| Type: | Package | 
| Title: | Data and Functions for Web-Based Analysis | 
| Version: | 0.1.5 | 
| Imports: | moonBook, ggplot2, shiny, stringr, sjlabelled, flextable, magrittr, rrtable, dplyr, tibble, purrr, rlang, tidyr, tidyselect, psych, grid, ztable, ggforce, scales, vcd | 
| URL: | https://github.com/cardiomoon/webr | 
| BugReports: | https://github.com/cardiomoon/webr/issues | 
| Description: | Several analysis-related functions for the book entitled "Web-based Analysis without R in Your Computer"(written in Korean, ISBN 978-89-5566-185-9) by Keon-Woong Moon. The main function plot.htest() shows the distribution of statistic for the object of class 'htest'. | 
| Depends: | R (≥ 2.10) | 
| License: | GPL-3 | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.0.2 | 
| VignetteBuilder: | knitr | 
| Suggests: | testthat, knitr, rmarkdown | 
| NeedsCompilation: | no | 
| Packaged: | 2020-01-26 13:59:13 UTC; cardiomoon | 
| Author: | Keon-Woong Moon [aut, cre], Tommaso Martino [ctb] | 
| Maintainer: | Keon-Woong Moon <cardiomoon@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2020-01-26 14:20:02 UTC | 
Extract bivariate variables
Description
Extract bivariate variables
Usage
BiVar(df)
Arguments
df | 
 a data.frame  | 
Extract continuous variables
Description
Extract continuous variables
Usage
ContinuousVar(df)
Arguments
df | 
 a data.frame  | 
Extract categorical variables
Description
Extract categorical variables
Usage
GroupVar(df, max.ylev = 20)
Arguments
df | 
 a data.frame  | 
max.ylev | 
 maximal length of unique values of catergorical variables  | 
Draw a PieDonut plot
Description
Draw a PieDonut plot
Usage
PieDonut(
  data,
  mapping,
  start = getOption("PieDonut.start", 0),
  addPieLabel = TRUE,
  addDonutLabel = TRUE,
  showRatioDonut = TRUE,
  showRatioPie = TRUE,
  ratioByGroup = TRUE,
  showRatioThreshold = getOption("PieDonut.showRatioThreshold", 0.02),
  labelposition = getOption("PieDonut.labelposition", 2),
  labelpositionThreshold = 0.1,
  r0 = getOption("PieDonut.r0", 0.3),
  r1 = getOption("PieDonut.r1", 1),
  r2 = getOption("PieDonut.r2", 1.2),
  explode = NULL,
  selected = NULL,
  explodePos = 0.1,
  color = "white",
  pieAlpha = 0.8,
  donutAlpha = 1,
  maxx = NULL,
  showPieName = TRUE,
  showDonutName = FALSE,
  title = NULL,
  pieLabelSize = 4,
  donutLabelSize = 3,
  titlesize = 5,
  explodePie = TRUE,
  explodeDonut = FALSE,
  use.label = TRUE,
  use.labels = TRUE,
  family = getOption("PieDonut.family", "")
)
Arguments
data | 
 A data.frame  | 
mapping | 
 Set of aesthetic mappings created by aes or aes_.  | 
start | 
 offset of starting point from 12 o'clock in radians  | 
addPieLabel | 
 A logical value. If TRUE, labels are added to the Pies  | 
addDonutLabel | 
 A logical value. If TRUE, labels are added to the Donuts  | 
showRatioDonut | 
 A logical value. If TRUE, ratios are added to the DonutLabels  | 
showRatioPie | 
 A logical value. If TRUE, ratios are added to the PieLabels  | 
ratioByGroup | 
 A logical value. If TRUE, ratios ara calculated per group  | 
showRatioThreshold | 
 An integer. Threshold to show label as a ratio of total. default value is 0.02.  | 
labelposition | 
 A number indicating the label position  | 
labelpositionThreshold | 
 label position threshold. Default value is 0.1.  | 
r0 | 
 Integer. start point of pie  | 
r1 | 
 Integer. end point of pie  | 
r2 | 
 Integer. end point of donut  | 
explode | 
 pies to explode  | 
selected | 
 donuts to explode  | 
explodePos | 
 explode position  | 
color | 
 color  | 
pieAlpha | 
 transparency of pie  | 
donutAlpha | 
 transparency of pie  | 
maxx | 
 maximum position of plot  | 
showPieName | 
 logical. Whether or not show Pie Name  | 
showDonutName | 
 logical. Whether or not show Pie Name  | 
title | 
 title of plot  | 
pieLabelSize | 
 integer. Pie label size  | 
donutLabelSize | 
 integer. Donut label size  | 
titlesize | 
 integer. Title size  | 
explodePie | 
 Logical. Whether or not explode pies  | 
explodeDonut | 
 Logical. Whether or not explode donuts  | 
use.label | 
 Logical. Whether or not use column label in case of labelled data  | 
use.labels | 
 Logical. Whether or not use value labels in case of labelled data  | 
family | 
 font family  | 
Examples
require(moonBook)
require(ggplot2)
browser=c("MSIE","Firefox","Chrome","Safari","Opera")
share=c(50,21.9,10.8,6.5,1.8)
df=data.frame(browser,share)
PieDonut(df,aes(browser,count=share),r0=0.7,start=3*pi/2,labelpositionThreshold=0.1)
PieDonut(df,aes(browser,count=share),r0=0.7,explode=5,start=3*pi/2)
PieDonut(mtcars,aes(gear,carb),start=3*pi/2,explode=3,explodeDonut=TRUE,maxx=1.7)
PieDonut(mtcars,aes(carb,gear),r0=0)
PieDonut(acs,aes(smoking,Dx),title="Distribution of smoking status by diagnosis")
PieDonut(acs,aes(Dx,smoking),ratioByGroup=FALSE,r0=0)
PieDonut(acs,aes(Dx,smoking),selected=c(1,3,5,7),explodeDonut=TRUE)
PieDonut(acs,aes(Dx,smoking),explode=1,selected=c(2,4,6,8),labelposition=0,explodeDonut=TRUE)
PieDonut(acs,aes(Dx,smoking),explode=1)
PieDonut(acs,aes(Dx,smoking),explode=1,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,explodePie=FALSE,explodeDonut=TRUE,labelposition=0)
PieDonut(acs,aes(Dx,smoking),selected=c(2,5,8), explodeDonut=TRUE,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,explodeDonut=TRUE)
PieDonut(acs,aes(Dx,smoking),r0=0.2,r1=0.9,r2=1.3,explode=1,start=pi/2,labelposition=0)
PieDonut(acs,aes(Dx,smoking),explode=1,start=pi,explodeDonut=TRUE,labelposition=0)
require(dplyr)
df=mtcars %>% group_by(gear,carb) %>% summarize(n=n())
PieDonut(df,aes(pies=gear,donuts=carb,count=n),ratioByGroup=FALSE)
Cox-Stuart test for trend analysis The Cox-Stuart test is defined as a little powerful test (power equal to 0.78), but very robust for the trend analysis. It is therefore applicable to a wide variety of situations, to get an idea of the evolution of values obtained. The proposed method is based on the binomial distribution. This function was written by Tommaso Martino<todoslogos@gmail.com> (See 'References')
Description
Cox-Stuart test for trend analysis The Cox-Stuart test is defined as a little powerful test (power equal to 0.78), but very robust for the trend analysis. It is therefore applicable to a wide variety of situations, to get an idea of the evolution of values obtained. The proposed method is based on the binomial distribution. This function was written by Tommaso Martino<todoslogos@gmail.com> (See 'References')
Usage
cox.stuart.test(x)
Arguments
x | 
 A numeric vector  | 
Value
A list with class "htest"
References
Original code: http://statistic-on-air.blogspot.kr/2009/08/trend-analysis-with-cox-stuart-test-in.html
Examples
customers = c(5, 9, 12, 18, 17, 16, 19, 20, 4, 3, 18, 16, 17, 15, 14)
cox.stuart.test(customers)
Extract labels
Description
Extract labels
Usage
extractLabels(x)
Arguments
x | 
 a vector  | 
Make table summarizing frequency
Description
Make table summarizing frequency
Usage
freqSummary(x, digits = 1, lang = "en")
Arguments
x | 
 A vector  | 
digits | 
 integer indicating the number of decimal places  | 
lang | 
 Language. choices are one of c("en","kor")  | 
Examples
require(moonBook)
freqSummary(acs$Dx)
#freqSummary(acs$smoking,lang="kor")
Make flextable summarizing frequency
Description
Make flextable summarizing frequency
Usage
freqTable(
  x,
  digits = 1,
  lang = getOption("freqTable.lang", "en"),
  vanilla = FALSE,
  ...
)
Arguments
x | 
 A vector  | 
digits | 
 integer indicating the number of decimal places  | 
lang | 
 Language. choices are one of c("en","kor")  | 
vanilla | 
 Logical. Whether make vanilla table or not  | 
... | 
 Further arguments to paseed to the df2flextable function  | 
Value
An object of clss flextable
Examples
require(moonBook)
freqTable(acs$Dx)
#freqTable(acs$smoking,lang="kor",vanilla=TRUE,fontsize=12)
Make default palette
Description
Make default palette
Usage
gg_color_hue(n)
Arguments
n | 
 number of colors  | 
Select word
Description
Select word
Usage
langchoice1(id, lang = "en")
Arguments
id | 
 data id  | 
lang | 
 language. Possible choices are c("en","kor")  | 
Make subtitle
Description
Make subtitle
Usage
makeSub(x)
Arguments
x | 
 An object of class "htest"  | 
Make subcolors with main colors
Description
Make subcolors with main colors
Usage
makeSubColor(main, no = 3)
Arguments
main | 
 character. main colors  | 
no | 
 number of subcolors  | 
My chisquare test
Description
My chisquare test
Usage
mychisq.test(x)
Arguments
x | 
 a table  | 
Numerical Summary
Description
Numerical Summary
Usage
numSummary(x, ..., digits = 2, lang = "en")
numSummary1(x, ..., digits = 2, lang = "en")
numSummary2(x, ..., digits = 2, lang = "en")
Arguments
x | 
 A numeric vector or a data.frame or a grouped_df  | 
... | 
 further arguments to be passed  | 
digits | 
 integer indicating the number of decimal places  | 
lang | 
 Language. choices are one of c("en","kor")  | 
Functions
-  
numSummary1: Numerical Summary of a data.frame or a vector -  
numSummary2: Numerical Summary of a grouped_df 
Examples
require(moonBook)
require(magrittr)
require(dplyr)
require(rrtable)
require(webr)
require(tibble)
numSummary(acs)
numSummary(acs$age)
numSummary(acs,age,EF)
acs %>% group_by(sex) %>% numSummary(age,BMI)
acs %>% group_by(sex) %>% select(age) %>% numSummary
acs %>% group_by(sex) %>% select(age,EF) %>% numSummary
acs %>% group_by(sex,Dx) %>% select(age,EF) %>% numSummary
acs %>% group_by(sex,Dx) %>% select(age) %>% numSummary
#acs %>% group_by(sex,Dx) %>% numSummary(age,EF,lang="kor")
Make a table showing numerical summary
Description
Make a table showing numerical summary
Usage
numSummaryTable(
  x,
  ...,
  lang = getOption("numSummaryTable.lang", "en"),
  vanilla = FALSE,
  add.rownames = NULL
)
Arguments
x | 
 A grouped_df or a data.frame or a vector  | 
... | 
 further argument to be passed  | 
lang | 
 Language. choices are one of c("en","kor")  | 
vanilla | 
 Logical. Whether make vanilla table or not  | 
add.rownames | 
 Logical. Whether or not add rownames  | 
Examples
require(moonBook)
require(dplyr)
numSummaryTable(acs)
numSummaryTable(acs$age)
acs %>% group_by(sex) %>% select(age) %>% numSummaryTable
acs %>% group_by(sex) %>% select(age,EF) %>% numSummaryTable
acs %>% group_by(sex,Dx) %>% select(age,EF) %>% numSummaryTable(vanilla=FALSE)
acs %>% group_by(sex,Dx) %>% numSummaryTable(age,EF,add.rownames=FALSE)
Plotting distribution of statistic for object "htest"
Description
Plotting distribution of statistic for object "htest"
Usage
## S3 method for class 'htest'
plot(x, ...)
Arguments
x | 
 object of class "htest"  | 
... | 
 further arguments to ggplot  | 
Value
a ggplot or NULL
Examples
require(moonBook)
require(webr)
## chi-square test
x=chisq.test(table(mtcars$am,mtcars$cyl))
plot(x)
#Welch Two Sample t-test
x=t.test(mpg~am,data=mtcars)
plot(x)
x=t.test(BMI~sex,data=acs)
plot(x)
# F test to compare two variances
x=var.test(age~sex,data=acs,alternative="less")
plot(x)
# Paired t-test
x=t.test(iris$Sepal.Length,iris$Sepal.Width,paired=TRUE)
plot(x)
# One sample t-test
plot(t.test(acs$age,mu=63))
# Two sample t-test
x=t.test(age~sex, data=acs,conf.level=0.99,alternative="greater",var.equal=TRUE)
plot(x)
Renew dictionary Renew dictionary
Description
Renew dictionary Renew dictionary
Usage
renew_dic()
Runs test for randomness
Description
Runs test for randomness
Usage
runs.test(
  y,
  plot.it = FALSE,
  alternative = c("two.sided", "positive.correlated", "negative.correlated")
)
Arguments
y | 
 A vector  | 
plot.it | 
 A logical. whether or not draw a plot  | 
alternative | 
 a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".  | 
Value
A list with class "htest" containing the following components: statistic,p-value,method and data.name
Examples
y=c(1,2,2,1,1,2,1,2)
runs.test(y)
y=c("A","B","B","A","A","B","A","B")
runs.test(y,alternative="p")
Make transparent theme
Description
Make transparent theme
Usage
transparent(size = 0)
Arguments
size | 
 border size. default value is 0  | 
Make a chisquare result table
Description
Make a chisquare result table
Usage
x2Table(
  data,
  x,
  y,
  margin = 1,
  show.percent = TRUE,
  show.label = TRUE,
  show.stat = TRUE,
  vanilla = FALSE,
  fontsize = 12,
  ...
)
Arguments
data | 
 A data.frame  | 
x | 
 a column name  | 
y | 
 a column name  | 
margin | 
 numeric If 1 row percent, if 2 col percent  | 
show.percent | 
 logical  | 
show.label | 
 logical  | 
show.stat | 
 logical  | 
vanilla | 
 logical whether or not make vanilla table  | 
fontsize | 
 A numeric  | 
... | 
 Further arguments to be passed to df2flextable()  | 
Examples
require(moonBook)
x2Table(acs,sex,DM)
Extract x2 statistical result
Description
Extract x2 statistical result
Usage
x2result(x)
Arguments
x | 
 a table  | 
Summarize chisquare result
Description
Summarize chisquare result
Usage
x2summary(
  data = NULL,
  x = NULL,
  y = NULL,
  a,
  b,
  margin = 1,
  show.percent = TRUE,
  show.label = TRUE
)
Arguments
data | 
 A data.frame  | 
x | 
 a column name  | 
y | 
 a column name  | 
a | 
 a vector  | 
b | 
 a vector  | 
margin | 
 numeric If 1 row percent, if 2 col percent  | 
show.percent | 
 logical  | 
show.label | 
 logical  | 
Examples
require(moonBook)
x2summary(acs,sex,DM)