Sentiment Analysis via deep learning and gradient boosting models with a lot of the underlying hassle taken care of to make the process as simple as possible. 
  In addition to out-performing traditional, lexicon-based sentiment analysis (see <https://benwiseman.github.io/sentiment.ai/#Benchmarks>),
  it also allows the user to create embedding vectors for text which can be used in other analyses.
  GPU acceleration is supported on Windows and Linux.
| Version: | 
0.1.1 | 
| Depends: | 
R (≥ 4.0.0) | 
| Imports: | 
data.table (≥ 1.12.8), jsonlite, reticulate (≥ 1.16), roperators (≥ 1.2.0), stats, tensorflow (≥ 2.2.0), tfhub (≥
0.8.0), utils, xgboost | 
| Suggests: | 
rmarkdown, knitr, magrittr, microbenchmark, prettydoc, rappdirs, rstudioapi, text2vec (≥ 0.6) | 
| Published: | 
2022-03-19 | 
| DOI: | 
10.32614/CRAN.package.sentiment.ai | 
| Author: | 
Ben Wiseman [cre, aut, ccp],
  Steven Nydick  
    [aut],
  Tristan Wisner [aut],
  Fiona Lodge [ctb],
  Yu-Ann Wang [ctb],
  Veronica Ge [art],
  Korn Ferry Institute [fnd] | 
| Maintainer: | 
Ben Wiseman  <benjamin.h.wiseman at gmail.com> | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://benwiseman.github.io/sentiment.ai/,
https://github.com/BenWiseman/sentiment.ai | 
| NeedsCompilation: | 
no | 
| Materials: | 
README, NEWS  | 
| In views: | 
NaturalLanguageProcessing | 
| CRAN checks: | 
sentiment.ai results |