Package ‘tabr’

October 31, 2025

Title Music Notation Syntax, Manipulation, Analysis and Transcription
inR
Version 0.5.4

Description Provides a music notation syntax and a collection of music
programming functions for generating, manipulating, organizing, and analyzing
musical information in R. Music syntax can be entered directly in character
strings, for example to quickly transcribe short pieces of music. The
package contains functions for directly performing various mathematical,
logical and organizational operations and musical transformations on special
object classes that facilitate working with music data and notation. The
same music data can be organized in tidy data frames for a familiar and
powerful approach to the analysis of large amounts of structured music data.
Functions are available for mapping seamlessly between these formats and
their representations of musical information. The package also provides an
API to 'LilyPond' (<https://1ilypond.org/>) for transcribing musical
representations in R into tablature (" " tabs") and sheet music. 'LilyPond' is
open source music engraving software for generating high quality sheet music
based on markup syntax. The package generates 'LilyPond' files from R code
and can pass them to the 'LilyPond' command line interface to be rendered
into sheet music PDF files or inserted into R markdown documents. The
package offers nominal MIDI file output support in conjunction with
rendering sheet music. The package can read MIDI files and attempts to
structure the MIDI data to integrate as best as possible with the data
structures and functionality found throughout the package.

License MIT + file LICENSE

URL https://github.com/leonawicz/tabr,
https://leonawicz.github.io/tabr/

BugReports https://github.com/leonawicz/tabr/issues
Depends R (>=4.1)
Imports crayon, dplyr, ggplot2, purrr, tibble, tidyr

Suggests fansi, gridExtra, htmltools, kableExtra, knitr, png,
rmarkdown, testthat, tuneR

VignetteBuilder knitr

https://lilypond.org/
https://github.com/leonawicz/tabr
https://leonawicz.github.io/tabr/
https://github.com/leonawicz/tabr/issues

2 Contents

ByteCompile true
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2

SystemRequirements LilyPond v2.22.1-2+ (needed for rendering sheet
music or writing MIDI files)

NeedsCompilation no

Author Matthew Leonawicz [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9452-2771>)

Maintainer Matthew Leonawicz <rpkgs@pm.me>
Repository CRAN
Date/Publication 2025-10-31 06:10:28 UTC

Contents
append_phrases e e e e e e e 4
articulations L. e e e e e e e e e e e e 5
as_music_df L e e e e e e 5
chord-compare e e 7
chord-filter e e e e 8
chord-mapping e 9
chords L e e e 11
chord_arpeggiate e e 14
chord_break e e e e 15
chord_def e 16
chord_Invert L e 17
chord_is_major e 18
chord_set e e 19
double-bracket 20
dyad e 21
freq ratio e e e 22
guitarChords 23
hp . e 24
intervals e e e 24
interval SEmMItONes e e e e e e 26
1S dIatoniC s, 27
Keys . . e 28
lilypond L e 29
lilypond_root L 32
Ip_chord_id e 33
Iyrics . . . e 34
mainlntervals 35
midily 36
miditab L e 37

mode-helpers 38

https://orcid.org/0000-0001-9452-2771

Contents

3
MUSIC . . v v v e o e 40
music-helpers 42
NOLALE o e e e e e e e e e e e 44
note-checks e e 44
NOLE-COBTCE . &« v v v v v e i e 46
note-equivalence e e e e e 48
note-logic e 50
note-metadata L. L e e e e e e e e e 51
NOtE-SUMMATIIES« v+« v v e v e e et e e e e e e e e e e e e e e 53
noteinfo 55
NOE_NEIAML v v v v e ettt e e e e e e e e e e e e 56
note_slice e e e e e e 57
N_IMEASULES . . v v v v v e e e e e e e e e e e e e 58
phrase L 60
phrase-checks e e 61
pitch freq L 63
pitch_seq e 65
plot_fretboard e 66
PlOL_MUSIC o L e e e e 69
ratio_to_CENES v v e e e e e e e e e 72
read_midi L e e 72
render_chordchart 74
render_MUSIC e e e e e 76
TEPEALS « « v v e 80
TESE. & v o e e e e e e e e e e 82
scale-deg L e e e 83
scale-helpers L 85
scale_chords L e e 86
SCOTE &« v v v e e e e e e e e e e e e e e e e e 87
sf_phrase e 88
simplify_phrase L 91
single-bracket e e e 92
string_unfold 94
tab . . e 95
tabr . . e e e e 98
tabr-C . . L e e e e e e 98
tabr-details e 99
tabr-head L e 100
tabr-length L 101
tabr-methods L 102
tabr-rep 105
tabr-rev e e e e e e e e e e 106
tabrSyntax e e e e 107
tabr_Options e 107
e . . e e e e 108
tO_tabr e e 109
track e e e e 111

append_phrases

TFANSPOSE + v v v v e 114
TUNINGS . . ¢ v v ot e 115
tuplet 115
valid-noteinfo 116
valid-notes L e e e e e e e e 117
Index 120
append_phrases Concatenate and repeat
Description

Helper functions for concatenating musical phrases and raw strings together as well as repetition.

Usage

pc(...)

pn(x, n =1)

Arguments

character, phrase or non-phrase string.
X character, phrase or non-phrase string.

n integer, number of repetitions.

Details

Note: When working with special tabr classes, you can simply use generics like c() and rep() as
many custom methods exist for these classes. The additional respective helper functions, pc() and
pn(), are more specifically for phrase objects and when you are still working with character strings,
yet to be converted to a phrase object (numbers not yet in string form are allowed). See examples.

The functions pc() and pn() are based on base functions paste() and rep(), respectively, but are
tailored for efficiency in creating musical phrases.

These functions respect and retain the phrase class when applied to phrases. They are aggressive for
phrases and secondarily for noteworthy strings. Combining a phrase with a non-phrase string will
assume compatibility and result in a new phrase object. If no phrase objects are present, the presence
of any noteworthy string will in turn attempt to force conversion of all strings to noteworthy strings.
The aggressiveness provides convenience, but is counter to expected coercion rules. It is up to the
user to ensure all inputs can be forced into the more specific child class.

This is especially useful for repeated instances. This function applies to general slur notation as
well. Multiple input formats are allowed. Total number of note durations must be even because all
slurs require start and stop points.

Value

phrase on non-phrase character string, noteworthy string if applicable.

articulations

Examples

pc(8, "16-", "8*")

pn(1, 2)

x <- phrase("c ec'g' ec'g'", "4 4 2", "5 432 432")
y <- phrase(”"a", 1, 5)

pc(x, ¥)

pc(x, pn(y, 2))

pc(x, "r1") # add a simple rest instance
class(pc(x, y))

class(pn(y, 2))

class(pc(x, "r1"))

class(pn("r1"”, 2))

class(pc("r1", "r4"))

articulations Single note articulations and syntax

Description

A data frame containing categorized sets of articulations that can be used in phrase construction.

Usage

articulations

Format

A data frame with 3 column and 44 rows.

as_music_df Noteworthy string to data frame

Description

Convert a noteworthy string to a tibble data frame and include additional derivative variables.

Usage
as_music_df(
notes,
info = NULL,
key = NULL,
scale = "diatonic”,
chords = c("root", "list"”, "character"),

si_format = c("mmp_abb", "mmp"”, "ad_abb"”, "ad")

6 as_music_df

Arguments
notes character, a noteworthy string. Alternatively, a music object or a phrase object,
in which case info is ignored.
info NULL or character, a note info string.
key character, key signature, only required for inclusion of scale degrees.
scale character, defaults to "diatonic”. Only used in conjunction with key, this can
be used to alter scale degrees. Not any arbitrary combination of valid key and
valid scale is valid. See scale_degree().
chords character, how to structure columns containing multiple values per chord/row of
data frame. See details.
si_format character, format for scale intervals. See scale_interval().
Details

If info is provided or notes is a phrase object, the resulting data frame also contains note durations
and other info variables. The duration column is always included in the output even as a vector
of NAs when info = NULL. This makes it more explicit that a given music data frame was generated
without any time information for the timesteps. Other note info columns are not included in this
case.

For some derived column variables the root note (lowest pitch) in chord is used. This is done for
pitch intervals and scale intervals between adjacent timesteps. This also occurs for scale degrees.

chord = "root” additionally collapses columns like semitone, octave, and frequency to the value
for the root note so that all rows contain one numeric value. chord = "1ist" retains full information
as list columns. chord = "character” collapses into strings so that values are readily visible when
printing the table, but information is not stripped and can be recovered without recomputing from
the original pitches.

Value

a tibble data frame

Examples

n

Xx <-"a, b,cdefgftarac'e'ac'e' ¢c'rrra"

non

as_music_df(x, key = "c", scale = "major")
as_music_df(x, key =" scale = "harmonic_minor"”, si_format = "ad_abb")

n

am”,

a <- notate("8", "Start here.”)

time <- paste(a, "8"*2 16-_ 4.. 16(16)(2) 2 4. t8- t8 t8- 8[accent]*4 1")
dl <- as_music_df(x, time)

d1

Go directly from music object to data frame
ml <- as_music(x, time)

d2 <- as_music_df(m1)

identical(d1, d2)

Go directly from phrase object to data frame

chord-compare 7

pl <- phrase("”a b cgc'"”, "4-+ 4[accent] 2", 5)
identical (as_music_df (as_music("a4-+;5 b[accent] cgc'2")), as_music_df(p1))

chord-compare Rank, order and sort chords and notes

Description

Rank, order and sort chords and notes by various definitions.

Usage
chord_rank(notes, pitch = c("min", "mean”, "max"), ...)
chord_order(notes, pitch = c¢c("min”, "mean”, "max"), ...)
chord_sort(notes, pitch = c("min”, "mean”, "max"), decreasing = FALSE, ...)
Arguments
notes character, a noteworthy string.
pitch character, how ranking of chords is determined; lowest pitch, mean pitch, or
highest pitch.
additional arguments passed to rank () or order().
decreasing logical, sort in decreasing order.
Details

There are three options for comparing the relative pitch position of chords provided: comparison
of the lowest or root note of each chord, the highest pitch note, or taking the mean of all notes in a
chord.

Value

integer for rank and order, character for sort

Examples

X <- "a2 c a2 ceg ce_g cea”
chord_rank(x, "min")
chord_rank(x, "max")
chord_rank(x, "mean")

chord_order(x)
chord_order(x, "mean")
chord_sort(x, "mean")

8 chord-filter
chord-filter Extract notes from chords
Description
Filter or slice chords to extract individual notes.
Usage
chord_root(notes)
chord_top(notes)
chord_slice(notes, index)
Arguments
notes character, a noteworthy string.
index integer, the order of a note in a chord by pitch (not scale degrees).
Details
These functions extract notes from chords such as the root note, the highest pitch, specific position
among the notes by pitch, or trim chords to simplify them. They operate based only on ordered
pitches.
For chord_slice(), any entry that is empty after slicing is dropped. An error is thrown is index is
completely out of bounds for all chords.
Value
a noteworthy string
Examples

x <- "a_2 ct#eg# e_gc egc,cc'”

chord_root(x)

chord_top(x)

identical(chord_slice(x, 1), chord_root(x))
chord_slice(x, 2)

chord_slice(x, 4)

chord_slice(x, 3:5)

chord-mapping

chord-mapping Chord mapping

Description

Helper functions for chord mapping.

Usage

gc_info(
name,
root_octave = NULL,
root_fret = NULL,
min_fret = NULL,
bass_string = NULL,

open = NULL,
key = ”C”,
ignore_octave = TRUE

)

gc_fretboard(
name,
root_octave = NULL,
root_fret = NULL,
min_fret = NULL,
bass_string = NULL,

open = NULL,
key = ”C”,
ignore_octave = TRUE

)

gc_notes_to_fb(
notes,
root_octave = NULL,
root_fret = NULL,
min_fret = NULL,
bass_string = NULL,
open = NULL

)

gc_notes(
name,
root_octave = NULL,
root_fret = NULL,
min_fret = NULL,
bass_string = NULL,
open = NULL,

10 chord-mapping

key = ”C” ,
ignore_octave = TRUE

)
gc_is_known(notes)
gc_name_split(name)
gc_name_root (name)

gc_name_mod(name)

Arguments

name character, chord name in tabr format, e.g., "bM b_m b_m7#5", etc.

root_octave integer, optional filter for chords whose root note is in a set of octave numbers.
May be a vector.

root_fret integer, optional filter for chords whose root note matches a specific fret. May
be a vector.

min_fret integer, optional filter for chords whose notes are all at or above a specific fret.
May be a vector.

bass_string integer, optional filter for chords whose lowest pitch string matches a specific
string, 6, 5, or 4. May be a vector.

open logical, optional filter for open and movable chords. NULL retains both types.

key character, key signature, used to enforce type of accidentals.

ignore_octave logical, if TRUE, functions like gc_info() and gc_fretboard() return more
results.

notes character, a noteworthy string.

Details

These functions assist with mapping between different information that define chords.

For gc_is_known(), a check is done against chords in the guitarChords dataset. A simple note-
worthy string is permitted, but any single-note entry will automatically yield a FALSE result.

gc_info() returns a tibble data frame containing complete information for the subset of predefined
guitar chords specified by name and key. Any accidentals present in the chord root of name (but not
in the chord modifier, e.g., m7_5 or m7#5) are converted according to key if necessary. gc_notes()
and gc_fretboard() are wrappers around gc_info(), which return noteworthy strings of chord
notes and a named vector of LilyPond fretboard diagram data, respectively. Note that although
the input to these functions can contain multiple chord names, whether as a vector or as a sin-
gle space-delimited string, the result is not intended to be of equal length. These functions filter
guitarChords. The result is the set of all chords matched by the supplied input filters.

gc_name_split() splits a vector or space-delimited set of chord names into a tibble data frame
containing separate chord root and chord modifier columns. gc_name_root () and gc_name_mod()
are wrappers around this.

chords

Value

various, see details regarding each function.

Examples

gc_is_known("a b_,fb_d'f"'")

gc_name_root("a aM b_,m7#5")
gc_name_mod("a aM b_,m7#5")

gc_info("a") # a major chord, not a single note
gc_info("ceg a#m7_5") # only second entry is a guitar chord
gc_info("ceg a#tm7_5", key = "f")

gc_info("a,mc d f,")
gc_fretboard(”a,m ¢ d f,”, root_fret = 0:3)
gc_notes_to_fb("a,eac'e' cgc'e'g'")

x <- gc_notes("a, b,", root_fret = 0:2)
summary (x)

11

chords Chord constructors

Description

These functions construct basic chord string notation from root notes.

Usage
chord_min(notes, key = "c", octaves = "tick")
chord_maj(notes, key = "c", octaves = "tick")
chord_min7(notes, key = "c", octaves = "tick")
chord_dom7(notes, key = "c", octaves = "tick")
chord_7s5(notes, key = "c", octaves = "tick")
chord_maj7(notes, key = "c", octaves = "tick")
chord_min6(notes, key = "c", octaves = "tick")
chord_maj6(notes, key = "c", octaves = "tick")

n_n

chord_dim(notes, key = "c", octaves = "tick")

12

chord_dim7 (notes, key
chord_m7b5(notes, key
chord_aug(notes, key

chord_5(notes, key =

chord_sus2(notes, key
chord_sus4(notes, key
chord_dom9(notes, key
chord_7s9(notes, key

chord_maj9(notes, key
chord_add9(notes, key
chord_min9(notes, key
chord_madd9(notes, ke
chord_min11(notes, ke
chord_7s11(notes, key
chord_maj7s11(notes,

chord_11(notes, key =
chord_maj11(notes, ke
chord_13(notes, key =
chord_min13(notes, ke
chord_maj13(notes, ke

n_n

c,

xm(notes, key

n_n

c,

xM(notes, key

n_n

xm7 (notes, key = "c",

n_n

x7(notes, key = "c",

= "c", octaves = "tick")
= "c", octaves = "tick")
= "¢", octaves = "tick”)
"c", octaves = "tick")
= "c", octaves = "tick")
= "c", octaves = "tick")
= "¢", octaves = "tick")
= "c", octaves = "tick")
= "c", octaves = "tick")
= "c", octaves = "tick")
= "c", octaves = "tick”)
y = "c", octaves = "tick")
y = "c”, octaves = "tick")
= "c", octaves = "tick")
key = "c"”, octaves = "tick")
"c", octaves = "tick")
y = "c", octaves = "tick")
"c", octaves = "tick”)
y = "c", octaves = "tick")
y = "c", octaves = "tick")
octaves = "tick")
octaves = "tick")
octaves = "tick")
octaves = "tick")

chords

chords

x7s5(notes, key = "c", octaves = "tick")
xM7(notes, key = "c", octaves = "tick")
xm6(notes, key = "c", octaves = "tick")
xM6(notes, key = "c", octaves = "tick")
xdim(notes, key = "c", octaves = "tick")
xdim7(notes, key = "c", octaves = "tick")
xm7b5(notes, key = "c", octaves = "tick")
xaug(notes, key = "c", octaves = "tick")
x5(notes, key = "c", octaves = "tick")
xs2(notes, key = "c", octaves = "tick")
xs4(notes, key = "c", octaves = "tick")
x9(notes, key = "c", octaves = "tick")
x7s9(notes, key = "c", octaves = "tick")
xM9(notes, key = "c", octaves = "tick")
xadd9(notes, key = "c", octaves = "tick")
xm9(notes, key = "c", octaves = "tick")
xma9(notes, key = "c", octaves = "tick")
xm11(notes, key = "c", octaves = "tick")
x7s11(notes, key = "c", octaves = "tick")
xM7s11(notes, key = "c", octaves = "tick")
x_11(notes, key = "c", octaves = "tick")
xM11(notes, key = "c", octaves = "tick")
x_13(notes, key = "c", octaves = "tick")

n.n

xml13(notes, key = "c", octaves = "tick")

13

14 chord_arpeggiate

xM13(notes, key = "c", octaves = "tick")
Arguments
notes character, a noteworthy string of chord root notes.
key key signature. See details.
octaves character, passed to transpose().
Details

Providing a key signature is used only to ensure flats or sharps for accidentals. An additional set of
aliases with efficient names, of the form x* where * is a chord modifier abbreviation, is provided to
complement the set of chord_x* functions.

These functions create standard chords, not the multi-octave spanning types of chords commonly
played on guitar.

Value

character

See Also

transpose()

Examples

chord_min("d")
chord_maj("d")

xM("d")

xm("c f g")

xm("c, f, g,”, key = "e_")

chord_arpeggiate Arpeggiate a chord

Description

Create an arpeggio from a chord.

Usage

chord_arpeggiate(
chord,
n=ao,
by = c("note", "chord"),
broken = FALSE,
collapse = FALSE

chord_break 15

Arguments
chord character, a single chord.
n integer, number of steps, negative indicates reverse direction (decreasing pitch).
by whether each of the n steps refers to individual notes in the chord (an inversion)
or raising the entire chord in its given position by one octave.
broken logical, return result as an arpeggio of broken chords.
collapse logical, collapse result into a single string ready for phrase construction.
Details

This function is based on chord_invert. If n = @ then chord is returned immediately; other argu-
ments are ignored.

Value

character

Examples

chord_arpeggiate("ce_gb_", 2)

chord_arpeggiate("ce_gb_", -2)

chord_arpeggiate(”"ce_gb_", 2, by = "chord")
chord_arpeggiate("ce_gb_", 1, broken = TRUE, collapse = TRUE)

chord_break Broken chords

Description

Convert chords in a noteworthy string or vector to broken chords.

Usage

chord_break(notes)

Arguments

notes character, noteworthy string that may contain chords.

Value

character

Examples

chord_break("c e g ceg ceg")

16 chord_def

chord_def Define chords

Description

Function for creating new chord definition tables.

Usage
chord_def(fret, id, optional = NA, tuning = "standard”, ...)
Arguments
fret integer vector defining fretted chord. See details.
id character, the chord type. See details.
optional NA when all notes required. Otherwise an integer vector giving the indices
offret that are considered optional notes for the chord.
tuning character, string tuning. See tunings for predefined tunings. Custom tunings
are specified with a similar value string.
additional arguments passed to transpose().
Details

This function creates a tibble data frame containing information defining various attributes of
chords. It is used to create the guitarChords dataset, but can be used to create other pre-defined
chord collections. The tibble has only one row, providing all information for the defined chord. The
user can decide which arguments to vectorize over when creating a chord collection. See examples.

This function uses a vector of fret integers (NA for muted string) to define a chord, in conjunction
with a string tuning (defaults to standard tuning, six-string guitar). fret is from lowest to highest
pitch strings, e.g., strings six through one.

The id is passed directly to the output. It represents the type of chord and should conform to
accepted tabr notation. See id column in guitarChords for examples.

Note that the semitones column gives semitone intervals between chord notes. These count from
zero as the lowest pitch based on the tuning of the instrument, e.g., zero is E2 with standard guitar
tuning. To convert these semitone intervals to standard semitone values assigned to pitches, use
e.g., pitch_semitones("e2") (40) if that is the lowest pitch and add that value to the instrument
semitone interval values. This is the explanation, but doing this is not necessary. You can use
chord_semitones() to compute semitones directly on pitches in a chord.

Value

a data frame

chord_invert 17

Examples

frets <- c(NA, 0, 2, 2, 1, @)
chord_def (frets, "m")
chord_def(frets, "m", 6)

purrr::map_dfr(c(@, 2, 3), ~chord_def(frets + .x, "m"))

chord_invert Chord inversion

Description

This function inverts a single chord given as a character string. If n = @, chord is returned imme-
diately. Otherwise, the notes of the chord are inverted. If abs(n) is greater than the number of
inversions (excluding root position), an error is thrown.

Usage

chord_invert(chord, n = @, limit = FALSE)

Arguments
chord character, a single chord.
n inversion.
limit logical, limit inversions in either direction to one less than the number of notes
in the chord.
Details

Note that chord_invert() has no knowledge of whether a chord might be considered as in root
position or some inversion already, as informed by a key signature, chord name or user’s intent.
This function simply inverts what it receives, treating any defined chord string as in root position.

Octave number applies to this function. Chords should always be defined by notes of increasing
pitch. Remember that an unspecified octave number on a note is octave 3. When the chord is
inverted, it moves up the scale. The lowest note is moved to the top of the chord, increasing its
octave if necessary, to ensure that the note takes the lowest octave number while having the highest
pitch. The second lowest note becomes the lowest. It’s octave does not change. This pattern is
repeated for higher order inversions. The opposite happens if n is negative.

The procedure ensures that the resulting inverted chord is still defined by notes of increasing pitch.
However, if you construct an unusual chord that spans multiple octaves, the extra space will be
condensed by inversion.

Value

character

18 chord_is_major

Examples

chord_invert("ce_gb_", 3)

chord_is_major Check if chords are major or minor

Description

Check if chords are major or minor where possible.

Usage

chord_is_major(notes)

chord_is_minor(notes)

Arguments

notes character, a noteworthy string.

Details

These functions operate based only on ordered pitches. They do not recognize what a human
might interpret and name an inverted chord with a root other than the lowest pitch. This imposes
limitations on the utility of these functions, which scan the intervals for a minor or major third in a
chord whose notes are sorted by pitch.

In several cases including single notes or no major or minor third interval present, NA is returned.
TRUE or FALSE is only returned if such an interval is present. If more than one is present, it is based
on the lowest in pitch. It prioritizes major/minor and minor/major adjacent intervals (recognizing a
common triad). If these do not occur adjacent, the lowest third is selected. This is still imperfect,
but a useful method. Second and higher unknown chord inversions are problematic.

Value

logical vector

Examples

x <- "c cg, ce ce_ ceg ce_gb g,ce g,ce_ e_,g,c e_,g,ce_ e_,g,c"
chord_is_major(x)
identical(chord_is_major(x), !chord_is_minor(x))

chord_set 19

chord_set Generate a chord set

Description

Generate a chord set for a music score.

Usage

chord_set(x, id = NULL, n = 6)

Arguments
X character, n-string chord description from lowest to highest pitch, strings n
through 1. E.g., "x02210". You can use spaces or semicolons when 2-digit
fret numbers are present, e.g., "8 10 10 9 0”. Do not mix formats. Leading x
are inferred if the number of entries is less than n.
id character, the name of the chord in LilyPond readable format, e.g., "a:m". Ig-
nored if x is already a named vector.
n number of instrument strings.
Details

The chord set list returned by chord_set() is only used for top center placement of a full set of
chord fretboard diagrams for a music score. chord_set() returns a named list. The names are
the chords and the list elements are strings defining string and fret fingering readable by LilyPond.
Multiple chord positions can be defined for the same chord name. Instruments with a number of
strings other than six are not currently supported.

When defining chords, you may also wish to define rests or silent rests for chords that are to be
added to a score for placement above the staff in time, where no chord is to be played or explicitly
written. Therefore, there are occasions where you may pass chord names and positions that happen
to include entries r and/or s as NA as shown in the example. These two special cases are passed
through by chord_set () but are ignored when the chord chart is generated.

Value

a named list.

Examples

chord_names <- c("e:m", "c", "d", "e:m", "d", "r", "s")
chord_position <- c("997x", "5553x", "7775x", "000220", "2320xx", NA, NA)
chord_set(chord_position, chord_names)

20

double-bracket

double-bracket

Double bracket methods for tabr classes

Description

Double bracket indexing and assignment. See tabr-methods() for more details on methods for

tabr classes.

Usage

S3 method for
x[[i]1]

S3 method for
x[[i]1]

S3 method for
x[[i]1]

S3 method for
x[[i]]

S3 replacement
x[[1]1] <- value

S3 replacement
x[[11] <- value

S3 replacement
x[[i1] <- value

S3 replacement
x[[i]] <- value

Arguments

X object.

i index.

value values to assign at index.
See Also

class

class

class

class

"noteworthy’

'noteinfo’

'music’

'lyrics'

method for class

method for class

method for class

method for class

tabr-methods (), note-metadata()

"noteworthy’

'noteinfo’

'music’

"lyrics'

dyad 21

Examples

noteworthy class examples

x <- as_noteworthy("a, b, c ce_g")

x[[3]]

x[[2]] <- paste@(transpose(x[2], 1), "~")
X

noteinfo class examples

x <- as_noteinfo(c(”4-", "t8(", "t8)", "t8x"))
x[[3]]

x[[31] <= c("t81")

X

music class examples

x <- as_music("c,~4 c,1 c'e_'g'4-.x2")
x[[31]

x[[3]] <- "c'e'g'8"

X

dyad Construct a dyad

Description

Construct a dyad given one note, an interval, and a direction.

Usage
dyad(
notes,
interval,
reverse = FALSE,
octaves = c("tick"”, "integer"),
accidentals = c("flat”, "sharp"),
key = NULL
)
Arguments
notes character, a noteworthy string, single notes only, no chords. Number of timesteps
must equal the length of interval.
interval integer or character vector; semitones or interval ID, respectively. See details.
reverse logical, reverse the transposition direction. Useful when interval is character.

octaves, accidentals, key
See transpose().

22 freq_ratio

Details

The interval may be specified by semitones of by common interval name or abbreviation. See
examples. For a complete list of valid interval names and abbreviations see mainIntervals(). key
enforces the use of sharps or flats. This function is based on transpose(). notes and interval
may be vectors, but must be equal length. Recycling occurs only if one argument is scalar.

Value
character
See Also
mainIntervals()
Examples
dyad("a", 4)
x <= c("minor third”, "m3", "augmented second”, "A2")
dyad("a", x)

dyad("c'", x, reverse = TRUE)

X <_ C(HM3H’ I1m3ll’ Ilm3ll’ IIM3II, IIM3II, Nm3ll, 1lm3ll>
dyad(letters[c(3:7, 1, 2)]1, x)

X <_ C("P] H’ I1m3ll’ IIM3II, IIP4II, ”P5”, "P8“, IIM9M>
dyad("c", x)

dyad(”"c", x, reverse = TRUE)

dyad(lld ell, Nm3ll)

freq_ratio Frequency ratios

Description

Obtain frequency ratios data frame.

Usage
freg_ratio(x, ...)
Arguments
X noteworthy or music object, or a numeric vector or list of numeric vectors for

frequencies.

additional arguments: ratios, which is one of "all” (default), "root”, or
"range" for filtering results. For frequency input, you may also specify octaves
and accidentals. See details and examples.

guitarChords 23

Details

This generic function returns a data frame of frequency ratios from a vector or list of frequencies, a
noteworthy object, or a music object. For frequency inputs, a list can be used to represent multiple
timesteps. Octave numbering and accidentals are inferred from noteworthy and music objects, but
can be specified for frequency. See examples.

By default ratios are returned for all combinations of intervals in each chord (ratios = "all").
ratios = "root" filters the result to only include chord ratios with respect to the root note of each
chord. ratios = "range” filters to only the chord ratio between the root and highest note.

Value

a tibble data frame

Examples

x <- as_music("c4 e_ g ce_g")
(fr <- freg_ratio(x))

X <- music_notes(x)
identical(fr, freq_ratio(x))

x <- chord_freq(x)
identical(fr, freq_ratio(x))

freq_ratio(x, accidentals = "sharp")
freg_ratio(x, ratios = "root")
freqg_ratio(x, ratios = "range")
guitarChords Predefined guitar chords
Description

A data frame containing information for many predefined guitar chords.

Usage

guitarChords

Format

A data frame with 12 columns and 3,967 rows

24 intervals

hp Hammer ons and pull offs

Description

Helper function for generating hammer on and pull off syntax.

Usage
hp(...)
Arguments
character, note durations. Numeric is allowed for lists of single inputs. See
examples.
Details

This is especially useful for repeated instances. This function applies to general slur notation as
well. Multiple input formats are allowed. Total number of note durations must be even because all
slurs require start and stop points.

Value

character.

Examples

hp(16, 16)
hp("16 16")
hp("16 8 16", "8 16 8")

intervals Interval helpers

Description

Helper functions for musical intervals defined by two notes.

intervals 25

Usage

pitch_interval(notes1, notes2, use_root = TRUE)
pitch_diff(notes, use_root = TRUE, n = 1, trim = FALSE)

scale_interval(
notes1,
notes2,
use_root = TRUE,
format = c("mmp_abb”, "mmp", "ad_abb", "ad")

)

scale_diff/(
notes,
use_root = TRUE,
n=1,
trim = FALSE,
format = c("mmp_abb”, "mmp", "ad_abb", "ad")

tuning_intervals(tuning = "standard")

Arguments

use_root logical, use lowest pitch in chord for pitch intervals or scale intervals between
adjacent timesteps. Otherwise intervals involving chords are NA.

notes, notes1, notes?2
character, a noteworthy string. notes1 and notes2 must have equal number of

timesteps.

n integer, size of lag.

trim logical, trim the n leading NA values from lagged intervals.

format character, format of the scale notation: major/minor/perfect, augmented/diminished,
and respective abbreviations. See argument options in defaults.

tuning character, string tuning.

Details

Numeric intervals are directional. pitch_interval() returns the signed number of semitones
defining the distance between two notes. Named scale intervals are names only. Use pitch for
direction.

scale_interval() returns a character string that provides the named main interval, simple or
compound, defined by the two notes. This function returns NA for any uncommon out of range large
interval not listed as a named interval in mainIntervals().

pitch_interval() and scale_interval() compute intervals element-wise between two note-
worthy strings. pitch_diff () and scale_diff() work similarly but compute lagged intervals on
the elements in notes.

26 interval_semitones

Value

a musical interval, integer or character depending on the function.

See Also

mainIntervals()

Examples

pitch_interval("b"”, "c4")

pitch_interval("c, e_, g_, a,", "e_, g_, a, c")
pitch_interval("c r", "dfa d")

pitch_interval("c r", "dfa d”, use_root = FALSE)
scale_interval("c", "e_")

scale_interval("ceg”, "egd'")

x <- "a, b, cde f g ac'e' ac' e'"
pitch_diff(x)

pitch_diff(x, use_root = FALSE)

scale_diff(x)

scale_diff(x, n = 2, trim = TRUE, use_root = FALSE)

Lagged intervals respect rest timesteps.

All timestep position including rests are retained.
But the lag-n difference skips rest entries.
x<-"a,crrrrg"

pitch_diff(x)

scale_diff(x)

pitch_diff(x, n = 2)

scale_diff(x, n = 2)

pitch_diff(x, n = 2, trim = TRUE)

scale_diff(x, n = 2, trim = TRUE)
interval_semitones Interval semitones

Description
Convert named intervals to numbers of semitones. For a complete list of valid interval names and
abbreviations see mainIntervals(). interval may be a vector.

Usage

interval_semitones(interval)

Arguments

interval character, interval ID. See details.

is_diatonic 27

Value

integer

See Also

mainIntervals()

Examples

x <= c("minor third”, "m3", "augmented second”, "A2")
y <_ C(IVP-I II, Ilmzll’ IIMZII, Ilm3ll, VIMBVI, VIP4VI, IITTII’ IIPSII)
interval_semitones(x)
interval_semitones(y)

is_diatonic Check if notes and chords are diatonic

Description

Check if notes and chords are diatonic in a given key.

Usage
is_diatonic(notes, key = "c")
Arguments
notes character, a noteworthy string.
key character, key signature.
Details

This function is a wrapper around is_in_scale(). To check if individual notes are in a scale, see
note_in_scale().
Value

logical

See Also

is_in_scale()

Examples

is_diatonic("ceg ace ce_g", "c")
is_diatonic(c("r", "d", "dfa", "df#a"), "d")

28 keys

keys Key signatures

Description

Helper functions for key signature information.

Usage

keys(type = c("all", "sharp”, "flat"))
key_is_natural (key)

key_is_sharp(key)

key_is_flat(key)

key_n_sharps(key)

key_n_flats(key)

key_is_major(key)

key_is_minor(key)

Arguments
type character, defaults to "all”.
key character, key signature.
Details

The keys () function returns a vector of valid key signature IDs. These IDs are how key signatures
are specified throughout tabr, including in the other helper functions here via key. Like the other
functions here, key_is_sharp() and key_is_flat() are for key signatures, not single pitches
whose sharp or flat status is always self-evident from their notation. Major and minor keys are
also self-evident from their notation, but key_is_major () and key_is_minor () can still be useful
when programming.

Value

character vector.

lilypond

Examples

keys()

key_is_natural(c("c",

x <- c("a", "e_")
key_is_sharp(x)
key_is_flat(x)
key_n_sharps(x)
key_n_flats(x)

29

n

am”, "c#"))

lilypond

Save score to LilyPond file

Description

Write a score to a LilyPond format (. 1y) text file for later use by LilyPond or subsequent editing

outside of R.

Usage

lilypond(
score,
file,
key = "c",
time = "4/4",

tempo = "2 = 60",

header = NULL
paper = NULL,

’

string_names = NULL,

n

endbar = "|.
midi = TRUE,
colors = NULL

’

’

crop_png = TRUE,
simplify = TRUE

Arguments

score

file

key
time

tempo

header

a score object.

character, LilyPond output file ending in .1ly. May include an absolute or rela-
tive path.

character, key signature, e.g., ¢, b_, f#m, etc.
character, defaults to "4/4".

character, defaults to "2 = 60". Set to NA or NULL to suppress metronome mark
in output. If suppressed and midi = TRUE, an error is thrown.

a named list of arguments passed to the header of the LilyPond file. See details.

30 lilypond

paper a named list of arguments for the LilyPond file page layout. See details.

string_names label strings at beginning of tab staff. NULL (default) for non-standard tunings
only, TRUE or FALSE for force on or off completely.

endbar character, the global end bar.
midi logical, add midi inclusion specification to LilyPond file.
colors a named list of LilyPond element color overrides. See details.
crop_png logical, alter template for cropped height. See details.
simplify logical, uses simplify_phrase() to convert to simpler, more efficient LilyPond
syntax.
Details

This function only writes a LilyPond file to disk. It does not require a LilyPond installation. It
checks for the version number of an installation, but LilyPond is not required to be found.

This function can be used directly but is commonly used by render_x functions, which call this
function internally to create the LilyPond file and then call LilyPond to render that file to sheet
music.

Value

nothing returned; a file is written.

Header options

All header list elements are character strings. The options for header include the following.

e title

e subtitle
* composer
e album

e arranger
e instrument
* meter

* opus

* piece

* poet

e copyright

e tagline

lilypond 31

Paper options

All paper list elements are numeric except page_numbers and print_first_page_number, which
are logical. page_numbers = FALSE suppresses all page numbering. When page_numbers = TRUE,
you can set print_first_page_number = FALSE to suppress printing of only the first page number.
first_page_number is the number of the first page, defaulting to 1, and determines all subsequent
page numbers. These arguments correspond to LilyPond paper block variables.

The options for paper include the following and have the following default values if not provided.

* textheight = 220

e linewidth =150

e indent =0

* fontsize =10

e page_numbers = TRUE

e print_first_page_number = TRUE

e first_page_number =1

PNG-related options

By default crop_png = TRUE. This alters the template so that when the LilyPond output file is cre-
ated, it contains specifications for cropping the image to the content when that file is rendered by
LilyPond to png. The image will have its width and height automatically cropped rather than retain
the standard page dimensions. This only applies to png outputs made from the LilyPond file, not
pdf. The argument is also ignored if explicitly providing textheight to paper. You may still pro-
vide 1linewidth to paper if you find you need to increase it beyond the default 150mm, generally
as a result of using a large fontsize. Various render_* functions that wrap 1ilypond make use
of this argument as well.

Color options

You can provide a named list of global color overrides for various sheet music elements with the
colors argument of 1ilypond or one of the associated rendering functions.

By default, everything is black. Overrides are only inserted into the generated LilyPond file if given.
Values are character; either the hex color or a named R color. The named list options include the
following.

e color

¢ background

e staff

e time

* key

e clef

e bar

* beam

* head

32 lilypond_root

* stem

e accidental

e slur

* tabhead

e lyrics
color is a global font color for the entire score. It affects staff elements and header elements.
It does not affect everything, e.g., page numbers. background controls the background color of
the entire page. Do not use this if making a transparent background png with the transparent
argument available in the various render_= functions. The other options are also global but override

color. You can change the color of elements broadly with color and then change the color of
specific elements using the other options.

There are currently some limitations. Specifically, if you provide any background color override,
most header elements will not display.

See Also

tab(), render_chordchart(), midily ()

Examples

Not run:

x <- phrase(”c ec'g' ec'g'"”, "4 4 2", "5 432 432")
x <- track(x)

x <- score(x)

outfile <- file.path(tempdir(), "out.ly")
lilypond(x, outfile, midi = FALSE)

End(Not run)

lilypond_root LilyPond installation information

Description

Details about local LilyPond installation and package API.
Usage

lilypond_root()

lilypond_version()

tabr_lilypond_api()

Ip_chord_id

Details

Version information and installation directory are returned if the installation can be found.
LilyPond API references the currently loaded version of tabr.

Value

a message or system standard output.

Examples

lilypond_root()
lilypond_version()
tabr_lilypond_api()

33

The

lp_chord_id LilyPond chord notation

Description

Obtain LilyPond quasi-chord notation.

Usage
lp_chord_id(root, chord, exact = FALSE, ...)
lp_chord_mod(root, chord, exact = FALSE, ...)
Arguments
root character, root note.
chord character, tabr format chord name.
exact logical, return a more exact LilyPond chord representation.
additional arguments passed to transpose().
Details

These functions take a tabr syntax representation of a chord name and convert it to quasi-LilyPond
syntax; "quasi" because the result still uses _ for flats and # for sharps, whereas LilyPond itself uses
es and is (mostly). This is the format used by tabr functions involved in communicating with
LilyPond for music transcription, and they make these final conversions on the fly. This can be

overridden with exact = TRUE.

Value

character

34 Iyrics

Examples

lp_chord_id("a a a", "m M m7_5")
lp_chord_mod("a a a", "m M m7_5")
lp_chord_id("a a a", "m M m7_5", exact = TRUE)
lp_chord_mod("a a a", "m M m7_5", exact = TRUE)

lyrics Create lyrics and check lyrics string validity

Description

Functions for creating and checking lyrics objects.
Usage

lyrical(x)

as_lyrics(x, format = NULL)

is_lyrics(x)

lyrics_template(x, format = NULL)

Arguments
X character or lyrics object. For lyrics_template(), an integer or one of the
classes noteworthy, noteinfo or music to derive the number of timesteps from.
format NULL or character, the timestep delimiter format, "space” or "vector".
Details

The lyrics class is a simple class for arranging lyrics text by timestep. Its structure and behavior
aligns with that of the classes noteworthy, noteinfo and music.

lyrical() is a trivial function that returns a scalar logical result essentially for any object that
inherits from character, though this check may become more specific in the future.

as_lyrics() can be used to coerce to the 1lyrics class. Coercion will fail if the string is not lyrical.
The lyrics class has its own print () and summary () methods.

When format = NULL, the timestep delimiter format is inferred from the lyrical string input.

Value

depends on the function

mainlntervals

Examples

space-delimited lyrics; use periods for timesteps with no lyric
x <- "These are the ly- rics . . . to this song”

is_lyrics(x)

lyrical(x)

as_lyrics(x)

character vector; empty, period or NA for no lyric
x <= c("These”, "are”, "the”, "ly-", "rics”,
mhmonNAL "to”) "this”, "song”) #

as_lyrics(x)

generate empty lyrics object from noteworthy, noteinfo or music object
notes <- as_noteworthy("c dedcrx3 egc'")
x <- lyrics_template(notes)

35

X

x[1:5] <- strsplit("These are the ly- rics”, " ")[[11]

x[9:11] <- c("to"”, "this", "song")

X

summary (x)

attributes(x)

mainIntervals Main musical intervals

Description

A data frame containing descriptions of the main intervals, simple and compound.

Usage

mainIntervals

Format

A data frame with 5 columns and 26 rows

36

midily

midily

Convert MIDI to LilyPond file

Description

Convert a MIDI file (.mid) to a LilyPond format (. ly) text file.

Usage

midily(
midi_file,
file,
key = "c",
absolute
quantize
explicit

FALSE,
NULL,
FALSE,

start_quant = NULL,
allow_tuplet = c("4x2/3", "8x2/3", "16%2/3"),

details =

FALSE,

lyric = FALSE

Arguments
midi_file
file
key
absolute
quantize
explicit
start_quant
allow_tuplet
details

lyric

Details

character, MIDI file (.mid). May include an absolute or relative path.
LilyPond output file ending in . 1y.

key signature, defaults to "c".

logical, print absolute pitches (unavailable in current package version).

integer, duration, quantize notes on duration.

logical, print explicit durations.

integer, duration, quantize note starts on the duration.
character vector, allow tuplet durations. See details.
logical, print additional information to console.

logical, treat all text as lyrics.

Under development/testing. See warning and details below.

This function is a wrapper around the midi2ly() command line utility provided by LilyPond. It
inherits all the limitations thereof. LilyPond is not intended to be used to produce meaningful sheet
music from arbitrary MIDI files. While 1ilypond() converts R code score() objects to LilyPond
markup directly, MIDI conversion to LilyPond markup by midily() requires LilyPond.

WARNING: Even though the purpose of the command line utility is to convert an existing MIDI
file to a LilyPond file, it nevertheless generates a LilyPond file that specifies inclusion of MIDI

miditab 37

output. This means when you subsequently process the LilyPond file with LilyPond or if you use
miditab() to go straight from your MIDI file to pdf output, the command line tool will also produce
a MIDI file output. It will overwrite your original MIDI file if it has the same file name and location!

allow_tuplets = NULL to disallow all tuplets. Fourth, eighth and sixteenth note triplets are allowed.
The format is a character vector where each element is duration*numerator/denominator, no
spaces. See default argument.

On Windows systems, it may be necessary to specify a path in tabr_options() to both midi2ly
and python if they are not already added to the system PATH variable.

Value

nothing returned; a file is written.

See Also

miditab(), tab(), lilypond()

Examples

Not run:
if(tabr_options()$midi2ly != ""){
midi <- system.file("example.mid”, package = "tabr")

outfile <- file.path(tempdir(), "out.ly")
midily(midi, outfile) # requires LilyPond installation
3

End(Not run)

miditab Convert MIDI to tablature

Description

Convert a MIDI file to sheet music/guitar tablature.

Usage
miditab(midi_file, file, keep_ly = FALSE, details = FALSE, ...)
Arguments
midi_file character, MIDI file (.mid). May include an absolute or relative path.
file character, output file ending in .pdf or .png.
keep_ly logical, keep LilyPond file.
details logical, set to TRUE to print LilyPond log output to console. Windows only.

additional arguments passed to midily().

38 mode-helpers

Details

Under development/testing. See warning and details below.

Convert a MIDI file to a pdf or png music score using the LilyPond music engraving program.
Output format is inferred from file extension. This function is a wrapper around midily(), the
function that converts the MIDI file to a LilyPond (. 1y) file using a LilyPond command line utility.

WARNING: Even though the purpose of the command line utility is to convert an existing MIDI
file to a LilyPond file, it nevertheless generates a LilyPond file that specifies inclusion of MIDI
output. This means when you subsequently process the LilyPond file with LilyPond or if you use
miditab() to go straight from your MIDI file to pdf output, the command line tool will also produce
a MIDI file output. It will overwrite your original MIDI file if it has the same file name and location!

On Windows systems, it may be necessary to specify a path in tabr_options() to both midi2ly
and python if they are not already added to the system PATH variable.

Value

nothing returned; a file is written.

See Also
midily(), tab(), lilypond()

Examples
Not run:
if(tabr_options()$midi2ly != ""){
midi <- system.file(”example.mid”, package = "tabr")

outfile <- file.path(tempdir(), "out.pdf")
miditab(midi, outfile, details = FALSE) # requires LilyPond installation
3

End(Not run)

mode-helpers Mode helpers

Description

Helper functions for working with musical modes.

Usage

modes(mode = c("all”, "major"”, "minor"))
is_mode(notes, ignore_octave = FALSE)

mode_rotate(notes, n = @, ignore_octave = FALSE)

mode-helpers

mode_modern

39

mode = "ionian",

key = IIC”,

collapse = FALSE,

ignore_octave = FALSE
)
mode_ionian(key = "c", collapse = FALSE, ignore_octave = FALSE)
mode_dorian(key = "c", collapse = FALSE, ignore_octave = FALSE)
mode_phrygian(key = "c", collapse = FALSE, ignore_octave = FALSE)
mode_lydian(key = "c", collapse = FALSE, ignore_octave = FALSE)
mode_mixolydian(key = "c", collapse = FALSE, ignore_octave = FALSE)
mode_aeolian(key = "c", collapse = FALSE, ignore_octave = FALSE)
mode_locrian(key = "c", collapse = FALSE, ignore_octave = FALSE)

Arguments

mode

notes

ignore_octave
n
key

collapse

Details

character, which mode.

character, for mode, may be a noteworthy string of seven notes, space- or vector-
delimited.

logical, strip octave numbering from modes not rooted on C.
integer, degree of rotation.
character, key signature.

logical, collapse result into a single string ready for phrase construction.

For valid key signatures, see keys().

Modern modes based on major scales are available by key signature using the mode_# functions.
The seven modes can be listed with modes. Noteworthy strings of proper length can be checked
to match against a mode with is_mode (). Modes can be rotated with mode_rotate(), a wrapper
around note_rotate().

Value

character

See Also

keys(), scale-helpers()

40 music

Examples
modes ()
mode_dorian("c")
mode_modern("dorian”, "c")
mode_modern("dorian”, "c", ignore_octave = TRUE)

identical (mode_rotate(mode_ionian("c"), 1), mode_dorian("d"))
identical(
mode_rotate(mode_ionian("c"”, ignore_octave = TRUE), 1),
mode_dorian("d"”, ignore_octave = TRUE)

)

x <- sapply(modes(), mode_modern, ignore_octave = TRUE)
setNames(data.frame(t(x)), as.roman(1:7))

music Create music objects and check music string validity

Description

Check whether a string is comprised exclusively of valid syntax for music strings. A music object
can be built from such a string. It combines a noteworthy string and a note info string.

Usage

musical (x)

as_music(
notes,
info = NULL,
lyrics = NA,
key = "c",
time = "4/4",
tempo = "2 = 60",
accidentals = NULL,
format = NULL,
labels = NULL,

at = seqg_along(labels)

is_music(x)

music_split(x)

Arguments

X character or music, a string to be coerced or an existing music object.

music 41

notes, info noteworthy and note info strings. For as_music(), a complete music string is
assumed for notes when info = NULL.

lyrics optional 1lyrics object or NA, attached to output as an attribute.

key character, store the key signature as a music attribute. Defaults to "c". See
details.

time character, store the time signature as a music attribute. Defaults to "4/4". See
details.

tempo character or NA, defaults to "2 = 60". See details.

accidentals NULL or character, represent accidentals, "flat” or "sharp”.

format NULL or character, the timestep delimiter format, "space” or "vector"”.

labels character, text annotations to attach to timesteps using notate.

at integer, timesteps for labels, defaults to starting from time one.

Details

With note info strings, you are required to enter something at every timestep, even if it is only the
duration. This makes sense because if you do not enter something, there is simply no indication of a
timestep. A nice feature of music strings is that explicit timesteps are achieved just by having notes
present, allowing you to leave out durations entirely when they repeat, inheriting them from the
previous timestep where duration was given explicitly. There is no need to enter the same number
across consecutive timesteps; the first will suffice and the rest are automatically filled in for you
when the object is constructed.

musical() returns a scalar logical result indicating whether all timesteps contain exclusively valid
entries.

as_music() can be used to coerce to the music class. Coercion will fail if the string is not musi-
cal. The music class has its own print() and summary() methods. music objects are primarily
intended to represent an aggregation of a noteworthy object and a noteinfo. You can optionally
fold in a 1lyrics object as well. However, for music data analysis, any operations will involve first
splitting the object into its component parts. The value of this class is for the more efficient data
entry it provides.

When accidentals or format are NULL, these settings are inferred from the musical string input.
When mixed formats are present, flats are the default for accidentals.

Other attributes are attached to amusic object. key uses the tabr syntax, e.g., "c”, "b_", "f#m", etc.
time and tempo use the LilyPond string format. For music programming and analysis, key, time
and tempo can most likely be ignored. They are primarily relevant when rendering a music snippet
directly from a music object with LilyPond. These additional attributes provide more complete
context for the rendered sheet music.

If you plan to render music snippets from a music object that you are defining from a new character
string, and the context you have in mind is a stringed and fretted instrument like guitar, you can
specify string numbers at the end of each timestep with numbers following a semicolon delimiter.
This would still precede any * timestep multiplier number. See examples.

Note that if you convert a music object to a phrase object, you are changing contexts. The phrase
object is the simplest LilyPond-format music structure. Coercion with phrase () strips all attributes
of a music object and retains only notes, note info and string numbers.

42 music-helpers

Value

depends on the function

See Also

music-helpers(), note-checks(), note-metadata(), note-summaries(), note-coerce()

Examples

note durations inherit from previous timestep if missing

X <- "a#4-+ b_[staccato] c,x d''t8(e)(g_')- a4 c,e_,g, ce_g4. a~8 al”
is_music(x)

musical(x)

X <- as_music(x)

is_music(x)

X

y <- lyrics_template(x)

y[3:8] <- strsplit(”"These are some song ly- rics”, " ")[[1]]
y

x <- as_music(x, lyrics =y, accidentals = "sharp")
summary (x)

Starting string = 5: use ';5'. Carries over until an explicit change.

x <- "a,4;5%5 b,4-+ c4[staccato] cgc'e'~4 cgc'e'l e'4;2 c';3 g;4 c;5 ce'1;51"
X <- as_music_df (as_music(x))

x$string

music-helpers Accessing music object values and attributes

Description

Helper functions for accessing music object values and attributes.

Usage
music_notes(x)
music_info(x)
music_strings(x)
music_key(x)

music_time(x)

music-helpers 43

music_tempo(x)

music_lyrics(x)

Arguments

X music object.

Details

Note that while lyrics always shows as an attribute even when NA, strings is completely absent as
a value if it was not part of the object construction from a new character string.

Value

depends on the function

See Also

music(), note-checks(), note-metadata(), note-summaries(), note-coerce()

Examples

Starting string = 5: use ';5'. Carries over until an explicit change.
X <- "a,4;5x5 b,4- c4 cgc'e'~4 cgc'e'l e'4;2 c';3 g;4 c;5 ce'1;51"
X <- as_music(x)

y <- lyrics_template(x)
y[3:8] <- strsplit("These are some song ly- rics”, " ")[[1]1]
y

X <- as_music(x, lyrics =vy)
attributes(x)
music_split(x)

music_notes(x)
music_info(x)
music_key(x)
music_time(x)
music_tempo(x)
music_lyrics(x)
music_strings(x)

44 note-checks

notate Add text to music staff

Description

Annotate a music staff, vertically aligned above or below the music staff at a specific note/time.

Usage

notate(x, text, position = "top")
Arguments

X character.

text character.

position character, top or bottom.
Details

This function binds text annotation in LilyPond syntax to a note’s associated info entry. Techni-
cally, the syntax is a hybrid form, but is later updated safely and unambiguously to LilyPond syntax
with respect to the rest of the note info substring when it is fed to phrase() for musical phrase
assembly.

Value

a character string.

Examples

notate("8", "Solo")
phrase("c'~ ¢c' d' e'", pc(notate(8, "First solo"”), "8 8 4."), "5 55 5")

note-checks Basic noteworthy string checks

Description

The simplest functions for inspecting noteworthy strings to see if their notes have certain properties.

note-checks 45

Usage

note_is_accidental(notes)
note_is_natural(notes)
note_is_flat(notes)
note_is_sharp(notes)
note_has_accidental (notes)
note_has_natural(notes)
note_has_flat(notes)

note_has_sharp(notes)

Arguments

notes character, a noteworthy string.

Details

Note that these functions are the weakest in terms of checking noteworthiness. They are simple
regular expression-based wrappers. They are often used internally by more complex functions
without wasting computational overhead on performing input validity checks, but they are exported
from the package for user convenience. Their results will only make sense on strings that you define
in accordance with noteworthy string rules.

The note_is_* functions return a logical vector with length equal to the number of timesteps in
notes. The note_has_* functions summarize these to a single logical value.

Value

logical

See Also

note-metadata(), note-summaries(), note-coerce(), valid-notes()

Examples

n

X <- "r a_2 a a#' s
note_has_accidental (x)
note_has_natural(x)
note_has_flat(x)
note_has_sharp(x)
note_is_accidental(x)
note_is_natural(x)
note_is_flat(x)

46 note-coerce

note_is_sharp(x)
note_has_tick(x)
note_has_integer(x)
note_is_tick(x)
note_is_integer(x)
note_has_rest(x)
note_is_rest(x)

note-coerce Basic noteworthy strings formatting and coercion helpers

Description

Helper functions for setting formatting attributes of noteworthy strings including representation of
timesteps, octaves and accidentals.

Usage
naturalize(notes, type = c("both”, "flat", "sharp"))
sharpen_flat(notes)
flatten_sharp(notes)
note_set_key(notes, key = "c")
as_tick_octaves(notes)
as_integer_octaves(notes)
as_space_time(x)
as_vector_time(x)

pretty_notes(notes, ignore_octave = TRUE)

Arguments
notes character, a noteworthy string, space-delimited or vector of individual entries.
type character, type of note to naturalize.
key character, key signature to coerce any accidentals to the appropriate form for the
key. May also specify "sharp” or "flat".
X for generic functions: notes, info or music string.

ignore_octave logical, strip any octave notation that may be present, returning only the basic
notes without explicit pitch.

note-coerce 47

Details

For sharpen_flat() and flatten_sharp(), sharpening flats and flattening sharps refer to in-
verting their respective notation, not to raising or lowering a flatted or sharped note by one semi-
tone. For the latter, use naturalize(), which removes flat and/or sharp notation from a string.
note_set_key() is used for coercing a noteworthy string to a specific and consistent notation for
accidentals based on a key signature. This is a wrapper around sharpen_flat() and flatten_sharp().
as_tick_octaves(), as_integer_octaves(), as_space_time() and as_vector_time() simi-
larly affect octave and timestep format. For simultaneous control over the representation of timesteps,
octave numbering and accidentals, all three are available as arguments to as_noteworthy ().

Value

character

A note on generic functions

as_space_time() and as_vector_time() are generic since they apply clearly to and are useful
for not only noteworthy strings, but also note info and music objects. If x is still a simple character
string, these functions attempt to guess which of the three it is. It is recommended to set the class
before using these functions.

There are many package functions that operate on noteworthy strings that could in concept work
on music objects, but the expectation is that sound and time/info are disentangled. The music
class is convenient for data entry, e.g., for transcription purposes, but it is not sensible to perform
data analysis with quantities like pitch and time tightly bound together. This would only lead to
repetitive deconstructions and reconstructions of music class objects. Most functions that operate
on noteworthy strings or note info strings strictly apply to one or the other. Generic functions
are reserved for only the most fundamental and generally applicable metadata retrieval and format
coercion.

See Also

note-checks(), note-metadata(), note-summaries(), valid-notes()

Examples

x <- "e_2a_, b cHftta#t c#'f#'att'""
note_set_key(x, "f")

note_set_key(x, "g")
as_tick_octaves(x)
as_integer_octaves(x)

y <- as_vector_time(x)
is_vector_time(y)
is_space_time(as_space_time(y))

naturalize(x)
naturalize(x, "sharp")
sharpen_flat(x)
flatten_sharp(x)
pretty_notes(x)

48 note-equivalence

note-equivalence Note, pitch and chord equivalence

Description

Helper functions to check the equivalence of two noteworthy strings, and other related functions.
Usage

note_is_equal(notesl, notes2, ignore_octave = TRUE)

note_is_identical(notes1, notes2, ignore_octave = TRUE)

pitch_is_equal(notesl, notes2)

pitch_is_identical(notes1, notes2)

octave_is_equal(notesl, notes2)

octave_is_identical(notesl1, notes2, single_octave = FALSE)

Arguments
notesi character, noteworthy string, space-delimited or vector of individual entries.
notes2 character, noteworthy string, space-delimited or vector of individual entries.

ignore_octave logical, ignore octave position when considering equivalence.

single_octave logical, for octave equality, require all notes share the same octave. See details.

Details

Noteworthy strings may contain notes, pitches and chords. Noteworthy strings are equal if they
sound the same. This means that if one string contains Eb (e_) and the other contains D# (d#) then
the two strings may be equal, but they are not identical.

pitch_is_equal() and pitch_is_identical() perform these respective tests of equivalence on
both notes and chords. These are the strictest functions in terms of equivalent sound because pitch
includes the octave number.

note_is_equal() and note_is_identical() are similar but include a default argument ignore_octave
= TRUE, focusing only on the notes and chords. This allows an even more relaxed definition of equiv-
alence. Setting this argument to FALSE is the same as calling the pitch_is_x* variant.

Chords can be checked the same as notes. Every timestep in the sequence is checked pairwise
between notel and note2.

These functions will return TRUE or FALSE for every timestep in a sequence. If the two noteworthy
strings do not contain the same number of notes at a specific step, such as a single note compared
to a chord, this yields a FALSE value, even in a case of an octave dyad with octave number ignored.

note-equivalence 49

If the two sequences have unequal length NA is returned. These are bare minimum requirements for
equivalence. See examples.

octave_is_equal() and octave_is_identical() allow much weaker forms of equivalence in

that they ignore notes completely. These functions are only concerned with comparing the octave
numbers spanned by any pitches present at each timestep. When checking for equality, octave_is_equal()
only looks at the octave number associated with the first note at each step, e.g., only the root note

of a chord. octave_is_identical() compares all octaves spanned at a given timestep.

It does not matter when comparing two chords that they may be comprised of a different numbers
of notes. If the set of unique octaves spanned by one chord is identical to the set spanned by the
other, they are considered to have identical octave coverage. For example, alb2c3 is identical to
dle1f2g3. To be equal, it only matters that the two chords begin with x1, where x is any note.
Alternatively, for octave_is_identical() only, setting single_octave = TRUE additionally re-
quires that all notes from both chords being compared at a given timestep share a single octave.

Value

logical

Examples

X <= "b_2 ce_g"

y <= "b_ cd#g"
note_is_equal(x, y)
note_is_identical(x, y)

x <- "b_2 ce_g"

y <= "b_2 cditg"
pitch_is_equal(x, y)
pitch_is_identical(x, y)

same number of same notes, same order: unequal sequence length
X <- "b_2 ce_g b_"

y <= "b_2 ce_gb_"

note_is_equal(x, y)

same number of same notes, order, equal length: unequal number per timestep
X <- "b_2 ce_g b_"
y <= "b_2 ce_ gb_"
note_is_equal(x, y)

x <= "al b_2 alb2c3 alb4 glalb1”

y <- "a_2 g#2 dlel1f2g3 alb2b4 diel”
octave_is_equal(x, y)

octave_is_identical(x, y)
octave_is_identical(x, y, single_octave = TRUE)

50 note-logic

note-logic Relational operators for noteworthy class

Description

Relational operators for comparing two noteworthy class objects.

Usage

S3 method for class 'noteworthy'
el == e2

S3 method for class 'noteworthy'
el I=e2

S3 method for class 'noteworthy'
el < e2

S3 method for class 'noteworthy'
el <= e2

S3 method for class 'noteworthy'
el > e2

S3 method for class 'noteworthy'

el >= e2
Arguments
el noteworthy string.
e2 noteworthy string.
Details

Equality is assessed in the same manner as used for note_sort() when sorting pitches. What
matters is the underlying semitone value associated with each pitch, not the string notation such as
flat vs. sharp (see pitch_is_identical()). When comparing chords, or a chord vs. a single note,
comparison favors the root. Comparison is made of the respective lowest pitches, then proceeds to
the next pitch if equal.

For these operators, the objects on the left and right side of the operator must both be noteworthy
or an error is returned.

The examples include a chord with its pitches entered out of pitch order. This does not affect the
results because pitches within chords are sorted before note to note comparisons at each timestep
are done between el and e2.

note-metadata

Value

logical vector

Examples

<- as_noteworthy("f# a d'f#'a' d'f#'a'")
<- as_noteworthy("g_ b f#'a'd' d'd"''")
=Yy

I=y

<y

>y

<=y

>=y

X X X X X X < X

note-metadata Noteworthy string metadata

Description

Inspect basic metadata for noteworthy strings.
Usage
n_steps(x)
n_notes(notes)
n_chords(notes)
n_octaves(notes)
chord_size(notes)
octave_type(notes)
accidental_type(x)
time_format(x)
is_space_time(x)
is_vector_time(x)
note_is_tick(notes)

note_is_integer(notes)

52 note-metadata

note_has_tick(notes)
note_has_integer(notes)
note_is_rest(notes)

note_has_rest(notes)

Arguments

X for generic functions: notes, info or music string.

notes character, a noteworthy string, space-delimited or vector of individual entries.
Details

These functions inspect the basic metadata of noteworthy strings. For functions that perform basic
checks on strings, see note-checks().

The n_* functions give summary totals of the number of timesteps, number of individual note (non-
chord) timesteps, number of chord time steps, and the number of distinct octaves present across
timesteps.

Functions pertaining to type or format of a noteworthy string provide information on how a par-
ticular string is defined, e.g. time_format. Note that the result pertains to true noteworthy-
class objects. If inspecting a standard character string, the result pertains to post-conversion to the
noteworthy class and does not necessarily reflect what is found in notes verbatim. See examples.

Value

varies by function

A note on generic functions

n_steps() and the three time format functions are generic since they apply clearly to and are useful
for not only noteworthy strings, but also note info, music, and lyrics objects. If x is still a simple
character string, these functions attempt to guess if it is noteworthy, note info, or music. Lyrics
content is arbitrary so is never considered for a simple character string. Best practice is to set the
class before using these functions anyway.

There are many package functions that operate on noteworthy strings that could in concept also
work on music objects, but the expectation is that sound and time/info are disentangled for analysis.
The music class is convenient and relatively efficient data entry, e.g., for transcription purposes, but
it is not sensible to perform data analysis with quantities like pitch and time tightly bound together
in a single string. This would only lead to repetitive deconstructions and reconstructions of music
class objects.

The music class is intended to be a transient class such as during data import, data entry, or data
export. Most functions that operate on noteworthy strings or note info strings strictly apply to one
or the other. Generic functions are reserved for only the most fundamental and generally applicable
metadata retrieval and format coercion.

note-summaries

See Also

tabr-methods(), note-checks(), note-summaries(), note-coerce(), valid-notes()

Examples

x <- "e_2 a_, c#f#a#t"
n_steps(x)

n_notes(x)
n_chords(x)
n_octaves(x)

chord_size(x)

—

Type is mixed in “x* but is inferred under default conversion rules.
These check “x~ once validated and coerced to 'noteworthy' class.
octave_type(x)

accidental_type(x)

The default is tick octaves and flats

as_noteworthy(x)

time_format(x)
is_space_time(x)
is_vector_time(x)

note-summaries Noteworthy string summaries

Description

Basic summary functions for noteworthy strings.

Usage

tally_notes(notes, rests = FALSE)
tally_pitches(notes, rests = FALSE)
octaves(notes)

tally_octaves(notes)
distinct_notes(notes, rests = FALSE)
distinct_pitches(notes, rests = FALSE)
distinct_octaves(notes)

pitch_range(notes)

54 note-summaries

semitone_range(notes)
semitone_span(notes)
octave_range(notes)

octave_span(notes)

Arguments
notes character, a noteworthy string, space-delimited or vector of individual entries.
rests logical, include rests r and silent rests s in tally.

Details

These functions provide basic summaries of noteworthy strings.

Returned object depends on the nature of the function. It can be integers, logical, character. Results
can be a vector of equal length of a single value summary.

Use the tally_=* and distinct_=* functions specifically for summaries of unique elements.

distinct_notes() and distinct_pitches() filter a noteworthy string to its unique elements,
respectively. These functions return another noteworthy string.
*_span functions are just the size of a range, e.g., semitone_range() and semitone_span().

Value

varies by function

See Also

note-checks(), note-metadata(), note-coerce(), valid-notes()

Examples

X <= "r s e_2 a_, ctftta#t"
tally_notes(x)
tally_pitches(x)
octaves(x)
tally_octaves(x)
distinct_notes(x)
distinct_pitches(x)
distinct_octaves(x)

pitch_range(x)
semitone_range(x)
semitone_span(x)
octave_range(x)
octave_span(x)

noteinfo 55

noteinfo Note info helpers

Description

Functions for working with note info strings.

Usage

info_duration(x)
info_slur_on(x)
info_slur_off(x)
info_slide(x)
info_bend(x)
info_dotted(x)
info_single_dotted(x)
info_double_dotted(x)
info_annotation(x)

info_articulation(x)

Arguments
X character, note info string normally accompanying a noteworthy string for build-
ing phrase objects. x may also be a phrase object.
Details

If x is a phrase object, there are some parsing limitations such as tuplets and repeats.

Value

character

See Also

valid-noteinfo()

56 note_ngram

Examples

a <- notate("t8x", "Start here")

notes <- "a, b, cde fg#t arac'e' ac'e' c' rx3 ac'e'~ ac'e'”
info <- paste(a, "t8x t8-. 16 4.. 16- 16 2* 2 4. 8(4)(4) 8x4 1 1")
X <- as_music(notes, info)

data. frame(
duration = info_duration(x),
slur_on = info_slur_on(x),
slur_off = info_slur_off(x),
slide = info_slide(x),
bend = info_bend(x),
dotted = info_dotted(x),
dottedl = info_single_dotted(x),
dotted2 = info_double_dotted(x),
annotation = info_annotation(x),
articulation = info_articulation(x)

note_ngram Note/chord n-gram

Description

Convert a noteworthy string to a list of noteworthy n-grams.

Usage
note_ngram(notes, n = 2, tally = FALSE, rests = FALSE)

Arguments
notes a noteworthy string.
n Number of grams. Must be >= 1 and <= number of timesteps in notes.
tally logical, tally n-grams in a data frame. Otherwise a list.
rests logical, exclude rests. Affects the number of timesteps.
Value

list of noteworthy objects or a tibble

Examples

x <- as_noteworthy("c r ceg dfa ceg dfa")
note_ngram(x)

(x <- note_ngram(x, tally = TRUE))
x$ngram <- as.character(x$ngram)

X

note_slice 57

note_slice Slice, sort, rotate, shift and arpeggiate notes

Description

Helper functions for indexing and moving notes within noteworthy strings.
Usage

note_slice(notes, ...)

note_sort(notes, decreasing = FALSE)

note_rotate(notes, n = 0)

note_shift(notes, n = @)

note_arpeggiate(notes, n = @, step = 12)

Arguments
notes character, a noteworthy string, space-delimited or vector of individual entries.
For note_slice(), an integer or logical vector.
decreasing logical, short in decreasing order.
n integer, number of rotations or extensions of note sequence. See details.
step integer, number of semitone steps from the first (or last) note in notes at which
to begin repeating the shifted notes sequence as an arpeggio. See examples.
Details

note_slice() subsets the timesteps of a noteworthy string by integer index or logical vector of
length equal to the number of timesteps.

note_sort() sorts the timesteps of a noteworthy string by pitch. When a tie exists by root note,
the next note in chords are compared, if they exist. For example, a, sorts lower than a, ce.

note_rotate() simply rotates anything space-delimited or vectorized in place. It allows chords.
Octave numbering is ignored if present.

For note_shift() the entire sequence is shifted up or down in pitch, as if inverting a broken chord.
If notes contains chords, they are broken into successive notes. Then all notes are ordered by pitch.
Finally shifting occurs.

Instead of a moving window, note_arpeggiate() grows its sequence from the original set of
timesteps by repeating the entire sequence n times (n must be positive). Each repeated sequence
contributing to the arpeggio is offset by step semitones from the original. step can be negative. It
defaults to 12, increasing all notes by one octave.

58

Value

character

Examples

X <- "bd'f#' a c'e'g' b bac'g' gd'g'd"""
note_sort(x)
note_sort(x, decreasing = TRUE)

X <- "e_2 a_, c#fta#t"”
note_slice(x, 2:3)
note_slice(x, c(FALSE, TRUE, TRUE))

note_rotate(x, 1)

note_shift("c e g", 1)
note_shift("c e g", -4)

note_arpeggiate(”"c e g ceg”, 3)
note_arpeggiate("c e g", 3, step = -12)
note_arpeggiate(”"g e c", 3, step = -12)
note_arpeggiate(”"c e_ g_ a", 3, step = 3)

"

note_arpeggiate("c a g_ e_", 3, step = -3)

n_measures

n_measures Summarize rhythm and time of music objects

Description

These functions assist with summarizing temporal data for music objects.

Usage

n_measures(x)

n_beats(x, unit = 4)
steps_per_measure(x)

bpm(x, unit = 4, tempo = NULL)
seconds(x, tempo = NULL)

seconds_per_measure(x, tempo = NULL)

seconds_per_step(x, tempo = NULL)

steps_start_time(x, tempo = NULL)

n_measures 59

Arguments
X note info or music object.
unit character, or an equivalent integer. A beat unit. See details.
tempo character, LilyPond format tempo, e.g., "4 = 120" is 120 quarter note beats per
minute.
Details

These functions also work with the simpler noteinfo class, though some functions require you to
provide additional arguments.

Functions that deal with real time require a known tempo, which music objects have. The simpler
note info object does not contain this information. You can provide a value to the tempo argument
of such functions. This overrides the tempo of x if a music object. But the reason to use tempo is to
provide one when x is a note info object. By default tempo = NULL, in which case it will derive the
value from the music object or return an error for note info objects.

n_measures() gives the total number of measures covered by all timesteps. Functions providing
the number of beats and beats per minute both take a unit, defaulting to 4 for quarter note beats.
The unit can be any even beat, triplet beat, dotted, or double dotted beat, from "t32" up to 1.

The number of timesteps starting in each measure is obtained with steps_per_measure().

Value

depends on function

Examples

a <- notate("t8x", "Start here")

notes <- "a, b, cde fg#t arac'e' ac' e' c' rx3 ac'e'~ ac'e'”
info <- paste(a, "t8x t8-. 16 4.. 16- 16 2* 2 4. 8(4)(4) 8x4 1 1")
info <- as_noteinfo(info)

x <- as_music(notes, info)

n_measures(info) # fraction indicates incomplete final measure
n_measures(x)

n_beats(x)
n_beats(x, 1)
n_beats(x, "t16")

bpm(x)
bpm(x, "t8")
seconds(x)

seconds(info, "4 = 120")
seconds(info, "2 = 60")
seconds(x, "4 = 100")

steps_per_measure(x)
seconds_per_measure(x)

60

phrase

seconds_per_step(x)
steps_start_time(x)

phrase Create a musical phrase

Description

Create a musical phrase from character strings that define notes, note metadata, and optionally
explicit strings fretted. The latter can be used to ensure proper tablature layout.

Usage

phrase(notes, info = NULL, string = NULL, bar = NULL)

p(notes, info = NULL, string = NULL, bar = NULL)

Arguments
notes, info noteworthy and note info strings. When info = NULL, it is assumed that notes
refers to a music object or string formatted as such.
string space-delimited character string or vector (or integer vector if simple string num-
bers). This is an optional argument that specifies which instrument strings to
play for each specific timestep. Otherwise NULL.
bar character or NULL (default). Terminates the phrase with a bar or bar check. See
details. Also see the LilyPond help documentation on bar notation for all the
valid options.
Details

A phrase object combines a valid string of notes with a corresponding valid string of note info. The
only required note info is time, but other information can be included as well. You do not need to
input an existing noteworthy class object and noteinfo class object, but both inputs must be valid
and thus coercible to these classes. This is similar to how the music class works. The difference
with phrase objects is that they are used to create LilyPond syntax analogous to what a music object
contains.

Note that if you convert a music object to a phrase object, you are changing contexts. The phrase
object is the simplest LilyPond-format music structure. Coercion with phrase () strips all attributes
of a music object and retains only notes, note info and string numbers.

See the help documentation on noteworthy, noteinfo, and music classes for an understanding of
the input data structures. The function p() is a convenient shorthand wrapper for phrase().

If a string is provided to bar, it is interpreted as LilyPond bar notation. E.g., bar =" |" adds the
LilyPond syntax \bar "|" to the end of a phrase. If only a bar check is desired, use bar = TRUE.
FALSE is treated as NULL for completeness.

phrase-checks

Value

a phrase.

See Also

valid-notes(), valid-noteinfo(), music()

Examples

phrase("c ec'g' ec'g'”, "4- 4 2") # no string arg (not recommended for tabs)
phrase("c ecd4g4 ec4gd”, "4 4 2") # same as above

phrase("c b, c¢", "4. 8(8)", "5 5 5") # direction implies hammer on
phrase("b2 ¢ d”, "4(4)- 2", "5 5 5") # hammer and slide

phrase(”"c ec'g' ec'g'”, "1 1 1", "5 432 432")
p("c ec'g' ec'g'”, 1, "5 4 4") # same as above

n<-"a, b,cdefgefga~a"
i "8- 8 8 8-. t8(t8)(t8) t16(t16)(t16) 8 1"
m <- as_music(n, i)

-
AN
I

x <= p(n, i)
X
identical(x, p(m))

X <- "a,4;5%5 b,4- c4 cgc'e'~4 cgc'e'l e'4;2 ¢';3 g;4 c;5 ce'1;51"
p(x)
identical(p(x), p(as_music(x)))

x <= p("a b", 2, bar = "|.")
x2 <= pc(p("a b", 2), '"\\bar "|."")
identical(x, x2)

61

phrase-checks Phrase validation and coercion

Description

These helper functions add some validation checks for phrase and candidate phrase objects.

Usage

as_phrase(phrase)
phrasey(phrase)

notify(phrase)

62 phrase-checks

phrase_notes(phrase, collapse = TRUE)
phrase_info(phrase, collapse = TRUE, annotations = TRUE)

phrase_strings(phrase, collapse = FALSE)

notable(phrase)
Arguments
phrase phrase object or character string (candidate phrase).
collapse logical, collapse result into a single string ready for phrase construction.
annotations logical, strip any text annotations from the note info converted from phrase().
Details

Use these functions with some caution. They are not intended for strictness and perfection. phrasey ()
checks whether an object is weakly phrase-like and returns TRUE or FALSE. It can be used to safe-
guard against the most obvious cases of phrase() not containing valid phrase syntax when pro-
gramming. However, it may also be limiting. Use wear sensible.

as_phrase() coerces an object to a phrase object if possible. This function performs an internal
phrasey() check.

notify() attempts to decompose a phrase object back to its original input vectors consisting of
notes, note info, and optionally, instrument string numbering. If successful, it returns a tibble data
frame with columns: notes, info, string.

Unless decomposing very simple phrases, this function is likely to reveal limitations. Complex
phrase objects constructed originally with phrase() can be challenging to deconstruct in a one to
one manner. Information may be lost, garbled, or the function may fail. For example, this function
is not advanced enough to unravel repeat notation or tuplets.

notable() returns TRUE or FALSE regarding whether a phrase can be converted back to charac-
ter string inputs, not necessarily with complete correctness, but without simple failure.It checks
for phrasiness. Then it tries to call notify() and returns FALSE gracefully if that call throws an
exception.

Value

see details for each function’s purpose and return value.

Examples

Create a list of phrase objects

pl <- phrase("c ec'g' ec'g'", "4 4 2") # no string numbers (not recommended)
p2 <- phrase("c ec4g4 ec4g4”", "4 4 2") # same as above

p3 <- phrase(”"c b, c", "4. 8(8)", "5 5 5") # direction implies hammer on
p4 <- phrase("b2 c d", "4(4)- 2", "5 5 5") # hammer and slide

p5 <- phrase("c ec'g'~ ec'g'"”, 1, "5 432 432") # tied chord

x <- list(pl, p2, p3, p4, p5)

pitch_freq 63

Check if phrases and strings are phrasey

sapply(x, phrasey)
sapply(as.character(x), phrasey, USE.NAMES = FALSE)

Coerce character string representation to phrase and compare with original
y <- lapply(as.character(x), as_phrase)
identical(x, y)

Check if notable

sapply(x, notable)

notable(p("a b c"”, 1))

notable(”a b x") # note: not constructible as a phrase in the first place

Notify phrases
d <- do.call(rbind, lapply(x, notify))
d

Wrappers around notify extract components, default to collapsed strings
phrase_notes(p5)

phrase_info(p5)

phrase_strings(p5)

If phrase decomposition works well, coercion is one to one
x2 <- lapply(x,
function(x) p(phrase_notes(x), phrase_info(x), phrase_strings(x))
)
identical(x, x2)

pitch_freq Pitch conversions

Description

Convert between pitches, chords, semitones and frequencies.

Usage
pitch_freq(notes, a4 = 440)
pitch_semitones(notes)
chord_freq(notes, a4 = 440)
chord_semitones(notes)
freq_pitch(
freq,

octaves = c("tick”, "integer"),
accidentals = c("flat”, "sharp"),

64 pitch_freq

collapse = FALSE,
a4 = 440

freg_semitones(freq, a4 = 440)

semitone_pitch(
semitones,
octaves = c("tick”, "integer"),
accidentals = c("flat”, "sharp"),
collapse = FALSE

semitone_freq(semitones, a4 = 440)

Arguments
notes character, noteworthy string, space-delimited or vector of individual entries. See
details.
a4 the fixed frequency of the A above middle C, typically 440 Hz.
freq numeric vector, frequencies in Hz.
octaves NULL or character, "tick” or "integer" octave numbering in result.
accidentals NULL or character, represent accidentals, "flat"” or "sharp”.
collapse logical, collapse result into a single string. key and style.
semitones integer values of pitches.
Details

Frequencies are in Hertz. Values are based on the 12-tone equal-tempered scale. When con-
verting an arbitrary frequency to pitch, it is rounded to the nearest pitch. pitch_freq() and
pitch_semitones() strictly accept single notes in noteworthy strings and return numeric vec-
tors. chord_freq() and chord_semitones() accept any noteworthy string and always return a
list. These are provided so that all functions are type-safe. See examples.

Value

integer, numeric or noteworthy vector

Examples

X <- "a e4 a4 e5 ab"
y <- pitch_freq(x)
y

freg_semitones(y)
freq_pitch(y)

identical(as_noteworthy(x), freq_pitch(y, "integer"”, collapse = TRUE))

pitch_seq 65

s <- pitch_semitones(x)
s
semitone_pitch(s)

x <- "a, a,ct#e"
chord_semitones(x)
chord_freq(x)

pitch_seq Create a sequence from pitch notation

Description

Create a noteworthy string of a sequence of consecutive pitches.

Usage

pitch_seq(x, y, key = NULL, scale = NULL, format = c("space”, "vector"))

Arguments
X character, valid pitch notation, e.g., "a2" or "a, ".
y character, same as x for the sequence x:y. If a number, the length of the se-
quence from x and the sign of y determines the direction.
key character, key signature for a diatonic sequence. key = NULL (default) results in
a chromatic sequence.
scale character, if you want to use a different scale in conjunction with the key/root
note, you can provide it, e.g., scale = "harmonic minor". Ignored if key =
NULL.
format character, the timestep delimiter format, "space” or "vector”.
Details

Note that all pitches resulting from the defined sequence must be in the semitone range 0-131 or an
error is thrown.

If not using a chromatic sequence and x (or y if also a pitch) is not part of the key signature or scale,
the sequence is internally bound. See examples.

Format of accidentals in the result is prioritized by the scale and key, the key when no scale is given,
then x (and y if also a pitch), and finally defaults to flats if ambiguous.

Value

noteworthy

Examples

chromatic sequence (default)
pitch_seq("a,"”, 13)
pitch_seq("c5", -2)
pitch_seq("c", "b")

diatonic sequence
pitch_seq("c", 8, key = "c")
pitch_seq("c", 8, "am")
pitch_seq("c#,", "a#'",

[l

"am™)

combine with alternative scale
, "harmonic minor™)

pitch_seq("”a", 8, "am"

plot_fretboard

plot_fretboard

Chord and fretboard diagram plots

Description

Create a fretboard diagram for a single chord or a general progression.

Usage

plot_fretboard(
string,
fret,
labels = NULL,
mute = FALSE,
label_size = 10,
label_color = "white",
point_size = 10,
point_color = "black”,
point_fill = "black”,
group = NULL,
horizontal = FALSE,
left_handed = FALSE,
fret_range = NULL,
fret_labels = NULL,
fret_offset = FALSE,

accidentals = c("flat”, "sharp"),

tuning = "standard”,
show_tuning = FALSE,
asp = NULL,
base_size = 20

plot_chord(

plot_fretboard 67

chord,
labels = NULL,
label_size = 10,

label_color = "white",
point_size = 10,
point_color = "black”,
point_fill = "black”,
group = NULL,

horizontal = FALSE,

left_handed = FALSE,

fret_range = NULL,

fret_labels = NULL,

fret_offset = FALSE,

accidentals = c("flat”, "sharp"),

tuning = "standard”,
show_tuning = FALSE,
asp = NULL,
base_size = 20
)
Arguments
string integer or as a space-delimited character string; instrument string numbers.
fret integer or as a space-delimited character string; fret numbers.
labels NULL or character, optional vector of text labels, must be one for every point; or
just the special value "notes”.
mute logical vector or specific integer indices, which notes to mute. See details.
label_size numeric, size of fretted note labels.
label_color character, label color.
point_size numeric, size of fretted note points.
point_color character, point color.
point_fill character, point fill color.
group optional vector to facet by.
horizontal logical, directional orientation.
left_handed logical, handedness orientation.
fret_range fret limits, if not NULL, overrides limits derived from fret.
fret_labels integer, vector of fret number labels for fret axis. See details.

fret_offset logical set to TRUE to shift the fret axis number labels (if present) from being
directly next to the fret to being aligned with the circles behind the fret.

accidentals character, when labels = "notes” represent accidentals: "flat"” or "sharp”.
tuning explicit tuning, e.g., "e, a, dgbe'", or a pre-defined tuning. See details.
show_tuning logical, show tuning of each string on string axis.

asp numeric, aspect ratio, overrides default aspect ratio derived from number of

strings and frets.

68 plot_fretboard

base_size base size for ggplot2::theme_void().
chord character, a single chord given in fret notation. See details.
Details

These functions are under development and subject to change. They each return a ggplot object.

Use plot_chord() to create a fretboard diagram of a specific chord. plot_chord() accepts a
character string in simple fretboard format, e.g., chord = "x02210". Zero is allowed in place of
"0". This only works when no spaces or semicolons are detected. The function checks for spaces
first, then semicolons, to split fret numbers. Do not mix formats. For example, you can use chord =
"x02210", chord="x 8 10 10 9 8" or chord = "x;8;10;10;9;8". Trailing delimiters are ignored
(LilyPond format: "x;8;10;10;9;8;"). If there are fewer fret values than there are strings on the
instrument, as inferred from tuning, then muted strings, x, are inferred for the remaining lower-
pitch strings.

plot_fretboard() produces a more general fretboard diagram plot. It is intended for scales,
arpeggios and other patterns along the fretboard. For this function, provide vectors of string and
fret numbers. mute is available but not as applicable for this function; it is a pass-through from
plot_chord(). For single chord diagrams, use plot_chord(). The letter "0" is also allowed in
fret for open strings and will display below the lowest fret plotted. The number @ is treated with
the intent of displaying the corresponding position on the instrument neck.

Number of strings is derived from tuning. See tunings() for pre-defined tunings and examples of
explicit tunings. tuning affects point labels when labels = "notes”.

Providing fret_labels overrides the default (minimal) fret numbering behavior for the fret axis.
These are only intended to be integers. The vector of integers given is sorted and subset if needed
to the range of frets that appear in the plot. See example.

Value

a ggplot object

Examples

General patterns: scale shifting exercise

string <- c(6, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 3,3, 3,2,2,2,1,1,1)

fret <- "2 452452467967 9791079 10" # string input accepted
plot_fretboard(string, fret, labels = "notes”, fret_offset = TRUE)
plot_fretboard(string, fret, fret_labels = c(3, 5, 7, 9, 12), show_tuning = TRUE)

open and muted strings on shifted general fretboard layout
try to use plot_chord() if more suitable
plot_fretboard("6 5 4 3", "o 9 10 12", mute = 2, show_tuning = TRUE)

Single chord diagrams

open chord

idx <= c(1, 1, 2, 2, 2, 1

fill <- c("white"”, "black"”)[idx]

lab_col <- c("black”, "white")[idx]

plot_chord("x02210", "notes"”, label_color = lab_col, point_fill = fill)

plot_music

moveable chord

69

plot_chord("”355433", horizontal = TRUE, show_tuning = TRUE)

leading x inferred; same as plot_chord(”xx0321")
plot_chord("0231", fret_labels = 3)

plot_chord(”10 12

13 11", show_tuning = TRUE)

plot_chord(”"o x 10 12 13 11", fret_range = c(9, 14), fret_labels = c(9, 12))

plot_music

Plot sheet music snippet with LilyPond

Description

These functions are wrappers around the render_music* functions. They abstract the process of
rendering a sheet music snippet to png and loading the rendered image back into R to be displayed

as a plot in an open

graphics device or inserted into an R Markdown code chunk.

Usage

plot_music(
music,
clef = "treble”,
tab = FALSE,
tuning = "standard”,
string_names = NULL,
header = NULL,
paper = NULL,
colors = NULL,
transparent = FALSE,
res = 300

)

plot_music_tc(
music,
header = NULL,
paper = NULL,
colors = NULL,
transparent = FALSE,
res = 300

)

plot_music_bc(
music,
header = NULL,
paper = NULL,
colors = NULL,
transparent = FALSE,

70

)

res = 300

plot_music_tab(

music,

clef = NA,

tuning = "standard”,
string_names = NULL,
header = NULL,

paper = NULL,

colors = NULL,
transparent = FALSE,

plot_music

res = 300
)

plot_music_guitar(

music,

tuning = "standard”,

string_names

= NULL,

header = NULL,

paper = NULL,

colors = NULL,

transparent

res = 300
)

FALSE,

plot_music_bass(

music,

tuning = "bass”,
string_names = FALSE,
header = NULL,

paper = NULL,

colors = NULL,

transparent

res = 300

Arguments

music
clef

tab
tuning

string_names

header

FALSE,

a music object.

character, include a music staff with the given clef. NA to suppress. See track()
for details.

logical, include tablature staff. NA to suppress. See track().
character, string tuning, only applies to tablature. See track().

label strings at beginning of tab staff. NULL (default) for non-standard tunings
only, TRUE or FALSE for force on or off completely.

anamed list of arguments passed to the header of the LilyPond file. See 1ilypond()
details.

plot_music 71

paper a named list of arguments for the LilyPond file page layout. See 1ilypond()
details.
colors a named list of LilyPond element color global overrides. See 1ilypond() for
details.
transparent logical, transparent background for intermediate png file.
res numeric, resolution, png only. Defaults to 300.
Details

While these functions abstract away the details of the process, this is not the same as making the
plot completely in R. R is only displaying the intermediary png file. LilyPond is required to engrave
the sheet music.

For R Markdown you can alternatively render the png using the corresponding render_musicx
function and then place it in the document explicitly using knitr::include_graphics(). See
render_music() for more details.

Value

a plot

See Also

render_music(), phrase(), track(), score(), lilypond(), tab()

Examples

x <- "a,4;5%5 b,4- c4 cgc'e'~4 cgc'e'l e'4;2 ¢c';3 g;4 c;5 ce'1;51"
X <- as_music(x)

y <- "a,,4;3*5 b,,4- ¢c,4 c,g,c~4 c,g,cl c4;1 g,;2 ¢,;3 g,;2 c,c1;31"
y <- as_music(y)

Not run:

if(tabr_options()$lilypond != ""){ # requires LilyPond installation
plot_music(x)
plot_music(x, "treble_8", tab = TRUE)

plot_music_tc(x)
plot_music_bc(x)

plot_music_tab(x)
plot_music_guitar(x)
plot_music_bass(y)

}

End(Not run)

72 read_midi

ratio_to_cents Convert between chord frequency ratios and cents

Description

Convert between frequency ratios and logarithmic cents

Usage

ratio_to_cents(x, y = NULL)

cents_to_ratio(x)

Arguments

X a vector of ratios if y = NULL, otherwise frequencies. Cents for cents_to_ratio().

y if not NULL, frequencies and the ratios are given by y / x.

Value

numeric

Examples

ratio_to_cents(c(@0.5, 1, 1.5, 2))
cents_to_ratio(c(-1200, @, 701.955, 1200))

read_midi Read, inspect and convert MIDI file contents

Description

Read MIDI file into a data frame and inspect the music data with supporting functions.

Usage
read_midi(file, ticks_per_qtr = 480)

midi_metadata(x)
midi_notes(x, channel = NULL, track = NULL, noteworthy = TRUE)
midi_time(x)

midi_key(x)

read_midi 73

ticks_to_duration(x, ticks_per_qtr = 480)

duration_to_ticks(x, ticks_per_qtr = 480)
Arguments

file character, path to MIDI file.

ticks_per_qtr ticks per quarter note. Used to compute durations from MIDI file ticks.

X a data frame returned by read_midi (). Aninteger vector for ticks_to_duration();
a character vector (may be a space-delimited string) for duration_to_ticks().

channel, track integer, filter rows on channel or track.

noteworthy logical, convert to noteworthy and noteinfo data.

Details

The read_midi () function wraps around tuneR: : readMidi () by Uwe Ligges and Johanna Mielke.
midi_notes() is a work in progress, but converts MIDI data to noteworthy strings and note info
formats. This makes it easy to analyze, transform and edit the music data as well as render it to
sheet music and a new MIDI file.

read_midi () does not parse the ticks per quarter note from the MIDI file input at this time. It must
be specified with ticks_per_qtr.

Value

a tibble data frame

Examples

ticks_to_duration(c(120, 160))

ticks_to_duration(c(128, 192, 512), ticks_per_qtr = 384)
duration_to_ticks(c("t8", "8", "8.", "8.."))
duration_to_ticks(c(”"t8 8 8. 8.."), ticks_per_qtr = 384)

Not run:
file <- system.file("example2.mid"”, package = "tabr")
if(require("tuneR")){
X <- read_midi(file, ticks_per_qtr = 384)
midi_metadata(x)
midi_time(x)
midi_key(x)
midi_notes(x, channel = @, noteworthy = FALSE)

(x <- midi_notes(x, channel = 0@))
(x <- as_music(x$pitch, x$duration))

requires LilyPond installation
if(tabr_options()$lilypond != ""){

out <- file.path(tempdir(), "out.pdf")

phrase(x) |> track_bc() |> score() |> tab(out, details = FALSE)
}

74

}

End(Not run)

render_chordchart

render_chordchart

Render a chord chart with LilyPond

Description

Render a standalone chord chart of chord fretboard diagrams with LilyPond for a set of chords.

’

Usage
render_chordchart(
chords,
file,
size = 1.2,
header = NULL
paper = NULL,

colors = NULL

’

crop_png = TRUE,

transparent =
res = 150,

FALSE,

keep_ly = FALSE,
details = FALSE

Arguments

chords

file

size

header
paper
colors
crop_png
transparent

res

keep_ly
details

named character vector of valid formatting for LilyPond chord names and val-
ues. See examples.

output file.

numeric, size of fretboard diagrams (relative to paper font size). Use this to
scale diagrams up or down.

a named list of arguments passed to the header of the LilyPond file. See details.
a named list of arguments for the LilyPond file page layout. See details.
reserved; not yet implemented for this function.

logical, see 1ilypond() for details.

logical, transparent background, png only.

numeric, resolution, png only. transparent = TRUE may fail when res exceeds
~150.

logical, keep intermediate LilyPond file.
logical, set to TRUE to print LilyPond log output to console. Windows only.

render_chordchart 75

Details

This function uses a generates a LilyPond template for displaying only a fretboard diagram chart. It
then passes the file to LilyPond for rendering. To plot specific fretboard diagrams in R using ggplot
and with greater control, use plot_fretboard().

The options for paper include the following and have the following default values if not provided.

e textheight =220

* linewidth =150

* indent =0

» fontsize =10

e page_numbers = FALSE

e print_first_page_number = TRUE

e first_page_number =1
fontsize only controls the global font size. If you want to scale the size of the fretboard diagrams
up or down use the the size argument rather than this paper value.

Note that chord chart output must fit on a single page. If the full set of chord diagrams does not fit
on one page then diagrams will be clipped in the rendered output. Use size to keep the output to
one page or make multiple sheets separately.

Value

writes files to disk

See Also
plot_fretboard(), 1lilypond(), tab()

Examples

Not run:
suppressPackageStartupMessages(library(dplyr))

chords <- filter(
guitarChords, root %in% c("c", "f") & id %in% c("7", "M7", "m7") &
lgrepl("#", notes) & root_fret <= 12) |>
arrange(root, id)

chords <- setNames(chords$fretboard, chords$lp_name)

head(chords)

requires LilyPond installation
if(tabr_options()$lilypond != ""){
outfile <- file.path(tempdir(), "out.pdf")
hdr <- list(
title = "Dominant 7th, major 7th and minor 7th chords”,
subtitle = "C and F root”

)
render_chordchart(chords, outfile, 2, hdr, list(textheight = 175))

76

}

End(Not run)

render_music

render_music

Render sheet music snippet with LilyPond

Description

Render a sheet music/tablature snippet from a music object with LilyPond.

Usage

render_music(

)

music,

file,

clef = "treble”,

tab = FALSE,

tuning = "standard”,

string_names = NULL,
header = NULL,

paper = NULL,

midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

render_music_tc(

)

music,
file,
header = NULL,
paper = NULL,
midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

render_music_bc(

music,
file,
header = NULL,

render_music

)

paper = NULL,

midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

render_music_tab(

)

music,

file,

clef = NA,

tuning = "standard”,
string_names = NULL,
header = NULL,

paper = NULL,

midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

render_music_guitar(

)

music,

file,

tuning = "standard”,
string_names = NULL,
header = NULL,

paper = NULL,

midi = FALSE,

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

render_music_bass(

music,

file,

tuning = "bass”,
string_names = NULL,
header = NULL,

paper = NULL,

midi = FALSE,

77

78 render_music

colors = NULL,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE

)
Arguments
music a music object.
file character, output file ending in .pdf or .png.
clef character, include a music staff with the given clef. NA to suppress. See track()
for details.
tab logical, include tablature staff. NA to suppress. See track().
tuning character, string tuning, only applies to tablature. See track().

string_names label strings at beginning of tab staff. NULL (default) for non-standard tunings
only, TRUE or FALSE for force on or off completely.

header anamed list of arguments passed to the header of the LilyPond file. See 1ilypond()
details.

paper a named list of arguments for the LilyPond file page layout. See 1ilypond()
details.

midi logical, also output an corresponding MIDI file.

colors a named list of LilyPond element color global overrides. See 1ilypond() for
details.

transparent logical, transparent background, png only.

res numeric, resolution, png only. transparent = TRUE may fail when res exceeds
~150.

keep_ly logical, keep the intermediary LilyPond file.

simplify logical, uses simplify_phrase() to convert to simpler, more efficient LilyPond
syntax.

Details

These functions allow you to render short, simple snippets of sheet music directly from a music
object. This is useful when you do not need to build up from phrases to tracks to a full score. They
treat music objects as a single voice for a single track. This simplifies the possible output but is
very convenient when this is all you need.

These functions abstract the following pipeline,
music |> phrase() |> track() |> score() |> render_x()

for this simple edge case and directly expose the most relevant arguments.

All header list elements are character strings. The options for header include the following.

e title
e subtitle

render_music 79

* composer

* album

* arranger

* instrument

* meter

* opus

* piece

* poet

e copyright

e tagline
All paper list elements are numeric except page_numbers and print_first_page_number, which
are logical. page_numbers = FALSE suppresses all page numbering. When page_numbers = TRUE,
you can set print_first_page_number = FALSE to suppress printing of only the first page number.

first_page_number is the number of the first page, defaulting to 1, and determines all subsequent
page numbers. These arguments correspond to LilyPond paper block variables.

The options for paper include the following and have the following default values if not provided.

e textheight =220
e linewidth =150
e indent =0
* fontsize =20
* page_numbers = FALSE
e print_first_page_number = TRUE
* first_page_number =1
textheight = 150 is the default, but for music snippet rendering, a value must be provided explic-

itly via paper when rendering to png. Otherwise for png outputs the height is cropped automatically
rather than remaining a full page. See 1ilypond() for details.

Passing arguments to header can completely or partially prevent cropping in both directions, which
must then be done manually with linewidth and textheight. This is all based on underlying
LilyPond behavior.

If music contains lyrics and there are rests in the note sequence, note-lyric alignment is maintained
automatically when these functions remove the lyric timesteps corresponding to the rests prior to
sending to LilyPond. LilyPond skips rests when engraving lyrics and expects a shortened lyrics
sequence in comparison to how tabr matches by timestep including rests. This is in contrast to
track(), for which you have to shorten the lyrics object yourself prior to combining with a phrase
object that has rests.

Value

nothing returned; a file is written.

80 repeats

See Also

plot_music(), phrase(), track(), score(), lilypond(), tab()

Examples

x <- "a,4;5%5 b,- c cgc'e'~ cgc'e'l e'4;2 c';3 g;4 c;5 ce'1;51"
X <- as_music(x)

y <- "a,,4;3*5 b,,- ¢, c,g,c~ c,g,cl c4;1 g,;2 ¢,;3 g,;2 c,cl;31"
y <- as_music(y)

z <- as_music("a,4 b, r ¢~ c2 d", lyrics = as_lyrics("A2 B2 . C3 . D3"))

Not run:

if(tabr_options()$lilypond != ""){ # requires LilyPond installation
outfile <- file.path(tempdir(), "out.pdf")
render_music(x, outfile)

nn

outfile <- file.path(tempdir(), "out.png")
render_music(x, outfile, "treble_8", tab = TRUE)

render_music_tc(x, outfile)
render_music_bc(x, outfile)

render_music_tab(x, outfile)
render_music_guitar(x, outfile)
render_music_bass(y, outfile)

lyrics example
render_music_guitar(z, outfile)

}

End(Not run)

repeats Repeat phrases

Description

Create a repeat section in LilyPond readable format.
Usage
rp(phrase, n = 1)
pct(phrase, n = 1, counter = FALSE, step = 1, reset = TRUE)

volta(phrase, n = 1, endings = NULL, silent = FALSE)

repeats 81

Arguments
phrase a phrase object or equivalent string to be repeated.
n integer, number of repeats of phrase (one less than the total number of plays).
counter logical, if TRUE, print the percent repeat counter above the staff, applies only to
measure repeats of more than two repeats (n > 2).
step integer, print the measure percent repeat counter above the staff only at every
step measures when counter = TRUE.
reset logical, percent repeat counter and step settings are only applied to the single
pct() call and are reset afterward. If reset = FALSE, the settings are left open
to apply to any subsequent percent repeat sections in a track.
endings a single phrase or a list of phrases, alternate endings.
silent if TRUE, no text will be printed above the staff at the beginning of a volta section.
See details.
Details

These functions wraps a phrase object or a character string in LilyPond repeat syntax. The most
basic is rp() for basic wrapping a LilyPond unfold repeat tag around a phrase. This repeats
the phrase n times, but it is displayed in the engraved sheet music fully written out as a literal
propagation of the phrase with no repeat notation used to reduce redundant presentation. The next
is pct (), which wraps a percent () repeat tag around a phrase. This is displayed in sheet music as
percent repeat notation whose specific notation changes based on the length of the repeated section
of music, used for beats or whole measures. volta() wraps a phrase in a volta() repeat tag, used
for long repeats of one or more full measures or bars of music, optionally with alternate endings.

Note that basic strings should still be interpretable as a valid musical phrase by LilyPond and such
strings will be coerced to the phrase class by these functions. For example, a one-measure rest,
"r1", does not need to be a phrase object to work with these functions, nor does any other character
string explicitly written out in valid LilyPond syntax. As always, see the LilyPond documentation
if you are not familiar with LilyPond syntax.

VOLTA REPEAT: When silent = TRUE there is no indication of the number of plays above the
staff at the start of the volta section. This otherwise happens automatically when the number of
repeats is greater than one and no alternate endings are included (which are already numbered).
This override creates ambiguity on its own, but is important to use multiple staves are present and
another staff already displays the text regarding the number or plays. This prevents printing the
same text above every staff.

PERCENT REPEAT: As indicated in the parameter descriptions, the arguments counter and step
only apply to full measures or bars of music. It does not apply to shorter beats that are repeated
using pct().

Value

a phrase.

See Also
phrase()

82 rest

Examples

x <- phrase(”c ec'g' ec'g'", "4 4 2", "5 432 432")
el <- phrase(”"a"”, 1, 5) # ending 1
e2 <- phrase("b"”, 1, 5) # ending 2

rp(x) # simple unfolded repeat, one repeat or two plays
rp(x, 3) # three repeats or four plays

pct(x) # one repeat or two plays
pct(x, 9, TRUE, 5) # 10 plays, add counter every 5 steps
pct(x, 9, TRUE, 5, FALSE) # as above, but do not reset counter settings

volta(x) # one repeat or two plays

volta(x, 1, list(el, e2)) # one repeat with alternate ending

volta(x, 4, list(el, e2)) # multiple repeats with only one alternate ending
volta(x, 4) # no alternates, more than one repeat

rest Create rests

Description

Create multiple rests efficiently with a simple wrapper around rep() using the times argument.

Usage

rest(x, n = 1)

Arguments

X integer, duration.

n integer, number of repetitions.
Value

a character string.

Examples

rest(c(1, 8), c(1, 4))

scale-deg

83

scale-deg

Scale degrees and mappings

Description

These functions assist with mapping between scale degrees, notes and chords.

Usage

scale_degree(
notes,
key = "c",
scale = "diatonic”,
use_root = TRUE,
strict_accidentals = TRUE,
naturalize = FALSE,
roman = FALSE

)

scale_note(deg, key = "c"

note_in_scale(
notes,
key = "c",
scale = "diatonic”,
use_root = TRUE,
strict_accidentals =

chord_degree(
notes,

n_n

key = "c",

scale = "diatonic”,
strict_accidentals =
naturalize = FALSE,
roman = FALSE

is_in_scale(notes, key =

Arguments

notes
key
scale

use_root

, scale = "diatonic”, collapse = FALSE,

TRUE

TRUE,

n_n

C

, scale = "diatonic"”, strict_accidentals

character, a string of notes.

character, the suffix of a supported scale_x* function.

logical, use lowest pitch in chord. Otherwise yield an NA in output.

TRUE)

character, key signature (or root note) for scale, depending on the type of scale.

84 scale-deg

strict_accidentals
logical, whether representation must match key and scale. See details.

naturalize logical, whether to naturalize any sharps or flats before obtaiuning the scale
degree.

roman logical, return integer scale degrees as Roman numerals.

deg integer, roman class, or character roman, the scale degree.

collapse logical, collapse result into a single string ready for phrase construction.

additional arguments passed to the scale function, e.g., sharp = FALSE for scale_chromatic().

Details

Obtain the scale degree of a note in a supported scale with scale_degree(). This function works
on any noteworthy string. It ignores octave numbering. Rests and any note not explicitly in the
scale return NA. If deg is greater than the number of degrees in the scale, it is recycled, e.g., in C
major 8 starts over as C.

By default, flats and sharps checked strictly against the scale. Setting strict_accidentals =
FALSE will convert any flats or sharps present, if necessary based on the combination of key signa-
ture and scale. The chromatic scale is a special case where strict accidental is always ignored.

Not any arbitrary combination of valid key and valid scale is valid. For example, key = "am” and
scale = "harmonic” is valid, but not with key = "a".

note_in_scale() is a wrapper around scale_degree(). To check if full chords are diatonic to
the scale, see is_diatonic().

The inverse of scale_degree() is scale_note(), for obtaining the note associated with a scale
degree. This could be done simply by calling a scale_* function and indexing its output directly,
but this wrapper is provided to complement scale_degree(). Additionally, it accepts the common
Roman numeral input for the degree. This can be with the roman class or as a character string.
Degrees return NA if outside the scale degree range.

Value

integer, or roman class if roman = TRUE for scale_degree(); character for scale_note().

See Also

scale-helpers(), is_diatonic()

Examples

scale_degree("r c, e3 g~ g s g# ceg")
note_in_scale("r c, e3 g~ g s gt ceg")

scale_degree("c e g", roman = TRUE)

scale_degree("c c# d_ e", key = "d")
scale_degree("c c# d_ e", key = "d"”, strict_accidentals = FALSE)

scale_degree("c, e_3 g' f#ac#", use_root = FALSE)
scale_degree("c, e_3 g' f#ac#", naturalize = TRUE) # lowest chord pitch: c#

scale-helpers

scale_degree("c# d_ e_' e4 f f# g", key = "c#", scale = "chromatic")

scale_note(1:3, key = "am")
scale_note(c(1, 3, 8), "d", collapse = TRUE)
all(sapply(list(4, "IV", as.roman(4)), scale_note) == "f")

x <- "d dfa dftta f#ac#"
chord_degree(x, "d")
is_in_scale(x, "d")

85

scale-helpers Scale helpers

Description

Helper functions for working with musical scales.

Usage

n_n

scale_diatonic(key = "c", collapse = FALSE, ignore_octave = FALSE)

n_n

scale_major(key = "c", collapse = FALSE, ignore_octave = FALSE)

n n

scale_minor(key = "am", collapse = FALSE, ignore_octave = FALSE)

n n

scale_harmonic_minor(key = "am”, collapse = FALSE, ignore_octave

n n

scale_hungarian_minor(key = "am", collapse = FALSE, ignore_octave

scale_melodic_minor(
key = "am",
descending = FALSE,
collapse = FALSE,

ignore_octave = FALSE

n n

FALSE)

FALSE)

scale_jazz_minor(key = "am", collapse = FALSE, ignore_octave = FALSE)

scale_chromatic(

root = "c”,
collapse = FALSE,
sharp = TRUE,

ignore_octave = FALSE

86 scale_chords

Arguments
key character, key signature.
collapse logical, collapse result into a single string ready for phrase construction.

ignore_octave logical, strip octave numbering from scales not rooted on C.

descending logical, return the descending scale, available as a built-in argument for the
melodic minor scale, which is different in each direction.

root character, root note.
sharp logical, accidentals in arbitrary scale output should be sharp rather than flat.
Details

For valid key signatures, see keys().

Value

character

See Also

keys(), mode-helpers()

Examples
scale_diatonic(key = "dm")
scale_minor(key = "dm")
scale_major(key = "d")
scale_chromatic(root = "a")

scale_harmonic_minor("am")
scale_hungarian_minor("am")

identical(scale_melodic_minor(”am"), scale_jazz_minor("am"))
rev(scale_melodic_minor("am”, descending = TRUE))
scale_jazz_minor("am")

scale_chords Diatonic chords

Description

Obtain an ordered sequence of the diatonic chords for a given scale, as triads or sevenths.

score 87

Usage
scale_chords(
root = "c”,
scale = "major",

type = c("triad”, "seventh"),
collapse = FALSE

)
Arguments

root character, root note or starting position of scale.

scale character, a valid named scale, referring to one of the existing scale_* func-

tions.

type character, type of chord, triad or seventh.

collapse logical, collapse result into a single string ready for phrase construction.
Value

character
Examples

scale_chords("c", "major")

scale_chords(”a", "minor")

scale_chords(”a", "harmonic minor")

scale_chords("”a", "melodic minor™)

scale_chords("a", "jazz minor")

scale_chords("a"”, "hungarian minor")

scale_chords("c"”, "major", "seventh”, collapse = TRUE)

scale_chords("a"”, "minor"”, "seventh”, collapse = TRUE)

score Create a music score

Description

Create a music score from a collection of tracks.

Usage

score(track, chords = NULL, chord_seq = NULL)

88 sf_phrase

Arguments
track a track table consisting of one or more tracks.
chords an optional named list of chords and respective fingerings generated by chord_set,
for inclusion of a top center chord diagram chart.
chord_seq an optional named vector of chords and their durations, for placing chord dia-
grams above staves in time.
Details

Score takes track tables generated by track() and fortifies them as a music score. It optionally
binds tracks with a set of chord diagrams. There may be only one track in track() as well as no
chord information passed, but for consistency score() is still required to fortify the single track as
a score object that can be rendered by tab ().

Value

a tibble data frame

See Also
phrase(), track(), trackbind()

Examples

x <- phrase(”"c ec'g' ec'g'", "4 4 2", "5 432 432")
x <- track(x)
score(x)

sf_phrase Create a musical phrase from string/fret combinations

Description

Create a musical phrase from character strings that define string numbers, fret numbers and note
metadata. This function is a wrapper around phrase().

Usage

sf_phrase(
string,
fret = NULL,
info = NULL,
key = "c",
tuning = "standard”,
to_notes = FALSE,
bar = NULL

sf_phrase

89

sfp(
string,
fret = NULL,
info = NULL,
key = "c",
tuning = "standard”,

to_notes = FALSE,

bar =

sf_note(...)

sfn(...)

Arguments

string

fret

info

key
tuning

to_notes

bar

Details

character, space-delimited or vector. String numbers associated with notes. Al-
ternatively, provide all information here in a single space-delimited string and
ignore fret and info. See details.

character, space-delimited or vector (or integer vector) of fret numbers associ-
ated with notes. Same number of timesteps as string.

character, space-delimited or vector (or integer vector if simple durations) giving
metadata associated with notes. Same number of timesteps as string.

character, key signature or just specify "sharp” or "flat".
character, instrument tuning.

logical, return only the mapped notes character string rather than the entire
phrase object.

character or NULL (default). Terminates the phrase with a bar or bar check. See
details for phrase(). Also see the LilyPond help documentation on bar notation
for all the valid options.

arguments passed to sf_phrase().

Note: This alternate specification wrapper is not receiving further support and will be removed in a
future version of tabr.

This alternate syntax allows for specifying string/fret combinations instead of unambiguous pitch
as is used by phrase(). In order to remove ambiguity, it is critical to specify the instrument string
tuning and key signature. It essentially uses string and fret in combination with a known tuning
and key signature to generate notes for phrase(). info is passed straight through to phrase(), as
is string once it is done being used to help derive notes.

See the main function phrase for general details on phrase construction.

Value

a phrase.

90 sf_phrase

Comparison with phrase()

This function is a wrapper function for users not working with musical notes (what to play), but
rather just position on the guitar neck (where to play). This approach has conveniences, but is more
limiting. In order to remove ambiguity, it is necessary to specify the instrument tuning and the key
signature.

In the standard approach with phrase() you specify what to play; specifying exactly where to
play is optional, but highly recommended (by providing string). With sf_phrase(), the string
argument is of course required along with fret. But any time the tuning changes, this "where to
play" method breaks down and must be redone. It is more robust to provide the string and pitch
rather than the string and fret. The key is additionally important because it is the only way to
indicate if accidentals should be notated as sharps or flats.

This wrapper also increases redundancy and typing. In order to specify rests r, silent rests s, and
tied notes ~, these must now be providing in parallel in both the string and fret arguments,
whereas in the standard method using phrase(), they need only be provided once to notes. A
mismatch will throw an error. Despite the redundancy, this is helpful for ensuring proper match up
between string and fret, which is essentially a dual entry method that aims to reduce itself inside
sf_phrase() to a single notes string that is passed internally to phrase().

The important thing to keep in mind is that by its nature, this method of writing out music does
not lend itself well to high detail. Tabs that are informed by nothing but string and fret number
remove a lot of important information, and those that attempt to compensate with additional symbols
in say, an ascii tab, are difficult to read. This wrapper function providing this alternative input
method to phrase() does its job of allowing users to create phrase objects that are equivalent to
standard phrase()-generated objects, including rests and ties. But practice and comfort working
with phrase() is is highly recommended for greater control of development support.

The function sfp() is a convenient shorthand wrapper for sf_phrase(). sf_note() and the alias
sfn() are wrappers around sf_phrase() that force to_notes = TRUE.

Single-string input

Another way to use sf_phrase() is to provide all musical input to string and ignore fret and
info as explicit arguments. Providing all three explicit arguments more closely mimics the inputs
of phrase() and is useful when you have this information as three independent sources. However,
in some cases the single-argument input method can reduce typing, though this depends on the
phrase. More importantly, it allow you to reason about your musical inputs by time step rather
than by argument. If you provide all three components as a single character string to the string
argument, leaving both fret and info as NULL, then sf_phrase() will decompose string into its
three component parts internally.

There are some rules for single-argument input. The three components are separated by semicolons
as "string;fret;info”. For example, "3;7x7;4" means begin on the third string (infer higher
number strings muted). The frets are 7th and 7th, meaning two notes are played. When an x is
present in the second entry it means a string is not played. This is how it is inferred that the string
numbers starting from the third string are strings 3 and 1 rather than 3 and 2 in this example. The
4 indicates a quarter note since it is part of the third entry where the additional info is specified.
This is contextual. For example, an x here would still indicate a dead note, rather than an unplayed
string in the second entry, so this is contextual.

A bonus when using this input method is that explicit string and info values persist from one
timestep to the next. Neither needs to be provided again until there is a change in value. For

simplify_phrase 91

example, "3;7x7;4 7x7 ;7x7;1" repeats the string and info values from timestep one for timestep
two. In timestep three, string numbers repeat again, but the duration changes from quarter note to
whole note.

Note that except when both string and info are repeating and only fret numbers are provided (see
timestep two above), two semicolons must be present so that it is unambiguous whether the sole
missing component is a string or info (see timestep three).

Ambiguity would arise from a case like "4 ;4" without the second semicolon. This type of indexing
was chosen over using two different delimiters.

If arest, r or s, is provided for the fret entry, then the string entry is ignored. When using this
input method, ties ~ are given in the info entry.

See the examples for a comparison of two identical phrases specified using both input methods for
sf_phrase().

See Also

phrase()

Examples

sf_phrase(”5 432 1", "1 333 1", "8x4 1", key = "b_")

sf_phrase(”6 6 12 1 21", "133211 355333 11 (13) (13)(13)", "4 4 8 8 4",
key = "f")

sfp("6%2 1%4", "000232x2 2*x4", "4 4 8x4", tuning = "dropD"”, key = "d")

compare with single-argument input

s <- "3%5 53~%3 543x2 643"

f <- "987x2 775 553 335 77~%3 545 325 210"
i <= "2%x3 4. 16 4.%x3 4%x3"

p1 <- sfp(s, f, i)

Nominally shorter syntax, but potentially much easier to reason about
p2 <- sfp("”3;987;2x2 775 ;553;4. ;335;16 5;7x7;4.~*3 ;545;4 325 6;2x10;")

identical(p1, p2)

simplify_phrase Simplify the LilyPond syntax of a phrase

Description

This function can be used to simplify the LilyPond syntax of a phrase. Not intended for direct use.
See details.

Usage
simplify_phrase(phrase)

92 single-bracket

Arguments

phrase a phrase object.

Details

This function not intended to be used directly, but is available so that you can see how LilyPond
syntax for phrases will be transformed by default in the process of creating a LilyPond file. This
function is used by the 1lilypond() function and associated render_x* functions. When using
1ilypond() directly, this can be controlled by the simplify argument.

The result of this function is a character string containing simpler, more efficient LilyPond syntax.
It can be coerced back to a phrase with as_phrase(), but its print method colors will no longer
display properly. More importantly, this simplification removes any possibility of transforming the
phrase back to its original inputs. The more complex but nicely structured original representation
does a better job at maintaining reasonable possibility of one to one transformation between a phrase
object and the inputs that it was built from.

Value

character

Examples

notes <- "a~a b c' c'e'g'~ c'e'g"”
info <- "8.. 8..-. 8- 8-* 4.* 4."
(x <- p(notes, info))
as_phrase(simplify_phrase(x))

(x <= p(notes, info, 5))
as_phrase(simplify_phrase(x))

single-bracket Single bracket methods for tabr classes

Description

Single bracket indexing and assignment. See tabr-methods () for more details on methods for tabr
classes.

Usage

S3 method for class 'noteworthy'
x[1i]

S3 method for class 'noteinfo'

x[i]

S3 method for class 'music'

single-bracket

x[i]

S3 method for class 'lyrics'
x[i]

S3 replacement method for class 'noteworthy'
x[i] <- value

S3 replacement method for class 'noteinfo’
x[i] <- value

S3 replacement method for class 'music’
x[i] <- value

S3 replacement method for class 'lyrics'
x[i] <- value

Arguments

X object.

i index.

value values to assign at index.
See Also

tabr-methods (), note-metadata()

Examples

noteworthy class examples

x <- as_noteworthy("a, b, c ce_g d4f#4a4")
x[3:4]

x[-2]

x[2] <- paste@(transpose(x[2], 1), "~")

X

noteinfo class examples

x <- as_noteinfo(c("4-", "t8(", "t8)", "t8x", "8*", "16"))
x[2:4]

x[-1]

x[5:6] <- c("16*", "8")

X

x[x == "4-"]

music class examples

x <- as_music("c,~4 c,1 c'e_'g'4-.%4")
x[1:3]

x[-c(1:2)]

x[3:6] <- "c'e'g'8"

X

94 string_unfold

string_unfold Fold and unfold strings

Description

Fold or unfold a string on the expansion operator.

Usage

string_unfold(x)

string_fold(x, n = 3)

Arguments
X character string, should be valid notes or note info such as beats.
n integer, minimum number of consecutive repeated values to warrant folding,
defaults to 3.
Details

These function work on arbitrary stings. They do not perform a noteworthy check. This allows them
to work for info strings as well. Make sure your strings are properly formatted. string_fold()
always collapses the output string as space-delimited.

Value

character

Examples

time <- "8%3 16 4.. 16 16 2 2 4. 8 4 4 8x4 1"

X <- string_unfold(time)

X

string_fold(x) == time

notes <- "a, b, cde fgfarac'e'ac' e ¢c' rrra"
x <- string_fold(notes)

X

string_unfold(x) == notes

"

tab

tab Render sheet music with LilyPond

Description

Render sheet music/tablature from a music score with LilyPond.

Usage

tab(
score,
file,
key = "c¢",
time = "4/4",
tempo = "2 = 60",
header = NULL,
paper = NULL,
string_names = NULL,
endbar = "|.",
midi = TRUE,
colors = NULL,
crop_png = TRUE,
transparent = FALSE,
res = 150,
keep_ly = FALSE,
simplify = TRUE,
details = FALSE

)

render_tab(
score,
file,
key = "c",
time = "4/4",

tempo = "2 = 60",
header = NULL,

paper = NULL,
string_names = NULL,
endbar = "|.",

midi = TRUE,

colors = NULL,
crop_png = TRUE,
transparent = FALSE,
res = 150,

keep_ly = FALSE,
simplify = TRUE,
details = FALSE

96 tab

)

render_score(
score,
file,
key = "c",
time = "4/4",

tempo = "2 = 60",
header = NULL,
paper = NULL,
endbar = "|.",
colors = NULL,
crop_png = TRUE,
transparent = FALSE,
res = 150,
keep_ly = FALSE,
simplify = TRUE,
details = FALSE

)

render_midi(score, file, key = "c", time = "4/4", tempo = "2 = 60")

Arguments

score a score object.

file character, output file ending in .pdf or .png for sheet music or tablature for
score(). May include an absolute or relative path. For render_midi(), a
file ending in .mid.

key character, key signature, e.g., ¢, b_, f#m, etc.

time character, defaults to "4/4".

tempo character, defaults to "2 = 60". Set to NULL to suppress display of the time sig-
nature in the output.

header anamed list of arguments passed to the header of the LilyPond file. See 1ilypond()
for details.

paper a named list of arguments for the LilyPond file page layout. See 1ilypond()

for details.

string_names label strings at beginning of tab staff. NULL (default) for non-standard tunings
only, TRUE or FALSE for force on or off completely.

endbar character, the global end bar.

midi logical, output midi file in addition to sheet music.

colors a named list of LilyPond element color overrides. See 1ilypond() for details.
crop_png logical, see 1ilypond() for details.

transparent logical, transparent background, png only.

res numeric, resolution, png only. transparent = TRUE may fail when res exceeds

~150.

tab 97

keep_ly logical, keep the intermediary LilyPond file.
simplify logical, uses simplify_phrase() to convert to simpler, more efficient LilyPond
syntax for the LilyPond file before rendering it.
details logical, set to TRUE to print LilyPond log output to console. Windows only.
Details

Generate a pdf or png of a music score using the LilyPond music engraving program. Output format
is inferred from file extension. This function is a wrapper around 1ilypond(), the function that
creates the LilyPond (. ly) file.

render_score() renders score() to pdf or png. render_midi() renders a MIDI file based on
score(). This is still done via LilyPond. The sheet music is created automatically in the process
behind the scenes but is deleted and only the MIDI output is retained.

tab() or render_tab() (equivalent) produces both the sheet music and the MIDI file output by
default and includes other arguments such as the tablature-relevant argument string_names. This
is the all-purpose function. Also use this when you intend to create both a sheet music document
and a MIDI file.

Remember that whether a track contains a tablature staff, standard music staff, or both, is defined in
each individual track object contained in score(). It is the contents you have assembled inscore()
that dictate what render function you should use. render_tab() is general and always works, but
render_score() would not be the best choice when a tablature staff is present unless you accept
the default string naming convention.

render_midi () is different from midily () and miditab(), whose purpose is to create sheet music
from an existing MIDI file using a LilyPond command line utility.

For Windows users, add the path to the LilyPond executable to the system path variable. For exam-
ple,ifthe fileisatC:/1ilypond-2.24.2/bin/1ilypond.exe, thenadd C:/1lilypond-2.24.2/bin
to the system path.

Value

nothing returned; a file is written.

See Also

lilypond(), render_chordchart(), miditab()

Examples
Not run:
if(tabr_options()$lilypond != ""){
x <- phrase(”c ec'g' ec'g'”, "4 4 2", "5 432 432")

x <= track(x)

X <- score(x)

outfile <- file.path(tempdir(), "out.pdf")

tab(x, outfile) # requires LilyPond installation
3

End(Not run)

98 tabr-c

tabr tabr: Music Notation Syntax, Manipulation, Analysis and Transcrip-
tion in R

Description

Provides a music notation syntax and a collection of music programming functions for generating,
manipulating, organizing, and analyzing musical information in R. Music syntax can be entered
directly in character strings, for example to quickly transcribe short pieces of music. The package
contains functions for directly performing various mathematical, logical and organizational opera-
tions and musical transformations on special object classes that facilitate working with music data
and notation. The same music data can be organized in tidy data frames for a familiar and power-
ful approach to the analysis of large amounts of structured music data. Functions are available for
mapping seamlessly between these formats and their representations of musical information. The
package also provides an API to 'LilyPond’ (https://1lilypond.org/) for transcribing musical
representations in R into tablature ("tabs") and sheet music. ’LilyPond’ is open source music en-
graving software for generating high quality sheet music based on markup syntax. The package
generates "LilyPond’ files from R code and can pass them to the ’LilyPond’ command line interface
to be rendered into sheet music PDF files or inserted into R markdown documents. The package
offers nominal MIDI file output support in conjunction with rendering sheet music. The package
can read MIDI files and attempts to structure the MIDI data to integrate as best as possible with the
data structures and functionality found throughout the package.

Author(s)

Maintainer: Matthew Leonawicz <rpkgs@pm.me> (ORCID)

See Also
Useful links:
e https://github.com/leonawicz/tabr

e https://leonawicz.github.io/tabr/
* Report bugs at https://github.com/leonawicz/tabr/issues

tabr-c Concatenate for tabr classes

Description

Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods()
for more details on methods for tabr classes.

https://lilypond.org/
https://orcid.org/0000-0001-9452-2771
https://github.com/leonawicz/tabr
https://leonawicz.github.io/tabr/
https://github.com/leonawicz/tabr/issues

tabr-details 99

Usage
S3 method for class 'noteworthy'
c(...)
S3 method for class 'noteinfo'
c(...)
S3 method for class 'music’
c(...)
S3 method for class 'lyrics'
c(...)
S3 method for class 'phrase'
c(...)

Arguments

objects.
See Also

tabr-methods(), note-metadata()

Examples

noteworthy class examples
x <- "a b c"

c(x, x)

c(as_noteworthy(x), x)

noteinfo class examples
x <= "4- t8(t8)(t8) 4x2"
c(as_noteinfo(x), x)

music class examples
x <= "c,~4 c,1 c'e_"'g'4-.%x2"
c(as_music(x), x)

phrase class examples
c(phrase(x), x)

tabr-details tabr: Additional Detals

Description

The tabr package provides a music notation syntax and a collection of music programming func-
tions for generating, manipulating, organizing and analyzing musical information in R. The music
notation framework facilitates creating and analyzing music data in notation form.

100 tabr-head

Details

Music syntax can be entered directly in character strings, for example to quickly transcribe short
pieces of music. The package contains functions for directly performing various mathematical,
logical and organizational operations and musical transformations on special object classes that fa-
cilitate working with music data and notation. The same music data can be organized in tidy data
frames for a familiar and powerful approach to the analysis of large amounts of structured music
data. Functions are available for mapping seamlessly between these formats and their representa-
tions of musical information.

The package also provides an API to ’LilyPond’ (https://1ilypond.org/) for transcribing mu-
sical representations in R into tablature ("tabs") and sheet music. ’LilyPond’ is open source music
engraving software for generating high quality sheet music based on markup syntax. The package
generates "LilyPond’ files from R code and can pass them to the ’LilyPond’ command line interface
to be rendered into sheet music PDF files or inserted into R markdown documents.

The package offers nominal MIDI file output support in conjunction with rendering sheet music.
The package can read MIDI files and attempts to structure the MIDI data to integrate as best as
possible with the data structures and functionality found throughout the package.

tabr offers a useful but limited LilyPond API and is not intended to access all LilyPond function-
ality from R, nor is transcription via the API the entire scope of tabr. If you are only creating sheet
music on a case by case basis, write your own LilyPond files manually. There is no need to use
tabr or limit yourself to its existing LilyPond APIL. If you are generating music notation program-
matically, tabr provides the ability to do so in R and has the added benefit of converting what you
write in R code to the LilyPond file format to be rendered as printable guitar tablature.

While LilyPond is listed as a system requirement for tabr, you can use the package for music
analysis without installing LilyPond if you do not intend to render tabs.

tabr-head Head and tail for tabr classes

Description
Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods()
for more details on methods for tabr classes.

Usage

S3 method for class 'noteworthy'
head(x, ...)

S3 method for class 'noteinfo'
head(x, ...)

S3 method for class 'music'
head(x, ...)

S3 method for class 'lyrics'

https://lilypond.org/

tabr-length 101

head(x, ...)

S3 method for class 'noteworthy'
tail(x, ...)

S3 method for class 'noteinfo’
tail(x, ...)

S3 method for class 'music'
tail(x, ...)

S3 method for class 'lyrics'

tail(x, ...)
Arguments
X object.
number of elements to return.
See Also

tabr-methods (), note-metadata()

Examples

noteworthy class examples
x<-"abcdefg"
head(x, 2)
head(as_noteworthy(x), 2)
tail(as_noteworthy(x), 2)

noteinfo class examples
X <= "4x 4-.%8 2 4"
head(as_noteinfo(x))
tail(as_noteinfo(x))

music class examples

X <= "c,~4 c,1 c'e_"'g'4-."
head(as_music(x), 2)
tail(as_music(x), 2)

tabr-length Length for tabr classes

Description

Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods()
for more details on methods for tabr classes.

102 tabr-methods

Usage

S3 method for class 'noteworthy'
length(x)

S3 method for class 'noteinfo’
length(x)

S3 method for class 'music'
length(x)

S3 method for class 'lyrics'
length(x)

Arguments

X object.

See Also

tabr-methods(), note-metadata()

Examples

noteworthy class examples

x <= "abc"

length(x)

length(as_noteworthy(x))
length(as_noteworthy("a b*2 c*2"))

noteinfo class examples
X <- "4- t8(t8)(t8) 4x2"
length(x)
length(as_noteinfo(x))

music class examples

x <- "c,~4 c,1 c'e_"'g'4-.%4"
length(x)
length(as_music(x))

tabr-methods Summary of implemented S3 generic methods

Description

Several methods are implemented for the classes noteworthy, noteinfo, music and lyrics. See
further below for details on limited implementations for the phrase class.

tabr-methods 103

Arguments
X object.
i index.
value values to assign at index.
additional arguments.
Details

In addition to custom print and summary methods, the following methods have been implemented
for all four classes: [, [<-, [[, [[<-, length(), c(), rep(), rev(), head() and tail(). Logical
operators are also implemented for noteworthy strings.

Methods length() and c()

The implementation of length() is equivalent to n_steps(). They access the same attribute,
returning the number of timesteps in the object. This gives the same result even when the un-
derlying string is in space-delimited format. To obtain the character string length, coerce with
as.character() or any other function that would have the same effect.

The implementation of c() for these classes is strict and favors the object class in question. This is
different from how c () might normally behave, coercing objects of different types such as numeric
and character to character.

For these four classes, c() is strict in that it will return an error if attempting to concatenate one of
these classes with any other class besides character. This includes each other. While it would be
possible to coerce a music object down to a noteworthy object or a noteinfo object, this is the
opposite of the aggressive coercion these classes are intended to have with c() so this is not done.

While other classes such as numeric immediately return an error, any concatenation with character
strings attempts to coerce each character string present to the given class. If coercion fails for any
character class object, the usual error is returned concerning invalid notes or note info present. If
coercion succeeds for all character strings, the result of c() is to concatenate the timesteps of all
objects passed to it. The output is a new noteworthy, noteinfo ormusic object.

Methods rep() rev() head() and tail()

The rep() function is similar to c() except that it never has to consider other classes. You could
pass a vector of objects to rep(), but doing so with c() will already have resolved all objects to the
single class. Again, what matters is not the underlying length or elements in the character vector
the class is built upon, but the timesteps. rep() will extend x in terms of timesteps. You can also
provide the each or times arguments.

rev(), head() and tail() work similarly, based on the sequence of timesteps, not the character
vector length.

Remember that this accounts not only for vectors of length one that contain multiple timesteps
in space-delimited time format, but also that multiple timesteps can be condensed even in space-
delimited time format with the * expansion operator. For example, "a'*4 b'*2" has six timesteps
in this form as well as in vector form. The object length is neither one nor two. All of these generic
method implementations work in this manner.

104 tabr-methods

Square brackets

Single and double bracket subsetting by index work similarly to what occurs with lists. Single
bracket subsetting returns the same object, but only containing the indexed timesteps. Double
bracket subsetting only operates on a single timestep and extracts the character string value.

For assignment, single and double brackets change the value at timesteps and return the same object,
but again double brackets only allow indexing a single timestep. Double bracket indexing is mostly
useful for combining the steps of extracting a single value and discarding the special class in one
command.

Limited phrase implementations

Methods implemented for the phrase class are limited to c() and rep(). Due to the complex
LilyPond syntax, applying most of the functions above directly to phrases is problematic. c()
is implemented like it is for the other classes. rep() is restricted in that it can only repeat the
entire phrase sequence, not the timesteps within. However, you can convert a phrase class back to
noteworthy and noteinfo objects (under reasonable conditions). See notify().

One exception made for phrase objects with respect to concatenation is that an attempt to concate-
nate any combination of phrase and music objects, in any order, results in coercion to a new phrase.
This happens even in a case where the first object in the sequence is a music object (thus calling
c.music() rather than c.phrase()). It will subsequently fall back to c.phrase() in that case.

See Also

note-logic(), note-metadata()

Examples

noteworthy class examples

x <- as_noteworthy("a, b, c ce_g d4f#4a4")
X

x[3:4]

x[-2]

x[2] <- paste@(transpose(x[2], 1), "~")

X

length(x) # equal to number of timesteps
c(x, x)

tail(rep(x, times = c(1, 2, 1, 3, 1))

noteinfo class examples

x <- as_noteinfo(c("4-", "t8(", "t8)", "t8x", "8*", "16"))
X

x[2:4]

x[-1]

x[5:6] <= c("16"", "8")

X

x[x == "4-"]

c(x[1], x[2]1) == c(x[1:21)

head(rep(x, each = 2))

music class examples

tabr-rep 105

x <- as_music("c,~4 c,1 c'e_'g'4-.x4")
X

x[1:3]

x[-c(1:2)]

x[3:6] <- "c'e'g'8"

X

c(x[11, x[11) == x[c(1, D]

rev(x)

x[[3]1]
x[[31] <- "b_t8"
X

tabr-rep Repeat for tabr classes

Description
Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods()
for more details on methods for tabr classes.

Usage

S3 method for class 'noteworthy'
rep(x, ...)

S3 method for class 'noteinfo’
rep(x, ...)

S3 method for class 'music'
rep(x, ...)

S3 method for class 'lyrics'
rep(x, ...)

S3 method for class 'phrase'

rep(x, ...)
Arguments
X object.
additional arguments. Not accepted for phrase objects.
See Also

tabr-methods (), note-metadata()

106 tabr-rev

Examples

noteworthy class examples
x <- "a b c"

rep(x, 2)
rep(as_noteworthy(x), 2)

noteinfo class examples
X <= "4x 4-.%2 2"
rep(as_noteinfo(x), times = c(2, 1, 1, 2))

music class examples
x <- "c,~4 c,1 c'e_"'g'4-."
rep(as_music(x), each = 2)

phrase class examples
rep(phrase(x), 2)

tabr-rev Reverse for tabr classes

Description
Several methods are implemented for the classes noteworthy, noteinfo, and music. See tabr-methods()
for more details on methods for tabr classes.

Usage

S3 method for class 'noteworthy'
rev(x)

S3 method for class 'noteinfo'
rev(x)

S3 method for class 'music'
rev(x)

S3 method for class 'lyrics'
rev(x)

Arguments

X object.

See Also

tabr-methods (), note-metadata()

tabrSyntax 107

Examples

noteworthy class examples
x <- "ab "

rev(x)
rev(as_noteworthy(x))

noteinfo class examples
X <= "4x 4-.%2 2"
rev(as_noteinfo(x))

music class examples
x <= "c,~4 c,1 c'e_"'g'4-."
rev(as_music(x))

tabrSyntax tabr syntax

Description

A data frame containing descriptions of syntax used in phrase construction in tabr.

Usage

tabrSyntax

Format

A data frame with 3 columns for syntax description, operators and examples.

tabr_options Options

Description

Options for tabr package.

Usage

tabr_options(...)

Arguments

a list of options.

108 tie

Details

Currently only 1ilypond, midi2ly and python are used. On Windows systems, if the system path
for lilypond.exe, midi2ly and python.exe are not stored in the system PATH environmental variable,
they must be provided by the user after loading the package.

Value

The function prints all set options if called with no arguments. When setting options, nothing is
returned.

Examples

tabr_options()
lilypond_path <- "C:/lilypond-2.24.2/bin/lilypond.exe” # if installed here
tabr_options(lilypond = lilypond_path)

tie Tied notes

Description

Tie notes efficiently.

Usage
tie(x)
untie(x)

Arguments

X character, a single chord.

Details

This function is useful for bar chords.

Value

a character string.

Examples

tie("e,b,eghe'")

to_tabr 109

to_tabr Music notation syntax converters

Description

Convert alternative representations of music notation to tabr syntax.

Usage

to_tabr(id, ...)

n_n

from_chorrrds(x, key = "c", guitar = FALSE, gc_args = list())

from_music21(x, accidentals = c("flat”, "sharp"), output = c("music”, "list"))
Arguments
id character, suffix of from_x function, e.g., "chorrrds”

arguments passed to the function matched by id.

X character, general syntax input. See details and examples for how inputs are
structured for each converter.

key key signature, used to enforce consistent use of flats or sharps.

guitar logical, attempt to match input chords to known guitar chords in guitarChords().

Otherwise by default standard piano chords of consecutive pitches covering min-
imum pitch range are returned.

gc_args named list of additional arguments passed to gc_info(), used when guitar =
TRUE.
accidentals character, represent accidentals, "flat” or "sharp”.
output character, type of output when multiple options are available.
Details

These functions convert music notation from other data sources into the style used by tabr for
music analysis and sheet music transcription.
Value

noteworthy string for chorrrds; music string or list for music21.

Syntax converter for chorrrds

The input x is a character vector of chords output from the chorrrds package, as shown in the
examples. Output is a noteworthy string object.

Some sources do not offer as complete or explicit information in order to make sheet music. How-
ever, what is available in those formats is converted to the extent possible and available function

110 to_tabr

arguments can allow the user to add some additional specification. Different input syntax makes
use of a different syntax converter. Depending on the format, different arguments may be avail-
able and/or required. The general wrapper function for all of the available syntax converters is
to_tabr (). This function takes an id argument for the appropriate converter function. See exam-
ples.

For example, output from the chorrrds package that scrapes chord information from the Cifraclub
website only provides chords, not note for note transcription data for any particular instrument.
This means the result of syntax conversion still yields only chords, which is fine for data analysis
but doesn’t add anything useful for sheet music transcription.

The input in this case also does not specify distinct pitches by assigning octaves numbers to a
chord’s notes, not even the root note. It remains up to the user if they want to apply the information.
By default, every chord starts in octave three. It is also ambiguous how the chord is played since all
that is provided is a generic chord symbol. By default a standard chord is constructed if it can be
determined.

Setting guitar = TRUE switches to using the guitarChords () dataset to find matching guitar chords
using gc_info(), which can be provided additional arguments in a named list to gc_args. For gui-
tar, this allows some additional control over the actual structure of the chord, its shape and position
on the guitar neck. The options will never work perfectly for all chords in chords, but at a mini-
mum, typical default component pitches will be determined and returned in tabr notation style.

Syntax converter for music21

The input x is a character vector of in music21 tiny notation syntax, as shown in the examples.
Default output is a music object. Setting output = "1ist"” returns a list of three elements: a note-
worthy string, a note info string, and the time signature.

The recommendation for music21 syntax is to keep it simple. Do not use the letter n for explicit
natural notes. Do not add text annotations such as lyrics. Double flats and sharps are not supported.
The examples demonstrate what is currently supported.

Examples

chorrrds package output

chords <- c("Bb"”, "Bbm", "Bbm7", "Bbm7(b5)", "Bb7(#5)/G", "Bb7(#5)/Ab")
from_chorrrds(chords)

to_tabr(id = "chorrrds"”, x = chords)

from_chorrrds(chords, guitar = TRUE)
to_tabr(id = "chorrrds”, x = chords, guitar = TRUE)

music21 tiny notation
X <- "4/4 CCH#FF4.. trip{c#8eg# d'- e-' f ga'} D4&~# D E F r B16"
from_music21(x)

from_music21(x, accidentals = "sharp")

from_music21(x, output = "list")

track 111

track Create a music track

Description

Create a music track from a collection of musical phrases.

Usage

track(
phrase,
clef = "treble_8",
key = NA,
tab = TRUE,
tuning = "standard”,
voice = 1,
lyrics = NA
)

track_guitar(
phrase,
clef = "treble_8",
key = NA,
tab = TRUE,
tuning = "standard”,
voice = 1,
lyrics = NA
)

track_tc(phrase, key = NA, voice = 1, lyrics = NA)

NA, voice

track_bc(phrase, key 1, lyrics = NA)

track_bass(phrase, key = NA, voice = 1, lyrics = NA)

Arguments
phrase a phrase object.
clef character, include a music staff with the given clef. NA to suppress. See details.
key character, key signature for music staff. See details.
tab logical, include tablature staff. NA to suppress.
tuning character, pitches describing the instrument string tuning or a predefined tuning

ID. See tunings(). Defaults to standard guitar tuning; not relevant if tablature
staff is suppressed.

112 track

voice integer, ID indicating the unique voice phrase () belongs to within a single track
(another track may share the same tab/music staff but have a different voice ID).
Up to two voices are supported per track.

lyrics a lyrics object or NA. See details.

Details

Musical phrases generated by phrase() are fortified in a track table. All tracks are stored as track
tables, one per row, even if that table consists of a single track. track() creates a single-entry track
table. See trackbind() for merging single tracks into a multi-track table. This is row binding that
also properly preserves phrase and track classes.

There are various track_x functions offering sensible defaults based on the function suffix. The
base track() function is equivalent to track_guitar(). See examples. Setting clef = NA or tab
= NA suppresses the music staff or tablature staff, respectively. By default key = NA, in which case
its inherits the global key from the key argument of various sheet music rendering functions. If
planning to bind two tracks as one where they are given voice = 1 and voice = 2, respectively, they
must also have a common key, even if key = NA.

lyrics should only be used for simple tracks that do not contain repeats. You also need to en-
sure the timesteps for lyrics align with those of phrase() in advance. Additionally, LilyPond
does not engrave lyrics at rests or tied notes (excluding first note in tied sequence) so if There-
fore, if phrase() contains rests and tied notes then the lyrics object should be subset to exclude
these timesteps as well. This is in contrast to using render_music* functions, which handle this
automatically for music objects.

Value

a tibble data frame

See Also

phrase(), score()

Examples

x <- phrase("c ec'g' ec'g'", "4 4 2", "5 4 4")

track(x) # same as track_guitar(x); 8va treble clef above tab staff
track_tc(x) # treble clef sheet music, no tab staff

track_bc(x) # bass clef sheet music, no tab staff

x <- phrase("c, g,c g,c", "4 4 2", "3 2 2")
track_bass(x) # includes tab staff and standard bass tuning

trackbind 113

trackbind Bind track tables

Description

Bind together track tables by row.

Usage
trackbind(..., id)

Arguments
single-entry track data frames.
id integer, ID vector indicating distinct tracks corresponding to distinct sheet music
staves. See details.
Details

This function appends multiple track tables into a single track table for preparation of generating a
multi-track score. id is used to separate staves in the sheet music/tablature output. A track’s voice
is used to separate distinct voices within a common music staff.

If not provided, id automatically propagates 1:n for n tracks passed to ... when binding these
tracks together. This expresses the default assumption of one staff or music/tab staff pair per track.
This is the typical use case.

Some tracks represent different voices that share the same staff. These should be assigned the same
id, in which case you must provide the id argument. Up to two voices per track are supported. An
error will be thrown if any two tracks have both the same voice and the same id. The pair must
be unique. E.g., provide id = c¢(1, 1) when you have two tracks with voice equal to 1 and 2. See
examples.

Note that the actual ID values assigned to each track do not matter; only the order in which tracks
are bound, first to last.
Value

a tibble data frame

See Also

phrase(), track(), score()

Examples

x <- phrase(”c ec'g' ec'g'”, "4 4 2", "5 432 432")
x1 <= track(x)

x2 <- track(x, voice = 2)

trackbind(x1, x1)

trackbind(x1, x2, id = c(1, 1))

114 transpose

transpose Transpose pitch

Description

Transpose pitch by a number of semitones.

Usage

transpose(notes, n = @, octaves = NULL, accidentals = NULL, key = NULL)

tp(notes, n = @, octaves = NULL, accidentals = NULL, key = NULL)

Arguments
notes character, a noteworthy string.
n integer, positive or negative number of semitones to transpose.
octaves NULL or character, "tick” or "integer" octave numbering in result.
accidentals NULL or character, represent accidentals, "flat” or "sharp”.
key NULL or character, use a key signature to specify and override accidentals.
Ignored if ¢ or am.
Details

This function transposes the pitch of notes in a noteworthy string.

Transposing is not currently supported on a phrase object. The notes in a phrase object have al-
ready been transformed to LilyPond syntax and mixed with other potentially complex information.
Transposing is intended to be done on a string of notes prior to passing it to phrase (). It will work
on strings that use either integer or tick mark octave numbering formats and flats or sharps, in any
combination. The transposed result conforms according to the function arguments. When integer
octaves are returned, all 3s are dropped since the third octave is implicit in LilyPond.

When octaves, accidentals and key are NULL, formatting is inferred from notes. When mixed
formats are present, tick format is the default for octave numbering and flats are the default for
accidentals.

Value

character

Examples

transpose(”a_3 b_4 c5", 0)
tp("a_3 b_4 c5", -1)
tp("a_3 b_4 c5", 1)
tp("a#3 b4 c#5", 11)
tp("a#3 b4 c#5", 12)

tunings 115

tp("r s a#3 b4 c#5”, 13)
tp("a b' c#''", 2, "integer"”, "flat")
tp("a, b ceg”, 2, "tick"”, "sharp")

tunings Predefined instrument tunings

Description
A data frame containing some predefined instrument tunings commonly used for guitar, bass, man-
dolin, banjo, ukulele and orchestral instruments.

Usage

tunings

Format

A data frame with 2 columns for the tuning ID and corresponding pitches and 32 rows for all
predefined tunings.

tuplet Tuplets

Description

Helper function for generating tuplet syntax.

Usage

tuplet(x, n, string = NULL, a = 3, b = 2)

triplet(x, n, string = NULL)

Arguments
X noteworthy string or phrase object.
n integer, duration of each tuplet note, e.g., 8 for 8th note tuplet.
string character, optional string or vector with same number of timesteps as x that
specifies which strings to play for each specific note. Only applies when x is a
noteworthy string.
a integer, notes per tuplet.

b integer, beats per tuplet.

116 valid-noteinfo

Details

This function gives control over tuplet construction. The default arguments a = 3 and b =2 gen-

erates a triplet where three triplet notes, each lasting for two thirds of a beat, take up two beats.

n} is used to describe the beat duration with the same fraction-of-measure denominator notation used for
phrases, e.g., 16th note triplet, 8th note triplet, etc.

If you provide a note sequence for multiple tuplets in a row of the same type, they will be connected
automatically. It is not necessary to call tuplet() each time when the pattern is constant. If you
provide a complete phrase object, it will simply be wrapped in the tuplet tag, so take care to ensure
the phrase contents make sense as part of a tuplet.

Value

phrase

Examples

tuplet(”c c# d", 8)
triplet("c c# d”, 8)
tuplet("c c# d c c# d”", 4, a =6, b = 4)

pl <- phrase("c c# d", "8-. 8(8)", "5x3")
tuplet(pl, 8)

valid-noteinfo Check note info validity

Description

Check whether a note info string is comprised exclusively of valid note info syntax. noteinfo
returns a scalar logical result indicating whether the entire set contains exclusively valid entries.

Usage
informable(x, na.rm = FALSE)
as_noteinfo(x, format = NULL)

is_noteinfo(x)

Arguments
X character, a note info string.
na.rm remove NAs.

format NULL or character, the timestep delimiter format, "space” or "vector".

valid-notes 117

Details

as_noteinfo() can be used to coerce to the noteinfo class. Coercion will fail if the string is has
any syntax that is not valid for note info. Using the noteinfo class is generally not needed by
the user during an interactive session, but is available and offers its own print() and summary()
methods for note info strings. The class is often used by other functions, and functions that output
a note info string attach the noteinfo class.

When format = NULL, the timestep delimiter format is inferred from the note info string input.
When unclear, such as with phrase objects, the default is space-delimited time.
Value

depends on the function

See Also

noteinfo(), valid-notes()

Examples

a <- notate("8x", "Start here")
x <- paste(a, "8[stacatto] 8-. 16 4.. 16- 16 2* 2 4. 8(4)(4) 8*x4 1 1")

informable(x) # is it of 'noteinfo' class; a validity check for any string
x <- as_noteinfo(x) # coerce to 'noteinfo' class

is_noteinfo(x) # check for 'noteinfo' class

X

summary (x)

valid-notes Check note and chord validity

Description

Check if a string is comprised exclusively of valid note and/or chord syntax.

Usage
is_note(x, na.rm = FALSE)
is_chord(x, na.rm = FALSE)
noteworthy(x, na.rm = FALSE)

as_noteworthy(x, octaves = NULL, accidentals = NULL, format = NULL)

is_noteworthy(x)

118 valid-notes

Arguments
X character, a noteworthy string.
na.rm remove NAs.
octaves NULL or character, "tick” or "integer" octave numbering in result.
accidentals NULL or character, represent accidentals, "flat” or "sharp”.
format NULL or character, the timestep delimiter format, "space” or "vector”.
Details

is_note() and is_chord() are vectorized and their positive results are mutually exclusive. noteworthy ()
is also vectorized and performs both checks, but it returns a scalar logical result indicating whether
the entire set contains exclusively valid entries.

as_noteworthy() can be used to coerce to the noteworthy class. Coercion will fail if the string
is not noteworthy. While many functions will work on simple character strings and, if their syn-
tax is valid, coerce them to the 'noteworthy’ class, it is recommended to use this class. Not all
functions are so aggressive, and several generic methods are implemented for the class. It also of-
fers its own print() and summary() methods for noteworthy strings. An added benefit to using
as_noteworthy() is to conform all notes in a noteworthy string to specific formatting for acci-
dentals and octave numbering. Functions that output a noteworthy string attach the noteworthy
class.

When octaves, accidentals, and format are NULL, formatting is inferred from the noteworthy
string input. When mixed formats are present, tick format is the default for octave numbering and
flats are the default for accidentals.

Value

depends on the function

See Also

note-checks(), note-metadata(), note-summaries(), note-coerce()

Examples

x <- "a# b_c, d'' e3 g_4 A m c2e_2g2 cegh” # includes invalid syntax
data.frame(

x = strsplit(x, " ")L[1]11,

note = is_note(x),

chord = is_chord(x),

either = noteworthy(x))

is_diatonic("ace ac#e d e_", "c")

x <- "a# b_ c,~c, d'' e3 g_4 c2e_2g2"

noteworthy(x) # is it noteworthy; a validity check for any string

X <- as_noteworthy(x) # coerce to 'noteworthy' class, conform formatting
is_noteworthy(x) # check for 'noteworthy' class

X

valid-notes 119

summary (x)

x <- as_noteworthy(x, format = "vector"”, octaves = "integer”,
accidentals = "flat")

X

summary (x)

Index

!=.noteworthy (note-logic), 50
* datasets

articulations, 5

guitarChords, 23

mainIntervals, 35

tabrSyntax, 107

tunings, 115
<.noteworthy (note-logic), 50
<=.noteworthy (note-logic), 50
==.noteworthy (note-logic), 50
>.noteworthy (note-logic), 50
>=.noteworthy (note-logic), 50
[.1lyrics (single-bracket), 92
[.music (single-bracket), 92
[.noteinfo (single-bracket), 92
[.noteworthy (single-bracket), 92
[<-.lyrics (single-bracket), 92
[<-.music (single-bracket), 92
[<-.noteinfo (single-bracket), 92
[<-.noteworthy (single-bracket), 92
[[.lyrics (double-bracket), 20
[[.music (double-bracket), 20
[[.noteinfo (double-bracket), 20
[[.noteworthy (double-bracket), 20
[[<-.lyrics (double-bracket), 20
[[<-.music (double-bracket), 20
[[<-.noteinfo (double-bracket), 20
[[<-.noteworthy (double-bracket), 20

accidental_type (note-metadata), 51
append_phrases, 4

articulations, 5
as_integer_octaves (note-coerce), 46
as_lyrics (lyrics), 34

as_music (music), 40

as_music_df, 5

as_noteinfo (valid-noteinfo), 116
as_noteworthy (valid-notes), 117
as_noteworthy(), 47

as_phrase (phrase-checks), 61

120

as_space_time (note-coerce), 46
as_tick_octaves (note-coerce), 46
as_vector_time (note-coerce), 46

bpm (n_measures), 58

.lyrics (tabr-c), 98
.music (tabr-c), 98
.noteinfo (tabr-c), 98
.noteworthy (tabr-c), 98
.phrase (tabr-c), 98
cents_to_ratio (ratio_to_cents), 72
chord-compare, 7
chord-filter, 8
chord-mapping, 9

chord_11 (chords), 11
chord_13 (chords), 11
chord_5 (chords), 11
chord_7s11 (chords), 11
chord_7s5 (chords), 11
chord_7s9 (chords), 11
chord_add9 (chords), 11
chord_arpeggiate, 14
chord_aug (chords), 11
chord_break, 15

chord_def, 16

chord_degree (scale-deg), 83
chord_dim (chords), 11
chord_dim7 (chords), 11
chord_dom7 (chords), 11
chord_dom9 (chords), 11
chord_freq (pitch_freq), 63
chord_invert, 17
chord_is_major, 18
chord_is_minor (chord_is_major), 18
chord_m7b5 (chords), 11
chord_madd9 (chords), 11
chord_maj (chords), 11
chord_maj11 (chords), 11
chord_maji13 (chords), 11

O o0 o0 o0

INDEX

chord_maj6 (chords), 11
chord_maj7 (chords), 11
chord_maj7s11 (chords), 11
chord_maj9 (chords), 11
chord_min (chords), 11
chord_min11 (chords), 11
chord_min13 (chords), 11
chord_min6 (chords), 11
chord_min7 (chords), 11
chord_min9 (chords), 11
chord_order (chord-compare), 7
chord_rank (chord-compare), 7
chord_root (chord-filter), 8
chord_semitones (pitch_freq), 63
chord_semitones(), 16
chord_set, 19

chord_size (note-metadata), 51
chord_slice (chord-filter), 8
chord_sort (chord-compare), 7
chord_sus2 (chords), 11
chord_sus4 (chords), 11
chord_top (chord-filter), 8
chords, 11

distinct_notes (note-summaries), 53
distinct_octaves (note-summaries), 53
distinct_pitches (note-summaries), 53
double-bracket, 20
duration_to_ticks (read_midi), 72
dyad, 21

flatten_sharp (note-coerce), 46
freqg_pitch (pitch_freq), 63
freg_ratio, 22

freg_semitones (pitch_freq), 63
from_chorrrds (to_tabr), 109
from_music21 (to_tabr), 109

gc_fretboard (chord-mapping), 9
gc_info (chord-mapping), 9
gc_info(), 109, 110

gc_is_known (chord-mapping), 9
gc_name_mod (chord-mapping), 9
gc_name_root (chord-mapping), 9
gc_name_split (chord-mapping), 9
gc_notes (chord-mapping), 9
gc_notes_to_fb (chord-mapping), 9
guitarChords, 23
guitarChords(), 109, 110

head.lyrics (tabr-head), 100
head.music (tabr-head), 100
head.noteinfo (tabr-head), 100
head.noteworthy (tabr-head), 100
hp, 24

info_annotation (noteinfo), 55
info_articulation (noteinfo), 55
info_bend (noteinfo), 55
info_dotted (noteinfo), 55
info_double_dotted (noteinfo), 55
info_duration (noteinfo), 55
info_single_dotted (noteinfo), 55
info_slide (noteinfo), 55
info_slur_off (noteinfo), 55
info_slur_on (noteinfo), 55
informable (valid-noteinfo), 116
interval_semitones, 26
intervals, 24

is_chord (valid-notes), 117
is_diatonic, 27

is_diatonic(), 84

is_in_scale (scale-deg), 83
is_in_scale(), 27

is_lyrics (lyrics), 34

is_mode (mode-helpers), 38
is_music (music), 40

is_note (valid-notes), 117
is_noteinfo (valid-noteinfo), 116
is_noteworthy (valid-notes), 117
is_space_time (note-metadata), 51
is_vector_time (note-metadata), 51

key_is_flat (keys), 28
key_is_major (keys), 28
key_is_minor (keys), 28
key_is_natural (keys), 28
key_is_sharp (keys), 28
key_n_flats (keys), 28
key_n_sharps (keys), 28
keys, 28

keys(), 39, 86

length.lyrics (tabr-length), 101
length.music (tabr-length), 101
length.noteinfo (tabr-length), 101
length.noteworthy (tabr-length), 101
lilypond, 29

lilypond(), 36-38, 71, 75, 80, 97

121

122

lilypond_root, 32

lilypond_version (1ilypond_root), 32

1p_chord_id, 33

1p_chord_mod (1p_chord_id), 33
lyrical (lyrics), 34

lyrics, 34

lyrics_template (lyrics), 34

mainIntervals, 35
mainIntervals(), 22, 25-27
midi_key (read_midi), 72
midi_metadata (read_midi), 72
midi_notes (read_midi), 72
midi_time (read_midi), 72
midily, 36

midily(), 32, 37, 38

miditab, 37

miditab(), 37, 97
mode-helpers, 38

mode_aeolian (mode-helpers), 38
mode_dorian (mode-helpers), 38
mode_ionian (mode-helpers), 38
mode_locrian (mode-helpers), 38
mode_lydian (mode-helpers), 38
mode_mixolydian (mode-helpers), 38
mode_modern (mode-helpers), 38
mode_phrygian (mode-helpers), 38
mode_rotate (mode-helpers), 38
modes (mode-helpers), 38
music, 40

music(), 43, 61

music-helpers, 42

music_info (music-helpers), 42
music_key (music-helpers), 42
music_lyrics (music-helpers), 42
music_notes (music-helpers), 42
music_split (music), 40
music_strings (music-helpers), 42
music_tempo (music-helpers), 42
music_time (music-helpers), 42
musical (music), 40

n_beats (n_measures), 58
n_chords (note-metadata), 51
n_measures, 58

n_notes (note-metadata), 51
n_octaves (note-metadata), 51
n_steps (note-metadata), 51
naturalize (note-coerce), 46

INDEX

notable (phrase-checks), 61
notate, 44

note-checks, 44

note-coerce, 46
note-equivalence, 48

note-logic, 50

note-metadata, 51

note-summaries, 53

note_arpeggiate (note_slice), 57
note_has_accidental (note-checks), 44
note_has_flat (note-checks), 44
note_has_integer (note-metadata), 51
note_has_natural (note-checks), 44
note_has_rest (note-metadata), 51
note_has_sharp (note-checks), 44
note_has_tick (note-metadata), 51
note_in_scale (scale-deg), 83
note_in_scale(), 27
note_is_accidental (note-checks), 44
note_is_equal (note-equivalence), 48
note_is_flat (note-checks), 44
note_is_identical (note-equivalence), 48
note_is_integer (note-metadata), 51
note_is_natural (note-checks), 44
note_is_rest (note-metadata), 51
note_is_sharp (note-checks), 44
note_is_tick (note-metadata), 51
note_ngram, 56

note_rotate (note_slice), 57
note_set_key (note-coerce), 46
note_shift (note_slice), 57
note_slice, 57

note_sort (note_slice), 57
note_sort(), 50

noteinfo, 55

noteinfo(), 117

noteworthy (valid-notes), 117

notify (phrase-checks), 61
notify(), 104

octave_is_equal (note-equivalence), 48

octave_is_identical (note-equivalence),
48

octave_range (note-summaries), 53

octave_span (note-summaries), 53

octave_type (note-metadata), 51

octaves (note-summaries), 53

p (phrase), 60

INDEX

pc (append_phrases), 4

pct (repeats), 80

phrase, 60

phrase(), 71, 80, 81, 88, 89, 91, 112, 113

phrase-checks, 61

phrase_info (phrase-checks), 61

phrase_notes (phrase-checks), 61

phrase_strings (phrase-checks), 61

phrasey (phrase-checks), 61

pitch_diff (intervals), 24

pitch_freq, 63

pitch_interval (intervals), 24

pitch_is_equal (note-equivalence), 48

pitch_is_identical (note-equivalence),
48

pitch_is_identical(), 50

pitch_range (note-summaries), 53

pitch_semitones (pitch_freq), 63

pitch_seq, 65

plot_chord (plot_fretboard), 66

plot_fretboard, 66

plot_fretboard(), 75

plot_music, 69

plot_music(), 80

plot_music_bass (plot_music), 69

plot_music_bc (plot_music), 69

plot_music_guitar (plot_music), 69

plot_music_tab (plot_music), 69

plot_music_tc (plot_music), 69

pn (append_phrases), 4

pretty_notes (note-coerce), 46

ratio_to_cents, 72

read_midi, 72

render_chordchart, 74
render_chordchart(), 32, 97
render_midi (tab), 95

render_music, 76

render_music(), 71
render_music_bass (render_music), 76
render_music_bc (render_music), 76
render_music_guitar (render_music), 76
render_music_tab (render_music), 76
render_music_tc (render_music), 76
render_score (tab), 95

render_tab (tab), 95

rep.lyrics (tabr-rep), 105

rep.music (tabr-rep), 105
rep.noteinfo (tabr-rep), 105

123

rep.noteworthy (tabr-rep), 105
rep.phrase (tabr-rep), 105
repeats, 80

rest, 82

rev.lyrics (tabr-rev), 106
rev.music (tabr-rev), 106
rev.noteinfo (tabr-rev), 106
rev.noteworthy (tabr-rev), 106
rp (repeats), 80

scale-deg, 83

scale-helpers, 85

scale_chords, 86

scale_chromatic (scale-helpers), 85

scale_degree (scale-deg), 83

scale_degree(), 6

scale_diatonic (scale-helpers), 85

scale_diff (intervals), 24

scale_harmonic_minor (scale-helpers), 85

scale_hungarian_minor (scale-helpers),
85

scale_interval (intervals), 24

scale_interval(), 6

scale_jazz_minor (scale-helpers), 85

scale_major (scale-helpers), 85

scale_melodic_minor (scale-helpers), 85

scale_minor (scale-helpers), 85

scale_note (scale-deg), 83

score, 87

score(), 71,80, 112, 113

seconds (n_measures), 58

seconds_per_measure (n_measures), 58

seconds_per_step (n_measures), 58

semitone_freq (pitch_freq), 63

semitone_pitch (pitch_freq), 63

semitone_range (note-summaries), 53

semitone_span (note-summaries), 53

sf_note (sf_phrase), 88

sf_phrase, 88

sfn (sf_phrase), 88

sfp (sf_phrase), 88

sharpen_flat (note-coerce), 46

simplify_phrase, 91

single-bracket, 92

steps_per_measure (n_measures), 58

steps_start_time (n_measures), 58

string_fold (string_unfold), 94

string_unfold, 94

124

tab, 95

tab(), 32, 37, 38,71, 75, 80, 88
tabr, 98

tabr-c, 98

tabr-details, 99

tabr-head, 100

tabr-length, 101
tabr-methods, 102

tabr-package (tabr), 98
tabr-rep, 105

tabr-rev, 106

tabr_lilypond_api (1ilypond_root), 32
tabr_options, 107
tabr_options(), 37, 38
tabrSyntax, 107

tail.lyrics (tabr-head), 100
tail.music (tabr-head), 100
tail.noteinfo (tabr-head), 100
tail.noteworthy (tabr-head), 100
tally_notes (note-summaries), 53
tally_octaves (note-summaries), 53
tally_pitches (note-summaries), 53
ticks_to_duration (read_midi), 72
tie, 108

time_format (note-metadata), 51
to_tabr, 109

tp (transpose), 114

track, 111

track(), 71, 80, 88, 113
track_bass (track), 111

track_bc (track), 111
track_guitar (track), 111
track_tc (track), 111
trackbind, 113
trackbind(), 88, 112
transpose, 114
transpose(), 14, 21

triplet (tuplet), 115
tuning_intervals (intervals), 24
tunings, 115

tunings(), 68, 111

tuplet, 115

untie (tie), 108
valid-noteinfo, 116

valid-notes, 117
volta (repeats), 80

INDEX

x5 (chords), 11

x7 (chords), 11
x7s11 (chords), 11
x7s5 (chords), 11
x7s9 (chords), 11
x9 (chords), 11
x_11 (chords), 11
x_13 (chords), 11
xadd9 (chords), 11
xaug (chords), 11
xdim (chords), 11
xdim7 (chords), 11
XM (chords), 11

xm (chords), 11
xM11 (chords), 11
xm11 (chords), 11
xM13 (chords), 11
xm13 (chords), 11
xM6 (chords), 11
xmé (chords), 11
xM7 (chords), 11
xm7 (chords), 11
xm7b5 (chords), 11
xM7s11 (chords), 11
xM9 (chords), 11
xm9 (chords), 11
xma9 (chords), 11
xs2 (chords), 11
xs4 (chords), 11

	append_phrases
	articulations
	as_music_df
	chord-compare
	chord-filter
	chord-mapping
	chords
	chord_arpeggiate
	chord_break
	chord_def
	chord_invert
	chord_is_major
	chord_set
	double-bracket
	dyad
	freq_ratio
	guitarChords
	hp
	intervals
	interval_semitones
	is_diatonic
	keys
	lilypond
	lilypond_root
	lp_chord_id
	lyrics
	mainIntervals
	midily
	miditab
	mode-helpers
	music
	music-helpers
	notate
	note-checks
	note-coerce
	note-equivalence
	note-logic
	note-metadata
	note-summaries
	noteinfo
	note_ngram
	note_slice
	n_measures
	phrase
	phrase-checks
	pitch_freq
	pitch_seq
	plot_fretboard
	plot_music
	ratio_to_cents
	read_midi
	render_chordchart
	render_music
	repeats
	rest
	scale-deg
	scale-helpers
	scale_chords
	score
	sf_phrase
	simplify_phrase
	single-bracket
	string_unfold
	tab
	tabr
	tabr-c
	tabr-details
	tabr-head
	tabr-length
	tabr-methods
	tabr-rep
	tabr-rev
	tabrSyntax
	tabr_options
	tie
	to_tabr
	track
	trackbind
	transpose
	tunings
	tuplet
	valid-noteinfo
	valid-notes
	Index

