows should be the same as the number of regions.  | 
correction | 
 logical, whether to use adjusted score function. Default value is TRUE.  | 
max_try | 
 integer, maximum attempt for the solver. Default value is 5.  | 
all_er | 
 logical, whether to output Hessian and Gamma matrix based se. Ignored if correction is set to FALSE. Default value is FALSE.  | 
true_range | 
 logical, whether to used the accurate stationary check. Default value is FALSE due to performance reasons.  | 
residual | 
 logical, whether to output the residual. Default value is FALSE.  | 
w3 | 
 matrix, the spatial weight matrix for spatial error. Default value is the same as w1.  | 
w2 | 
 matrix, the spatial weight matrix for spatio-temporal lag. Default value is the same as w1.  | 
no_tf | 
 logical, whether to account for time effect. Default value is TRUE.  | 
model | 
 character, indicates the model used for estimation, can be "full", "slm", "sem", "sltl". See Details.  | 
th_type | 
 character, "row" or "col". Indicates whether the threshold is applied to the columns or the rows of the weight matrix. Default value is "row".  | 
ini_val | 
 vector msdpd object. A length 4 vector of the initial values of lambda1, lambda2, lambda3, rho or an msdpd object that contain the non-threshold estimation result. If unsupplied msdpd() will be called.  | 
rcpp | 
 logical, whether to use the rcpp implementation to calculate the score function. Default value is TRUE.  | 
cma_pop_multi | 
 integer, multiplier for the population size used in CMA-ES. Default value is 1.  | 
Details
Estimating threshold spatial dynamic panel data model with extended Yang(2018)'s M-estimator
y_{ti} = \mu_{i} +\alpha_t+ x_{ti}\beta_{q} +\rho_{q} y_{t-1,i} + \lambda_{1q}\sum_{j=1}^{n}w_{1,ij}y_{tj} \\ 
\qquad + \lambda_{2q}\sum_{j=1}^{n}w_{2,ij}y_{t-1,i}+ u_{ti},\\
u_{ti} = \lambda_{3q}\sum_{j=1}^{n}w_{3,ij}u_{tj}+ v_{ti},i=1,\ldots,n,t=1,\ldots,T, q = 1,2
The minimum number of time-periods is 4. Make sure the rows and columns of w1, w2, and w3 are lined up with the regional index. Sub-models can be specified by argument "model"
"full" Full model
"slm"
\lambda_{2q} = \lambda_{3q} = 0"sem"
\lambda_{1q} = \lambda_{2q} = 0"sltl"
\lambda_{3q} = 0
Some suggestions when the optimizer fails:
-  
Increase max_try
 -  
Increase cma_pop_multi
 -  
try a different submodel
 
Value
A list of estimation results of S3 class "msdpdth"
"coefficient" list, coefficients and standard errors
"model" character, model used for estimation
"vc_mat" matrix, variance-covariance matrix
"hes_mat" matrix, optional, Hessian matrix
"gamma_mat" matrix, optional, Gamma matrix
"residual" numeric, optional, residuals
References
Wu, J and Matsuda, Y. (2021). A threshold extension of spatial dynamic panel model with fixed effects. Journal of Spatial Econometrics 2,3
Examples
data(data_th, data_w)
result <- msdpdth(y = data_th$y, x = data_th$x, w1 = data_w, th = data_th$th)
Print method for msdpd class
Description
Print method for msdpd class
Usage
## S3 method for class 'msdpd'
print(x, ...)
Arguments
x | 
 msdpd class  | 
... | 
 other parameters  | 
Details
Print method for msdpd class
Value
A data.frame containing the coefficients and the corresponding standard error.
Examples
data(data_n, data_nw)
result <- msdpd(y = data_n$y, x = data_n$x, w1 = data_nw)
result
Print method for msdpdth class
Description
Print method for msdpdth class
Usage
## S3 method for class 'msdpdth'
print(x, ...)
Arguments
x | 
 msdpdth class  | 
... | 
 other parameters  | 
Details
Print method for msdpdth class
Value
A data.frame containing the coefficients and the corresponding standard error.
Examples
data(data_th, data_w)
result <- msdpdth(y = data_th$y, x = data_th$x, w1 = data_w, th = data_th$th)
result
Wald test for threshold spatial dynamic panel data model
Description
Wald test for threshold spatial dynamic panel data model
Usage
wald_test(th_res)
Arguments
th_res | 
 msdpdth class, generated by function msdpdth()  | 
Details
Two sided Wald test for testing whether two estimated parameters for each group are equal
"h_0"
\theta_1 = \theta_2"h_1"
\theta_1 \neq \theta_2
Value
A list of p-values for each parameter.
Examples
data(data_th, data_w)
result <- msdpdth(y = data_th$y, x = data_th$x, w1 = data_w, th = data_th$th)
wald_test(result)