
Package ‘smooth’
October 27, 2025

Type Package

Title Forecasting Using State Space Models

Version 4.3.1

Date 2025-10-24

URL https://github.com/config-i1/smooth

BugReports https://github.com/config-i1/smooth/issues

Language en-GB

Description Functions implementing Single Source of Error state space models for pur-
poses of time series analysis and forecasting.
The package includes ADAM (Svetunkov, 2023, <https://openforecast.org/adam/>),
Exponential Smoothing (Hyndman et al., 2008, <doi:10.1007/978-3-540-71918-2>),
SARIMA (Svetunkov & Boylan, 2019 <doi:10.1080/00207543.2019.1600764>),
Complex Exponential Smoothing (Sve-
tunkov & Kourentzes, 2018, <doi:10.13140/RG.2.2.24986.29123>),
Simple Moving Average (Svetunkov & Petropou-
los, 2018 <doi:10.1080/00207543.2017.1380326>)
and several simulation functions. It also allows dealing with intermittent demand based on the
iETS framework (Svetunkov & Boylan, 2019, <doi:10.13140/RG.2.2.35897.06242>).

License LGPL-2.1

Depends R (>= 3.0.2), greybox (>= 2.0.2)

Imports Rcpp (>= 0.12.3), stats, generics (>= 0.1.2), graphics,
grDevices, pracma, statmod, MASS, nloptr, utils, xtable, zoo

LinkingTo Rcpp, RcppArmadillo (>= 0.8.100.0.0)

Suggests legion, numDeriv, testthat, knitr, rmarkdown, doMC,
doParallel, foreach

VignetteBuilder knitr

RoxygenNote 7.3.2

Encoding UTF-8

ByteCompile true

NeedsCompilation yes

1

https://github.com/config-i1/smooth
https://github.com/config-i1/smooth/issues
https://openforecast.org/adam/
https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.1080/00207543.2019.1600764
https://doi.org/10.13140/RG.2.2.24986.29123
https://doi.org/10.1080/00207543.2017.1380326
https://doi.org/10.13140/RG.2.2.35897.06242

2 Contents

Author Ivan Svetunkov [aut, cre] (Senior Lecturer at Centre for Marketing
Analytics and Forecasting, Lancaster University, UK)

Maintainer Ivan Svetunkov <ivan@svetunkov.com>

Repository CRAN

Date/Publication 2025-10-27 06:10:22 UTC

Contents

accuracy.smooth . 3
adam . 4
ces . 13
cma . 16
es . 18
forecast.adam . 25
gum . 27
is.smooth . 31
msarima . 33
msdecompose . 38
multicov . 40
oes . 41
oesg . 44
orders . 47
plot.adam . 48
pls . 51
reapply . 52
rmultistep . 54
sim.ces . 55
sim.es . 57
sim.gum . 60
sim.oes . 62
sim.sma . 64
sim.ssarima . 66
sma . 68
smooth . 71
smoothCombine . 74
sowhat . 77
ssarima . 78

Index 86

accuracy.smooth 3

accuracy.smooth Error measures for an estimated model

Description

Function produces error measures for the provided object and the holdout values of the response
variable. Note that instead of parameters x, test, the function accepts the vector of values in
holdout. Also, the parameters d and D are not supported - MASE is always calculated via division
by first differences.

Usage

S3 method for class 'smooth'
accuracy(object, holdout = NULL, ...)

S3 method for class 'smooth.forecast'
accuracy(object, holdout = NULL, ...)

Arguments

object The estimated model or a forecast from the estimated model generated via either
predict() or forecast() functions.

holdout The vector of values of the response variable in the holdout (test) set. If not
provided, then the function will return the in-sample error measures. If the
holdout=TRUE parameter was used in the estimation of a model, the holdout
values will be extracted automatically.

... Other variables passed to the forecast() function (e.g. newdata).

Details

The function is a wrapper for the measures function and is implemented for convenience.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

Examples

y <- rnorm(100, 100, 10)
ourModel <- adam(y, holdout=TRUE, h=10)
accuracy(ourModel)

4 adam

adam ADAM is Augmented Dynamic Adaptive Model

Description

Function constructs an advanced Single Source of Error model, based on ETS taxonomy and
ARIMA elements

Usage

adam(data, model = "ZXZ", lags = c(frequency(data)), orders = list(ar =
c(0), i = c(0), ma = c(0), select = FALSE), constant = FALSE,
formula = NULL, regressors = c("use", "select", "adapt"),
occurrence = c("none", "auto", "fixed", "general", "odds-ratio",
"inverse-odds-ratio", "direct"), distribution = c("default", "dnorm",
"dlaplace", "ds", "dgnorm", "dlnorm", "dinvgauss", "dgamma"),
loss = c("likelihood", "MSE", "MAE", "HAM", "LASSO", "RIDGE", "MSEh",
"TMSE", "GTMSE", "MSCE"), outliers = c("ignore", "use", "select"),
level = 0.99, h = 0, holdout = FALSE, persistence = NULL,
phi = NULL, initial = c("backcasting", "optimal", "two-stage",
"complete"), arma = NULL, ic = c("AICc", "AIC", "BIC", "BICc"),
bounds = c("usual", "admissible", "none"), silent = TRUE,
ets = c("conventional", "adam"), ...)

S3 method for class 'adam'
simulate(object, nsim = 1, seed = NULL,
obs = nobs(object), ...)

auto.adam(data, model = "ZXZ", lags = c(frequency(data)),
orders = list(ar = c(3, 3), i = c(2, 1), ma = c(3, 3), select = TRUE),
formula = NULL, regressors = c("use", "select", "adapt"),
occurrence = c("none", "auto", "fixed", "general", "odds-ratio",
"inverse-odds-ratio", "direct"), distribution = c("dnorm", "dlaplace",
"ds", "dgnorm", "dlnorm", "dinvgauss", "dgamma"), outliers = c("ignore",
"use", "select"), level = 0.99, h = 0, holdout = FALSE,
persistence = NULL, phi = NULL, initial = c("backcasting", "optimal",
"two-stage", "complete"), arma = NULL, ic = c("AICc", "AIC", "BIC",
"BICc"), bounds = c("usual", "admissible", "none"), silent = TRUE,
parallel = FALSE, ets = c("conventional", "adam"), ...)

S3 method for class 'adam'
sm(object, model = "YYY", lags = NULL, orders = list(ar =
c(0), i = c(0), ma = c(0), select = FALSE), constant = FALSE,
formula = NULL, regressors = c("use", "select", "adapt"), data = NULL,
persistence = NULL, phi = NULL, initial = c("optimal", "backcasting"),
arma = NULL, ic = c("AICc", "AIC", "BIC", "BICc"), bounds = c("usual",
"admissible", "none"), silent = TRUE, ...)

adam 5

Arguments

data Vector, containing data needed to be forecasted. If a matrix (or data.frame /
data.table) is provided, then the first column is used as a response variable, while
the rest of the matrix is used as a set of explanatory variables. formula can be
used in the latter case in order to define what relation to have.

model The type of ETS model. The first letter stands for the type of the error term ("A"
or "M"), the second (and sometimes the third as well) is for the trend ("N", "A",
"Ad", "M" or "Md"), and the last one is for the type of seasonality ("N", "A" or
"M"). In case of several lags, the seasonal components are assumed to be the
same. The model is then printed out as ETS(M,Ad,M)[m1,m2,...], where m1,
m2, ... are the lags specified by the lags parameter. There are several options
for the model besides the conventional ones, which rely on information criteria:

1. model="ZZZ" means that the model will be selected based on the chosen
information criteria type. The Branch and Bound is used in the process.

2. model="XXX" means that only additive components are tested, using Branch
and Bound.

3. model="YYY" implies selecting between multiplicative components.
4. model="CCC" triggers the combination of forecasts of models using infor-

mation criteria weights (Kolassa, 2011).
5. combinations between these four and the classical components are also ac-

cepted. For example, model="CAY" will combine models with additive
trend and either none or multiplicative seasonality.

6. model="PPP" will produce the selection between pure additive and pure
multiplicative models. "P" stands for "Pure". This cannot be mixed with
other types of components.

7. model="FFF" will select between all the 30 types of models. "F" stands for
"Full". This cannot be mixed with other types of components.

8. model="SSS" creates a pool of 19 standard sensible models, which have
finite variance. This can be combined with "X" or "Y" to further restrict
the pool. For example, model="SXS" corresponds to the default pool of 15
models in the ets() function from the forecast package.

9. The parameter model can also be a vector of names of models for a finer
tuning (pool of models). For example, model=c("ANN","AAA") will esti-
mate only two models and select the best of them.

Also, model can accept a previously estimated adam and use all its parameters.
Keep in mind that model selection with "Z" components uses Branch and Bound
algorithm and may skip some models that could have slightly smaller informa-
tion criteria. If you want to do a exhaustive search, you would need to list all the
models to check as a vector.
The default value is set to "ZXZ", because the multiplicative trend is explosive
and dangerous. It should be used only for each separate time series, not for the
automated predictions for big datasets.

lags Defines lags for the corresponding components. All components count, starting
from level, so ETS(M,M,M) model for monthly data will have lags=c(1,1,12).
However, the function will also accept lags=c(12), assuming that the lags 1

6 adam

were dropped. In case of ARIMA, lags specify what should be the seasonal com-
ponent lag. e.g. lags=c(1,12) will lead to the seasonal ARIMA with m=12.
This can accept several lags, supporting multiple seasonal ETS and ARIMA
models.

orders The order of ARIMA to be included in the model. This should be passed either
as a vector (in which case the non-seasonal ARIMA is assumed) or as a list of a
type orders=list(ar=c(p,P),i=c(d,D),ma=c(q,Q)), in which case the lags
variable is used in order to determine the seasonality m. See msarima for details.
In addition, orders accepts one more parameter: orders=list(select=FALSE).
If TRUE, then the function will select the most appropriate order using a mech-
anism similar to auto.msarima(), but implemented in auto.adam(). The val-
ues list(ar=...,i=...,ma=...) specify the maximum orders to check in this
case.

constant Logical, determining, whether the constant is needed in the model or not. This
is mainly needed for ARIMA part of the model, but can be used for ETS as well.
In case of pure regression, this is completely ignored (use formula instead).

formula Formula to use in case of explanatory variables. If NULL, then all the variables
are used as is. Can also include trend, which would add the global trend. Only
needed if data is a matrix or if trend is provided.

regressors The variable defines what to do with the provided explanatory variables: "use"
means that all of the data should be used, while "select" means that a selection
using ic should be done, "adapt" will trigger the mechanism of time varying
parameters for the explanatory variables.

occurrence The type of model used in probability estimation. Can be "none" - none,
"fixed" - constant probability, "general" - the general Beta model with two
parameters, "odds-ratio" - the Odds-ratio model with b=1 in Beta distribution,
"inverse-odds-ratio" - the model with a=1 in Beta distribution, "direct" -
the TSB-like (Teunter et al., 2011) probability update mechanism a+b=1, "auto"
- the automatically selected type of occurrence model.
The type of model used in the occurrence is equal to the one provided in the
model parameter.
Also, a model produced using oes or alm function can be used here.

distribution what density function to assume for the error term. The full name of the distri-
bution should be provided, starting with the letter "d" - "density". The names
align with the names of distribution functions in R. For example, see dnorm. For
detailed explanation of available distributions, see vignette in greybox package:
vignette("greybox","alm").

loss The type of Loss Function used in optimization. loss can be:

• likelihood - the model is estimated via the maximisation of the likelihood
of the function specified in distribution;

• MSE (Mean Squared Error),
• MAE (Mean Absolute Error),
• HAM (Half Absolute Moment),
• LASSO - use LASSO to shrink the parameters of the model;
• RIDGE - use RIDGE to shrink the parameters of the model;

adam 7

• TMSE - Trace Mean Squared Error,
• GTMSE - Geometric Trace Mean Squared Error,
• MSEh - optimisation using only h-steps ahead error,
• MSCE - Mean Squared Cumulative Error.

In case of LASSO / RIDGE, the variables are not normalised prior to the estima-
tion, but the parameters are divided by the mean values of explanatory variables.
Note that model selection and combination works properly only for the default
loss="likelihood".
Furthermore, just for fun the absolute and half analogues of multistep estimators
are available: MAEh, TMAE, GTMAE, MACE, HAMh, THAM, GTHAM, CHAM.
Last but not least, user can provide their own function here as well, making sure
that it accepts parameters actual, fitted and B. Here is an example:
lossFunction <- function(actual, fitted, B) return(mean(abs(actual-fitted)))

loss=lossFunction

outliers Defines what to do with outliers: "ignore", so just returning the model, "use"
- detect outliers based on specified level and include dummies for them in the
model, or detect and "select" those of them that reduce ic value.

level What confidence level to use for detection of outliers. The default is 99%. The
specific bounds of confidence interval depend on the distribution used in the
model.

h The forecast horizon. Mainly needed for the multistep loss functions.
holdout Logical. If TRUE, then the holdout of the size h is taken from the data (can be

used for the model testing purposes).
persistence Persistence vector g, containing smoothing parameters. If NULL, then estimated.

Can be also passed as a names list of the type: persistence=list(level=0.1,
trend=0.05, seasonal=c(0.1,0.2),xreg=c(0.1,0.2)). Dropping some el-
ements from the named list will make the function estimate them. e.g. if you
don’t specify seasonal in the persistence for the ETS(M,N,M) model, it will be
estimated.

phi Value of damping parameter. If NULL then it is estimated. Only applicable for
damped-trend models.

initial Can be either character or a list, or a vector of initial states. If it is charac-
ter, then it can be "backcasting", meaning that the initials of dynamic part
of the model are produced using backcasting procedure (advised for data with
high frequency), or "optimal", meaning that all initial states are optimised, or
"two-stage", meaning that optimisation is done after the backcasting, refining
the states. In case of backcasting, the parameters of the explanatory variables
are optimised. This is recommended for ETSX and ARIMAX models. Alter-
natively, you can set initial="complete" backcasting, which means that all
states (including explanatory variables) are initialised via backcasting.
If a use provides a list of values, it is recommended to use the named one and to
provide the initial components that are available. For example: initial=list(level=1000,trend=10,seasonal=list(c(1,2),c(1,2,3,4)),arima=1,xreg=100).
If some of the components are needed by the model, but are not provided in the
list, they will be estimated. If the vector is provided, then it is expected that
the components will be provided in the same order as above, one after another
without any gaps.

8 adam

arma Either the named list or a vector with AR / MA parameters ordered lag-wise. The
number of elements should correspond to the specified orders e.g. orders=list(ar=c(1,1),ma=c(1,1)),
lags=c(1,4), arma=list(ar=c(0.9,0.8),ma=c(-0.3,0.3))

ic The information criterion to use in the model selection / combination procedure.

bounds The type of bounds for the persistence to use in the model estimation. Can be
either admissible - guaranteeing the stability of the model, usual - restricting
the values with (0, 1) or none - no restrictions (potentially dangerous).

silent Specifies, whether to provide the progress of the function or not. If TRUE, then
the function will print what it does and how much it has already done.

ets Parameter determining, which ETS formulation to use. If ets="conventional",
the one from Hyndman et al. (2008) is used. In case of ets="adam", ADAM
reformulation that updates multiplicative components differently is used. The
latter is closer to applying ETS to log-transformed data when multiplicative
components are used. This helps makig trend less explosive.

... Other non-documented parameters. For example, FI=TRUE will make the func-
tion also produce Fisher Information matrix, which then can be used to calcu-
lated variances of smoothing parameters and initial states of the model. This is
calculated based on the hessian of log-likelihood function and accepts stepSize
parameter, determining how it is calculated. The default value is stepSize=.Machine$double.eps^(1/4).
This is used in the vcov method. Number of iterations inside the backcasting
loop to do is regulated with nIterations parameter. By default it is set to 2.
Furthermore, starting values of parameters can be passed via B, while the upper
and lower bounds should be passed in ub and lb respectively. In this case they
will be used for optimisation. These values should have the length equal to the
number of parameters to estimate in the following order:

1. All smoothing parameters (for the states and then for the explanatory vari-
ables);

2. Damping parameter (if needed);
3. ARMA parameters;
4. All the initial values (for the states and then for the explanatory variables).

You can also pass parameters to the optimiser in order to fine tune its work:

• maxeval - maximum number of evaluations to carry out. The default is
40 per estimated parameter for ETS and / or ARIMA and at least 1000 if
explanatory variables are introduced in the model (100 per parameter for
explanatory variables, but not less than 1000);

• maxtime - stop, when the optimisation time (in seconds) exceeds this;
• xtol_rel - the relative precision of the optimiser (the default is 1E-6);
• xtol_abs - the absolute precision of the optimiser (the default is 1E-8);
• ftol_rel - the stopping criterion in case of the relative change in the loss

function (the default is 1E-8);
• ftol_abs - the stopping criterion in case of the absolute change in the loss

function (the default is 0 - not used);
• algorithm - the algorithm to use in optimisation (by default, "NLOPT_LN_NELDERMEAD"

is used);

adam 9

• print_level - the level of output for the optimiser (0 by default). If equal
to 41, then the detailed results of the optimisation are returned.

You can read more about these parameters by running the function nloptr.print.options.
It is also possible to regulate what smoother to use to get initial seasonal in-
dices from the msdecompose function via the smoother parameter. Finally, the
parameter lambda for LASSO / RIDGE, alpha for the Asymmetric Laplace,
shape for the Generalised Normal and nu for Student’s distributions can be pro-
vided here as well.

object The model previously estimated using adam() function.

nsim Number of series to generate from the model.

seed Random seed used in simulation of data.

obs Number of observations to produce in the simulated data.

parallel If TRUE, the estimation of ADAM models is done in parallel (used in auto.adam
only). If the number is provided (e.g. parallel=41), then the specified number
of cores is set up. WARNING! Packages foreach and either doMC (Linux and
Mac only) or doParallel are needed in order to run the function in parallel.

Details

Function estimates ADAM in a form of the Single Source of Error state space model of the following
type:

yt = ot(w(vt−l) + h(xt, at−1) + r(vt−l)ϵt)

vt = f(vt−l, at−1) + g(vt−l, at−1, xt)ϵt

Where ot is the Bernoulli distributed random variable (in case of normal data it equals to 1 for
all observations), vt is the state vector and l is the vector of lags, xt is the vector of exogenous
variables. w(.) is the measurement function, r(.) is the error function, f(.) is the transition function,
g(.) is the persistence function and at is the vector of parameters for exogenous variables. Finally,
ϵt is the error term.

The implemented model allows introducing several seasonal states and supports intermittent data
via the occurrence variable.

The error term ϵt can follow different distributions, which are regulated via the distribution
parameter. This includes:

1. default - Normal distribution is used for the Additive error models, Gamma is used for the
Multiplicative error models.

2. dnorm - Normal distribution,

3. dlaplace - Laplace distribution,

4. ds - S distribution,

5. dgnorm - Generalised Normal distribution,

6. dlnorm - Log-Normal distribution,

7. dgamma - Gamma distribution,

10 adam

8. dinvgauss - Inverse Gaussian distribution,

For some more information about the model and its implementation, see the vignette: vignette("adam","smooth").
The more detailed explanation of ADAM is provided by Svetunkov (2021).

The function auto.adam() tries out models with the specified distributions and returns the one with
the most suitable one based on selected information criterion.

sm.adam method estimates the scale model for the already estimated adam. In order for ADAM
to take the SM model into account, the latter needs to be recorded in the former, amending the
likelihood and the number of degrees of freedom. This can be done using implant method.

Value

Object of class "adam" is returned. It contains the list of the following values:

• model - the name of the constructed model,

• timeElapsed - the time elapsed for the estimation of the model,

• data - the in-sample part of the data used for the training of the model. Includes the actual
values in the first column,

• holdout - the holdout part of the data, excluded for purposes of model evaluation,

• fitted - the vector of fitted values,

• residuals - the vector of residuals,

• forecast - the point forecast for h steps ahead (by default NA is returned). NOTE that
these do not always correspond to the conditional expectations for ETS models. See ADAM
textbook, Section 6.4. for details (https://openforecast.org/adam/ETSTaxonomyMaths.
html),

• states - the matrix of states with observations in rows and states in columns,

• persisten - the vector of smoothing parameters,

• phi - the value of damping parameter,

• transition - the transition matrix,

• measurement - the measurement matrix with observations in rows and state elements in
columns,

• initial - the named list of initial values, including level, trend, seasonal, ARIMA and xreg
components,

• initialEstimated - the named vector, defining which of the initials were estimated in the
model,

• initialType - the type of initialisation used (backcasting/optimal/two-stage/complete/provided),

• orders - the orders of ARIMA used in the estimation,

• constant - the value of the constant (if it was included),

• arma - the list of AR / MA parameters used in the model,

• nParam - the matrix of the estimated / provided parameters,

• occurrence - the oes model used for the occurrence part of the model,

• formula - the formula used for the explanatory variables expansion,

https://openforecast.org/adam/ETSTaxonomyMaths.html
https://openforecast.org/adam/ETSTaxonomyMaths.html

adam 11

• loss - the type of loss function used in the estimation,

• lossValue - the value of that loss function,

• logLik - the value of the log-likelihood,

• distribution - the distribution function used in the calculation of the likelihood,

• scale - the value of the scale parameter,

• lambda - the value of the parameter used in LASSO / dalaplace / dt,

• B - the vector of all estimated parameters,

• lags - the vector of lags used in the model construction,

• lagsAll - the vector of the internal lags used in the model,

• profile - the matrix with the profile used in the construction of the model,

• profileInitial - the matrix with the initial profile (for the before the sample values),

• call - the call used in the evaluation,

• bounds - the type of bounds used in the process,

• res - result of the model estimation, the output of the nloptr() function, explaining how
optimisation went,

• other - the list with other parameters, such as shape for distributions or ARIMA polynomials.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov I. (2023) Smooth forecasting with the smooth package in R. arXiv:2301.01790.
doi:10.48550/arXiv.2301.01790.

• Svetunkov I. (2015 - Inf) "smooth" package for R - series of posts about the underlying models
and how to use them: https://openforecast.org/category/r-en/smooth/.

• Svetunkov, I. (2023). Forecasting and Analytics with the Augmented Dynamic Adaptive
Model (ADAM) (1st ed.). Chapman and Hall/CRC. doi:10.1201/9781003452652, online ver-
sion: https://openforecast.org/adam/.

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Svetunkov, I., Boylan, J.E., 2023a. iETS: State Space Model for Intermittent Demand Fore-
castings. International Journal of Production Economics. 109013. doi:10.1016/j.ijpe.2023.109013

• Teunter R., Syntetos A., Babai Z. (2011). Intermittent demand: Linking forecasting to inven-
tory obsolescence. European Journal of Operational Research, 214, 606-615.

https://doi.org/10.48550/arXiv.2301.01790
https://openforecast.org/category/r-en/smooth/
https://doi.org/10.1201/9781003452652
https://openforecast.org/adam/
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.1016/j.ijpe.2023.109013

12 adam

• Croston, J. (1972) Forecasting and stock control for intermittent demands. Operational Re-
search Quarterly, 23(3), 289-303.

• Kolassa, S. (2011) Combining exponential smoothing forecasts using Akaike weights. Inter-
national Journal of Forecasting, 27, pp 238 - 251.

• Svetunkov, I., Boylan, J.E., 2023b. Staying Positive: Challenges and Solutions in Using
Pure Multiplicative ETS Models. IMA Journal of Management Mathematics. p. 403-425.
doi:10.1093/imaman/dpad028

• Taylor, J.W. and Bunn, D.W. (1999) A Quantile Regression Approach to Generating Prediction
Intervals. Management Science, Vol 45, No 2, pp 225-237.

• Lichtendahl Kenneth C., Jr., Grushka-Cockayne Yael, Winkler Robert L., (2013) Is It Bet-
ter to Average Probabilities or Quantiles? Management Science 59(7):1594-1611. DOI:
doi:10.1287/mnsc.1120.1667

See Also

es, msarima

Examples

The main examples are provided in the adam vignette, check it out via:
Not run: vignette("adam","smooth")

Model selection using a specified pool of models
ourModel <- adam(rnorm(100,100,10), model=c("ANN","ANA","AAA"), lags=c(5,10))
adamSummary <- summary(ourModel)
xtable(adamSummary)

forecast(ourModel)
par(mfcol=c(3,4))
plot(ourModel, c(1:11))

Model combination using a specified pool
ourModel <- adam(rnorm(100,100,10), model=c("ANN","AAN","MNN","CCC"),

lags=c(5,10))

ADAM ARIMA
ourModel <- adam(rnorm(100,100,10), model="NNN",

lags=c(1,4), orders=list(ar=c(1,0),i=c(1,0),ma=c(1,1)))

Fit ADAM to the data
ourModel <- adam(rnorm(100,100,10), model="AAdN")
Simulate the data
x <- simulate(ourModel)

Automatic selection of appropriate distribution and orders of ADAM ETS+ARIMA
ourModel <- auto.adam(rnorm(100,100,10), model="ZZN", lags=c(1,4),

orders=list(ar=c(2,2),ma=c(2,2),select=TRUE))

https://doi.org/10.1093/imaman/dpad028
https://doi.org/10.1287/mnsc.1120.1667

ces 13

ces Complex Exponential Smoothing

Description

Function estimates CES in state space form with information potential equal to errors and returns
several variables.

Usage

ces(y, seasonality = c("none", "simple", "partial", "full"),
lags = c(frequency(y)), initial = c("backcasting", "optimal",
"two-stage", "complete"), a = NULL, b = NULL, loss = c("likelihood",
"MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 0,
holdout = FALSE, bounds = c("admissible", "none"), silent = TRUE,
model = NULL, xreg = NULL, regressors = c("use", "select", "adapt"),
initialX = NULL, ...)

auto.ces(y, seasonality = c("none", "simple", "partial", "full"),
lags = c(frequency(y)), initial = c("backcasting", "optimal",
"two-stage", "complete"), ic = c("AICc", "AIC", "BIC", "BICc"),
loss = c("likelihood", "MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE",
"MSCE"), h = 0, holdout = FALSE, bounds = c("admissible", "none"),
silent = TRUE, xreg = NULL, regressors = c("use", "select", "adapt"),
...)

ces_old(y, seasonality = c("none", "simple", "partial", "full"),
initial = c("backcasting", "optimal"), a = NULL, b = NULL,
ic = c("AICc", "AIC", "BIC", "BICc"), loss = c("likelihood", "MSE",
"MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10, holdout = FALSE,
bounds = c("admissible", "none"), silent = c("all", "graph", "legend",
"output", "none"), xreg = NULL, regressors = c("use", "select"),
initialX = NULL, ...)

Arguments

y Vector or ts object, containing data needed to be forecasted.

seasonality The type of seasonality used in CES. Can be: none - No seasonality; simple -
Simple seasonality, using lagged CES (based on t-m observation, where m is the
seasonality lag); partial - Partial seasonality with the real seasonal component
(equivalent to additive seasonality); full - Full seasonality with complex sea-
sonal component (can do both multiplicative and additive seasonality, depending
on the data). First letter can be used instead of full words.
In case of the auto.ces() function, this parameter defines which models to try.

lags Vector of lags to use in the model. Allows defining multiple seasonal models.

14 ces

initial Can be either character or a list, or a vector of initial states. If it is charac-
ter, then it can be "backcasting", meaning that the initials of dynamic part
of the model are produced using backcasting procedure (advised for data with
high frequency), or "optimal", meaning that all initial states are optimised, or
"two-stage", meaning that optimisation is done after the backcasting, refining
the states. In case of backcasting, the parameters of the explanatory variables
are optimised. Alternatively, you can set initial="complete" backcasting,
which means that all states (including explanatory variables) are initialised via
backcasting.

a First complex smoothing parameter. Should be a complex number.
NOTE! CES is very sensitive to a and b values so it is advised either to leave
them alone, or to use values from previously estimated model.

b Second complex smoothing parameter. Can be real if seasonality="partial".
In case of seasonality="full" must be complex number.

loss The type of Loss Function used in optimization. loss can be: likelihood
(assuming Normal distribution of error term), MSE (Mean Squared Error), MAE
(Mean Absolute Error), HAM (Half Absolute Moment), TMSE - Trace Mean Squared
Error, GTMSE - Geometric Trace Mean Squared Error, MSEh - optimisation using
only h-steps ahead error, MSCE - Mean Squared Cumulative Error. If loss!="MSE",
then likelihood and model selection is done based on equivalent MSE. Model se-
lection in this cases becomes not optimal.
There are also available analytical approximations for multistep functions: aMSEh,
aTMSE and aGTMSE. These can be useful in cases of small samples.
Finally, just for fun the absolute and half analogues of multistep estimators are
available: MAEh, TMAE, GTMAE, MACE, TMAE, HAMh, THAM, GTHAM, CHAM.

h Length of forecasting horizon.

holdout If TRUE, holdout sample of size h is taken from the end of the data.

bounds The type of bounds for the persistence to use in the model estimation. Can
be either admissible - guaranteeing the stability of the model, or none - no
restrictions (potentially dangerous).

silent accepts TRUE and FALSE. If FALSE, the function will print its progress and pro-
duce a plot at the end.

model A previously estimated GUM model, if provided, the function will not estimate
anything and will use all its parameters.

xreg The vector (either numeric or time series) or the matrix (or data.frame) of ex-
ogenous variables that should be included in the model. If matrix included
than columns should contain variables and rows - observations. Note that xreg
should have number of observations equal either to in-sample or to the whole
series. If the number of observations in xreg is equal to in-sample, then values
for the holdout sample are produced using es function.

regressors The variable defines what to do with the provided xreg: "use" means that all of
the data should be used, while "select" means that a selection using ic should
be done.

initialX The vector of initial parameters for exogenous variables. Ignored if xreg is
NULL.

ces 15

... Other non-documented parameters. See adam for details. However, there are
several unique parameters passed to the optimiser in comparison with adam: 1.
algorithm0, which defines what algorithm to use in nloptr for the initial opti-
misation. By default, this is "NLOPT_LN_BOBYQA". 2. algorithm deter-
mines the second optimiser. By default this is "NLOPT_LN_NELDERMEAD".
3. maxeval0 and maxeval, that determine the number of iterations for the two
optimisers. By default, maxeval0=maxeval=40*k, where k is the number of
estimated parameters. 4. xtol_rel0 and xtol_rel, which are 1e-8 and 1e-6 respec-
tively. There are also ftol_rel0, ftol_rel, ftol_abs0 and ftol_abs, which by default
are set to values explained in the nloptr.print.options() function.

ic The information criterion to use in the model selection.

Details

The function estimates Complex Exponential Smoothing in the state space form described in Sve-
tunkov et al. (2022) with the information potential equal to the approximation error.

The auto.ces() function implements the automatic seasonal component selection based on infor-
mation criteria.

ces_old() is the old implementation of the model and will be discontinued starting from smooth
v4.5.0.

ces() uses two optimisers to get good estimates of parameters. By default these are BOBYQA and
then Nelder-Mead. This can be regulated via ... - see details below.

For some more information about the model and its implementation, see the vignette: vignette("ces","smooth")

Value

Object of class "adam" is returned with similar elements to the adam function.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov I. (2023) Smooth forecasting with the smooth package in R. arXiv:2301.01790.
doi:10.48550/arXiv.2301.01790.

• Svetunkov I. (2015 - Inf) "smooth" package for R - series of posts about the underlying models
and how to use them: https://openforecast.org/category/r-en/smooth/.

• Svetunkov, I. (2023). Forecasting and Analytics with the Augmented Dynamic Adaptive
Model (ADAM) (1st ed.). Chapman and Hall/CRC. doi:10.1201/9781003452652, online ver-
sion: https://openforecast.org/adam/.

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

https://doi.org/10.48550/arXiv.2301.01790
https://openforecast.org/category/r-en/smooth/
https://doi.org/10.1201/9781003452652
https://openforecast.org/adam/
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790

16 cma

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Svetunkov, I., Kourentzes, N., & Ord, J. K. (2022). Complex exponential smoothing. Naval
Research Logistics, 69(8), 1108–1123. https://doi.org/10.1002/nav.22074

See Also

adam, es

Examples

y <- rnorm(100,10,3)
ces(y, h=20, holdout=FALSE)

y <- 500 - c(1:100)*0.5 + rnorm(100,10,3)
ces(y, h=20, holdout=TRUE)

ces(BJsales, h=8, holdout=TRUE)

ces(AirPassengers, h=18, holdout=TRUE, seasonality="s")
ces(AirPassengers, h=18, holdout=TRUE, seasonality="p")
ces(AirPassengers, h=18, holdout=TRUE, seasonality="f")

y <- ts(rnorm(100,10,3),frequency=12)
CES with and without holdout
auto.ces(y,h=20,holdout=TRUE)
auto.ces(y,h=20,holdout=FALSE)

Selection between "none" and "full" seasonalities
auto.ces(AirPassengers, h=12, holdout=TRUE,

seasonality=c("n","f"), ic="AIC")

ourModel <- auto.ces(AirPassengers)

summary(ourModel)
forecast(ourModel, h=12)

cma Centered Moving Average

Description

Function constructs centered moving average based on state space SMA

Usage

cma(y, order = NULL, silent = TRUE, ...)

https://doi.org/10.1007/978-3-540-71918-2

cma 17

Arguments

y Vector or ts object, containing data needed to be smoothed.

order Order of centered moving average. If NULL, then the function will try to select
order of SMA based on information criteria. See sma for details.

silent If TRUE, then plot is not produced. Otherwise, there is a plot...

... Nothing. Needed only for the transition to the new name of variables.

Details

If the order is odd, then the function constructs SMA(order) and shifts it back in time. Otherwise
an AR(order+1) model is constructed with the preset parameters:

phii = 0.5, 1, 1, ..., 0.5/order

This then corresponds to the centered MA with 0.5 weight for the first observation and 0.5 weight
for an additional one. e.g. if this is monthly data and we use order=12, then half of the first January
and half of the new one is taken.

This is not a forecasting tool. This is supposed to smooth the time series in order to find trend. So
don’t expect any forecasts from this function!

Value

Object of class "smooth" is returned. It contains the list of the following values:

• model - the name of the estimated model.

• timeElapsed - time elapsed for the construction of the model.

• order - order of the moving average.

• nParam - table with the number of estimated / provided parameters. If a previous model was
reused, then its initials are reused and the number of provided parameters will take this into
account.

• fitted - the fitted values, shifted in time.

• forecast - NAs, because this function does not produce forecasts.

• residuals - the residuals of the SMA / AR model.

• s2 - variance of the residuals (taking degrees of freedom into account) of the SMA / AR
model.

• y - the original data.

• ICs - values of information criteria from the respective SMA or AR model. Includes AIC,
AICc, BIC and BICc.

• logLik - log-likelihood of the SMA / AR model.

• lossValue - Cost function value (for the SMA / AR model).

• loss - Type of loss function used in the estimation.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

18 es

References

• Svetunkov I. (2023) Smooth forecasting with the smooth package in R. arXiv:2301.01790.
doi:10.48550/arXiv.2301.01790.

• Svetunkov I. (2015 - Inf) "smooth" package for R - series of posts about the underlying models
and how to use them: https://openforecast.org/category/r-en/smooth/.

See Also

es, ssarima

Examples

CMA of specific order
ourModel <- cma(rnorm(118,100,3),order=12)

CMA of arbitrary order
ourModel <- cma(rnorm(118,100,3))

summary(ourModel)

es Exponential Smoothing in SSOE state space model

Description

Function constructs ETS model and returns forecast, fitted values, errors and matrix of states. It is
a wrapper of adam function.

Usage

es(y, model = "ZXZ", lags = c(frequency(y)), persistence = NULL,
phi = NULL, initial = c("backcasting", "optimal", "two-stage",
"complete"), initialSeason = NULL, ic = c("AICc", "AIC", "BIC", "BICc"),
loss = c("likelihood", "MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE",
"MSCE"), h = 10, holdout = FALSE, bounds = c("usual", "admissible",
"none"), silent = TRUE, xreg = NULL, regressors = c("use", "select"),
initialX = NULL, ...)

es_old(y, model = "ZZZ", persistence = NULL, phi = NULL,
initial = c("optimal", "backcasting"), initialSeason = NULL,
ic = c("AICc", "AIC", "BIC", "BICc"), loss = c("likelihood", "MSE",
"MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10, holdout = FALSE,
cumulative = FALSE, interval = c("none", "parametric", "likelihood",
"semiparametric", "nonparametric"), level = 0.95, bounds = c("usual",
"admissible", "none"), silent = c("all", "graph", "legend", "output",
"none"), xreg = NULL, regressors = c("use", "select"), initialX = NULL,
...)

https://doi.org/10.48550/arXiv.2301.01790
https://openforecast.org/category/r-en/smooth/

es 19

Arguments

y Vector or ts object, containing data needed to be forecasted.

model The type of ETS model. The first letter stands for the type of the error term ("A"
or "M"), the second (and sometimes the third as well) is for the trend ("N", "A",
"Ad", "M" or "Md"), and the last one is for the type of seasonality ("N", "A" or
"M"). So, the function accepts words with 3 or 4 characters: ANN, AAN, AAdN,
AAA, AAdA, MAdM etc. ZZZ means that the model will be selected based on the cho-
sen information criteria type. Models pool can be restricted with additive only
components. This is done via model="XXX". For example, making selection be-
tween models with none / additive / damped additive trend component only (i.e.
excluding multiplicative trend) can be done with model="ZXZ". Furthermore,
selection between multiplicative models (excluding additive components) is reg-
ulated using model="YYY". This can be useful for positive data with low values
(for example, slow moving products). Finally, if model="CCC", then all the mod-
els are estimated and combination of their forecasts using AIC weights is pro-
duced (Kolassa, 2011). This can also be regulated. For example, model="CCN"
will combine forecasts of all non-seasonal models and model="CXY" will com-
bine forecasts of all the models with non-multiplicative trend and non-additive
seasonality with either additive or multiplicative error. Not sure why anyone
would need this thing, but it is available.
The parameter model can also be a vector of names of models for a finer tuning
(pool of models). For example, model=c("ANN","AAA") will estimate only two
models and select the best of them.
Also model can accept a previously estimated ES or ETS (from forecast pack-
age) model and use all its parameters.
Keep in mind that model selection with "Z" components uses Branch and Bound
algorithm and may skip some models that could have slightly smaller informa-
tion criteria.

lags Defines lags for the corresponding components. All components count, starting
from level, so ETS(M,M,M) model for monthly data will have lags=c(1,1,12).
However, the function will also accept lags=c(12), assuming that the lags 1
were dropped.

persistence Persistence vector g, containing smoothing parameters. If NULL, then estimated.

phi Value of damping parameter. If NULL then it is estimated.

initial Can be either character or a list, or a vector of initial states. If it is charac-
ter, then it can be "backcasting", meaning that the initials of dynamic part
of the model are produced using backcasting procedure (advised for data with
high frequency), or "optimal", meaning that all initial states are optimised, or
"two-stage", meaning that optimisation is done after the backcasting, refining
the states. In case of backcasting, the parameters of the explanatory variables
are optimised. Alternatively, you can set initial="complete" backcasting,
which means that all states (including explanatory variables) are initialised via
backcasting.

initialSeason Vector of initial values for seasonal components. If NULL, they are estimated
during optimisation.

ic The information criterion used in the model selection procedure.

20 es

loss The type of Loss Function used in optimization. loss can be: likelihood
(assuming Normal distribution of error term), MSE (Mean Squared Error), MAE
(Mean Absolute Error), HAM (Half Absolute Moment), TMSE - Trace Mean Squared
Error, GTMSE - Geometric Trace Mean Squared Error, MSEh - optimisation using
only h-steps ahead error, MSCE - Mean Squared Cumulative Error. If loss!="MSE",
then likelihood and model selection is done based on equivalent MSE. Model se-
lection in this cases becomes not optimal.
There are also available analytical approximations for multistep functions: aMSEh,
aTMSE and aGTMSE. These can be useful in cases of small samples.
Finally, just for fun the absolute and half analogues of multistep estimators are
available: MAEh, TMAE, GTMAE, MACE, TMAE, HAMh, THAM, GTHAM, CHAM.

h Length of forecasting horizon.

holdout If TRUE, holdout sample of size h is taken from the end of the data.

bounds What type of bounds to use in the model estimation. The first letter can be
used instead of the whole word. "usual" implies restrictions on the smoothing
parameter, guaranteeing that the exponential smoothing behaves as an averaging
model. "admissible" guarantee that the model is stable.

silent accepts TRUE and FALSE. If FALSE, the function will print its progress and pro-
duce a plot at the end.

xreg The vector (either numeric or time series) or the matrix (or data.frame) of ex-
ogenous variables that should be included in the model. If matrix included
than columns should contain variables and rows - observations. Note that xreg
should have number of observations equal either to in-sample or to the whole
series. If the number of observations in xreg is equal to in-sample, then values
for the holdout sample are produced using es function.

regressors The variable defines what to do with the provided xreg: "use" means that all of
the data should be used, while "select" means that a selection using ic should
be done.

initialX The vector of initial parameters for exogenous variables. Ignored if xreg is
NULL.

... Other non-documented parameters. For example FI=TRUE will make the func-
tion also produce Fisher Information matrix, which then can be used to calcu-
lated variances of smoothing parameters and initial states of the model. Param-
eters B, lb and ub can be passed via ellipsis as well. In this case they will be
used for optimisation. B sets the initial values before the optimisation, lb and
ub define lower and upper bounds for the search inside of the specified bounds.
These values should have length equal to the number of parameters to estimate.
You can also pass two parameters to the optimiser: 1. maxeval - maximum
number of evaluations to carry on; 2. xtol_rel - the precision of the optimiser.
The default values used in es() are maxeval=500 and xtol_rel=1e-8. You can
read more about these parameters in the documentation of nloptr function.

cumulative If TRUE, then the cumulative forecast and prediction interval are produced in-
stead of the normal ones. This is useful for inventory control systems.

interval Type of interval to construct. This can be:

• "none", aka "n" - do not produce prediction interval.

es 21

• "parametric", "p" - use state-space structure of ETS. In case of mixed
models this is done using simulations, which may take longer time than for
the pure additive and pure multiplicative models. This type of interval relies
on unbiased estimate of in-sample error variance, which divides the sume
of squared errors by T-k rather than just T.

• "likelihood", "l" - these are the same as "p", but relies on the biased
estimate of variance from the likelihood (division by T, not by T-k).

• "semiparametric", "sp" - interval based on covariance matrix of 1 to
h steps ahead errors and assumption of normal / log-normal distribution
(depending on error type).

• "nonparametric", "np" - interval based on values from a quantile regres-
sion on error matrix (see Taylor and Bunn, 1999). The model used in this
process is e[j] = a j^b, where j=1,..,h.

The parameter also accepts TRUE and FALSE. The former means that parametric
interval are constructed, while the latter is equivalent to none. If the forecasts of
the models were combined, then the interval are combined quantile-wise (Lich-
tendahl et al., 2013).

level Confidence level. Defines width of prediction interval.

Details

Function estimates ETS in a form of the Single Source of Error state space model of the following
type:

yt = ot(w(vt−l) + h(xt, at−1) + r(vt−l)ϵt)

vt = f(vt−l) + g(vt−l)ϵt

at = FXat−1 + gXϵt/xt

Where ot is the Bernoulli distributed random variable (in case of normal data it equals to 1 for
all observations), vt is the state vector and l is the vector of lags, xt is the vector of exogenous
variables. w(.) is the measurement function, r(.) is the error function, f(.) is the transition function,
g(.) is the persistence function and h(.) is the explanatory variables function. at is the vector of
parameters for exogenous variables, FX is the transitionX matrix and gX is the persistenceX
matrix. Finally, ϵt is the error term.

For the details see Hyndman et al.(2008).

For some more information about the model and its implementation, see the vignette: vignette("es","smooth").

Also, there are posts about the functions of the package smooth on the website of Ivan Svetunkov:
https://openforecast.org/category/r-en/smooth/ - they explain the underlying models and
how to use the functions.

https://openforecast.org/category/r-en/smooth/

22 es

Value

Object of class "adam" is returned. It contains the list of the following values for classical ETS
models:

• model - type of constructed model.

• formula - mathematical formula, describing interactions between components of es() and
exogenous variables.

• timeElapsed - time elapsed for the construction of the model.

• states - matrix of the components of ETS.

• persistence - persistence vector. This is the place, where smoothing parameters live.

• phi - value of damping parameter.

• transition - transition matrix of the model.

• measurement - measurement vector of the model.

• initialType - type of the initial values used.

• initial - initial values of the state vector (non-seasonal).

• initialSeason - initial values of the seasonal part of state vector.

• nParam - table with the number of estimated / provided parameters. If a previous model was
reused, then its initials are reused and the number of provided parameters will take this into
account.

• fitted - fitted values of ETS. In case of the intermittent model, the fitted are multiplied by
the probability of occurrence.

• forecast - the point forecast for h steps ahead (by default NA is returned). NOTE that these
do not always correspond to the conditional expectations. See ADAM textbook, Section 4.4.
for details (https://openforecast.org/adam/ETSTaxonomyMaths.html),

• lower - lower bound of prediction interval. When interval="none" then NA is returned.

• upper - higher bound of prediction interval. When interval="none" then NA is returned.

• residuals - residuals of the estimated model.

• errors - trace forecast in-sample errors, returned as a matrix. Only returned when the multi-
step losses are used and semiparametric interval is needed.

• s2 - variance of the residuals (taking degrees of freedom into account). This is an unbiased
estimate of variance.

• interval - type of interval asked by user.

• level - confidence level for interval.

• cumulative - whether the produced forecast was cumulative or not.

• y - original data.

• holdout - holdout part of the original data.

• xreg - provided vector or matrix of exogenous variables. If regressors="s", then this value
will contain only selected exogenous variables.

• initialX - initial values for parameters of exogenous variables.

• ICs - values of information criteria of the model. Includes AIC, AICc, BIC and BICc.

https://openforecast.org/adam/ETSTaxonomyMaths.html

es 23

• logLik - concentrated log-likelihood of the function.

• lossValue - loss function value.

• loss - type of loss function used in the estimation.

• FI - Fisher Information. Equal to NULL if FI=FALSE or when FI is not provided at all.

• accuracy - vector of accuracy measures for the holdout sample. In case of non-intermittent
data includes: MPE, MAPE, SMAPE, MASE, sMAE, RelMAE, sMSE and Bias coefficient
(based on complex numbers). In case of intermittent data the set of errors will be: sMSE, sPIS,
sCE (scaled cumulative error) and Bias coefficient. This is available only when holdout=TRUE.

• B - the vector of all the estimated parameters.

If combination of forecasts is produced (using model="CCC"), then a shorter list of values is re-
turned:

• model,

• timeElapsed,

• initialType,

• fitted,

• forecast,

• lower,

• upper,

• residuals,

• s2 - variance of additive error of combined one-step-ahead forecasts,

• interval,

• level,

• cumulative,

• y,

• holdout,

• ICs - combined ic,

• ICw - ic weights used in the combination,

• loss,

• xreg,

• accuracy.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

24 es

References

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Svetunkov, I., Boylan, J.E., 2023a. iETS: State Space Model for Intermittent Demand Fore-
castings. International Journal of Production Economics. 109013. doi:10.1016/j.ijpe.2023.109013

• Teunter R., Syntetos A., Babai Z. (2011). Intermittent demand: Linking forecasting to inven-
tory obsolescence. European Journal of Operational Research, 214, 606-615.

• Croston, J. (1972) Forecasting and stock control for intermittent demands. Operational Re-
search Quarterly, 23(3), 289-303.

• Kolassa, S. (2011) Combining exponential smoothing forecasts using Akaike weights. Inter-
national Journal of Forecasting, 27, pp 238 - 251.

• Svetunkov, I., Boylan, J.E., 2023b. Staying Positive: Challenges and Solutions in Using
Pure Multiplicative ETS Models. IMA Journal of Management Mathematics. p. 403-425.
doi:10.1093/imaman/dpad028

• Taylor, J.W. and Bunn, D.W. (1999) A Quantile Regression Approach to Generating Prediction
Intervals. Management Science, Vol 45, No 2, pp 225-237.

• Lichtendahl Kenneth C., Jr., Grushka-Cockayne Yael, Winkler Robert L., (2013) Is It Bet-
ter to Average Probabilities or Quantiles? Management Science 59(7):1594-1611. DOI:
doi:10.1287/mnsc.1120.1667

See Also

adam, forecast,ts, sim.es

Examples

See how holdout and trace parameters influence the forecast
es(BJsales,model="AAdN",h=8,holdout=FALSE,loss="MSE")
es(AirPassengers,model="MAM",h=18,holdout=TRUE,loss="TMSE")

Model selection example
es(BJsales,model="ZZN",ic="AIC",h=8,holdout=FALSE,bounds="a")

Model selection. Compare AICc of these two models:
es(AirPassengers,"ZZZ",h=10,holdout=TRUE)
es(AirPassengers,"MAdM",h=10,holdout=TRUE)

Model selection, excluding multiplicative trend
es(AirPassengers,model="ZXZ",h=8,holdout=TRUE)

Combination example

https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.1016/j.ijpe.2023.109013
https://doi.org/10.1093/imaman/dpad028
https://doi.org/10.1287/mnsc.1120.1667

forecast.adam 25

es(BJsales,model="CCN",h=8,holdout=TRUE)

Model selection using a specified pool of models
ourModel <- es(AirPassengers,model=c("ANN","AAM","AMdA"),h=18)

Produce forecast and prediction interval
forecast(ourModel, h=18, interval="parametric")

Semiparametric interval example
forecast(ourModel, h=18, interval="semiparametric")

This will be the same model as in previous line but estimated on new portion of data
es(BJsales,model=ourModel,h=18,holdout=FALSE)

forecast.adam Forecasting time series using smooth functions

Description

Function produces conditional expectation (point forecasts) and prediction intervals for the esti-
mated model.

Usage

S3 method for class 'adam'
forecast(object, h = 10, newdata = NULL,
occurrence = NULL, interval = c("none", "prediction", "confidence",
"simulated", "approximate", "semiparametric", "nonparametric", "empirical",
"complete"), level = 0.95, side = c("both", "upper", "lower"),
cumulative = FALSE, nsim = NULL, scenarios = FALSE, ...)

S3 method for class 'smooth'
forecast(object, h = 10, interval = c("parametric",
"semiparametric", "nonparametric", "none"), level = 0.95,
side = c("both", "upper", "lower"), ...)

S3 method for class 'oes'
forecast(object, h = 10, ...)

S3 method for class 'msdecompose'
forecast(object, h = 10, interval = c("parametric",
"semiparametric", "nonparametric", "none"), level = 0.95, model = NULL,
...)

Arguments

object Time series model for which forecasts are required.

26 forecast.adam

h Forecast horizon.

newdata The new data needed in order to produce forecasts.

occurrence The vector containing the future occurrence variable (values in [0,1]), if it is
known.

interval What type of mechanism to use for interval construction. the recommended op-
tion is interval="prediction", which will use analytical solutions for pure
additive models and simulations for the others. interval="simulated" is the
slowest method, but is robust to the type of model. interval="approximate"
(aka interval="parametric") uses analytical formulae for conditional h-steps
ahead variance, but is approximate for the non-additive error models. interval="semiparametric"
relies on the multiple steps ahead forecast error (extracted via rmultistep method)
and on the assumed distribution of the error term. interval="nonparametric"
uses Taylor & Bunn (1999) approach with quantile regressions. interval="empirical"
constructs intervals based on empirical quantiles of multistep forecast errors.
interval="complete" will call for reforecast() function and produce in-
terval based on the uncertainty around the parameters of the model. Finally,
interval="confidence" tries to generate the confidence intervals for the point
forecast based on the reforecast method.

level Confidence level. Defines width of prediction interval.

side Defines, whether to provide "both" sides of prediction interval or only "upper",
or "lower".

cumulative If TRUE, then the cumulative forecast and prediction interval are produced in-
stead of the normal ones. This is useful for inventory control systems.

nsim Number of iterations to do in cases of interval="simulated", interval="prediction"
(for mixed and multiplicative model), interval="confidence" and interval="complete".
The default value for the prediction / simulated interval is 1000. In case of con-
fidence or complete intervals, this is set to 100.

scenarios Binary, defining whether to return scenarios produced via simulations or not.
Only works if interval="simulated". If TRUE the object will contain scenarios
variable.

... Other arguments accepted by either es, ces, gum or ssarima.

model The type of ETS model to fit on the decomposed trend. Only applicable to "ms-
decompose" class. This is then returned in parameter "esmodel". If NULL, then
it will be selected automatically based on the type of the used decomposition
(either among pure additive or among pure multiplicative ETS models).

Details

By default the function will generate conditional expectations from the estimated model and will
also produce a variety of prediction intervals based on user preferences.

Value

Returns object of class "smooth.forecast", which contains:

• model - the estimated model (ES / CES / GUM / SSARIMA).

gum 27

• method - the name of the estimated model (ES / CES / GUM / SSARIMA).

• forecast aka mean - point forecasts of the model (conditional mean).

• lower - lower bound of prediction interval.

• upper - upper bound of prediction interval.

• level - confidence level.

• interval - binary variable (whether interval were produced or not).

• scenarios - in case of forecast.adam() and interval="simulated" returns matrix with
scenarios (future paths) that were used in simulations.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponential
smoothing: the state space approach, Springer-Verlag.

See Also

forecast

Examples

ourModel <- es(rnorm(100,0,1), h=10)
forecast(ourModel, h=10, interval="parametric")

gum Generalised Univariate Model

Description

Function constructs Generalised Univariate Model, estimating matrices F, w, vector g and initial
parameters.

Usage

gum(y, orders = c(1, 1), lags = c(1, frequency(y)), type = c("additive",
"multiplicative"), initial = c("backcasting", "optimal", "two-stage",
"complete"), persistence = NULL, transition = NULL,
measurement = rep(1, sum(orders)), loss = c("likelihood", "MSE", "MAE",
"HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 0, holdout = FALSE,
bounds = c("admissible", "none"), silent = TRUE, model = NULL,
xreg = NULL, regressors = c("use", "select", "adapt", "integrate"),
initialX = NULL, ...)

28 gum

auto.gum(y, orders = 3, lags = frequency(y), type = c("additive",
"multiplicative", "select"), initial = c("backcasting", "optimal",
"two-stage", "complete"), ic = c("AICc", "AIC", "BIC", "BICc"),
loss = c("likelihood", "MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE",
"MSCE"), h = 0, holdout = FALSE, bounds = c("admissible", "none"),
silent = TRUE, xreg = NULL, regressors = c("use", "select", "adapt",
"integrate"), ...)

gum_old(y, orders = c(1, 1), lags = c(1, frequency(y)),
type = c("additive", "multiplicative"), persistence = NULL,
transition = NULL, measurement = rep(1, sum(orders)),
initial = c("optimal", "backcasting"), loss = c("likelihood", "MSE",
"MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10, holdout = FALSE,
bounds = c("restricted", "admissible", "none"), silent = c("all",
"graph", "legend", "output", "none"), xreg = NULL, regressors = c("use",
"select"), initialX = NULL, ...)

ges(...)

Arguments

y Vector or ts object, containing data needed to be forecasted.

orders Order of the model. Specified as vector of number of states with different lags.
For example, orders=c(1,1) means that there are two states: one of the first
lag type, the second of the second type. In case of auto.gum(), this parameters
is the value of the max order to check.

lags Defines lags for the corresponding orders. If, for example, orders=c(1,1) and
lags are defined as lags=c(1,12), then the model will have two states: the
first will have lag 1 and the second will have lag 12. The length of lags must
correspond to the length of orders. In case of the auto.gum(), the value of the
maximum lag to check. This should usually be a maximum frequency of the
data.

type Type of model. Can either be "additive" or "multiplicative". The latter
means that the GUM is fitted on log-transformed data. In case of auto.gum(),
can also be "select", implying automatic selection of the type.

initial Can be either character or a list, or a vector of initial states. If it is charac-
ter, then it can be "backcasting", meaning that the initials of dynamic part
of the model are produced using backcasting procedure (advised for data with
high frequency), or "optimal", meaning that all initial states are optimised, or
"two-stage", meaning that optimisation is done after the backcasting, refining
the states. In case of backcasting, the parameters of the explanatory variables
are optimised. Alternatively, you can set initial="complete" backcasting,
which means that all states (including explanatory variables) are initialised via
backcasting.

persistence Persistence vector g, containing smoothing parameters. If NULL, then estimated.

gum 29

transition Transition matrix F . Can be provided as a vector. Matrix will be formed using
the default matrix(transition,nc,nc), where nc is the number of compo-
nents in the state vector. If NULL, then estimated.

measurement Measurement vector w. If NULL, then estimated.
loss The type of Loss Function used in optimization. loss can be: likelihood

(assuming Normal distribution of error term), MSE (Mean Squared Error), MAE
(Mean Absolute Error), HAM (Half Absolute Moment), TMSE - Trace Mean Squared
Error, GTMSE - Geometric Trace Mean Squared Error, MSEh - optimisation using
only h-steps ahead error, MSCE - Mean Squared Cumulative Error. If loss!="MSE",
then likelihood and model selection is done based on equivalent MSE. Model se-
lection in this cases becomes not optimal.
There are also available analytical approximations for multistep functions: aMSEh,
aTMSE and aGTMSE. These can be useful in cases of small samples.
Finally, just for fun the absolute and half analogues of multistep estimators are
available: MAEh, TMAE, GTMAE, MACE, TMAE, HAMh, THAM, GTHAM, CHAM.

h Length of forecasting horizon.
holdout If TRUE, holdout sample of size h is taken from the end of the data.
bounds The type of bounds for the parameters to use in the model estimation. Can

be either admissible - guaranteeing the stability of the model, or none - no
restrictions (potentially dangerous).

silent accepts TRUE and FALSE. If FALSE, the function will print its progress and pro-
duce a plot at the end.

model A previously estimated GUM model, if provided, the function will not estimate
anything and will use all its parameters.

xreg The vector (either numeric or time series) or the matrix (or data.frame) of ex-
ogenous variables that should be included in the model. If matrix included
than columns should contain variables and rows - observations. Note that xreg
should have number of observations equal either to in-sample or to the whole
series. If the number of observations in xreg is equal to in-sample, then values
for the holdout sample are produced using es function.

regressors The variable defines what to do with the provided xreg: "use" means that all of
the data should be used, while "select" means that a selection using ic should
be done.

initialX The vector of initial parameters for exogenous variables. Ignored if xreg is
NULL.

... Other non-documented parameters. See adam for details. However, there are
several unique parameters passed to the optimiser in comparison with adam: 1.
algorithm0, which defines what algorithm to use in nloptr for the initial opti-
misation. By default, this is "NLOPT_LN_BOBYQA". 2. algorithm deter-
mines the second optimiser. By default this is "NLOPT_LN_NELDERMEAD".
3. maxeval0 and maxeval, that determine the number of iterations for the two
optimisers. By default, maxeval0=maxeval=40*k, where k is the number of
estimated parameters. 4. xtol_rel0 and xtol_rel, which are 1e-8 and 1e-6 respec-
tively. There are also ftol_rel0, ftol_rel, ftol_abs0 and ftol_abs, which by default
are set to values explained in the nloptr.print.options() function.

ic The information criterion used in the model selection procedure.

30 gum

Details

The function estimates the Single Source of Error state space model of the following type:

yt = w′
tvt−l + ϵt

vt = Fvt−l + gtϵt

where vt is the state vector (defined using orders) and l is the vector of lags, wt is the measurement
vector (which includes fixed elements and explanatory variables), F is the transition matrix, gt is
the persistence vector (includes explanatory variables as well if provided), finally, ϵt is the error
term.

For some more information about the model and its implementation, see the vignette: vignette("gum","smooth")

Value

Object of class "adam" is returned with similar elements to the adam function.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov I. (2023) Smooth forecasting with the smooth package in R. arXiv:2301.01790.
doi:10.48550/arXiv.2301.01790.

• Svetunkov I. (2015 - Inf) "smooth" package for R - series of posts about the underlying models
and how to use them: https://openforecast.org/category/r-en/smooth/.

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

See Also

adam, es, ces

gum, es,ces, sim.es, ssarima

https://doi.org/10.48550/arXiv.2301.01790
https://openforecast.org/category/r-en/smooth/
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2

is.smooth 31

Examples

gum(BJsales, h=8, holdout=TRUE)

ourModel <- gum(rnorm(118,100,3), orders=c(2,1), lags=c(1,4), h=18, holdout=TRUE)

Redo previous model on a new data and produce prediction interval
gum(rnorm(118,100,3), model=ourModel, h=18)

Produce something crazy with optimal initials (not recommended)
gum(rnorm(118,100,3), orders=c(1,1,1), lags=c(1,3,5), h=18, holdout=TRUE, initial="o")

Simpler model estimated using trace forecast error loss function and its analytical analogue
gum(rnorm(118,100,3), orders=c(1), lags=c(1), h=18, holdout=TRUE, bounds="n", loss="TMSE")

x <- rnorm(50,100,3)

The best GUM model for the data
ourModel <- auto.gum(x, orders=2, lags=4, h=18, holdout=TRUE)

summary(ourModel)

is.smooth Smooth classes checkers

Description

Functions to check if an object is of the specified class

Functions to check if an object is of the specified class

Usage

is.smooth(x)

is.smoothC(x)

is.msarima(x)

is.oes(x)

is.oesg(x)

is.smooth.sim(x)

is.smooth.forecast(x)

is.adam(x)

32 is.smooth

is.adam.sim(x)

is.msdecompose(x)

is.msdecompose.forecast(x)

Arguments

x The object to check.

Details

The list of functions includes:

• is.smooth() tests if the object was produced by a smooth function (e.g. es / ces / ssarima /
gum / sma / msarima);

• is.msarima() tests if the object was produced by the msarima function;

• is.smoothC() tests if the object was produced by a combination function (currently applies
only to smoothCombine);

• is.oes() tests if the object was produced by oes function;

• is.smooth.sim() tests if the object was produced by simulate functions (e.g. sim.es / sim.ces
/ sim.ssarima / sim.sma / sim.gum);

• is.smooth.forecast() checks if the forecast was produced from a smooth function using
forecast() function.

The list of functions includes:

• is.adam() tests if the object was produced by a adam function

• is.adam.sim() tests if the object was produced by sim.adam() function (not implemented
yet);

Value

TRUE if this is the specified class and FALSE otherwise.

TRUE if this is the specified class and FALSE otherwise.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

Examples

ourModel <- msarima(rnorm(100,100,10))

is.smooth(ourModel)
is.msarima(ourModel)

msarima 33

ourModel <- adam(rnorm(100,100,10))
is.adam(ourModel)

msarima Multiple Seasonal ARIMA

Description

Function constructs Multiple Seasonal State Space ARIMA, estimating AR, MA terms and initial
states. It is a wrapper of adam function.

Usage

msarima(y, orders = list(ar = c(0), i = c(1), ma = c(1)), lags = c(1),
constant = FALSE, AR = NULL, MA = NULL, model = NULL,
initial = c("backcasting", "optimal", "two-stage", "complete"),
ic = c("AICc", "AIC", "BIC", "BICc"), loss = c("likelihood", "MSE",
"MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10, holdout = FALSE,
bounds = c("usual", "admissible", "none"), silent = TRUE, xreg = NULL,
regressors = c("use", "select", "adapt"), initialX = NULL, ...)

auto.msarima(y, orders = list(ar = c(3, 3), i = c(2, 1), ma = c(3, 3)),
lags = c(1, frequency(y)), initial = c("backcasting", "optimal",
"two-stage", "complete"), ic = c("AICc", "AIC", "BIC", "BICc"),
loss = c("likelihood", "MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE",
"MSCE"), h = 10, holdout = FALSE, bounds = c("usual", "admissible",
"none"), silent = TRUE, xreg = NULL, regressors = c("use", "select",
"adapt"), initialX = NULL, ...)

msarima_old(y, orders = list(ar = c(0), i = c(1), ma = c(1)), lags = c(1),
constant = FALSE, AR = NULL, MA = NULL, initial = c("backcasting",
"optimal"), ic = c("AICc", "AIC", "BIC", "BICc"), loss = c("likelihood",
"MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10,
holdout = FALSE, cumulative = FALSE, interval = c("none", "parametric",
"likelihood", "semiparametric", "nonparametric"), level = 0.95,
bounds = c("admissible", "none"), silent = c("all", "graph", "legend",
"output", "none"), xreg = NULL, regressors = c("use", "select"),
initialX = NULL, ...)

Arguments

y Vector or ts object, containing data needed to be forecasted.

orders List of orders, containing vector variables ar, i and ma. Example: orders=list(ar=c(1,2),i=c(1),ma=c(1,1,1)).
If a variable is not provided in the list, then it is assumed to be equal to zero.
At least one variable should have the same length as lags. Another option is
to specify orders as a vector of a form orders=c(p,d,q). The non-seasonal

34 msarima

ARIMA(p,d,q) is constructed in this case. For auto.msarima this is the list of
maximum orders to check, containing vector variables ar, i and ma. If a variable
is not provided in the list, then it is assumed to be equal to zero. At least one
variable should have the same length as lags.

lags Defines lags for the corresponding orders (see examples above). The length of
lags must correspond to the length of either ar, i or ma in orders variable.
There is no restrictions on the length of lags vector. It is recommended to order
lags ascending. The orders are set by a user. If you want the automatic order
selection, then use auto.msarima function instead.

constant If TRUE, constant term is included in the model. Can also be a number (constant
value). For auto.msarima, if NULL, then the function will check if constant is
needed.

AR Vector or matrix of AR parameters. The order of parameters should be lag-wise.
This means that first all the AR parameters of the firs lag should be passed, then
for the second etc. AR of another msarima() can be passed here.

MA Vector or matrix of MA parameters. The order of parameters should be lag-wise.
This means that first all the MA parameters of the firs lag should be passed, then
for the second etc. MA of another msarima can be passed here.

model Previously estimated MSARIMA model.

initial Can be either character or a vector of initial states. If it is character, then it can
be "optimal", meaning that all initial states are optimised, or "backcasting",
meaning that the initials of dynamic part of the model are produced using back-
casting procedure (advised for data with high frequency). In the latter case, the
parameters of the explanatory variables are optimised. This is recommended for
ARIMAX model. Alternatively, you can set initial="complete" backcasting,
which means that all states (including explanatory variables) are initialised via
backcasting.

ic The information criterion used in the model selection procedure.

loss The type of Loss Function used in optimization. loss can be: likelihood
(assuming Normal distribution of error term), MSE (Mean Squared Error), MAE
(Mean Absolute Error), HAM (Half Absolute Moment), TMSE - Trace Mean Squared
Error, GTMSE - Geometric Trace Mean Squared Error, MSEh - optimisation using
only h-steps ahead error, MSCE - Mean Squared Cumulative Error. If loss!="MSE",
then likelihood and model selection is done based on equivalent MSE. Model se-
lection in this cases becomes not optimal.
There are also available analytical approximations for multistep functions: aMSEh,
aTMSE and aGTMSE. These can be useful in cases of small samples.
Finally, just for fun the absolute and half analogues of multistep estimators are
available: MAEh, TMAE, GTMAE, MACE, TMAE, HAMh, THAM, GTHAM, CHAM.

h Length of forecasting horizon.

holdout If TRUE, holdout sample of size h is taken from the end of the data.

bounds What type of bounds to use in the model estimation. The first letter can be used
instead of the whole word. "admissible" guarantee that the model is stable.
"usual" are not supported due to restrictions in adam().

msarima 35

silent accepts TRUE and FALSE. If FALSE, the function will print its progress and pro-
duce a plot at the end.

xreg The vector (either numeric or time series) or the matrix (or data.frame) of ex-
ogenous variables that should be included in the model. If matrix included
than columns should contain variables and rows - observations. Note that xreg
should have number of observations equal either to in-sample or to the whole
series. If the number of observations in xreg is equal to in-sample, then values
for the holdout sample are produced using es function.

regressors The variable defines what to do with the provided xreg: "use" means that all of
the data should be used, while "select" means that a selection using ic should
be done.

initialX The vector of initial parameters for exogenous variables. Ignored if xreg is
NULL.

... Other non-documented parameters. see adam for details.
FI=TRUE will make the function produce Fisher Information matrix, which then
can be used to calculated variances of parameters of the model.

cumulative If TRUE, then the cumulative forecast and prediction interval are produced in-
stead of the normal ones. This is useful for inventory control systems.

interval Type of interval to construct. This can be:

• "none", aka "n" - do not produce prediction interval.
• "parametric", "p" - use state-space structure of ETS. In case of mixed

models this is done using simulations, which may take longer time than for
the pure additive and pure multiplicative models. This type of interval relies
on unbiased estimate of in-sample error variance, which divides the sume
of squared errors by T-k rather than just T.

• "likelihood", "l" - these are the same as "p", but relies on the biased
estimate of variance from the likelihood (division by T, not by T-k).

• "semiparametric", "sp" - interval based on covariance matrix of 1 to
h steps ahead errors and assumption of normal / log-normal distribution
(depending on error type).

• "nonparametric", "np" - interval based on values from a quantile regres-
sion on error matrix (see Taylor and Bunn, 1999). The model used in this
process is e[j] = a j^b, where j=1,..,h.

The parameter also accepts TRUE and FALSE. The former means that parametric
interval are constructed, while the latter is equivalent to none. If the forecasts of
the models were combined, then the interval are combined quantile-wise (Lich-
tendahl et al., 2013).

level Confidence level. Defines width of prediction interval.

Details

The model, implemented in this function differs from the one in ssarima function (Svetunkov &
Boylan, 2019), but it is more efficient and better fitting the data (which might be a limitation).

The basic ARIMA(p,d,q) used in the function has the following form:

(1−B)d(1− a1B − a2B
2 − ...− apB

p)y[t] = (1 + b1B + b2B
2 + ...+ bqB

q)ϵ[t] + c

36 msarima

where y[t] is the actual values, ϵ[t] is the error term, ai, bj are the parameters for AR and MA
respectively and c is the constant. In case of non-zero differences c acts as drift.

This model is then transformed into ARIMA in the Single Source of Error State space form (based
by Snyder, 1985, but in a slightly different formulation):

yt = ot(w
′vt−l + xtat−1 + ϵt)

vt = Fvt−l + gϵt

at = FXat−1 + gXϵt/xt

Where ot is the Bernoulli distributed random variable (in case of normal data equal to 1), vt is the
state vector (defined based on orders) and l is the vector of lags, xt is the vector of exogenous pa-
rameters. w is the measurement vector, F is the transition matrix, g is the persistence vector,
at is the vector of parameters for exogenous variables, FX is the transitionX matrix and gX is
the persistenceX matrix. The main difference from ssarima function is that this implementation
skips zero polynomials, substantially decreasing the dimension of the transition matrix. As a result,
this function works faster than ssarima on high frequency data, and it is more accurate.

Due to the flexibility of the model, multiple seasonalities can be used. For example, something
crazy like this can be constructed: SARIMA(1,1,1)(0,1,1)[24](2,0,1)[24*7](0,0,1)[24*30], but the
estimation may take some time... Still this should be estimated in finite time (not like with ssarima).

The auto.msarima function constructs several ARIMA models in Single Source of Error state
space form based on adam function (see adam documentation) and selects the best one based on the
selected information criterion.

For some additional details see the vignettes: vignette("adam","smooth") and vignette("ssarima","smooth")

Value

Object of class "adam" is returned. It contains the list of the following values:

• model - the name of the estimated model.

• timeElapsed - time elapsed for the construction of the model.

• states - the matrix of the fuzzy components of msarima, where rows correspond to time and
cols to states.

• transition - matrix F.

• persistence - the persistence vector. This is the place, where smoothing parameters live.

• measurement - measurement vector of the model.

• AR - the matrix of coefficients of AR terms.

• I - the matrix of coefficients of I terms.

• MA - the matrix of coefficients of MA terms.

• constant - the value of the constant term.

• initialType - Type of the initial values used.

• initial - the initial values of the state vector (extracted from states).

• nParam - table with the number of estimated / provided parameters. If a previous model was
reused, then its initials are reused and the number of provided parameters will take this into
account.

msarima 37

• fitted - the fitted values.

• forecast - the point forecast.

• lower - the lower bound of prediction interval. When interval="none" then NA is returned.

• upper - the higher bound of prediction interval. When interval="none" then NA is returned.

• residuals - the residuals of the estimated model.

• errors - The matrix of 1 to h steps ahead errors. Only returned when the multistep losses are
used and semiparametric interval is needed.

• s2 - variance of the residuals (taking degrees of freedom into account).

• interval - type of interval asked by user.

• level - confidence level for interval.

• cumulative - whether the produced forecast was cumulative or not.

• y - the original data.

• holdout - the holdout part of the original data.

• xreg - provided vector or matrix of exogenous variables. If regressors="s", then this value
will contain only selected exogenous variables.

• initialX - initial values for parameters of exogenous variables.

• ICs - values of information criteria of the model. Includes AIC, AICc, BIC and BICc.

• logLik - log-likelihood of the function.

• lossValue - Cost function value.

• loss - Type of loss function used in the estimation.

• FI - Fisher Information. Equal to NULL if FI=FALSE or when FI is not provided at all.

• accuracy - vector of accuracy measures for the holdout sample. In case of non-intermittent
data includes: MPE, MAPE, SMAPE, MASE, sMAE, RelMAE, sMSE and Bias coefficient
(based on complex numbers). In case of intermittent data the set of errors will be: sMSE, sPIS,
sCE (scaled cumulative error) and Bias coefficient. This is available only when holdout=TRUE.

• B - the vector of all the estimated parameters.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Svetunkov, I., & Boylan, J. E. (2019). State-space ARIMA for supply-chain forecasting. In-
ternational Journal of Production Research, 0(0), 1–10. doi:10.1080/00207543.2019.1600764

https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.1080/00207543.2019.1600764

38 msdecompose

See Also

adam, orders,es, auto.ssarima

Examples

x <- rnorm(118,100,3)

The simple call of ARIMA(1,1,1):
ourModel <- msarima(x,orders=c(1,1,1),lags=1,h=18,holdout=TRUE)

Example of SARIMA(2,0,0)(1,0,0)[4]
msarima(x,orders=list(ar=c(2,1)),lags=c(1,4),h=18,holdout=TRUE)

SARIMA of a peculiar order on AirPassengers data
ourModel <- msarima(AirPassengers,orders=list(ar=c(1,0,3),i=c(1,0,1),ma=c(0,1,2)),

lags=c(1,6,12),h=10,holdout=TRUE)

ARIMA(1,1,1) with Mean Squared Trace Forecast Error
msarima(x,orders=c(1,1,1),lags=1,h=18,holdout=TRUE,loss="TMSE")

plot(forecast(ourModel, h=18, interval="approximate"))

x <- rnorm(118,100,3)
The best ARIMA for the data
ourModel <- auto.msarima(x,orders=list(ar=c(2,1),i=c(1,1),ma=c(2,1)),lags=c(1,12),

h=18,holdout=TRUE)

The other one using optimised states
auto.msarima(x,orders=list(ar=c(3,2),i=c(2,1),ma=c(3,2)),lags=c(1,12),

h=18,holdout=TRUE)

And now combined ARIMA
auto.msarima(x,orders=list(ar=c(3,2),i=c(2,1),ma=c(3,2)),lags=c(1,12),

combine=TRUE,h=18,holdout=TRUE)

plot(forecast(ourModel, h=18, interval="simulated"))

msdecompose Multiple seasonal classical decomposition

Description

Function decomposes multiple seasonal time series into components using the principles of classical
decomposition.

Usage

msdecompose(y, lags = c(12), type = c("additive", "multiplicative"),
smoother = c("ma", "lowess", "supsmu"), ...)

msdecompose 39

Arguments

y Vector or ts object, containing data needed to be smoothed.

lags Vector of lags, corresponding to the frequencies in the data.

type The type of decomposition. If "multiplicative" is selected, then the loga-
rithm of data is taken prior to the decomposition.

smoother The type of function used in the smoother of the data to extract the trend and
in seasonality smoothing. smoother="ma" relies on the centred moving aver-
age and will result in the classical decomposition. smoother="lowess" will use
lowess, resulting in a decomposition similar to the STL (stl). Finally, smoother="supsmu"
will use the Friedman’s super smoother via supsmu.

... Other parameters passed to smoothers. Only works with lowess/supsmu.

Details

The function applies centred moving averages based on filter function and order specified in lags
variable in order to smooth the original series and obtain level, trend and seasonal components of
the series.

Value

The object of the class "msdecompose" is return, containing:

• y - the original time series.

• initial - the estimates of the initial level and trend.

• trend - the long term trend in the data.

• seasonal - the list of seasonal parameters.

• lags - the provided lags.

• type - the selected type of the decomposition.

• yName - the name of the provided data.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov I. (2023) Smooth forecasting with the smooth package in R. arXiv:2301.01790.
doi:10.48550/arXiv.2301.01790.

• Svetunkov I. (2015 - Inf) "smooth" package for R - series of posts about the underlying models
and how to use them: https://openforecast.org/category/r-en/smooth/.

See Also

filter

https://doi.org/10.48550/arXiv.2301.01790
https://openforecast.org/category/r-en/smooth/

40 multicov

Examples

Decomposition of multiple frequency data
Not run: ourModel <- msdecompose(forecast::taylor, lags=c(48,336), type="m")
ourModel <- msdecompose(AirPassengers, lags=c(12), type="m")

plot(ourModel)
plot(forecast(ourModel, model="AAN", h=12))

multicov Function returns the multiple steps ahead covariance matrix of fore-
cast errors

Description

This function extracts covariance matrix of 1 to h steps ahead forecast errors for adam(), ssarima(),
gum(), sma(), es() and ces() models.

Usage

multicov(object, type = c("analytical", "empirical", "simulated"), h = 10,
nsim = 1000, ...)

S3 method for class 'smooth'
multicov(object, type = c("analytical", "empirical",
"simulated"), h = 10, nsim = 1000, ...)

Arguments

object Model estimated using one of the functions of smooth package.

type What method to use in order to produce covariance matrix:

1. analytical - based on the state space structure of the model and the one-
step-ahead forecast error. This works for pure additive and pure multiplica-
tive models. The values for the mixed models might be off.

2. empirical - based on the in-sample 1 to h steps ahead forecast errors
(works fine on larger samples);

3. simulated - the data is simulated from the estimated model, then the same
model is applied to it and then the empirical 1 to h steps ahead forecast
errors are produced;

h Forecast horizon to use in the calculations.

nsim Number of iterations to produce in the simulation. Only needed if type="simulated"

... Other parameters passed to simulate function (if type="simulated" is used).
These are obs and seed. By default obs=1000. This approach increases the
accuracy of covariance matrix on small samples and intermittent data;

oes 41

Details

The function returns either scalar (if it is a non-smooth model) or the matrix of (h x h) size with
variances and covariances of 1 to h steps ahead forecast errors.

Value

Scalar in cases of non-smooth functions. (h x h) matrix otherwise.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

orders

Examples

x <- rnorm(100,0,1)

A simple example with a 5x5 covariance matrix
ourModel <- ces(x, h=5)
multicov(ourModel)

oes Occurrence ETS model

Description

Function returns the occurrence part of iETS model with the specified probability update and model
types.

Usage

oes(y, model = "MNN", persistence = NULL, initial = "o",
initialSeason = NULL, phi = NULL, occurrence = c("fixed", "general",
"odds-ratio", "inverse-odds-ratio", "direct", "auto", "none"),
ic = c("AICc", "AIC", "BIC", "BICc"), h = 10, holdout = FALSE,
bounds = c("usual", "admissible", "none"), silent = c("all", "graph",
"legend", "output", "none"), xreg = NULL, regressors = c("use",
"select"), initialX = NULL, ...)

42 oes

Arguments

y Either numeric vector or time series vector.

model The type of ETS model used for the estimation. Normally this should be "MNN"
or any other pure multiplicative or additive model. The model selection is avail-
able here (although it’s not fast), so you can use, for example, "YYN" and "XXN"
for selecting between the pure multiplicative and pure additive models respec-
tively. Using mixed models is possible, but not recommended.

persistence Persistence vector g, containing smoothing parameters. If NULL, then estimated.

initial Can be either character or a vector of initial states. If it is character, then it can
be "optimal", meaning that the initial states are optimised, or "backcasting",
meaning that the initials are produced using backcasting procedure.

initialSeason The vector of the initial seasonal components. If NULL, then it is estimated.

phi The value of the dampening parameter. Used only for damped-trend models.

occurrence The type of model used in probability estimation. Can be "none" - none,
"fixed" - constant probability, "odds-ratio" - the Odds-ratio model with
b=1 in Beta distribution, "inverse-odds-ratio" - the model with a=1 in Beta
distribution, "direct" - the TSB-like (Teunter et al., 2011) probability up-
date mechanism a+b=1, "auto" - the automatically selected type of occurrence
model, "general" - the general Beta model with two parameters. This will call
oesg() function with two similar ETS models and the same provided parame-
ters (initials and smoothing).

ic The information criteria to use in case of model selection.

h The forecast horizon.

holdout If TRUE, holdout sample of size h is taken from the end of the data.

bounds What type of bounds to use in the model estimation. The first letter can be used
instead of the whole word.

silent If silent="none", then nothing is silent, everything is printed out and drawn.
silent="all" means that nothing is produced or drawn (except for warnings).
In case of silent="graph", no graph is produced. If silent="legend", then
legend of the graph is skipped. And finally silent="output" means that noth-
ing is printed out in the console, but the graph is produced. silent also ac-
cepts TRUE and FALSE. In this case silent=TRUE is equivalent to silent="all",
while silent=FALSE is equivalent to silent="none". The parameter also ac-
cepts first letter of words ("n", "a", "g", "l", "o").

xreg The vector (either numeric or time series) or the matrix (or data.frame) of ex-
ogenous variables that should be included in the model. If matrix included
than columns should contain variables and rows - observations. Note that xreg
should have number of observations equal either to in-sample or to the whole
series. If the number of observations in xreg is equal to in-sample, then values
for the holdout sample are produced using es function.

regressors The variable defines what to do with the provided xreg: "use" means that all of
the data should be used, while "select" means that a selection using ic should
be done.

oes 43

initialX The vector of initial parameters for exogenous variables. Ignored if xreg is
NULL.

... The parameters passed to the optimiser, such as maxeval, xtol_rel, algorithm
and print_level. The description of these is printed out by nloptr.print.options()
function from the nloptr package. The default values in the oes function
are maxeval=500, xtol_rel=1E-8, algorithm="NLOPT_LN_NELDERMEAD" and
print_level=0.

Details

The function estimates probability of demand occurrence, using the selected ETS state space mod-
els.

For the details about the model and its implementation, see the respective vignette: vignette("oes","smooth")

Value

The object of class "occurrence" is returned. It contains following list of values:

• model - the type of the estimated ETS model;

• timeElapsed - the time elapsed for the construction of the model;

• fitted - the fitted values for the probability;

• fittedModel - the fitted values of the underlying ETS model, where applicable (only for
occurrence=c("o","i","d"));

• forecast - the forecast of the probability for h observations ahead;

• forecastModel - the forecast of the underlying ETS model, where applicable (only for oc-
currence=c("o","i","d"));

• lower - the lower bound of the interval if interval!="none";

• upper - the upper bound of the interval if interval!="none";

• lowerModel - the lower bound of the interval of the underlying ETS model if interval!="none";

• upperModel - the upper bound of the interval of the underlying ETS model if interval!="none";

• states - the values of the state vector;

• logLik - the log-likelihood value of the model;

• nParam - the number of parameters in the model (the matrix is returned);

• residuals - the residuals of the model;

• y - actual values of occurrence (zeros and ones).

• persistence - the vector of smoothing parameters;

• phi - the value of the damped trend parameter;

• initial - initial values of the state vector;

• initialSeason - the matrix of initials seasonal states;

• occurrence - the type of the occurrence model;

• updateX - boolean, defining, if the states of exogenous variables were estimated as well.

• initialX - initial values for parameters of exogenous variables.

44 oesg

• persistenceX - persistence vector g for exogenous variables.
• transitionX - transition matrix F for exogenous variables.
• accuracy - The error measures for the forecast (in case of holdout=TRUE).
• B - the vector of all the estimated parameters (in case of "odds-ratio", "inverse-odds-ratio" and

"direct" models).

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov, I., Boylan, J.E., 2023a. iETS: State Space Model for Intermittent Demand Fore-
castings. International Journal of Production Economics. 109013. doi:10.1016/j.ijpe.2023.109013

• Teunter R., Syntetos A., Babai Z. (2011). Intermittent demand: Linking forecasting to inven-
tory obsolescence. European Journal of Operational Research, 214, 606-615.

• Croston, J. (1972) Forecasting and stock control for intermittent demands. Operational Re-
search Quarterly, 23(3), 289-303.

See Also

adam, oesg, es

Examples

y <- rpois(100,0.1)
oes(y, occurrence="auto")

oes(y, occurrence="f")

oesg Occurrence ETS, general model

Description

Function returns the general occurrence model of the of iETS model.

Usage

oesg(y, modelA = "MNN", modelB = "MNN", persistenceA = NULL,
persistenceB = NULL, phiA = NULL, phiB = NULL, initialA = "o",
initialB = "o", initialSeasonA = NULL, initialSeasonB = NULL,
ic = c("AICc", "AIC", "BIC", "BICc"), h = 10, holdout = FALSE,
bounds = c("usual", "admissible", "none"), silent = c("all", "graph",
"legend", "output", "none"), xregA = NULL, xregB = NULL,
initialXA = NULL, initialXB = NULL, regressorsA = c("use", "select"),
regressorsB = c("use", "select"), ...)

https://doi.org/10.1016/j.ijpe.2023.109013

oesg 45

Arguments

y Either numeric vector or time series vector.

modelA The type of the ETS for the model A.

modelB The type of the ETS for the model B.

persistenceA The persistence vector g, containing smoothing parameters used in the model A.
If NULL, then estimated.

persistenceB The persistence vector g, containing smoothing parameters used in the model B.
If NULL, then estimated.

phiA The value of the dampening parameter in the model A. Used only for damped-
trend models.

phiB The value of the dampening parameter in the model B. Used only for damped-
trend models.

initialA Either "o" - optimal or the vector of initials for the level and / or trend for the
model A.

initialB Either "o" - optimal or the vector of initials for the level and / or trend for the
model B.

initialSeasonA The vector of the initial seasonal components for the model A. If NULL, then it
is estimated.

initialSeasonB The vector of the initial seasonal components for the model B. If NULL, then it is
estimated.

ic Information criteria to use in case of model selection.

h Forecast horizon.

holdout If TRUE, holdout sample of size h is taken from the end of the data.

bounds What type of bounds to use in the model estimation. The first letter can be used
instead of the whole word.

silent If silent="none", then nothing is silent, everything is printed out and drawn.
silent="all" means that nothing is produced or drawn (except for warnings).
In case of silent="graph", no graph is produced. If silent="legend", then
legend of the graph is skipped. And finally silent="output" means that noth-
ing is printed out in the console, but the graph is produced. silent also ac-
cepts TRUE and FALSE. In this case silent=TRUE is equivalent to silent="all",
while silent=FALSE is equivalent to silent="none". The parameter also ac-
cepts first letter of words ("n", "a", "g", "l", "o").

xregA The vector or the matrix of exogenous variables, explaining some parts of oc-
currence variable of the model A.

xregB The vector or the matrix of exogenous variables, explaining some parts of oc-
currence variable of the model B.

initialXA The vector of initial parameters for exogenous variables in the model A. Ignored
if xregA is NULL.

initialXB The vector of initial parameters for exogenous variables in the model B. Ignored
if xregB is NULL.

46 oesg

regressorsA Variable defines what to do with the provided xregA: "use" means that all of
the data should be used, while "select" means that a selection using ic should
be done.

regressorsB Similar to the regressorsA, but for the part B of the model.
... The parameters passed to the optimiser, such as maxeval, xtol_rel, algorithm

and print_level. The description of these is printed out by nloptr.print.options()
function from the nloptr package. The default values in the oes function
are maxeval=500, xtol_rel=1E-8, algorithm="NLOPT_LN_NELDERMEAD" and
print_level=0.

Details

The function estimates probability of demand occurrence, based on the iETS_G state-space model.
It involves the estimation and modelling of the two simultaneous state space equations. Thus two
parts for the model type, persistence, initials etc.

For the details about the model and its implementation, see the respective vignette: vignette("oes","smooth")

The model is based on:

ot ∼ Bernoulli(pt)

pt =
at

at + bt
,

where a_t and b_t are the parameters of the Beta distribution and are modelled using separate ETS
models.

Value

The object of class "occurrence" is returned. It contains following list of values:

• modelA - the model A of the class oes, that contains the output similar to the one from the
oes() function;

• modelB - the model B of the class oes, that contains the output similar to the one from the
oes() function.

• B - the vector of all the estimated parameters.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

es, oes

Examples

y <- rpois(100,0.1)
oesg(y, modelA="MNN", modelB="ANN")

orders 47

orders Functions that extract values from the fitted model

Description

These functions allow extracting orders and lags for ssarima(), gum() and sma(), type of model
from es() and ces() and name of model.

Usage

orders(object, ...)

lags(object, ...)

modelName(object, ...)

modelType(object, ...)

Arguments

object Model estimated using one of the functions of smooth package.

... Currently nothing is accepted via ellipsis.

Details

orders() and lags() are useful only for SSARIMA, GUM and SMA. They return NA for other
functions. This can also be applied to arima(), Arima() and auto.arima() functions from stats
and forecast packages. modelType() is useful only for ETS and CES. They return NA for other
functions. This can also be applied to ets() function from forecast package. errorType extracts
the type of error from the model (either additive or multiplicative). Finally, modelName returns the
name of the fitted model. For example, "ARIMA(0,1,1)". This is purely descriptive and can also
be applied to non-smooth classes, so that, for example, you can easily extract the name of the fitted
AR model from ar() function from stats package.

Value

Either vector, scalar or list with values is returned. orders() in case of ssarima returns list of
values:

• ar - AR orders.

• i - I orders.

• ma - MA orders.

lags() returns the vector of lags of the model. All the other functions return strings of character.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

48 plot.adam

See Also

ssarima, msarima

Examples

x <- rnorm(100,0,1)

Just as example. orders and lags do not return anything for ces() and es(). But modelType() does.
ourModel <- ces(x, h=10)
orders(ourModel)
lags(ourModel)
modelType(ourModel)
modelName(ourModel)

And as another example it does the opposite for gum() and ssarima()
ourModel <- gum(x, h=10, orders=c(1,1), lags=c(1,4))
orders(ourModel)
lags(ourModel)
modelType(ourModel)
modelName(ourModel)

Finally these values can be used for simulate functions or original functions.
ourModel <- auto.ssarima(x)
ssarima(x, orders=orders(ourModel), lags=lags(ourModel), constant=ourModel$constant)
sim.ssarima(orders=orders(ourModel), lags=lags(ourModel), constant=ourModel$constant)

ourModel <- es(x)
es(x, model=modelType(ourModel))
sim.es(model=modelType(ourModel))

plot.adam Plots for the fit and states

Description

The function produces diagnostics plots for a smooth model

Usage

S3 method for class 'adam'
plot(x, which = c(1, 2, 4, 6), level = 0.95,
legend = FALSE, ask = prod(par("mfcol")) < length(which) &&
dev.interactive(), lowess = TRUE, ...)

S3 method for class 'smooth'
plot(x, which = c(1, 2, 4, 6), level = 0.95,
legend = FALSE, ask = prod(par("mfcol")) < length(which) &&
dev.interactive(), lowess = TRUE, ...)

plot.adam 49

S3 method for class 'msdecompose'
plot(x, which = c(1, 2, 4, 6), level = 0.95,
legend = FALSE, ask = prod(par("mfcol")) < length(which) &&
dev.interactive(), lowess = TRUE, ...)

Arguments

x Estimated smooth model.

which Which of the plots to produce. The possible options (see details for explana-
tions):

1. Actuals vs Fitted values;
2. Standardised residuals vs Fitted;
3. Studentised residuals vs Fitted;
4. Absolute residuals vs Fitted;
5. Squared residuals vs Fitted;
6. Q-Q plot with the specified distribution;
7. Fitted over time;
8. Standardised residuals vs Time;
9. Studentised residuals vs Time;

10. ACF of the residuals;
11. PACF of the residuals;
12. Plot of states of the model;
13. Absolute standardised residuals vs Fitted;
14. Squared standardised residuals vs Fitted;
15. ACF of the squared residuals;
16. PACF of the squared residuals.

level Confidence level. Defines width of confidence interval. Used in plots (2), (3),
(7), (8), (9), (10) and (11).

legend If TRUE, then the legend is produced on plots (2), (3) and (7).

ask Logical; if TRUE, the user is asked to press Enter before each plot.

lowess Logical; if TRUE, LOWESS lines are drawn on scatterplots, see lowess.

... The parameters passed to the plot functions. Recommended to use with separate
plots.

Details

The list of produced plots includes:

1. Actuals vs Fitted values. Allows analysing, whether there are any issues in the fit. Does the
variability of actuals increase with the increase of fitted values? Is the relation well captured?
They grey line on the plot corresponds to the perfect fit of the model.

2. Standardised residuals vs Fitted. Plots the points and the confidence bounds (red lines) for the
specified confidence level. Useful for the analysis of outliers;

50 plot.adam

3. Studentised residuals vs Fitted. This is similar to the previous plot, but with the residuals
divided by the scales with the leave-one-out approach. Should be more sensitive to outliers;

4. Absolute residuals vs Fitted. Useful for the analysis of heteroscedasticity;

5. Squared residuals vs Fitted - similar to (3), but with squared values;

6. Q-Q plot with the specified distribution. Can be used in order to see if the residuals follow the
assumed distribution. The type of distribution depends on the one used in the estimation (see
distribution parameter in alm);

7. ACF of the residuals. Are the residuals autocorrelated? See acf for details;

8. Fitted over time. Plots actuals (black line), fitted values (purple line), point forecast (blue line)
and prediction interval (grey lines). Can be used in order to make sure that the model did not
miss any important events over time;

9. Standardised residuals vs Time. Useful if you want to see, if there is autocorrelation or if there
is heteroscedasticity in time. This also shows, when the outliers happen;

10. Studentised residuals vs Time. Similar to previous, but with studentised residuals;

11. PACF of the residuals. No, really, are they autocorrelated? See pacf function from stats
package for details;

12. Plot of the states of the model. It is not recommended to produce this plot together with the
others, because there might be several states, which would cause the creation of a different
canvas. In case of "msdecompose", this will produce the decomposition of the series into
states on a different canvas;

13. Absolute standardised residuals vs Fitted. Similar to the previous, but with absolute values.
This is more relevant to the models where scale is calculated as an absolute value of something
(e.g. Laplace);

14. Squared standardised residuals vs Fitted. This is an additional plot needed to diagnose het-
eroscedasticity in a model with varying scale. The variance on this plot will be constant if
the adequate model for scale was constructed. This is more appropriate for normal and the
related distributions.

Which of the plots to produce, is specified via the which parameter.

Value

The function produces the number of plots, specified in the parameter which.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

plot.greybox

pls 51

Examples

ourModel <- es(c(rnorm(50,100,10),rnorm(50,120,10)), "ANN", h=10)
par(mfcol=c(3,4))
plot(ourModel, c(1:11))
plot(ourModel, 12)

pls Prediction Likelihood Score

Description

Function estimates Prediction Likelihood Score for the provided model

Usage

pls(object, holdout = NULL, ...)

S3 method for class 'smooth'
pls(object, holdout = NULL, ...)

Arguments

object The model estimated using smooth functions. This thing also accepts other mod-
els (e.g. estimated using functions from forecast package), but may not always
work properly with them.

holdout The values for the holdout part of the sample. If the model was fitted on the data
with the holdout=TRUE, then the parameter is not needed.

... Parameters passed to multicov function. The function is called in order to get
the covariance matrix of 1 to h steps ahead forecast errors.

Details

Prediction likelihood score (PLS) is based on either normal or log-normal distribution of errors.
This is extracted from the provided model. The likelihood based on the distribution of 1 to h steps
ahead forecast errors is used in the process.

Value

A value of the log-likelihood.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

52 reapply

References

distribution. IEEE Signal Processing Letters. 13 (5): 300-303. doi:10.1109/LSP.2006.870353
- this is not yet used in the function.

Snyder, R. D., Ord, J. K., Beaumont, A., 2012. Forecasting the intermittent demand for
slow-moving inventories: A modelling approach. International Journal of Forecasting 28 (2),
485-496.

•• Kolassa, S., 2016. Evaluating predictive count data distributions in retail sales forecasting.
International Journal of Forecasting 32 (3), 788-803..

Examples

Generate data, apply es() with the holdout parameter and calculate PLS
x <- rnorm(100,0,1)
ourModel <- es(x, h=10, holdout=TRUE)
pls(ourModel, type="a")
pls(ourModel, type="e")
pls(ourModel, type="s", obs=100, nsim=100)

reapply Reapply the model with randomly generated initial parameters and
produce forecasts

Description

reapply function generates the parameters based on the values in the provided object and then
reapplies the same model with those parameters to the data, getting the fitted paths and updated
states. reforecast function uses those values in order to produce forecasts for the h steps ahead.

Usage

reapply(object, nsim = 1000, bootstrap = FALSE, heuristics = NULL, ...)

reforecast(object, h = 10, newdata = NULL, occurrence = NULL,
interval = c("prediction", "confidence", "none"), level = 0.95,
side = c("both", "upper", "lower"), cumulative = FALSE, nsim = 100,
...)

Arguments

object Model estimated using one of the functions of smooth package.

nsim Number of paths to generate (number of simulations to do).

bootstrap The logical, which determines, whether to use bootstrap for the covariance ma-
trix of parameters or not.

heuristics The value for proportion to use for heuristic estimation of the standard deviation
of parameters. If NULL, it is not used.

https://doi.org/10.1109/LSP.2006.870353

reapply 53

... Other parameters passed to reapply() and mean() functions in case of reforecast
(trim parameter in mean() is set to 0.01 by default) and to vcov in case of
reapply.

h Forecast horizon.

newdata The new data needed in order to produce forecasts.

occurrence The vector containing the future occurrence variable (values in [0,1]), if it is
known.

interval What type of mechanism to use for interval construction. The options include
interval="none", interval="prediction" (prediction intervals) and interval="confidence"
(intervals for the point forecast). The other options are not supported and do not
make much sense for the refitted model.

level Confidence level. Defines width of prediction interval.

side Defines, whether to provide "both" sides of prediction interval or only "upper",
or "lower".

cumulative If TRUE, then the cumulative forecast and prediction interval are produced in-
stead of the normal ones. This is useful for inventory control systems.

Details

The main motivation of the function is to take the randomness due to the in-sample estimation of
parameters into account when fitting the model and to propagate this randomness to the forecasts.
The methods can be considered as a special case of recursive bootstrap.

Value

reapply() returns object of the class "reapply", which contains:

• timeElapsed - Time elapsed for the code execution;

• y - The actual values;

• states - The array of states of the model;

• refitted - The matrix with fitted values, where columns correspond to different paths;

• fitted - The vector of fitted values (conditional mean);

• model - The name of the constructed model;

• transition - The array of transition matrices;

• measurement - The array of measurement matrices;

• persistence - The matrix of persistence vectors (paths in columns);

• profile - The array of profiles obtained by the end of each fit.

reforecast() returns the object of the class forecast.smooth, which contains in addition to the
standard list the variable paths - all simulated trajectories with h in rows, simulated future paths
for each state in columns and different states (obtained from reapply() function) in the third di-
mension.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

54 rmultistep

See Also

forecast.smooth

Examples

x <- rnorm(100,0,1)

Just as example. orders and lags do not return anything for ces() and es(). But modelType() does.
ourModel <- adam(x, "ANN")
refittedModel <- reapply(ourModel, nsim=50)
plot(refittedModel)

ourForecast <- reforecast(ourModel, nsim=50)

rmultistep Multiple steps ahead forecast errors

Description

The function extracts 1 to h steps ahead forecast errors from the model.

Usage

rmultistep(object, h = 10, error = c("default", "additive",
"multiplicative"), ...)

Arguments

object Model estimated using one of the forecasting functions.

h The forecasting horizon to use.

error Defines what type of error to return. "default" means returning the one used
in the original model. "additive" is to return e_t = y_t - mu_t. Finally,
"multiplicative" will return e_t = (y_t - mu_t) / mu_t.

... Currently nothing is accepted via ellipsis.

Details

The errors correspond to the error term epsilon_t in the ETS models. Don’t forget that different
models make different assumptions about epsilon_t and / or 1+epsilon_t.

Value

The matrix with observations in rows and h steps ahead values in columns. So, the first row corre-
sponds to the forecast produced from the 0th observation from 1 to h steps ahead.

sim.ces 55

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

See Also

residuals,

Examples

x <- rnorm(100,0,1)
ourModel <- adam(x)
rmultistep(ourModel, h=13)

sim.ces Simulate Complex Exponential Smoothing

Description

Function generates data using CES with Single Source of Error as a data generating process.

Usage

sim.ces(seasonality = c("none", "simple", "partial", "full"), obs = 10,
nsim = 1, frequency = 1, a = NULL, b = NULL, initial = NULL,
randomizer = c("rnorm", "rt", "rlaplace", "rs"), probability = 1, ...)

Arguments

seasonality The type of seasonality used in CES. Can be: none - No seasonality; simple -
Simple seasonality, using lagged CES (based on t-m observation, where m is the
seasonality lag); partial - Partial seasonality with real seasonal components
(equivalent to additive seasonality); full - Full seasonality with complex sea-
sonal components (can do both multiplicative and additive seasonality, depend-
ing on the data). First letter can be used instead of full words. Any seasonal
CES can only be constructed for time series vectors.

obs Number of observations in each generated time series.

nsim Number of series to generate (number of simulations to do).

frequency Frequency of generated data. In cases of seasonal models must be greater than
1.

a First complex smoothing parameter. Should be a complex number.
NOTE! CES is very sensitive to a and b values so it is advised to use values from
previously estimated model.

b Second complex smoothing parameter. Can be real if seasonality="partial".
In case of seasonality="full" must be complex number.

56 sim.ces

initial A matrix with initial values for CES. In case with seasonality="partial"
and seasonality="full" first two columns should contain initial values for
non-seasonal components, repeated frequency times.

randomizer Type of random number generator function used for error term. Defaults are:
rnorm, rt, rlaplace and rs. rlnorm should be used for multiplicative models
(e.g. ETS(M,N,N)). But any function from Distributions will do the trick if the
appropriate parameters are passed. For example rpois with lambda=2 can be
used as well, but might result in weird values.

probability Probability of occurrence, used for intermittent data generation. This can be a
vector, implying that probability varies in time (in TSB or Croston style).

... Additional parameters passed to the chosen randomizer. All the parameters
should be passed in the order they are used in chosen randomizer. For exam-
ple, passing just sd=0.5 to rnorm function will lead to the call rnorm(obs,
mean=0.5, sd=1).

Details

For the information about the function, see the vignette: vignette("simulate","smooth")

Value

List of the following values is returned:

• model - Name of CES model.

• a - Value of complex smoothing parameter a. If nsim>1, then this is a vector.

• b - Value of complex smoothing parameter b. If seasonality="n" or seasonality="s",
then this is equal to NULL. If nsim>1, then this is a vector.

• initial - Initial values of CES in a form of matrix. If nsim>1, then this is an array.

• data - Time series vector (or matrix if nsim>1) of the generated series.

• states - Matrix (or array if nsim>1) of states. States are in columns, time is in rows.

• residuals - Error terms used in the simulation. Either vector or matrix, depending on nsim.

• occurrence - Values of occurrence variable. Once again, can be either a vector or a matrix...

• logLik - Log-likelihood of the constructed model.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov, I., Kourentzes, N., & Ord, J. K. (2022). Complex exponential smoothing. Naval
Research Logistics, 69(8), 1108–1123. https://doi.org/10.1002/nav.22074

See Also

sim.es, sim.ssarima,ces, Distributions

sim.es 57

Examples

Create 120 observations from CES(n). Generate 100 time series of this kind.
x <- sim.ces("n",obs=120,nsim=100)

Generate similar thing for seasonal series of CES(s)_4
x <- sim.ces("s",frequency=4,obs=80,nsim=100)

Estimate model and then generate 10 time series from it
ourModel <- ces(rnorm(100,100,5))
simulate(ourModel,nsim=10)

sim.es Simulate Exponential Smoothing

Description

Function generates data using ETS with Single Source of Error as a data generating process.

Usage

sim.es(model = "ANN", obs = 10, nsim = 1, frequency = 1,
persistence = NULL, phi = 1, initial = NULL, initialSeason = NULL,
bounds = c("usual", "admissible", "restricted"), randomizer = c("rnorm",
"rlnorm", "rt", "rlaplace", "rs"), probability = 1, ...)

Arguments

model Type of ETS model according to [Hyndman et. al., 2008] taxonomy. Can consist
of 3 or 4 chars: ANN, AAN, AAdN, AAA, AAdA, MAdM etc.

obs Number of observations in each generated time series.

nsim Number of series to generate (number of simulations to do).

frequency Frequency of generated data. In cases of seasonal models must be greater than
1.

persistence Persistence vector, which includes all the smoothing parameters. Must corre-
spond to the chosen model. The maximum length is 3: level, trend and seasonal
smoothing parameters. If NULL, values are generated.

phi Value of damping parameter. If trend is not chosen in the model, the parameter
is ignored.

initial Vector of initial states of level and trend. The maximum length is 2. If NULL,
values are generated.

initialSeason Vector of initial states for seasonal coefficients. Should have length equal to
frequency parameter. If NULL, values are generated.

58 sim.es

bounds Type of bounds to use for persistence vector if values are generated. "usual"
- bounds from p.156 by Hyndman et. al., 2008. "restricted" - similar to
"usual" but with upper bound equal to 0.3. "admissible" - bounds from ta-
bles 10.1 and 10.2 of Hyndman et. al., 2008. Using first letter of the type of
bounds also works. These bounds are also used for multiplicative models, but
the models are much more restrictive, so weird results might be obtained. Be
careful!

randomizer Type of random number generator function used for error term. Defaults are:
rnorm, rt, rlaplace and rs. rlnorm should be used for multiplicative models
(e.g. ETS(M,N,N)). But any function from Distributions will do the trick if the
appropriate parameters are passed. For example rpois with lambda=2 can be
used as well, but might result in weird values.

probability Probability of occurrence, used for intermittent data generation. This can be a
vector, implying that probability varies in time (in TSB or Croston style).

... Additional parameters passed to the chosen randomizer. All the parameters
should be passed in the order they are used in chosen randomizer. For exam-
ple, passing just sd=0.5 to rnorm function will lead to the call rnorm(obs,
mean=0.5, sd=1). ATTENTION! When generating the multiplicative errors
some tuning might be needed to obtain meaningful data. sd=0.1 is usually al-
ready a high value for such models. ALSO NOTE: In case of multiplicative
error model, the randomizer will generate 1+e_t error, not e_t. This means that
the mean should typically be equal to 1, not zero.

Details

For the information about the function, see the vignette: vignette("simulate","smooth")

Value

List of the following values is returned:

• model - Name of ETS model.

• data - Time series vector (or matrix if nsim>1) of the generated series.

• states - Matrix (or array if nsim>1) of states. States are in columns, time is in rows.

• persistence - Vector (or matrix if nsim>1) of smoothing parameters used in the simulation.

• phi - Value of damping parameter used in time series generation.

• initial - Vector (or matrix) of initial values.

• initialSeason - Vector (or matrix) of initial seasonal coefficients.

• probability - vector of probabilities used in the simulation.

• intermittent - type of the intermittent model used.

• residuals - Error terms used in the simulation. Either vector or matrix, depending on nsim.

• occurrence - Values of occurrence variable. Once again, can be either a vector or a matrix...

• logLik - Log-likelihood of the constructed model.

sim.es 59

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

See Also

es, ts, Distributions

Examples

Create 40 observations of quarterly data using AAA model with errors from normal distribution
ETSAAA <- sim.es(model="AAA",frequency=4,obs=40,randomizer="rnorm",mean=0,sd=100)

Create 50 series of quarterly data using AAA model
with 40 observations each with errors from normal distribution
ETSAAA <- sim.es(model="AAA",frequency=4,obs=40,randomizer="rnorm",mean=0,sd=100,nsim=50)

Create 50 series of quarterly data using AAdA model
with 40 observations each with errors from normal distribution
and smoothing parameters lying in the "admissible" range.
ETSAAA <- sim.es(model="AAA",phi=0.9,frequency=4,obs=40,bounds="admissible",

randomizer="rnorm",mean=0,sd=100,nsim=50)

Create 60 observations of monthly data using ANN model
with errors from beta distribution
ETSANN <- sim.es(model="ANN",persistence=c(1.5),frequency=12,obs=60,

randomizer="rbeta",shape1=1.5,shape2=1.5)
plot(ETSANN$states)

Create 60 observations of monthly data using MAM model
with errors from uniform distribution
ETSMAM <- sim.es(model="MAM",persistence=c(0.3,0.2,0.1),initial=c(2000,50),

phi=0.8,frequency=12,obs=60,randomizer="runif",min=-0.5,max=0.5)

Create 80 observations of quarterly data using MMM model
with predefined initial values and errors from the normal distribution
ETSMMM <- sim.es(model="MMM",persistence=c(0.1,0.1,0.1),initial=c(2000,1),

initialSeason=c(1.1,1.05,0.9,.95),frequency=4,obs=80,mean=0,sd=0.01)

Generate intermittent data using AAdN
iETSAAdN <- sim.es("AAdN",obs=30,frequency=1,probability=0.1,initial=c(3,0),phi=0.8)

Generate iETS(MNN) with TSB style probabilities

https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2

60 sim.gum

oETSMNN <- sim.oes("MNN",obs=50,occurrence="d",persistence=0.2,initial=1,
randomizer="rlnorm",meanlog=0,sdlog=0.3)

iETSMNN <- sim.es("MNN",obs=50,frequency=12,persistence=0.2,initial=4,
probability=oETSMNN$probability)

sim.gum Simulate Generalised Exponential Smoothing

Description

Function generates data using GUM with Single Source of Error as a data generating process.

Usage

sim.gum(orders = c(1), lags = c(1), obs = 10, nsim = 1,
frequency = 1, measurement = NULL, transition = NULL,
persistence = NULL, initial = NULL, randomizer = c("rnorm", "rt",
"rlaplace", "rs"), probability = 1, ...)

Arguments

orders Order of the model. Specified as vector of number of states with different lags.
For example, orders=c(1,1) means that there are two states: one of the first
lag type, the second of the second type.

lags Defines lags for the corresponding orders. If, for example, orders=c(1,1) and
lags are defined as lags=c(1,12), then the model will have two states: the
first will have lag 1 and the second will have lag 12. The length of lags must
correspond to the length of orders.

obs Number of observations in each generated time series.

nsim Number of series to generate (number of simulations to do).

frequency Frequency of generated data. In cases of seasonal models must be greater than
1.

measurement Measurement vector w. If NULL, then estimated.

transition Transition matrix F . Can be provided as a vector. Matrix will be formed using
the default matrix(transition,nc,nc), where nc is the number of compo-
nents in state vector. If NULL, then estimated.

persistence Persistence vector g, containing smoothing parameters. If NULL, then estimated.

initial Vector of initial values for state matrix. If NULL, then generated using advanced,
sophisticated technique - uniform distribution.

randomizer Type of random number generator function used for error term. Defaults are:
rnorm, rt, rlaplace and rs. rlnorm should be used for multiplicative models
(e.g. ETS(M,N,N)). But any function from Distributions will do the trick if the
appropriate parameters are passed. For example rpois with lambda=2 can be
used as well, but might result in weird values.

sim.gum 61

probability Probability of occurrence, used for intermittent data generation. This can be a
vector, implying that probability varies in time (in TSB or Croston style).

... Additional parameters passed to the chosen randomizer. All the parameters
should be passed in the order they are used in chosen randomizer. For exam-
ple, passing just sd=0.5 to rnorm function will lead to the call rnorm(obs,
mean=0.5, sd=1).

Details

For the information about the function, see the vignette: vignette("simulate","smooth")

Value

List of the following values is returned:

• model - Name of GUM model.

• measurement - Matrix w.

• transition - Matrix F.

• persistence - Persistence vector. This is the place, where smoothing parameters live.

• initial - Initial values of GUM in a form of matrix. If nsim>1, then this is an array.

• data - Time series vector (or matrix if nsim>1) of the generated series.

• states - Matrix (or array if nsim>1) of states. States are in columns, time is in rows.

• residuals - Error terms used in the simulation. Either vector or matrix, depending on nsim.

• occurrence - Values of occurrence variable. Once again, can be either a vector or a matrix...

• logLik - Log-likelihood of the constructed model.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov I. (2023) Smooth forecasting with the smooth package in R. arXiv:2301.01790.
doi:10.48550/arXiv.2301.01790.

• Svetunkov I. (2015 - Inf) "smooth" package for R - series of posts about the underlying models
and how to use them: https://openforecast.org/category/r-en/smooth/.

See Also

sim.es, sim.ssarima,sim.ces, gum, Distributions

https://doi.org/10.48550/arXiv.2301.01790
https://openforecast.org/category/r-en/smooth/

62 sim.oes

Examples

Create 120 observations from GUM(1[1]). Generate 100 time series of this kind.
x <- sim.gum(orders=c(1),lags=c(1),obs=120,nsim=100)

Generate similar thing for seasonal series of GUM(1[1],1[4]])
x <- sim.gum(orders=c(1,1),lags=c(1,4),frequency=4,obs=80,nsim=100,transition=c(1,0,0.9,0.9))

Estimate model and then generate 10 time series from it
ourModel <- gum(rnorm(100,100,5))
simulate(ourModel,nsim=10)

sim.oes Simulate Occurrence Part of ETS model

Description

Function generates data using ETS with Single Source of Error as a data generating process for the
demand occurrence. As the main output it produces probabilities of occurrence.

Usage

sim.oes(model = "MNN", obs = 10, nsim = 1, frequency = 1,
occurrence = c("odds-ratio", "inverse-odds-ratio", "direct", "general"),
bounds = c("usual", "admissible", "restricted"), randomizer = c("rlnorm",
"rinvgauss", "rgamma", "rnorm"), persistence = NULL, phi = 1,
initial = NULL, initialSeason = NULL, modelB = model,
persistenceB = persistence, phiB = phi, initialB = initial,
initialSeasonB = initialSeason, ...)

Arguments

model Type of ETS model according to [Hyndman et. al., 2008] taxonomy. Can con-
sist of 3 or 4 chars: ANN, AAN, AAdN, AAA, AAdA, MAdM etc. The conventional
oETS model assumes that the error term is positive, so "MZZ" models are rec-
ommended for this. If you use additive error models, then the function will
exponentiate the obtained values before transforming them and getting the prob-
ability. This is the type of model A.

obs Number of observations in each generated time series.

nsim Number of series to generate (number of simulations to do).

frequency Frequency of generated data. In cases of seasonal models must be greater than
1.

occurrence Type of occurrence model. See vignette("oes","smooth") for details.

sim.oes 63

bounds Type of bounds to use for persistence vector if values are generated. "usual"
- bounds from p.156 by Hyndman et. al., 2008. "restricted" - similar to
"usual" but with upper bound equal to 0.3. "admissible" - bounds from ta-
bles 10.1 and 10.2 of Hyndman et. al., 2008. Using first letter of the type of
bounds also works. These bounds are also used for multiplicative models, but
the models are much more restrictive, so weird results might be obtained. Be
careful!

randomizer Type of random number generator function used for error term. It is advised
to use rlnorm() or rinvgauss() in case of multiplicative error models. If a
randomiser is used, it is advised to specify the parameters in the ellipsis.

persistence Persistence vector, which includes all the smoothing parameters. Must corre-
spond to the chosen model. The maximum length is 3: level, trend and seasonal
smoothing parameters. If NULL, values are generated.

phi Value of damping parameter. If trend is not chosen in the model, the parameter
is ignored.

initial Vector of initial states of level and trend. The maximum length is 2. If NULL,
values are generated.

initialSeason Vector of initial states for seasonal coefficients. Should have length equal to
frequency parameter. If NULL, values are generated.

modelB Type of model B. This is used in occurrence="general" and occurrence="inverse-odds-ratio".
persistenceB The persistence vector for the model B.
phiB Value of damping parameter for the model B.
initialB Vector of initial states of level and trend for the model B.
initialSeasonB Vector of initial states for seasonal coefficients for the model B.
... Additional parameters passed to the chosen randomizer. All the parameters

should be passed in the order they are used in chosen randomizer. Both model
A and model B share the same parameters for the randomizer.

Details

For the information about the function, see the vignette: vignette("simulate","smooth")

Value

List of the following values is returned:

• model - Name of ETS model.
• modelA - Model A, generated using sim.es() function;
• modelB - Model B, generated using sim.es() function;
• probability - The value of probability generated by the model;
• occurrence - Type of occurrence used in the model;
• logLik - Log-likelihood of the constructed model.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

64 sim.sma

References

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

See Also

oes, sim.es, Distributions

Examples

This example uses rinvgauss function from statmod package.
oETSMNNIG <- sim.oes(model="MNN",frequency=12,obs=60,

randomizer="rinvgauss",mean=1,dispersion=0.5)

A simpler example with log normal distribution
oETSMNNlogN <- sim.oes(model="MNN",frequency=12,obs=60,initial=1,

randomizer="rlnorm",meanlog=0,sdlog=0.1)

sim.sma Simulate Simple Moving Average

Description

Function generates data using SMA in a Single Source of Error state space model as a data gener-
ating process.

Usage

sim.sma(order = NULL, obs = 10, nsim = 1, frequency = 1,
initial = NULL, randomizer = c("rnorm", "rt", "rlaplace", "rs"),
probability = 1, ...)

Arguments

order Order of the modelled series. If omitted, then a random order from 1 to 100 is
selected.

obs Number of observations in each generated time series.

nsim Number of series to generate (number of simulations to do).

frequency Frequency of generated data. In cases of seasonal models must be greater than
1.

initial Vector of initial states for the model. If NULL, values are generated.

https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2

sim.sma 65

randomizer Type of random number generator function used for error term. Defaults are:
rnorm, rt, rlaplace and rs. rlnorm should be used for multiplicative models
(e.g. ETS(M,N,N)). But any function from Distributions will do the trick if the
appropriate parameters are passed. For example rpois with lambda=2 can be
used as well, but might result in weird values.

probability Probability of occurrence, used for intermittent data generation. This can be a
vector, implying that probability varies in time (in TSB or Croston style).

... Additional parameters passed to the chosen randomizer. All the parameters
should be passed in the order they are used in chosen randomizer. For exam-
ple, passing just sd=0.5 to rnorm function will lead to the call rnorm(obs,
mean=0.5, sd=1).

Details

For the information about the function, see the vignette: vignette("simulate","smooth")

Value

List of the following values is returned:

• model - Name of SMA model.

• data - Time series vector (or matrix if nsim>1) of the generated series.

• states - Matrix (or array if nsim>1) of states. States are in columns, time is in rows.

• initial - Vector (or matrix) of initial values.

• probability - vector of probabilities used in the simulation.

• intermittent - type of the intermittent model used.

• residuals - Error terms used in the simulation. Either vector or matrix, depending on nsim.

• occurrence - Values of occurrence variable. Once again, can be either a vector or a matrix...

• logLik - Log-likelihood of the constructed model.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

See Also

es, ts, Distributions

https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2

66 sim.ssarima

Examples

Create 40 observations of quarterly data using AAA model with errors from normal distribution
sma10 <- sim.sma(order=10,frequency=4,obs=40,randomizer="rnorm",mean=0,sd=100)

sim.ssarima Simulate SSARIMA

Description

Function generates data using SSARIMA with Single Source of Error as a data generating process.

Usage

sim.ssarima(orders = list(ar = 0, i = 1, ma = 1), lags = 1, obs = 10,
nsim = 1, frequency = 1, AR = NULL, MA = NULL, constant = FALSE,
initial = NULL, bounds = c("admissible", "none"),
randomizer = c("rnorm", "rt", "rlaplace", "rs"), probability = 1, ...)

Arguments

orders List of orders, containing vector variables ar, i and ma. Example: orders=list(ar=c(1,2),i=c(1),ma=c(1,1,1)).
If a variable is not provided in the list, then it is assumed to be equal to zero. At
least one variable should have the same length as lags.

lags Defines lags for the corresponding orders (see examples above). The length of
lags must correspond to the length of orders. There is no restrictions on the
length of lags vector. It is recommended to order lags ascending.

obs Number of observations in each generated time series.

nsim Number of series to generate (number of simulations to do).

frequency Frequency of generated data. In cases of seasonal models must be greater than
1.

AR Vector or matrix of AR parameters. The order of parameters should be lag-wise.
This means that first all the AR parameters of the firs lag should be passed, then
for the second etc. AR of another ssarima can be passed here.

MA Vector or matrix of MA parameters. The order of parameters should be lag-wise.
This means that first all the MA parameters of the firs lag should be passed, then
for the second etc. MA of another ssarima can be passed here.

constant If TRUE, constant term is included in the model. Can also be a number (constant
value).

initial Vector of initial values for state matrix. If NULL, then generated using advanced,
sophisticated technique - uniform distribution.

bounds Type of bounds to use for AR and MA if values are generated. "admissible" -
bounds guaranteeing stability and stationarity of SSARIMA. "none" - we gen-
erate something, but do not guarantee stationarity and stability. Using first letter
of the type of bounds also works.

sim.ssarima 67

randomizer Type of random number generator function used for error term. Defaults are:
rnorm, rt, rlaplace and rs. rlnorm should be used for multiplicative models
(e.g. ETS(M,N,N)). But any function from Distributions will do the trick if the
appropriate parameters are passed. For example rpois with lambda=2 can be
used as well, but might result in weird values.

probability Probability of occurrence, used for intermittent data generation. This can be a
vector, implying that probability varies in time (in TSB or Croston style).

... Additional parameters passed to the chosen randomizer. All the parameters
should be passed in the order they are used in chosen randomizer. For exam-
ple, passing just sd=0.5 to rnorm function will lead to the call rnorm(obs,
mean=0.5, sd=1).

Details

For the information about the function, see the vignette: vignette("simulate","smooth")

Value

List of the following values is returned:

• model - Name of SSARIMA model.

• AR - Value of AR parameters. If nsim>1, then this is a matrix.

• MA - Value of MA parameters. If nsim>1, then this is a matrix.

• constant - Value of constant term. If nsim>1, then this is a vector.

• initial - Initial values of SSARIMA. If nsim>1, then this is a matrix.

• data - Time series vector (or matrix if nsim>1) of the generated series.

• states - Matrix (or array if nsim>1) of states. States are in columns, time is in rows.

• residuals - Error terms used in the simulation. Either vector or matrix, depending on nsim.

• occurrence - Values of occurrence variable. Once again, can be either a vector or a matrix...

• logLik - Log-likelihood of the constructed model.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Svetunkov, I., & Boylan, J. E. (2019). State-space ARIMA for supply-chain forecasting. In-
ternational Journal of Production Research, 0(0), 1–10. doi:10.1080/00207543.2019.1600764

https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.1080/00207543.2019.1600764

68 sma

See Also

sim.es, ssarima,Distributions, orders

Examples

Create 120 observations from ARIMA(1,1,1) with drift. Generate 100 time series of this kind.
x <- sim.ssarima(ar.orders=1,i.orders=1,ma.orders=1,obs=120,nsim=100,constant=TRUE)

Generate similar thing for seasonal series of SARIMA(1,1,1)(0,0,2)_4
x <- sim.ssarima(ar.orders=c(1,0),i.orders=c(1,0),ma.orders=c(1,2),lags=c(1,4),

frequency=4,obs=80,nsim=100,constant=FALSE)

Generate 10 series of high frequency data from SARIMA(1,0,2)_1(0,1,1)_7(1,0,1)_30
x <- sim.ssarima(ar.orders=c(1,0,1),i.orders=c(0,1,0),ma.orders=c(2,1,1),lags=c(1,7,30),

obs=360,nsim=10)

sma Simple Moving Average

Description

Function constructs state space simple moving average of predefined order

Usage

sma(y, order = NULL, ic = c("AICc", "AIC", "BIC", "BICc"), h = 10,
holdout = FALSE, silent = TRUE, fast = TRUE, ...)

sma_old(y, order = NULL, ic = c("AICc", "AIC", "BIC", "BICc"), h = 10,
holdout = FALSE, cumulative = FALSE, interval = c("none", "parametric",
"likelihood", "semiparametric", "nonparametric"), level = 0.95,
silent = c("all", "graph", "legend", "output", "none"), ...)

Arguments

y Vector or ts object, containing data needed to be forecasted.

order Order of simple moving average. If NULL, then it is selected automatically using
information criteria.

ic The information criterion used in the model selection procedure.

h Length of forecasting horizon.

holdout If TRUE, holdout sample of size h is taken from the end of the data.

silent accepts TRUE and FALSE. If FALSE, the function will print its progress and pro-
duce a plot at the end.

sma 69

fast if TRUE, then the modified Ternary search is used to find the optimal order of the
model. This does not guarantee the optimal solution, but gives a reasonable one
(local minimum).

... Other non-documented parameters. For example parameter model can accept a
previously estimated SMA model and use its parameters.

cumulative If TRUE, then the cumulative forecast and prediction interval are produced in-
stead of the normal ones. This is useful for inventory control systems.

interval Type of interval to construct. This can be:

• "none", aka "n" - do not produce prediction interval.
• "parametric", "p" - use state-space structure of ETS. In case of mixed

models this is done using simulations, which may take longer time than for
the pure additive and pure multiplicative models. This type of interval relies
on unbiased estimate of in-sample error variance, which divides the sume
of squared errors by T-k rather than just T.

• "likelihood", "l" - these are the same as "p", but relies on the biased
estimate of variance from the likelihood (division by T, not by T-k).

• "semiparametric", "sp" - interval based on covariance matrix of 1 to
h steps ahead errors and assumption of normal / log-normal distribution
(depending on error type).

• "nonparametric", "np" - interval based on values from a quantile regres-
sion on error matrix (see Taylor and Bunn, 1999). The model used in this
process is e[j] = a j^b, where j=1,..,h.

The parameter also accepts TRUE and FALSE. The former means that parametric
interval are constructed, while the latter is equivalent to none. If the forecasts of
the models were combined, then the interval are combined quantile-wise (Lich-
tendahl et al., 2013).

level Confidence level. Defines width of prediction interval.

Details

The function constructs AR model in the Single Source of Error state space form based on the idea
that:

yt =
1
n

∑n
j=1 yt−j

which is AR(n) process, that can be modelled using:

yt = w′vt−1 + ϵt

vt = Fvt−1 + gϵt

Where vt is a state vector.

For some more information about the model and its implementation, see the vignette: vignette("sma","smooth")

Value

Object of class "smooth" is returned. It contains the list of the following values:

• model - the name of the estimated model.

70 sma

• timeElapsed - time elapsed for the construction of the model.

• states - the matrix of the fuzzy components of ssarima, where rows correspond to time and
cols to states.

• transition - matrix F.

• persistence - the persistence vector. This is the place, where smoothing parameters live.

• measurement - measurement vector of the model.

• order - order of moving average.

• initial - Initial state vector values.

• initialType - Type of initial values used.

• nParam - table with the number of estimated / provided parameters. If a previous model was
reused, then its initials are reused and the number of provided parameters will take this into
account.

• fitted - the fitted values.

• forecast - the point forecast.

• lower - the lower bound of prediction interval. When interval=FALSE then NA is returned.

• upper - the higher bound of prediction interval. When interval=FALSE then NA is returned.

• residuals - the residuals of the estimated model.

• errors - The matrix of 1 to h steps ahead errors. Only returned when the multistep losses are
used and semiparametric interval is needed.

• s2 - variance of the residuals (taking degrees of freedom into account).

• interval - type of interval asked by user.

• level - confidence level for interval.

• cumulative - whether the produced forecast was cumulative or not.

• y - the original data.

• holdout - the holdout part of the original data.

• ICs - values of information criteria of the model. Includes AIC, AICc, BIC and BICc.

• logLik - log-likelihood of the function.

• lossValue - Cost function value.

• loss - Type of loss function used in the estimation.

• accuracy - vector of accuracy measures for the holdout sample. Includes: MPE, MAPE,
SMAPE, MASE, sMAE, RelMAE, sMSE and Bias coefficient (based on complex numbers).
This is available only when holdout=TRUE.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

smooth 71

References

• Svetunkov I. (2023) Smooth forecasting with the smooth package in R. arXiv:2301.01790.
doi:10.48550/arXiv.2301.01790.

• Svetunkov I. (2015 - Inf) "smooth" package for R - series of posts about the underlying models
and how to use them: https://openforecast.org/category/r-en/smooth/.

• Svetunkov, I., & Petropoulos, F. (2017). Old dog, new tricks: a modelling view of simple mov-
ing averages. International Journal of Production Research, 7543(January), 1-14. doi:10.1080/
00207543.2017.1380326

See Also

filter, adam, msarima

Examples

SMA of specific order
ourModel <- sma(rnorm(118,100,3), order=12, h=18, holdout=TRUE)

SMA of arbitrary order
ourModel <- sma(rnorm(118,100,3), h=18, holdout=TRUE)

plot(forecast(ourModel, h=18, interval="empirical"))

smooth Smooth package

Description

Package contains functions implementing Single Source of Error state space models for purposes
of time series analysis and forecasting.

Details

Package: smooth
Type: Package
Date: 2016-01-27 - Inf
License: GPL-2

The following functions are included in the package:

• es - Exponential Smoothing in Single Source of Errors State Space form.

• ces - Complex Exponential Smoothing.

• gum - Generalised Exponential Smoothing.

https://doi.org/10.48550/arXiv.2301.01790
https://openforecast.org/category/r-en/smooth/
https://doi.org/10.1080/00207543.2017.1380326
https://doi.org/10.1080/00207543.2017.1380326

72 smooth

• ssarima - SARIMA in state space framework.

• auto.ces - Automatic selection between seasonal and non-seasonal CES.

• auto.ssarima - Automatic selection of ARIMA orders.

• sma - Simple Moving Average in state space form.

• smoothCombine - the function that combines forecasts from es(), ces(), gum(), ssarima() and
sma() functions.

• cma - Centered Moving Average. This is for smoothing time series, not for forecasting.

• sim.es - simulate time series using ETS as a model.

• sim.ces - simulate time series using CES as a model.

• sim.ssarima - simulate time series using SARIMA as a model.

• sim.gum - simulate time series using GUM as a model.

• sim.sma - simulate time series using SMA.

• sim.oes - simulate time series based on occurrence part of ETS model.

• oes - occurrence part of the intermittent state space model.

There are also several methods implemented in the package for the classes "smooth" and "smooth.sim":

• orders - extracts orders of the fitted model.

• lags - extracts lags of the fitted model.

• modelType - extracts type of the fitted model.

• forecast - produces forecast using provided model.

• multicov - returns covariance matrix of multiple steps ahead forecast errors.

• pls - returns Prediction Likelihood Score.

• nparam - returns number of the estimated parameters.

• fitted - extracts fitted values from provided model.

• getResponse - returns actual values from the provided model.

• residuals - extracts residuals of provided model.

• plot - plots either states of the model or produced forecast (depending on what object is
passed).

• simulate - uses sim functions (sim.es, sim.ces, sim.ssarima, sim.gum, sim.sma and sim.oes) in
order to simulate data using the provided object.

• summary - provides summary of the object.

• AICc, BICc - return, guess what...

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

smooth 73

References

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Svetunkov, I., Boylan, J.E., 2023a. iETS: State Space Model for Intermittent Demand Fore-
castings. International Journal of Production Economics. 109013. doi:10.1016/j.ijpe.2023.109013

• Teunter R., Syntetos A., Babai Z. (2011). Intermittent demand: Linking forecasting to inven-
tory obsolescence. European Journal of Operational Research, 214, 606-615.

• Croston, J. (1972) Forecasting and stock control for intermittent demands. Operational Re-
search Quarterly, 23(3), 289-303.

• Svetunkov, I., Kourentzes, N., & Ord, J. K. (2022). Complex exponential smoothing. Naval
Research Logistics, 69(8), 1108–1123. https://doi.org/10.1002/nav.22074

• Svetunkov I. (2023) Smooth forecasting with the smooth package in R. arXiv:2301.01790.
doi:10.48550/arXiv.2301.01790.

• Svetunkov I. (2015 - Inf) "smooth" package for R - series of posts about the underlying models
and how to use them: https://openforecast.org/category/r-en/smooth/.

• Kolassa, S. (2011) Combining exponential smoothing forecasts using Akaike weights. Inter-
national Journal of Forecasting, 27, pp 238 - 251.

• Svetunkov, I., Boylan, J.E., 2023b. Staying Positive: Challenges and Solutions in Using
Pure Multiplicative ETS Models. IMA Journal of Management Mathematics. p. 403-425.
doi:10.1093/imaman/dpad028

• Taylor, J.W. and Bunn, D.W. (1999) A Quantile Regression Approach to Generating Prediction
Intervals. Management Science, Vol 45, No 2, pp 225-237.

• Lichtendahl Kenneth C., Jr., Grushka-Cockayne Yael, Winkler Robert L., (2013) Is It Bet-
ter to Average Probabilities or Quantiles? Management Science 59(7):1594-1611. DOI:
doi:10.1287/mnsc.1120.1667

See Also

forecast, es,ssarima, ces, gum

Examples

y <- ts(rnorm(100,10,3), frequency=12)

adam(y, h=20, holdout=TRUE)
es(y, h=20, holdout=TRUE)
gum(y, h=20, holdout=TRUE)
auto.ces(y, h=20, holdout=TRUE)
auto.ssarima(y, h=20, holdout=TRUE)

https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.1016/j.ijpe.2023.109013
https://doi.org/10.48550/arXiv.2301.01790
https://openforecast.org/category/r-en/smooth/
https://doi.org/10.1093/imaman/dpad028
https://doi.org/10.1287/mnsc.1120.1667

74 smoothCombine

smoothCombine Combination of forecasts of state space models

Description

Function constructs ETS, SSARIMA, CES, GUM and SMA and combines their forecasts using IC
weights.

Usage

smoothCombine(y, models = NULL, initial = c("backcasting", "optimal",
"two-stage", "complete"), ic = c("AICc", "AIC", "BIC", "BICc"),
loss = c("MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10,
holdout = FALSE, cumulative = FALSE, interval = c("none", "prediction",
"confidence", "simulated", "approximate", "semiparametric", "nonparametric",
"empirical", "complete"), level = 0.95, bins = 200,
intervalCombine = c("quantile", "probability"), bounds = c("usual",
"admissible", "none"), silent = TRUE, xreg = NULL,
regressors = c("use", "select"), initialX = NULL, ...)

Arguments

y Vector or ts object, containing data needed to be forecasted.

models List of the estimated smooth models to use in the combination. If NULL, then all
the models are estimated in the function.

initial Can be "optimal", meaning that the initial states are optimised, or "backcasting",
meaning that the initials are produced using backcasting procedure.

ic The information criterion used in the model selection procedure.

loss The type of Loss Function used in optimization. loss can be: likelihood
(assuming Normal distribution of error term), MSE (Mean Squared Error), MAE
(Mean Absolute Error), HAM (Half Absolute Moment), TMSE - Trace Mean Squared
Error, GTMSE - Geometric Trace Mean Squared Error, MSEh - optimisation using
only h-steps ahead error, MSCE - Mean Squared Cumulative Error. If loss!="MSE",
then likelihood and model selection is done based on equivalent MSE. Model se-
lection in this cases becomes not optimal.
There are also available analytical approximations for multistep functions: aMSEh,
aTMSE and aGTMSE. These can be useful in cases of small samples.
Finally, just for fun the absolute and half analogues of multistep estimators are
available: MAEh, TMAE, GTMAE, MACE, TMAE, HAMh, THAM, GTHAM, CHAM.

h Length of forecasting horizon.

holdout If TRUE, holdout sample of size h is taken from the end of the data.

cumulative If TRUE, then the cumulative forecast and prediction interval are produced in-
stead of the normal ones. This is useful for inventory control systems.

interval Type of interval to construct. This can be:

smoothCombine 75

• "none", aka "n" - do not produce prediction interval.
• "parametric", "p" - use state-space structure of ETS. In case of mixed

models this is done using simulations, which may take longer time than for
the pure additive and pure multiplicative models. This type of interval relies
on unbiased estimate of in-sample error variance, which divides the sume
of squared errors by T-k rather than just T.

• "likelihood", "l" - these are the same as "p", but relies on the biased
estimate of variance from the likelihood (division by T, not by T-k).

• "semiparametric", "sp" - interval based on covariance matrix of 1 to
h steps ahead errors and assumption of normal / log-normal distribution
(depending on error type).

• "nonparametric", "np" - interval based on values from a quantile regres-
sion on error matrix (see Taylor and Bunn, 1999). The model used in this
process is e[j] = a j^b, where j=1,..,h.

The parameter also accepts TRUE and FALSE. The former means that parametric
interval are constructed, while the latter is equivalent to none. If the forecasts of
the models were combined, then the interval are combined quantile-wise (Lich-
tendahl et al., 2013).

level Confidence level. Defines width of prediction interval.

bins The number of bins for the prediction interval. The lower value means faster
work of the function, but less precise estimates of the quantiles. This needs to
be an even number.

intervalCombine

How to average the prediction interval: quantile-wise ("quantile") or probability-
wise ("probability").

bounds What type of bounds to use in the model estimation. The first letter can be
used instead of the whole word. "usual" implies restrictions on the smoothing
parameter, guaranteeing that the exponential smoothing behaves as an averaging
model. "admissible" guarantee that the model is stable.

silent accepts TRUE and FALSE. If FALSE, the function will print its progress and pro-
duce a plot at the end.

xreg The vector (either numeric or time series) or the matrix (or data.frame) of ex-
ogenous variables that should be included in the model. If matrix included
than columns should contain variables and rows - observations. Note that xreg
should have number of observations equal either to in-sample or to the whole
series. If the number of observations in xreg is equal to in-sample, then values
for the holdout sample are produced using es function.

regressors The variable defines what to do with the provided xreg: "use" means that all of
the data should be used, while "select" means that a selection using ic should
be done.

initialX The vector of initial parameters for exogenous variables. Ignored if xreg is
NULL.

... This currently determines nothing.

• timeElapsed - time elapsed for the construction of the model.
• initialType - type of the initial values used.

76 smoothCombine

• fitted - fitted values of ETS.
• quantiles - the 3D array of produced quantiles if interval!="none" with

the dimensions: (number of models) x (bins) x (h).
• forecast - point forecast of ETS.
• lower - lower bound of prediction interval. When interval="none" then

NA is returned.
• upper - higher bound of prediction interval. When interval="none" then

NA is returned.
• residuals - residuals of the estimated model.
• s2 - variance of the residuals (taking degrees of freedom into account).
• interval - type of interval asked by user.
• level - confidence level for interval.
• cumulative - whether the produced forecast was cumulative or not.
• y - original data.
• holdout - holdout part of the original data.
• xreg - provided vector or matrix of exogenous variables. If regressors="s",

then this value will contain only selected exogenous variables.
• ICs - values of information criteria of the model. Includes AIC, AICc, BIC

and BICc.
• accuracy - vector of accuracy measures for the holdout sample. In case

of non-intermittent data includes: MPE, MAPE, SMAPE, MASE, sMAE,
RelMAE, sMSE and Bias coefficient (based on complex numbers). In case
of intermittent data the set of errors will be: sMSE, sPIS, sCE (scaled cu-
mulative error) and Bias coefficient.

Details

The combination of these models using information criteria weights is possible because they are all
formulated in Single Source of Error framework. Due to the the complexity of some of the models,
the estimation process may take some time. So be patient.

The prediction interval are combined either probability-wise or quantile-wise (Lichtendahl et al.,
2013), which may take extra time, because we need to produce all the distributions for all the
models. This can be sped up with the smaller value for bins parameter, but the resulting interval
may be imprecise.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790

sowhat 77

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Kolassa, S. (2011) Combining exponential smoothing forecasts using Akaike weights. Inter-
national Journal of Forecasting, 27, pp 238 - 251.

• Svetunkov, I., Boylan, J.E., 2023b. Staying Positive: Challenges and Solutions in Using
Pure Multiplicative ETS Models. IMA Journal of Management Mathematics. p. 403-425.
doi:10.1093/imaman/dpad028

• Taylor, J.W. and Bunn, D.W. (1999) A Quantile Regression Approach to Generating Prediction
Intervals. Management Science, Vol 45, No 2, pp 225-237.

• Lichtendahl Kenneth C., Jr., Grushka-Cockayne Yael, Winkler Robert L., (2013) Is It Bet-
ter to Average Probabilities or Quantiles? Management Science 59(7):1594-1611. DOI:
doi:10.1287/mnsc.1120.1667

See Also

es, auto.ssarima,auto.ces, auto.gum, sma

Examples

Not run: ourModel <- smoothCombine(BJsales,interval="p")
plot(ourModel)
End(Not run)

models parameter accepts either previously estimated smoothCombine
or a manually formed list of smooth models estimated in sample:
Not run: smoothCombine(BJsales,models=ourModel)

Not run: models <- list(es(BJsales), sma(BJsales))
smoothCombine(BJsales,models=models)
End(Not run)

sowhat Function returns the ultimate answer to any question

Description

You need a description? So what?

Usage

sowhat(...)

Arguments

... Any number of variables or string with a question.

https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.1093/imaman/dpad028
https://doi.org/10.1287/mnsc.1120.1667

78 ssarima

Details

You need details? So what?

Value

It doesn’t return any value, only messages. So what?

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Sowhat?

• Sowhat?

• 42

See Also

Nowwhat (to be implemented),

Examples

x <- rnorm(10000,0,1);
sowhat(x);

sowhat("What's the meaning of life?")

sowhat("I don't have a girlfriend.")

ssarima State Space ARIMA

Description

Function constructs State Space ARIMA, estimating AR, MA terms and initial states.

Function selects the best State Space ARIMA based on information criteria, using fancy branch
and bound mechanism. The resulting model can be not optimal in IC meaning, but it is usually
reasonable.

Function constructs State Space ARIMA, estimating AR, MA terms and initial states.

https://en.wiktionary.org/wiki/so_what
https://www.youtube.com/watch?v=FJfFZqTlWrQ
https://en.wikipedia.org/wiki/Douglas_Adams

ssarima 79

Usage

ssarima(y, orders = list(ar = c(0), i = c(1), ma = c(1)), lags = c(1),
constant = FALSE, arma = NULL, model = NULL,
initial = c("backcasting", "optimal", "two-stage", "complete"),
loss = c("likelihood", "MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE",
"MSCE"), h = 0, holdout = FALSE, bounds = c("admissible", "usual",
"none"), silent = TRUE, xreg = NULL, regressors = c("use", "select",
"adapt"), initialX = NULL, ...)

auto.ssarima(y, orders = list(ar = c(3, 3), i = c(2, 1), ma = c(3, 3)),
lags = c(1, frequency(y)), fast = TRUE, constant = NULL,
initial = c("backcasting", "optimal", "two-stage", "complete"),
loss = c("likelihood", "MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE",
"MSCE"), ic = c("AICc", "AIC", "BIC", "BICc"), h = 0, holdout = FALSE,
bounds = c("admissible", "usual", "none"), silent = TRUE, xreg = NULL,
regressors = c("use", "select", "adapt"), ...)

ssarima_old(y, orders = list(ar = c(0), i = c(1), ma = c(1)), lags = c(1),
constant = FALSE, AR = NULL, MA = NULL, initial = c("backcasting",
"optimal"), ic = c("AICc", "AIC", "BIC", "BICc"), loss = c("likelihood",
"MSE", "MAE", "HAM", "MSEh", "TMSE", "GTMSE", "MSCE"), h = 10,
holdout = FALSE, bounds = c("admissible", "none"), silent = c("all",
"graph", "legend", "output", "none"), xreg = NULL, regressors = c("use",
"select"), initialX = NULL, ...)

Arguments

y Vector or ts object, containing data needed to be forecasted.

orders List of orders, containing vector variables ar, i and ma. Example: orders=list(ar=c(1,2),i=c(1),ma=c(1,1,1)).
If a variable is not provided in the list, then it is assumed to be equal to zero.
At least one variable should have the same length as lags. Another option is
to specify orders as a vector of a form orders=c(p,d,q). The non-seasonal
ARIMA(p,d,q) is constructed in this case.

lags Defines lags for the corresponding orders (see examples above). The length of
lags must correspond to the length of either ar, i or ma in orders variable.
There is no restrictions on the length of lags vector. It is recommended to order
lags ascending. The orders are set by a user. If you want the automatic order
selection, then use auto.ssarima function instead.

constant If TRUE, constant term is included in the model. Can also be a number (constant
value).

arma Either the named list or a vector with AR / MA parameters ordered lag-wise. The
number of elements should correspond to the specified orders e.g. orders=list(ar=c(1,1),ma=c(1,1)),
lags=c(1,4), arma=list(ar=c(0.9,0.8),ma=c(-0.3,0.3))

model A previously estimated ssarima model, if provided, the function will not estimate
anything and will use all its parameters.

80 ssarima

initial Can be either character or a vector of initial states. If it is character, then it can
be "optimal", meaning that the initial states are optimised, or "backcasting",
meaning that the initials are produced using backcasting procedure.

loss The type of Loss Function used in optimization. loss can be: likelihood
(assuming Normal distribution of error term), MSE (Mean Squared Error), MAE
(Mean Absolute Error), HAM (Half Absolute Moment), TMSE - Trace Mean Squared
Error, GTMSE - Geometric Trace Mean Squared Error, MSEh - optimisation using
only h-steps ahead error, MSCE - Mean Squared Cumulative Error. If loss!="MSE",
then likelihood and model selection is done based on equivalent MSE. Model se-
lection in this cases becomes not optimal.
There are also available analytical approximations for multistep functions: aMSEh,
aTMSE and aGTMSE. These can be useful in cases of small samples.
Finally, just for fun the absolute and half analogues of multistep estimators are
available: MAEh, TMAE, GTMAE, MACE, TMAE, HAMh, THAM, GTHAM, CHAM.

h Length of forecasting horizon.
holdout If TRUE, holdout sample of size h is taken from the end of the data.
bounds What type of bounds to use in the model estimation. The first letter can be used

instead of the whole word. In case of ssarima(), the "usual" means restricting
AR and MA parameters to lie between -1 and 1.

silent accepts TRUE and FALSE. If FALSE, the function will print its progress and pro-
duce a plot at the end.

xreg The vector (either numeric or time series) or the matrix (or data.frame) of ex-
ogenous variables that should be included in the model. If matrix included
than columns should contain variables and rows - observations. Note that xreg
should have number of observations equal either to in-sample or to the whole
series. If the number of observations in xreg is equal to in-sample, then values
for the holdout sample are produced using es function.

regressors The variable defines what to do with the provided xreg: "use" means that all of
the data should be used, while "select" means that a selection using ic should
be done.

initialX The vector of initial parameters for exogenous variables. Ignored if xreg is
NULL.

... Other non-documented parameters.
Parameter model can accept a previously estimated SSARIMA model and use
all its parameters.
FI=TRUE will make the function produce Fisher Information matrix, which then
can be used to calculated variances of parameters of the model.

fast If TRUE, then some of the orders of ARIMA are skipped. This is not advised for
models with lags greater than 12.

ic The information criterion used in the model selection procedure.
AR Vector or matrix of AR parameters. The order of parameters should be lag-wise.

This means that first all the AR parameters of the firs lag should be passed, then
for the second etc. AR of another ssarima can be passed here.

MA Vector or matrix of MA parameters. The order of parameters should be lag-wise.
This means that first all the MA parameters of the firs lag should be passed, then
for the second etc. MA of another ssarima can be passed here.

ssarima 81

Details

The model, implemented in this function, is discussed in Svetunkov & Boylan (2019).

The basic ARIMA(p,d,q) used in the function has the following form:

(1−B)d(1− a1B − a2B
2 − ...− apB

p)y[t] = (1 + b1B + b2B
2 + ...+ bqB

q)ϵ[t] + c

where y[t] is the actual values, ϵ[t] is the error term, ai, bj are the parameters for AR and MA
respectively and c is the constant. In case of non-zero differences c acts as drift.

This model is then transformed into ARIMA in the Single Source of Error State space form (pro-
posed in Snyder, 1985):

yt = w′vt−l + ϵt

vt = Fvt−l + gtϵt

where vt is the state vector (defined based on orders) and l is the vector of lags, wt is the
measurement vector (with explanatory variables if provided), F is the transition matrix, gt is
the persistence vector (which includes explanatory variables if they were used).

Due to the flexibility of the model, multiple seasonalities can be used. For example, something
crazy like this can be constructed: SARIMA(1,1,1)(0,1,1)[24](2,0,1)[24*7](0,0,1)[24*30], but the
estimation may take a lot of time... If you plan estimating a model with more than one seasonality,
it is recommended to use msarima instead.

The model selection for SSARIMA is done by the auto.ssarima function.

For some more information about the model and its implementation, see the vignette: vignette("ssarima","smooth")

The function constructs bunch of ARIMAs in Single Source of Error state space form (see ssarima
documentation) and selects the best one based on information criterion. The mechanism is described
in Svetunkov & Boylan (2019).

Due to the flexibility of the model, multiple seasonalities can be used. For example, something
crazy like this can be constructed: SARIMA(1,1,1)(0,1,1)[24](2,0,1)[24*7](0,0,1)[24*30], but the
estimation may take a lot of time... It is recommended to use auto.msarima in cases with more than
one seasonality and high frequencies.

For some more information about the model and its implementation, see the vignette: vignette("ssarima","smooth")

The model, implemented in this function, is discussed in Svetunkov & Boylan (2019).

The basic ARIMA(p,d,q) used in the function has the following form:

(1−B)d(1− a1B − a2B
2 − ...− apB

p)y[t] = (1 + b1B + b2B
2 + ...+ bqB

q)ϵ[t] + c

where y[t] is the actual values, ϵ[t] is the error term, ai, bj are the parameters for AR and MA
respectively and c is the constant. In case of non-zero differences c acts as drift.

This model is then transformed into ARIMA in the Single Source of Error State space form (pro-
posed in Snyder, 1985):

yt = ot(w
′vt−l + xtat−1 + ϵt)

vt = Fvt−l + gϵt

at = FXat−1 + gXϵt/xt

Where ot is the Bernoulli distributed random variable (in case of normal data equal to 1), vt is the
state vector (defined based on orders) and l is the vector of lags, xt is the vector of exogenous
parameters. w is the measurement vector, F is the transition matrix, g is the persistence

82 ssarima

vector, at is the vector of parameters for exogenous variables, FX is the transitionX matrix and
gX is the persistenceX matrix.

Due to the flexibility of the model, multiple seasonalities can be used. For example, something
crazy like this can be constructed: SARIMA(1,1,1)(0,1,1)[24](2,0,1)[24*7](0,0,1)[24*30], but the
estimation may take some finite time... If you plan estimating a model with more than one season-
ality, it is recommended to consider doing it using msarima.

The model selection for SSARIMA is done by the auto.ssarima function.

For some more information about the model and its implementation, see the vignette: vignette("ssarima","smooth")

Value

Object of class "adam" is returned with similar elements to the adam function.

Object of class "smooth" is returned. See ssarima for details.

Object of class "smooth" is returned. It contains the list of the following values:

• model - the name of the estimated model.

• timeElapsed - time elapsed for the construction of the model.

• states - the matrix of the fuzzy components of ssarima, where rows correspond to time and
cols to states.

• transition - matrix F.

• persistence - the persistence vector. This is the place, where smoothing parameters live.

• measurement - measurement vector of the model.

• AR - the matrix of coefficients of AR terms.

• I - the matrix of coefficients of I terms.

• MA - the matrix of coefficients of MA terms.

• constant - the value of the constant term.

• initialType - Type of the initial values used.

• initial - the initial values of the state vector (extracted from states).

• nParam - table with the number of estimated / provided parameters. If a previous model was
reused, then its initials are reused and the number of provided parameters will take this into
account.

• fitted - the fitted values.

• forecast - the point forecast.

• lower - the lower bound of prediction interval. When interval="none" then NA is returned.

• upper - the higher bound of prediction interval. When interval="none" then NA is returned.

• residuals - the residuals of the estimated model.

• errors - The matrix of 1 to h steps ahead errors. Only returned when the multistep losses are
used and semiparametric interval is needed.

• s2 - variance of the residuals (taking degrees of freedom into account).

• interval - type of interval asked by user.

• level - confidence level for interval.

ssarima 83

• cumulative - whether the produced forecast was cumulative or not.

• y - the original data.

• holdout - the holdout part of the original data.

• xreg - provided vector or matrix of exogenous variables. If regressors="s", then this value
will contain only selected exogenous variables.

• initialX - initial values for parameters of exogenous variables.

• ICs - values of information criteria of the model. Includes AIC, AICc, BIC and BICc.

• logLik - log-likelihood of the function.

• lossValue - Cost function value.

• loss - Type of loss function used in the estimation.

• FI - Fisher Information. Equal to NULL if FI=FALSE or when FI is not provided at all.

• accuracy - vector of accuracy measures for the holdout sample. In case of non-intermittent
data includes: MPE, MAPE, SMAPE, MASE, sMAE, RelMAE, sMSE and Bias coefficient
(based on complex numbers). In case of intermittent data the set of errors will be: sMSE, sPIS,
sCE (scaled cumulative error) and Bias coefficient. This is available only when holdout=TRUE.

• B - the vector of all the estimated parameters.

Author(s)

Ivan Svetunkov, <ivan@svetunkov.com>

References

• Svetunkov I. (2023) Smooth forecasting with the smooth package in R. arXiv:2301.01790.
doi:10.48550/arXiv.2301.01790.

• Svetunkov I. (2015 - Inf) "smooth" package for R - series of posts about the underlying models
and how to use them: https://openforecast.org/category/r-en/smooth/.

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Svetunkov, I., Boylan, J.E., 2023a. iETS: State Space Model for Intermittent Demand Fore-
castings. International Journal of Production Economics. 109013. doi:10.1016/j.ijpe.2023.109013

https://doi.org/10.48550/arXiv.2301.01790
https://openforecast.org/category/r-en/smooth/
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.1016/j.ijpe.2023.109013

84 ssarima

• Teunter R., Syntetos A., Babai Z. (2011). Intermittent demand: Linking forecasting to inven-
tory obsolescence. European Journal of Operational Research, 214, 606-615.

• Croston, J. (1972) Forecasting and stock control for intermittent demands. Operational Re-
search Quarterly, 23(3), 289-303.

• Svetunkov, I., & Boylan, J. E. (2019). State-space ARIMA for supply-chain forecasting. In-
ternational Journal of Production Research, 0(0), 1–10. doi:10.1080/00207543.2019.1600764

• Svetunkov, I., 2023. Smooth Forecasting with the Smooth Package in R. arXiv. doi:10.48550/
arXiv.2301.01790

• Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Journal of the Royal
Statistical Society, Series B (Methodological) 47 (2), 272-276.

• Hyndman, R.J., Koehler, A.B., Ord, J.K., and Snyder, R.D. (2008) Forecasting with exponen-
tial smoothing: the state space approach, Springer-Verlag. doi:10.1007/9783540719182.

• Svetunkov, I., & Boylan, J. E. (2019). State-space ARIMA for supply-chain forecasting. In-
ternational Journal of Production Research, 0(0), 1–10. doi:10.1080/00207543.2019.1600764

See Also

auto.ssarima, auto.msarima, adam, es, ces

es, ces,sim.es, gum, ssarima

auto.ssarima, orders,msarima, auto.msarima,sim.ssarima, adam

Examples

ARIMA(1,1,1) fitted to some data
ourModel <- ssarima(rnorm(118,100,3),orders=list(ar=c(1),i=c(1),ma=c(1)),lags=c(1))

Model with the same lags and orders, applied to a different data
ssarima(rnorm(118,100,3),orders=orders(ourModel),lags=lags(ourModel))

The same model applied to a different data
ssarima(rnorm(118,100,3),model=ourModel)

Example of SARIMA(2,0,0)(1,0,0)[4]
ssarima(rnorm(118,100,3),orders=list(ar=c(2,1)),lags=c(1,4))

SARIMA(1,1,1)(0,0,1)[4] with different initialisations
ssarima(rnorm(118,100,3),orders=list(ar=c(1),i=c(1),ma=c(1,1)),

lags=c(1,4),h=18,holdout=TRUE,initial="backcasting")

set.seed(41)
x <- rnorm(118,100,3)

The best ARIMA for the data
ourModel <- auto.ssarima(x,orders=list(ar=c(2,1),i=c(1,1),ma=c(2,1)),lags=c(1,12),

h=18,holdout=TRUE)

https://doi.org/10.1080/00207543.2019.1600764
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.48550/arXiv.2301.01790
https://doi.org/10.1007/978-3-540-71918-2
https://doi.org/10.1080/00207543.2019.1600764

ssarima 85

The other one using optimised states
auto.ssarima(x,orders=list(ar=c(3,2),i=c(2,1),ma=c(3,2)),lags=c(1,12),

initial="two",h=18,holdout=TRUE)

summary(ourModel)
forecast(ourModel)
plot(forecast(ourModel))

ARIMA(1,1,1) fitted to some data
ourModel <- ssarima_old(rnorm(118,100,3),orders=list(ar=c(1),i=c(1),ma=c(1)),lags=c(1),h=18,

holdout=TRUE)

Model with the same lags and orders, applied to a different data
ssarima_old(rnorm(118,100,3),orders=orders(ourModel),lags=lags(ourModel),h=18,holdout=TRUE)

The same model applied to a different data
ssarima_old(rnorm(118,100,3),model=ourModel,h=18,holdout=TRUE)

SARIMA(0,1,1) with exogenous variables
ssarima_old(rnorm(118,100,3),orders=list(i=1,ma=1),h=18,holdout=TRUE,xreg=c(1:118))

summary(ourModel)
forecast(ourModel)
plot(forecast(ourModel))

Index

∗ 42
sowhat, 77

∗ demand
oesg, 44

∗ exponential
oesg, 44

∗ forecasting
oesg, 44

∗ intermittent
oesg, 44

∗ iss
oesg, 44

∗ models
adam, 4
ces, 13
cma, 16
es, 18
gum, 27
msarima, 33
msdecompose, 38
multicov, 40
oes, 41
oesg, 44
orders, 47
pls, 51
reapply, 52
rmultistep, 54
sim.ces, 55
sim.es, 57
sim.gum, 60
sim.oes, 62
sim.sma, 64
sim.ssarima, 66
sma, 68
smooth, 71
smoothCombine, 74
ssarima, 78

∗ model
oesg, 44

∗ nonlinear
adam, 4
ces, 13
cma, 16
es, 18
gum, 27
msarima, 33
msdecompose, 38
multicov, 40
oes, 41
oesg, 44
orders, 47
pls, 51
reapply, 52
rmultistep, 54
sim.ces, 55
sim.es, 57
sim.gum, 60
sim.oes, 62
sim.sma, 64
sim.ssarima, 66
sma, 68
smooth, 71
smoothCombine, 74
ssarima, 78

∗ regression
adam, 4
ces, 13
cma, 16
es, 18
gum, 27
msarima, 33
msdecompose, 38
multicov, 40
oes, 41
oesg, 44
orders, 47
pls, 51
reapply, 52

86

INDEX 87

rmultistep, 54
sim.ces, 55
sim.es, 57
sim.gum, 60
sim.oes, 62
sim.sma, 64
sim.ssarima, 66
sma, 68
smooth, 71
smoothCombine, 74
ssarima, 78

∗ smoothing
oesg, 44

∗ smooth
adam, 4
ces, 13
cma, 16
es, 18
gum, 27
msarima, 33
msdecompose, 38
multicov, 40
oes, 41
oesg, 44
orders, 47
pls, 51
reapply, 52
rmultistep, 54
sim.ces, 55
sim.es, 57
sim.gum, 60
sim.oes, 62
sim.sma, 64
sim.ssarima, 66
sma, 68
smooth, 71
smoothCombine, 74
ssarima, 78

∗ sowhat
sowhat, 77

∗ space
oesg, 44

∗ state
oesg, 44

∗ ts
adam, 4
ces, 13
cma, 16

es, 18
forecast.adam, 25
gum, 27
is.smooth, 31
msarima, 33
msdecompose, 38
multicov, 40
oes, 41
oesg, 44
orders, 47
plot.adam, 48
pls, 51
reapply, 52
rmultistep, 54
sim.ces, 55
sim.es, 57
sim.gum, 60
sim.oes, 62
sim.sma, 64
sim.ssarima, 66
sma, 68
smooth, 71
smoothCombine, 74
ssarima, 78

∗ univar
adam, 4
ces, 13
cma, 16
es, 18
forecast.adam, 25
gum, 27
is.smooth, 31
msarima, 33
msdecompose, 38
multicov, 40
oes, 41
oesg, 44
orders, 47
plot.adam, 48
pls, 51
reapply, 52
rmultistep, 54
sim.ces, 55
sim.es, 57
sim.gum, 60
sim.oes, 62
sim.sma, 64
sim.ssarima, 66

88 INDEX

sma, 68
smooth, 71
smoothCombine, 74
ssarima, 78

accuracy.smooth, 3
acf, 50
adam, 4, 15, 16, 18, 24, 29, 30, 32, 33, 35, 36,

38, 44, 71, 82, 84
alm, 6, 50
auto.adam (adam), 4
auto.ces, 72, 77
auto.ces (ces), 13
auto.gum, 77
auto.gum (gum), 27
auto.msarima, 34, 81, 84
auto.msarima (msarima), 33
auto.ssarima, 38, 72, 77, 79, 81, 82, 84
auto.ssarima (ssarima), 78

ces, 13, 26, 30, 32, 56, 71, 73, 84
ces_old (ces), 13
cma, 16, 72

dgamma, 9
dgnorm, 9
dinvgauss, 10
Distributions, 56, 58–61, 64, 65, 67, 68
dlaplace, 9
dlnorm, 9
dnorm, 6
ds, 9

es, 12, 14, 16, 18, 18, 20, 26, 29, 30, 32, 35,
38, 42, 44, 46, 59, 65, 71, 73, 75, 77,
80, 84

es_old (es), 18

filter, 39, 71
forecast, 24, 27, 73
forecast (forecast.adam), 25
forecast.adam, 25
forecast.smooth, 53, 54

ges (gum), 27
gum, 26, 27, 30, 32, 61, 71, 73, 84
gum_old (gum), 27

implant, 10
is.adam (is.smooth), 31

is.msarima (is.smooth), 31
is.msdecompose (is.smooth), 31
is.oes (is.smooth), 31
is.oesg (is.smooth), 31
is.smooth, 31
is.smoothC (is.smooth), 31

lags (orders), 47
lowess, 39, 49

measures, 3
modelName (orders), 47
modelType (orders), 47
msarima, 6, 12, 32, 33, 48, 71, 81, 82, 84
msarima_old (msarima), 33
msdecompose, 9, 38
multicov, 40, 72

nloptr, 20
nloptr.print.options, 9
Normal, 9
nparam, 72

oes, 6, 32, 41, 46, 64, 72
oesg, 44, 44
orders, 38, 41, 47, 68, 72, 84

plot.adam, 48
plot.greybox, 50
plot.msdecompose (plot.adam), 48
plot.smooth (plot.adam), 48
pls, 51, 72

reapply, 52
reforecast (reapply), 52
residuals, 55
rmultistep, 54

sim.ces, 32, 55, 61, 72
sim.es, 24, 30, 32, 56, 57, 61, 64, 68, 72, 84
sim.gum, 32, 60, 72
sim.oes, 62, 72
sim.sma, 32, 64, 72
sim.ssarima, 32, 56, 61, 66, 72, 84
simulate.adam (adam), 4
sm, 10
sm.adam (adam), 4
sma, 17, 32, 68, 72, 77
sma_old (sma), 68
smooth, 71

INDEX 89

smooth-package (smooth), 71
smoothCombine, 32, 72, 74
sowhat, 77
ssarima, 18, 26, 30, 32, 35, 36, 48, 68, 72, 73,

78, 81, 82, 84
ssarima_old (ssarima), 78
stl, 39
supsmu, 39

ts, 24, 59, 65

vcov, 8

	accuracy.smooth
	adam
	ces
	cma
	es
	forecast.adam
	gum
	is.smooth
	msarima
	msdecompose
	multicov
	oes
	oesg
	orders
	plot.adam
	pls
	reapply
	rmultistep
	sim.ces
	sim.es
	sim.gum
	sim.oes
	sim.sma
	sim.ssarima
	sma
	smooth
	smoothCombine
	sowhat
	ssarima
	Index

