Package ‘stablelearner’

October 27, 2025

Version 0.1-7
Date 2025-10-27
Title Stability Assessment of Statistical Learning Methods

Description Graphical and computational methods that can be used to assess the
stability of results from supervised statistical learning.

Depends R (>=3.0.0)

Imports graphics, methods, MASS, e1071, partykit, party, randomForest,
ranger

Suggests utils, Formula, nnet, rpart, evtree, rchallenge, knitr,
rmarkdown

VignetteBuilder knitr

License GPL-2 | GPL-3

Encoding UTF-8

NeedsCompilation no

Author Michel Philipp [aut],

Carolin Strobl [aut],

Achim Zeileis [aut, cre] (ORCID:
<https://orcid.org/0000-0003-0918-3766>),

Thomas Rusch [aut],

Kurt Hornik [aut] (ORCID: <https://orcid.org/0000-0003-4198-9911>),

Lennart Schneider [aut] (ORCID:
<https://orcid.org/0000-0003-4152-5308>)

Maintainer Achim Zeileis <Achim.Zeileis@R-project.org>
Repository CRAN
Date/Publication 2025-10-27 22:50:02 UTC

Contents

ACCUTACY .+« + v v v e e e e e e e e e e e e e e
addLearner e
DOOLSIrap e

https://orcid.org/0000-0003-0918-3766
https://orcid.org/0000-0003-4198-9911
https://orcid.org/0000-0003-4152-5308

2 accuracy

boxplot.stablelearnerList L 6
dgp_twoclass e e e 7
getlearner 8
LearnerList e e e e 8
plotstabletree L. 9
similarity_measures_classification L L 12
similarity_measures_regression e 14
similarity_values 16
stability e 17
StablEtree e e e e e e e e e 19
stabletree-Coercion e 21
stab_control e e e 24
summary.stablelearnerListo 26
HEANIC o . e e e e e e e e e e e e e e e e e 27
TUNCT o ot ot e 28

Index 30

accuracy Prediction Accuracy from Stability Assessment Results
Description

Function to compute the prediction accuracy from an object of class "stablelearner” or "stablelearnerList”
as a parallel to the similarity values estimated by stability in each iteration of the stability assess-
ment procedure.

Usage

accuracy(x, measure = "kappa", na.action = na.exclude,
applyfun = NULL, cores = NULL)

Arguments

X an object of class "stablelearner” or "stablelearnerList"”.

measure a character string (or a vector of character strings). Name(s) of the measure(s)
used to compute accuracy. Currently implemented measures are "diag"” = per-
centage of observations on the main diagonal of a confusion matrix, "kappa” =
"diag" corrected for agreement by chance (default), "rand” = Rand index, and
"crand” = Rand index corrected for agreemend by chance (see also classAgreement).

na.action a function which indicates what should happen to the predictions of the results
containing NAs. The default function is na.exclude.

applyfun a lapply-like function. The default is to use lapply unless cores is specified
in which case mclapply is used (for multicore computations on platforms that
support these).

cores integer. The number of cores to use in multicore computations using mclapply

(see above).

addLearner 3

Details

This function can be used to compute prediction accuracy after the stability was estimated using
stability.

Value

A matrix of size 2*B times length(measure) containing prediction accuracy values of the learners
trained during the stability assessment procedure.

See Also

stability

Examples

library("partykit”)

res <- ctree(Species ~ ., data = iris)
stab <- stability(res)
accuracy(stab)
addLearner Add Learners to LearnerList
Description

The function can be used to add new learner to LearnerList in the current R session.

Usage
addLearner(x)
Arguments
X a list containing all required information to define a new learner (see Details
below).
Details

The function can be used to add new learners to LearnerList in the current R session. The function
expects a list of four elements including the name of the learners object class, the name of the
package where the class and the fitting method is implemented, the name of the method and a
prediction function that predicts class probabilities (in the classification case) or numeric values
(in the regression case) and takes the arguments x (the fitted model object), newdata a data. frame
containing the predictions of the observations in the evaluation sample and yclass a character string
specifying the type of the response variable ("numeric”, "factor”, etc.). The elements in the list
should be named class, package, method and predfun.

4 bootstrap

See Also

LearnerList

Examples

newlearner <- list(

class = "svm",
package = "el1071",
method = "Support Vector Machine”,

predict = function(x, newdata, yclass = NULL) {
if(match(yclass, c("ordered”, "factor”))) {
attr(predict(x, newdata = newdata, probability = TRUE), "probabilities")
} else {
predict(x, newdata = newdata)
}
D)

addLearner(newlearner)

bootstrap Sampler Infrastructure for Stability Assessment

Description

Sampler objects that provide objects with functionality used by stabletree to generate resampled
datasets.

Usage

bootstrap(B = 500, v = 1)
subsampling(B = 500, v = 0.632)
samplesplitting(k = 5)
jackknife(d = 1, maxrep = 5000)
splithalf (B = 500)

Arguments
B An integer value specifying the number of resampled datasets.
k An integer value specifying the number of folds in sample-splitting.
d An integer value specifying the number of observations left out in jackknife.
maxrep An integer value specifying the maximum number of resampled datasets al-
lowed, when using jackknife.
v A numeric value between 0 and 1 specifying the fraction of observations in each

subsample.

bootstrap 5

Details

The sampler functions provide objects that include functionality to generate resampled datasets used
by stabletree.

The bootstrap function provides an object that can be used to generate B bootstrap samples by
sampling from n observations with replacement.

The subsampling function provides an object that can be used to generate B subsamples by sam-
pling from floor (v*n) observations without replacement.

The samplesplitting function provides an object that can be used to generate k-folds from n
observations.

The jackknife function provides an object that can be used to generate all datasets necessary to
perform leave-k-out jackknife sampling from n observations. The number of datasets is limited by
maxrep to prevent unintended CPU or memory overload by accidently choosing too large values for
k.

The splithalf function provides an object that can be used to generate B subsamples by sampling
from floor(@.5xn) observations without replacement. When used to implement the "splithalf"
resampling strategy for measuring the stability of a result via the stability function, the matrix
containing the complement learning samples is generated automatically by stability.

See Also

stabletree, stability

Examples

set.seed(0)

bootstrap sampler
s <- bootstrap(3)
s$sampler(10)

subsampling
s <- subsampling(3, v = 0.6)
s$sampler(10)

5-fold sample-splitting
s <- samplesplitting(5)
s$sampler(10)

jackknife
s <- jackknife(d = 1)
s$sampler(10)

splithaf
s <- splithalf(3)
s$sampler(10)

6 boxplot.stablelearnerList

boxplot.stablelearnerList
Illustrate Results from Stability Assessment

Description

[lustrates the results from stability assessments performed by stability using boxplots.

Usage
S3 method for class 'stablelearnerList'
boxplot(x, ..., main = NULL, xlab = NULL, ylab = NULL, reverse = TRUE)
S3 method for class 'stablelearner'
boxplot(x, ...)
Arguments
X an object of class "stablelearnerList” to be illustrated.

Arguments passed to boxplot.

main a character specifying the title. By default set to NULL.

xlab a character specifying the title for the x axis. By default set to "Learner".
ylab a character specifying the title for the y axis. By default set to NULL.

reverse logical. If reverse = TRUE (default), the similarity values are transformed (re-

versed) such that higher values indicate a higher stability.

See Also

stability, summary.stablelearnerList

Examples

library("partykit")
r1 <- ctree(Species ~ ., data = iris)

library("rpart")
r2 <- rpart(Species ~ ., data = iris)

stab <- stability(r1, r2, names = c("ctree”, "rpart”))
boxplot(stab)

dgp_twoclass 7

dgp_twoclass Data-Ggnerating Function for Two-Class Problem

Description

Data-generating function to generate artificial data sets of a classification problem with two response
classes, denoted as "A" and "B".

Usage

dgp_twoclass(n = 100, p = 4, noise = 16, rho = 0,
bo = @, b = rep(1, p), fx = identity)

Arguments
n integer. Number of observations. The default is 100.
p integer. Number of signal predictors. The default is 4.
noise integer. Number of noise predictors. The default is 16.
rho numeric value between -1 and 1 specifying the correlation between the signal
predictors. The correlation is given by rho”k, where k is an integer value given
by toeplitz structure. The default is O (no correlation between predictors).
be numeric value. Baseline probability for class "B" on the logit scale. The default
is 0.
b numeric value. Slope parameter for the predictors on the logit scale. The default
is 1 for all predictors.
fx a function that is used to transform the predictors. The default is identity
(equivalent to no transformation).
Value

A data.frame including a column denoted as class that is a factor with two levels "A" and "B".
All other columns represent the predictor variables (signal predictors followed by noise predictors)
and are named by "x1", "x2", etc..

See Also

stability

Examples

dgp_twoclass(n = 200, p = 6, noise = 4)

8 LearnerList

getlLearner Get Learner Details from LearnerList

Description
Function to get information available about a specific learner in LearnerList of the current R
session.

Usage

getLearner(x)

Arguments

X a fitted model object.

Details

The function returns the entry in LearnerList found for the class of the object submitted to the
function.

See Also

LearnerList, addLearner

Examples

library("partykit")

m <- ctree(Species ~ ., data = iris)
getLearner(m)
LearnerList List of Predefined Learners for Assessing Stability
Description

The list contains details about several predefined learners that are required to assess the stability of
results from statistical learning.

Usage

LearnerList

plot.stabletree 9

Details
Currently implemented learners are:

ctree conditional inference trees using ctree from partykit.
rpart recursive partitioning using rpart from rpart.

J48 recursive partitioning using J48 from RWeka.

C5.0 recursive partitioning using C5.0 from C50.

tree recursive partitioning using tree from tree.

Ida linear discriminant analysis using 1da from MASS.

Im linear models using 1m from stats.

glm generalized linear models using glm from stats.

Users can add new learners to LearnerList for the current R session, see addLearner.

See Also

addLearner

plot.stabletree Visualizing Tree Stability Assessments

Description

Visualizations of tree stability assessments carried out via stabletree.

Usage

S3 method for class 'stabletree'

plot(x, select = order(colMeans(x$vs), decreasing = TRUE),
type.breaks = "levels”, col.breaks = "red"”, lty.breaks = "dashed"”,
cex.breaks = 0.7, col.main = c("black”, "gray50"), main.uline = TRUE,
args.numeric = NULL, args.factor = NULL, args.ordered = NULL, main = NULL,
original = TRUE, ...)

S3 method for class 'stabletree'
barplot(height, main = "Variable selection frequencies”,
xlab = "", ylab = "", horiz = FALSE, col = gray.colors(2),
names.arg = NULL, names.uline = TRUE, names.diag = TRUE,
cex.names = 0.9,
ylim = if (horiz) NULL else c(@, 100), xlim = if (horiz) c(@, 100) else NULL,
original = TRUE, ...)

S3 method for class 'stabletree'
image(x, main = "Variable selections”,
ylab = "Repetitions”, xlab = "", col = gray.colors(2),

10

plot.stabletree

names.arg = NULL, names.uline = TRUE, names.diag = TRUE,
cex.names = 0.9, xaxs = "i", yaxs = "i",
col.tree = 2, 1ty.tree = 2, xlim = c(@, length(x$vs@)), ylim = c(@, x$B),
original = TRUE, ...)
Arguments

X, height an object of class stabletree.

original logical. Should the original tree information be highlighted?

select An vector of integer or character values representing the number(s) or the name(s)

type.breaks

col.breaks

1ty.breaks
cex.breaks

col.main

main.uline

args.numeric

args.factor

args.ordered

main, xlab, ylab

horiz

of the variable(s) to be plotted. By default all variables are plotted. The num-
bers correspond to the ordering of all partitioning variables used in the call of
the fitted model object that was passed to stabletree.

A character specifying the type of information added to the lines that repre-
sent the splits in the complete data tree. type.breaks = "levels"” adds the
level of the splits. type.breaks = "nodeids” adds the nodeid of the splits.
type.breaks = "breaks" adds the cutpoint of the splits. type.breaks = "none”
suppresses any labeling.

Coloring of the lines and the texts that represent the splits in the complete data
tree.

Type of the lines that represent the splits in the complete data tree.
Size of the texts that represent the splits in the complete data tree.

A vector of colors of length two. The first color is used for titles of variables
that are selected in the complete data tree. The second color is used for titles of
variables that are not selected in the complete data tree.

A logical value. If TRUE, variables selected in the complete data tree are under-
lined. If FALSE, underlining is suppressed.

A list of arguments passed to the internal function that is used for plotting a
histogram of the cutpoints in numerical splits. breaks is passed to hist (see
hist for details). Further arguments in the list are passed to plot.histogram
such as col, border etc.

A list of arguments passed to the internal function that is used for plotting an
image plot of the cutpoints in categorical splits. col (a vector of two colors)
is used to illustrate categorical splits. Please note that the default colors are
optimized for color vision deficiency. col.na defines the color used to high-
light missing categories. Further arguments in the list are passed to the function
plot.default.

A list of arguments passed to the internal function that is used for plotting a
barplot of the cutpoints in ordered categorical splits. All arguments in the list
are passed to the function barplot.default, such as col, border etc.

further arguments passed to plotting functions, especially for labeling and anno-
tation.

character. Annotations of axes and main title, respectively.

A logical value. If FALSE, the bars are drawn vertically with the first bar to the
left. If TRUE, bars are drawn horizontally with the first at the bottom.

plot.stabletree

col

names.arg

names.uline

names.diag

cex.names
xlim, ylim

Xaxs, yaxs

11

A vector of colors of length two used for coloring in the barplot and image
methods. The first color represents selected and the second color represents not
selected partitioning variables.

A vector of labels to be plotted below each bar (in case of barplot) or each
column (in case of image). If the argument is omitted, then the variable names
are taken as labels.

A logical value. If TRUE, the labels representing variables that are used for split-
ting in the complete data tree, are underlined. If FALSE, labels are not underlined.

A logical value (omitted if horiz = TRUE). If TRUE, the labels are drawn diago-
nally. If FALSE, labels are drawn horizontally.

Expansion factor for labels.
The limits of the plot.

The style of axis interval calculation to be used (see par for details).

col.tree, 1ty.tree

Details

color and line type to indicate differences from the original tree that was resam-
pled.

* plot visualizes the variability of the cutpoints.

* barplot visualizes the variable selection frequency.

e image visualizes the combinations of variables selected.

See Also

stabletree

Examples

build a tree

library("partykit")
m <- ctree(Species ~ ., data = iris)

plot(m)

investigate stability

set.seed(0)

s <- stabletree(m, B = 500)

show variable selection proportions
with different labels and different ordering

barplot(s)

barplot(s, cex.names = 0.8)

barplot(s, names.diag = FALSE)

barplot(s, names.arg = c("a", "b", "c", "d"))
barplot(s, names.uline = FALSE)

barplot(s, col = c("lightgreen”, "darkred”))

12 similarity_measures_classification

barplot(s, horiz = TRUE)

illustrate variable selections of replications
with different labels and different ordering
image(s)

image(s, cex.names = 0.8)

image(s, names.diag = FALSE)

image(s, names.arg = c("a", "b", "c", "d"))
image(s, names.uline = FALSE)

image(s, col = c("lightgreen”, "darkred"))

graphical cutpoint analysis, selecting variable by number and name
with different numerical of break points

plot(s)

plot(s, select = 3)

plot(s, select = "Petal.Width")

plot(s, args.numeric = list(breaks = 40))

change labels of splits in complete data tree
plot(s, select = 3, type.breaks = "levels")
plot(s, select = 3, type.breaks = "nodeids")
plot(s, select = 3, type.breaks = "breaks")
plot(s, select = 3, type.breaks = "none")

similarity_measures_classification
Similarity Measure Infrastructure for Stability Assessment with Ordi-
nal Responses

Description

Functions that provide objects with functionality used by stability to measure the similarity be-
tween the predictions of two results in classification problems.

Usage

clagree()
ckappa()

bdist()
tvdist()
hdist()
jsdiv(base = 2)

similarity_measures_classification 13

Arguments
base A positive or complex number: the base with respect to which logarithms are
computed. Defaults to 2.
Details

The similarity measure functions provide objects that include functionality used by stability to
measure the similarity between the probability predictions of two results in classification problems.

The clagree and ckappa functions provide an object that can be used to assess the similarity based
on the predicted classes of two results. The predicted classes are selected by the class with the
highest probability.

The bdist (Bhattacharayya distance), tvdist (Total variation distance), hdist (Hellinger distance)
and jsdist (Jenson-Shannon divergence) functions provide an object that can be used to assess the
similarity based on the predicted class probabilities of two results.

See Also

stability

Examples

set.seed(0)

build trees

library("partykit")

ml <- ctree(Species ~ ., data iris[sample(1:nrow(iris), replace = TRUE), 1)
m2 <- ctree(Species ~ ., data = iris[sample(1:nrow(iris), replace = TRUE), 1)

pl <- predict(ml, type = "prob”)
p2 <- predict(m2, type = "prob")

class agreement
m <- clagree()
m$measure(pl, p2)

cohen's kappa
m <- ckappa()
m$measure(pl, p2)

bhattacharayya distance
m <- bdist()
m$measure(pl, p2)

total variation distance
m <- tvdist()
m$measure(pl, p2)

hellinger distance

14 similarity_measures_regression

m <- hdist()
m$measure(pl, p2)

jenson-shannon divergence
m <- jsdiv()
m$measure(pl, p2)

jenson-shannon divergence (base = exp(1))
m <- jsdiv(base = exp(1))
m$measure(pl, p2)

similarity_measures_regression

Similarity Measure Infrastructure for Stability Assessment with Nu-
merical Responses

Description

Functions that provide objects with functionality used by stability to measure the similarity be-
tween numeric predictions of two results in regression problems.

Usage

edist()

msdist()
rmsdist()
madist()
gadist(p = 0.95)

cprob(kappa = 0.1)
rbfkernel ()
tanimoto()
cosine()

ccc()
pcc()

Arguments

p A numeric value between 0 and 1 specifying the probability to which the sample
quantile of the absolute distance between the predictions is computed.

kappa A positive numeric value specifying the upper limit of the absolute distance
between the predictions to which the coverage probability is computed.

similarity_measures_regression 15

Details

The similarity measure functions provide objects that include functionality used by stability to
measure the similarity between numeric predictions of two results in regression problems.

The edist (euclidean distance), msdist (mean squared distance), rmsdist (root mean squared
distance), madist (mean absolute distance) and gadist (quantile of absolute distance) functions
implement scale-variant distance measures that are unbounded.

The cprob (coverage probability), rbfkernel (gaussian radial basis function kernel), tanimoto
(tanimoto coefficient) and cosine (cosine similarity) functions implement scale-variant distance
measures that are bounded.

The ccc (concordance correlation coefficient) and pcc (pearson correlation coefficient) functions
implement scale-invariant distance measures that are bounded between 0 and 1.

See Also

stability

Examples

set.seed(0)
library("partykit")
airqg <- subset(airquality, !is.na(Ozone))

ml <- ctree(Ozone ~ ., data = airq[sample(1:nrow(airq), replace = TRUE),])
m2 <- ctree(Ozone ~ ., data = airq[sample(l1:nrow(airq), replace = TRUE),])

pl <- predict(m1)
p2 <- predict(m2)

euclidean distance
m <- edist()
m$measure(pl, p2)

mean squared distance
m <- msdist()
m$measure(pl, p2)

root mean squared distance
m <- rmsdist()
m$measure(pl, p2)

mean absolute istance
m <- madist()
m$measure(pl, p2)

quantile of absolute distance
m <- gadist()
m$measure(pl, p2)

16 similarity_values

coverage probability
m <- cprob()
m$measure(pl, p2)

gaussian radial basis function kernel
m <- rbfkernel()
m$measure(pl, p2)

tanimoto coefficient
m <- tanimoto()
m$measure(pl, p2)

cosine similarity
m <- cosine()
m$measure(pl, p2)

concordance correlation coefficient
m <- ccc()
m$measure(pl, p2)

pearson correlation coefficient
m <- pcc()
m$measure(pl, p2)

similarity_values Extracting Similarity Values

Description

Extract similarity values from object returned by stability for further illustration or analysis.

Usage

similarity_values(x, reverse = TRUE)

Arguments
X an object of class "stablelearner” or "stablelearnerList"” from which the
similarity values are extracted.
reverse logical. If reverse = TRUE (default), the similarity values are transformed (re-
versed) such that higher values indicate a higher stability.
Value

A numeric array of dimension 3 containing similarity values. The dimensions represent repetitions,
results (fitted model objects) and similarity measures.

stability 17

See Also

stability, summary.stablelearnerList

Examples

library("partykit”)

res <- ctree(Species ~ ., data = iris)
stab <- stability(res)
similarity_values(stab)

stability Stability Assessment for Results from Supervised Statistical Learning

Description

Stability assessment of results from supervised statistical learning (i.e., recursive partitioning, sup-
port vector machines, neural networks, etc.). The procedure involves the pairwise comparison of
results generated from learning samples randomly drawn from the original data set or directly from
the data-generating process (if available).

Usage
stability(x, ..., data = NULL, control = stab_control(), weights = NULL,
applyfun = NULL, cores = NULL, names = NULL)
Arguments

X fitted model object. Any model object can be used whose class is registered in
LearnerList. Users can add classes for the current R session to LearnerList,
see addLearner.
additional fitted model objects.

data an optional data.frame or a data-generating function. By default the learning
data from x is used (if this can be inferred from the getCall of x.

control a list with control parameters, see stab_control.

weights an optional matrix of dimension n * B that can be used to weight the observa-
tions from the original learning data when the models are refitted. If weights =
true, the weights are computed internally according to the sampler defined in
control. If weight = NULL (default), no case-weights are used and the sampler
defined in control will be applied to the original data set.

applyfun a lapply-like function. The default is to use lapply unless cores is specified
in which case mclapply is used (for multicore computations on platforms that
support these).

cores integer. The number of cores to use in multicore computations using mclapply
(see above).

names a vector of characters to specify a name for each fitted model object. By default,

the objects are named by their class.

18 stability

Details

Assesses the (overall) stability of a result from supervised statistical learning by quantifying the sim-
ilarity of realizations from the distribution of possible results (given the algorithm, the formulated
model, the data-generating process, the sample size, etc.). The stability distribution is estimated by
repeatedly assessing the similarity between the results generated by training the algorithm on two
different learning samples, by means of a similarity metric. The learning samples are generated by
sampling from the learning data or the data-generating process in case of a simulation study. For
more details, see Philipp et al. (2018).

Value

For a single fitted model object, stability returns an object of class "stablelearner” with the
following components:

call the call from the model object x,

learner the information about the learner retrieved from LearnerList,

B the number of repetitions,

sval a matrix containing the estimated similarity values for each similarity measure

specified in control,

sampstat a list containing information on the size of the learning samples (1s), the size of
the overlap between the learning samples (10), the size of the evaluation sample
(es) and the size of the overlap between the evaluation and the learning samples
(eo) in each repetition.

data a language object referring to the data. frame or the data-generating function
used for assessing the stability,

control a list with control parameters used for assessing the stability,

For several fitted model objects, stability returns an object of class "stablelearnerList"” which
is a list of objects of class "stablelearner”.

References

Philipp M, Rusch T, Hornik K, Strobl C (2018). “Measuring the Stability of Results from Super-
vised Statistical Learning”. Journal of Computational and Graphical Statistics, 27(4), 685-700.
doi:10.1080/10618600.2018.1473779

See Also

boxplot.stablelearnerList, summary.stablelearner

Examples

assessing the stability of a single result
library("partykit")

r1 <- ctree(Species ~ ., data = iris)

stab <- stability(r1)

summary (stab)

https://doi.org/10.1080/10618600.2018.1473779

stabletree 19

assessing the stability of several results
library("rpart”)

r2 <- rpart(Species ~ ., data = iris)
stab <- stability(r1, r2, control = stab_control(seed = 0))
summary(stab, names = c("ctree”, "rpart"))

using case-weights instead of resampling
stability(r1, weights = TRUE)

using self-defined case-weights

n <- nrow(iris)

B <- 500

w <- array(sample(c(@, 1), size = n *x B * 3, replace = TRUE), dim = c(n, B, 3))
stability(r1, weights = w)

assessing stability for a given data-generating process

my_dgp <- function() dgp_twoclass(n = 100, p = 2, noise = 4, rho = 0.2)
res <- ctree(class ~ ., data = my_dgp())

stability(res, data = my_dgp)

stabletree Stability Assessment for Tree Learners

Description

Stability assessment of variable and cutpoint selection in tree learners (i.e., recursive partitioning).
By refitting trees to resampled versions of the learning data, the stability of the trees structure is
assessed and can be summarized and visualized.

Usage
stabletree(x, data = NULL, sampler = subsampling, weights = NULL,
applyfun = NULL, cores = NULL, savetrees = FALSE, ...)
Arguments
X fitted model object. Any tree-based model object that can be coerced by as . party

can be used provided that suitable methods are provided.

data an optional data. frame. By default the learning data from x is used (if this can
be inferred from the getCall of x.

sampler a resampling (generating) function. Either this should be a function of n that
returns a matrix or a sampler generator like subsampling.

weights an optional matrix of dimension n * B that can be used to weight the observations
from the original learning data when the trees are refitted. If weight = NULL, the
sampler will be used.

20

stabletree

applyfun a lapply-like function. The default is to use lapply unless cores is specified
in which case mclapply is used (for multicore computations on platforms that
support these).

cores integer. The number of cores to use in multicore computations using mclapply
(see above).

savetrees logical. If TRUE, trees based on resampled data sets are returned.
further arguments passed to sampler.

Details

The function stabletree assesses the stability of tree learners (i.e., recursive partitioning methods)
by refitting the tree to resampled versions of the learning data. By default, if data = NULL, the fitting
call is extracted by getCall to infer the learning data. Subsequently, the sampler generates B
resampled versions of the learning data, the tree is regrown with update, and (if necessary) coerced
by as.party. For each of the resampled trees it is queried and stored which variables are selected
for splitting and what the selected cutpoints are.

The resulting object of class "stabletree” comes with a set of standard methods to generic func-
tions including print, summary for numerical summaries and plot, barplot, and image for graph-
ical representations. See plot.stabletree for more details. In most methods, the argument
original can be set to TRUE or FALSE, turning highlighting of the original tree information on
and off.

Value

stabletree returns an object of class "stabletree"” which is a list with the following components:

call the call from the model object x,

B the number of resampled datasets,

sampler the sampler function,

vs@ numeric vector of the variable selections of the original tree,

bro list of the break points (list of nodeids, levels, and breaks) for each variable
of the original tree,

VS numeric matrix of the variable selections for each resampled dataset,

br list of the break points (only the breaks for each variable over all resampled
datasets,

classes character vector indicating the classes of all partitioning variables,

trees a list of tree objects of class "party”, or NULL.

References

Hothorn T, Zeileis A (2015). partykit: A Modular Toolkit for Recursive Partytioning in R. Journal
of Machine Learning Research, 16(118), 3905-3909.

Philipp M, Zeileis A, Strobl C (2016). “A Toolkit for Stability Assessment of Tree-Based Learn-
ers”. In A. Colubi, A. Blanco, and C. Gatu (Eds.), Proceedings of COMPSTAT 2016 — 22nd
International Conference on Computational Statistics (pp. 315-325). The International Statis-
tical Institute/International Association for Statistical Computing. Preprint available at https:
//EconPapers.RePEc.org/RePEc:inn:wpaper:2016-11

https://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-11
https://EconPapers.RePEc.org/RePEc:inn:wpaper:2016-11

stabletree-coercion

See Also

plot.stabletree, as.stabletree, as.party

Examples

build a simple tree
library("partykit")

m <- ctree(Species ~ ., data
plot(m)

investigate stability
set.seed(Q)

s <- stabletree(m, B = 500)
print(s)

variable selection statis
summary(s)

show variable selection p
barplot(s)

= iris)

tics

roportions

illustrate variable selections of replications

21

image(s)
graphical cutpoint analysis
plot(s)
stabletree-coercion Coercion Functions
Description

Functions coercing various forest objects to objects of class "stabletree”.

Usage

as.stabletree(x, ...)
S3 method for class
as.stabletree(x, applyfun
S3 method for class
as.stabletree(x, applyfun
S3 method for class
as.stabletree(x, applyfun
S3 method for class
as.stabletree(x, applyfun

'"randomForest’
= NULL, cores
'"RandomForest’
= NULL, cores
'cforest'’

= NULL, cores
'ranger’

= NULL, cores

NULL,

NULL,

NULL,

NULL,

savetrees = FALSE,

>

22 stabletree-coercion

Arguments
X an object of class randomForest, RandomForest-class, cforest, or ranger.
applyfun a lapply-like function. The default is to use lapply unless cores is specified
in which case mclapply is used (for multicore computations on platforms that
support these).
cores integer. The number of cores to use in multicore computations using mclapply
(see above).
savetrees logical. If TRUE, trees of the forests are returned.
additional arguments (currently not used).
Details

Random forests fitted using randomForest, cforest, cforest or ranger are coerced to "stabletree”
objects.

Note that when plotting a randomForest or ranger, the gray areas of levels of a nominal variable do
not mimic exactly the same behavior as for classical "stabletree” objects, due to randomForest
and ranger, not storing any information whether any individuals were left fulfilling the splitting
criterion in the subsample. Therefore, gray areas only indicate that this level of this variable has
already been used in a split before in such a way that it could not be used for any further splits.

For ranger, interaction terms are (currently) not supported.

Value

as.stabletree returns an object of class "stabletree” which is a list with the following compo-

nents:

call the call from the model object x,

B the number of trees of the random forest,

sampler the random forest fitting function,

vs@ numeric vector of the variable selections of the original tree, here always a vector
of zeros because there is no original tree,

breo always NULL (only included for consistency),

VS numeric matrix of the variable selections for each tree of the random forest,

br list of the break points (only the breaks for each variable over all trees of the
random forest,

classes character vector indicating the classes of all partitioning variables,

trees a list of tree objects of class "party”, or NULL.

See Also

stabletree, plot.stabletree

stabletree-coercion

Examples

build a randomForest using randomForest
library(randomForest)

set.seed(1)

rf <- randomForest(Species ~ ., data = iris)

coerce to a stabletree

srf <- as.stabletree(rf)

print(srf)

summary(srf, original = FALSE) # there is no original tree
barplot(srf)

image(srf)

plot(srf)

build a RandomForest using party

library("party”)

set.seed(2)

cf_party <- cforest(Species ~ ., data = iris,
control = cforest_unbiased(mtry = 2))

coerce to a stabletree

scf_party <- as.stabletree(cf_party)
print(scf_party)

summary (scf_party, original = FALSE)
barplot(scf_party)

image(scf_party)

plot(scf_party)

build a cforest using partykit
library("partykit”)

set.seed(3)

cf_partykit <- cforest(Species ~ ., data = iris)

coerce to a stabletree

scf_partykit <- as.stabletree(cf_partykit)
print(scf_partykit)

summary(scf_partykit, original = FALSE)
barplot(scf_partykit)

image(scf_partykit)

plot(scf_partykit)

build a random forest using ranger
library("ranger")

set.seed(4)

rf_ranger <- ranger(Species ~ ., data = iris)

coerce to a stabletree

srf_ranger <- as.stabletree(rf_ranger)
print(srf_ranger)

summary(srf_ranger, original = FALSE)
barplot(srf_ranger)

23

24 stab_control

image(srf_ranger)
plot(srf_ranger)

stab_control Control for Supervised Stability Assessments

Description

Various parameters that control aspects of the stability assessment performed via stability.

Usage
stab_control(B = 500, measure = list(tvdist, ccc), sampler = "bootstrap”,
evaluate = "00B"”, holdout = 0.25, seed = NULL, na.action = na.exclude,
savepred = TRUE, silent = TRUE, ...)
Arguments

B an integer value specifying the number of repetitions. The default is B = 500.

measure a list of similarity measure (generating) functions. Those should either be func-
tions of p1 and p2 (the predictions of two results in a repetition, see Details be-
low) or similarity measure generator functions, see similarity_measures_classification
and similarity_measures_regression. The defaults are tvdist for the clas-
sification and ccc for the regression case.

sampler a resampling (generating) function. Either this should be a function of n that re-
turns a matrix or a sampler generator like bootstrap. The defaultis "bootstrap”.

evaluate a character specifying the evaluation strategy to be applied (see Details below).
The default is "00B".

holdout a numeric value between zero and one that specifies the proportion of observa-
tions hold out for evaluation over all repetitions, only if evaluate = "00B". The
default is 0. 25.

seed a single value, interpreted as an integer, see set . seed and Details section below.
The default is NULL, which indicates that no seed has been set.

na.action a function which indicates what should happen when the predictions of the re-
sults contain NAs. The default function is na. exclude.

savepred logical. Should the predictions from each iteration be saved? If savepred =
FALSE, the resulting object will be smaller. However, predictions are required to
subsequently compute measures of accuracy via accuracy.

silent logical. If TRUE, error messages, generated by the learner while training or pre-

dicting, are suppressed and NA is returned for the corresponding iteration of the
stability assessment procedure.

arguments passed to sampler function.

stab_control 25

Details

With the argument measure one or more measures can be defined that are used to assess the stability
of a result from supervised statistical learning by stability. Predefined similarity measures for
the regression and the classification case are listed in similarity_measures_classificationand
similarity_measures_regression.

Users can define their own similarity functions f(p1, p2) that must return a single numeric value
for the similarity between two results trained on resampled data sets. Such a function must take the
arguments p1 and p2. In the classification case, p1 and p2 are probability matrices of size m * K,
where m is the number of predicted observations (size of the evaluation sample) and K is the number
of classes. In the regression case, p1 and p2 are numeric vectors of length m.

A different way to implement new similarity functions for the current R session is to define a
similarity measure generator function, which is a function without arguments that generates a list of
five elements including the name of the similarity measure, the function to compute the similarity
between the predictions as described above, a vector of character values specifying the response
types for which the similarity measure can be used, a list containing two numeric elements lower
and upper that specify the range of values of the similarity measure and the function to invert (or
reverse) the similarity values such that higher values indicate higher stability. The latter can be
set to NULL, if higher similarity values already indicate higher stability. Those elements should be
named name, measure, classes, range and reverse.

The argument evaluate can be used to specify the evaluation strategy. If set to "ALL", all observa-
tions in the original data set are used for evaluation. If set to "O0OB", only the pairwise out-of-bag
observations are used for evaluation within each repetition. If set to "00S", a fraction (defined by
holdout) of the observations in the original data set are randomly sampled and used for evaluation,
but not for training, over all repetitions.

The argument seed can be used to make similarity assessments comparable when comparing the
stability of different results that were trained on the same data set. By default, seed is set to NULL and
the learning samples are sampled independently for each fitted model object passed to stability.
If seed is set to a specific number, the seed will be set for each fitted model object before the learning
samples are generated using "L 'Ecuyer-CMRG" (see set. seed) which guarantees identical learning
samples for each stability assessment and, thus, comparability of the stability assessments between
the results.

See Also

stability

Examples

library("partykit")
res <- ctree(Species ~ ., data = iris)

less repetitions
stability(res, control = stab_control(B = 100))

26 summary.stablelearnerList

Not run:

change similarity measure
stability(res, control = stab_control(measure = list(bdist)))

change evaluation strategy
stability(res, control = stab_control(evaluate = "ALL"))
stability(res, control = stab_control(evaluate = "00S"))

change resampling strategy to subsampling

stability(res, control = stab_control(sampler = subsampling))

stability(res, control = stab_control(sampler = subsampling, evaluate = "ALL"))
stability(res, control = stab_control(sampler = subsampling, evaluate = "00S"))

change resampling strategy to splithalf

stability(res, control = stab_control(sampler = splithalf, evaluate = "ALL"))
stability(res, control = stab_control(sampler = splithalf, evaluate = "00S"))

End(Not run)

summary.stablelearnerList
Summarize Results from Stability Assessment

Description

Summarizes and prints the results from stability assessments performed by stability.

Usage

S3 method for class 'stablelearnerList'
summary(object, ..., reverse = TRUE,
probs = c(0.05, 0.25, 0.5, 0.75, 0.95), digits = 3, names = NULL)

Arguments

object a object of class "stablelearner” or "stablelearnerList” to be summa-
rized.
Arguments passed from or to other functions (currently ignored).

reverse logical. If reverse = TRUE (default), the similarity values summarized in the
summary output are transformed (reversed) such that higher values indicate a
higher stability.

digits integer. The number of digits used to summarize the similarity distribution in
the summary output.

probs a vector of probabilities used tosummarize the similarity distribution in the

summary output.

titanic 27

names a vector of characters to specify a name for each result from statistical learning
in the summary output.

See Also

stability

Examples

library("partykit”)

rval <- ctree(Species ~ ., data = iris)
stab <- stability(rval)

summary (stab)
summary(stab, reverse = FALSE)
summary(stab, probs = c(0.25, 0.5, 0.75))

summary(stab, names = "conditional inference tree")
titanic Passengers and Crew on the RMS Titanic
Description

the titanic data is a complete list of passengers and crew members on the RMS Titanic. It includes
a variable indicating whether a person did survive the sinking of the RMS Titanic on April 15, 1912.

Usage

data("titanic")

Format

A data frame containing 2207 observations on 11 variables.

name a string with the name of the passenger.
gender a factor with levels male and female.

age a numeric value with the persons age on the day of the sinking. The age of babies (under 12
months) is given as a fraction of one year (1/month).

class a factor specifying the class for passengers or the type of service aboard for crew members.
embarked a factor with the persons place of of embarkment.

country a factor with the persons home country.

28 tuner

ticketno a numeric value specifying the persons ticket number (NA for crew members).

fare a numeric value with the ticket price (NA for crew members, musicians and employees of the
shipyard company).

sibsp an ordered factor specifying the number if siblings/spouses aboard; adopted from Vanderbild
data set (see below).

parch an ordered factor specifying the number of parents/children aboard; adopted from Vander-
bild data set (see below).

survived a factor with two levels (no and yes) specifying whether the person has survived the
sinking.

Details

The website https://www.encyclopedia-titanica.org/ offers detailed information about pas-
sengers and crew members on the RMS Titanic. According to the website 1317 passengers and 890
crew member were abord.

8 musicians and 9 employees of the shipyard company are listed as passengers, but travelled with a
free ticket, which is why they have NA values in fare. In addition to that, fare is truely missing for
a few regular passengers.

Source

The complete list of persons on the RMS titanic was downloaded from https://www.encyclopedia-titanica.
org/ on April 5, 2016. The information given in sibsp and parch was adopoted from a data set
obtained from https://hbiostat.org/data/.

References

https://www.encyclopedia-titanica.org/ and https://hbiostat.org/data/.

Examples
data("titanic”, package = "stablelearner")
summary(titanic)
tuner Tuning Wrapper Function
Description

Convenience function to train a method using different tuning parameters.

Usage

tuner(method, tunerange, ...)

https://www.encyclopedia-titanica.org/
https://www.encyclopedia-titanica.org/
https://www.encyclopedia-titanica.org/
https://hbiostat.org/data/
https://www.encyclopedia-titanica.org/
https://hbiostat.org/data/

tuner 29

Arguments
method a character string. Name of the R function to train the method.
tunerange a list. A list that specifies the range of values to be used for each tuning pa-
rameter. Each element of the list should be a vector that specifies the values
to be tested for the tuning parameter. The element must be named after the
corresponding tuning parameter of the method (see examples).
additional information passed to method (such as formula, data, subset, etc.).
Details

This function can be used to train any method using different values for its tuning parameter(s).
The result can be passed directly to stability to compare the stability of results based on different
values of the tuning parameter.

Value

A list that contains all fitted model objects.

Additional information about the range of values used for the tuning parameters is attached to the
resulting object as an attribute.

See Also
stability

Examples

library("partykit")

tuning cforest using different values of its tuning parameter mtry
r <- tuner("cforest”, tunerange = list(mtry = 1:4), formula = Species ~ ., data = iris)

assess stability (with B = 10 for illustration to avoid excessive computation times)
stability(r, control = stab_control(seed = 1234, B = 10))

receive information about the range of tuning parameters
attr(r, "range")

Index

+ datasets
titanic, 27

* measures
similarity_measures_classification,

12

similarity_measures_regression, 14

* regression
bootstrap, 4
plot.stabletree, 9
stabletree, 19
stabletree-coercion, 21

* resampling
accuracy, 2
addLearner, 3
boxplot.stablelearnerList, 6
dgp_twoclass, 7
getlLearner, 8
LearnerList, 8
similarity_values, 16
stab_control, 24
stability, 17
summary.stablelearnerList, 26
tuner, 28

+ similarity
accuracy, 2
addLearner, 3
boxplot.stablelearnerList, 6
dgp_twoclass, 7
getlLearner, 8
LearnerList, 8
similarity_values, 16
stab_control, 24
stability, 17
summary.stablelearnerList, 26
tuner, 28

+ similariy
similarity_measures_classification,

12

similarity_measures_regression, 14

30

x stability
addLearner, 3
getlLearner, 8
similarity_measures_classification
12
similarity_measures_regression, 14

accuracy, 2, 24

addLearner, 3,8, 9, 17

as.party, 19-21

as.stabletree, 2/

as.stabletree (stabletree-coercion), 21

as.stabletree,RandomForest-method
(stabletree-coercion), 21

as.stabletree.cforest
(stabletree-coercion), 21

as.stabletree.RandomForest
(stabletree-coercion), 21

as.stabletree.randomForest
(stabletree-coercion), 21

as.stabletree.ranger
(stabletree-coercion), 21

barplot.default, 10

barplot.stabletree (plot.stabletree), 9

bdist
(similarity_measures_classification),
12

bootstrap, 4, 24

boxplot, 6

boxplot.stablelearner
(boxplot.stablelearnerList), 6

boxplot.stablelearnerList, 6, I8

ccc, 24
ccc (similarity_measures_regression), 14
cforest, 22
ckappa
(similarity_measures_classification),
12

INDEX

clagree
(similarity_measures_classification),
12
classAgreement, 2
cosine
(similarity_measures_regression),
14
cprob (similarity_measures_regression),
14

ctree, 9
dgp_twoclass, 7

edist (similarity_measures_regression),
14

getCall, 17, 19, 20
getlLearner, 8

hdist
(similarity_measures_classification),
12

hist, 10

identity, 7
image.stabletree (plot.stabletree), 9

jackknife (bootstrap), 4

jsdiv
(similarity_measures_classification),
12

lapply, 2, 17, 20, 22
LearnerList, 3,4, 8,8, 17, 18

madist
(similarity_measures_regression),
14

mclapply, 2, 17, 20, 22

msdist

(similarity_measures_regression),
14

na.exclude, 2, 24

par, 11

pcc (similarity_measures_regression), 14
plot.default, 10

plot.histogram, 10
plot.stabletree, 9, 20-22

31

print.stablelearner (stability), 17

print.stablelearnerList (stability), 17

print.stabletree (stabletree), 19

print.summary.stablelearnerList
(summary.stablelearnerList), 26

print.summary.stabletree (stabletree),
19

gadist
(similarity_measures_regression),

14

randomForest, 22

ranger, 22

rbfkernel
(similarity_measures_regression),
14

rmsdist
(similarity_measures_regression),
14

samplesplitting (bootstrap), 4

set.seed, 24, 25

similarity_measures
(similarity_measures_classification),

12
similarity_measures_classification, 12,
24, 25
similarity_measures_regression, 14, 24,
25

similarity_values, 16
splithalf (bootstrap), 4
stab_control, 17, 24
stability, 2, 3, 5-7, 12-17, 17, 24-27, 29
stabletree, 4, 5, 9-11, 19, 22
stabletree-coercion, 21
subsampling, 19
subsampling (bootstrap), 4
summary.stablelearner, I8
summary.stablelearner
(summary.stablelearnerList), 26
summary.stablelearnerList, 6, 17, 26
summary.stabletree (stabletree), 19

tanimoto
(similarity_measures_regression),
14

titanic, 27

toeplitz, 7

32 INDEX

tuner, 28
tvdist, 24
tvdist

(similarity_measures_classification),
12

update, 20

	accuracy
	addLearner
	bootstrap
	boxplot.stablelearnerList
	dgp_twoclass
	getLearner
	LearnerList
	plot.stabletree
	similarity_measures_classification
	similarity_measures_regression
	similarity_values
	stability
	stabletree
	stabletree-coercion
	stab_control
	summary.stablelearnerList
	titanic
	tuner
	Index

