Package ‘csaw’

April 9, 2015
Version 1.0.7
Date 2014/03/11
Title ChIP-seq analysis with windows
Author Aaron Lun <alun@wehi.edu.au>, Gordon Smyth <smyth@wehi.edu.au>
Maintainer Aaron Lun <alun@wehi.edu.au>
Depends R (>=3.1.0), GenomicRanges

Imports Rsamtools, edgeR, limma, GenomicFeatures, AnnotationDbi,
methods, GenomicAlignments, S4 Vectors, [Ranges, GenomelnfoDb

Suggests org.Mm.eg.db, TxDb.Mmusculus.UCSC.mm10.knownGene

biocViews MultipleComparison, ChIPSeq, Normalization, Sequencing,
Coverage, Genetics, Annotation

Description Detection of differentially bound regions in ChIP-seq data
with sliding windows, with methods for normalization and proper
FDR control.

License GPL-3

R topics documented:

combineTests e e e
correlateReads e
csawUsersGuide e e e e
detailRanges e
extractReads e
getBestTest e
getPETSizes
mergeWindows L. e e e e e e
normalizeCounts e e e e e e e e e e
readParam L e
regionCoUNES e e e
SEmethods e e
windowCounts L. e e e e e e e e e e e

Index

2 combineTests

combineTests Combine statistics across multiple tests

Description

Combines p-values across clustered tests using Simes’ method to control the cluster FDR.

Usage

combineTests(ids, tab, weight=rep(1, length(ids)))

Arguments
ids an integer vector containing the cluster ID for each test
tab a dataframe of results with PValue, 1ogCPM and at least one 1ogFC field for each
test
weight a numeric vector of weights for each window
Details

This function uses Simes’ procedure to compute the combined p-value for each cluster of tests.
Each p-value represents evidence against the global null hypothesis, i.e., all individual nulls are true
in each cluster. This may be more relevant than examining each test individually when multiple
tests in a cluster represent parts of the same underlying event, e.g., genomic regions consisting of
clusters of windows.

Mean logFC and logCPM values are also computed across all tests in each cluster. Multiple fields in
tab containing the 1ogFC substring are allowed, e.g., to accommodate ANOVA-like contrasts. Note
that the average may not be a suitably informative metric when clusters are large and heterogenous,
in which case custom summaries may be required. The BH method is also applied to control the
FDR across all clusters.

The importance of each test within a cluster can be adjusted by supplying different relative weight
values. This may be useful for downweighting low-confidence tests, e.g., those in repeat regions. In
Simes’ procedure, weights are interpreted as relative frequencies of the tests in each cluster. Note
that these weights have no effect between clusters and will not be used to adjust the computed FDR.

A simple clustering approach for windows is provided in mergeWindows. However, anything can
be used so long as it does not compromise type I error control, e.g., promoters, gene bodies, inde-
pendently called peaks.

Value

A dataframe with one row per cluster and the numeric fields 10gCPM, the average log-CPM; PValue,
the combined p-value; and FDR, the g-value corresponding to the combined p-value. There is also
one numeric field representing the average of each supplied 1ogFC in tab. The name of each row
corresponds to the sorted cluster IDs.

correlateReads 3

Author(s)

Aaron Lun

References

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73, 751-754.

Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. R. Stat. Soc. Series B 57, 289-300.

Lun ATL and Smyth GK (2014). De novo detection of differentially bound regions for ChIP-seq
data using peaks and windows: controlling error rates correctly. Nucleic Acids Res. 42, €95

See Also

mergeWindows

Examples

ids <- round(runif (100, 1, 10))

tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100),
PValue=rbeta(100, 1, 2))

combined <- combineTests(ids, tab)

head(combined)

With window weighting.

w <- round(runif (100, 1, 5))

combined <- combineTests(ids, tab, weight=w)
head(combined)

With multiple log-FCs.
tab$logFC.whee <- rnorm(100, 5)
combined <- combineTests(ids, tab)
head(combined)

correlateReads Compute correlation coefficients between reads

Description

Computes the auto- or cross-correlation coefficients between read positions across a set of delay
intervals.

Usage

correlateReads(bam.files, max.dist=1000, cross=TRUE, param=readParam())

4 correlateReads

Arguments
bam.files a character vector containing paths to sorted and indexed BAM files
max.dist integer scalar specifying the maximum delay distance over which correlation
coefficients will be calculated
cross a logical scalar specifying whether cross-correlations should be computed
param a readParam object containing read extraction parameters
Details

If cross=TRUE, reads are separated into those mapping on the forward and reverse strands. Positions
on the forward strand are shifted forward by a delay interval. The chromosome-wide correlation
coefficient between the shifted forward positions and the original reverse positions are computed.
This is repeated for all delay intervals less than maxDist. A weighted mean for the cross-correlation
is taken across all chromosomes, with weighting based on the number of reads.

Cross-correlation plots can be used to check the quality of immunoprecipitation for ChIP-Seq ex-
periments involving transcription factors or punctate histone marks. Strong immunoprecipitation
should result in a peak at a delay corresponding to the fragment length. A spike may also be ob-
served at the delay corresponding to the read length. This is probably an artefact of the mapping
process where unique mapping occurs to the same sequence on each strand.

The construction of cross-correlation plots is usually uninformative for full paired-end data. This
is because the presence of valid pairs will inevitably result in a strong peak at the fragment length.
Nonetheless, immunoprecipitation efficiency can be diagnosed by treating paired-end data as single
end data. This is done by using only the first or second read based on the value of pet used in
readParam. Setting pet="both" will result in failure.

If multiple BAM files are specified in bam. files, the reads from all libraries are pooled prior to
calculation of the correlation coefficients. This is convenient for determining the average correlation
profile across an entire dataset. Separate calculations for each file will require multiple calls to
correlateReads.

If cross=FALSE, auto-correlation coefficients are computed without use of strand information. This
is designed to guide estimation of the average width of enrichment for diffuse histone marks. For
example, the width can be defined as the delay distance at which the autocorrelations become neg-
ligble. However, this tends to be ineffective in practice as diffuse marks tend to have very weak
correlations to begin with.

By default, marked duplicate reads are removed from each BAM file prior to calculation of co-
efficients. This is strongly recommended, even if the rest of the analysis will be performed with
duplicates retained. Otherwise, the read length spike will dominate the plot. The fragment length
peak will no longer be easily visible.

Value
A numeric vector of length max.dist+1 containing the correlation coefficients for each delay inter-
val from O to max.dist.

Author(s)

Aaron Lun

csawUsersGuide 5

References

Kharchenko PV, Tolstorukov MY and Park, PJ (2008). Design and analysis of ChIP-seq experi-
ments for DNA-binding proteins. Nat. Biotechnol. 26, 1351-1359.

See Also

ccf

Examples

n <- 20
bamFile <- system.file("exdata”, "repl.bam”, package="csaw")
par(mfrow=c(2,2))

x <- correlateReads(bamFile, max.dist=n)
plot(0:n, x, xlab="delay (bp)", ylab="ccf")

x <- correlateReads(bamFile, max.dist=n, param=readParam(dedup=TRUE))
plot(0:n, x, xlab="delay (bp)", ylab="ccf")

x <- correlateReads(bamFile, max.dist=n, cross=FALSE)
plot(0:n, x, xlab="delay (bp)", ylab="acf")

csawUsersGuide View csaw user’s guide

Description

Finds the location of the user’s guide and opens it for viewing.

Usage

csawUsersGuide (view=TRUE)

Arguments

view logical scalar specifying whether the document should be opened

Details

Calling vignette("csaw") will yield a short vignette that contains little information. Instead, the
user guide can be obtained with this function. The user’s guide is not a true vignette as it is not
generated using Sweave when the package is built. This is due to the time-consuming nature of the
code when run on realistic case studies.

For non-Windows operating systems, the PDF viewer is taken from Sys.getenv("R_PDFVIEWER").
This can be changed to x by using Sys. putenv(R_PDFVIEWER=x). For Windows, the default viewer
will be selected to open the file. Note that for Windows, the user’s guide can also be accessed from
the “Vignettes” drop-down menu in the R GUL

6 detailRanges
Value
A character string giving the file location. If view=TRUE, the system’s default PDF document reader
is started and the user’s guide is opened.
Author(s)
Aaron Lun
See Also
system
Examples
To get the location:
csawUsersGuide (view=FALSE)
To open in pdf viewer:
Not run: csawUsersGuide()
detailRanges Add annotation to ranges
Description
Add detailed exon-based annotation to specified genomic regions.
Usage
detailRanges(incoming, txdb, orgdb, dist=5000,
promoter=c(3000, 1000), max.intron=1e6)
Arguments
incoming a GRanges object containing the ranges to be annotated
txdb a TranscriptDb object for the genome of interest
orgdb a genome wide annotation object for the genome of interest
dist an integer scalar specifying the flanking distance to annotate
promoter an integer vector of length 2, where first and second values define the promoter

max.intron

as some distance upstream and downstream from the TSS, respectively

an integer scalar indicating the maximum distance between exons

detailRanges 7

Details

This function adds exon-based annotations to a given set of genomic regions, in the form of com-
pact character strings specifying the features overlapping and flanking each region. The aim is to
determine the genic context of empirically identified regions. This allows some basic biological
interpretation of binding/marking in those regions. All neighbouring genes within a specified range
are reported, rather than just the closest gene to the region.

For annotated features overlapping a region, the character string in the overlap output vector will
be of the form GENE |EXONS | STRAND. The GENE is the gene symbol, with an alternative as ID: XXX
for the Entrez ID if the symbol is unavailable. The EXONS indicate the exon or range of exons that
are overlapped. The STRAND is, obviously, the strand on which the gene is coded. For annotated
regions flanking the region within dist, the character string in the left or right output vectors
will have an additional DIST value. This represents the gap between the edge of the region and the
closest exon for that gene.

Exons are numbered in order of increasing start or end position for genes on the forward or reverse
strands, respectively. Promoters are defined as the region of length promoter upstream of the gene
TSS, itself defined as the start of the first exon (for genes on the forward strand) or the end of the
last exon (otherwise). All promoters are marked as exon O for simplicity. Exon ranges in EXON
are reported from as a comma-separated list where stretches of consecutive exons are summarized
into a range. If the region overlaps an intron, it is labelled with I in EXON. No intronic overlaps are
reported if there is an exonic overlap.

Note that promoter and intronic annotations are only reported for the overlap vector to reduce
redundancy in the output. For example, it makes little sense to report that the region is both flanking
and overlapping an intron. Similarly, the value of DIST is more relevant when it is reported to the
nearest exon rather than to an intron (in which case, the distance would be zero if the intron overlaps
the region). In cases where the distance is reported to the first exon, it can be used to refine the choice
of promoter.

The max. intron value is necessary to deal with genes that have ambiguous locations on the genome.
If a gene has exons on different chromosomes, its location is uncertain and the gene is partitioned
into two sets of exons for separate processing. However, this is less obvious when the ambigu-
ous locations belong to the same chromosome. The max. intron value protects against excessively
large genes that may occur from considering those locations as a single transcriptional unit.

If incoming is missing, then the annotation will be provided directly to the user in the form of
a GRanges object. This may be more useful when further work on the annotation is required.
Exon numbers are provided in the metadata with promoters and gene bodies labelled as 0 and -1,
respectively. Overlaps to introns can be identified by finding those regions that overlap with gene
bodies but not with any of the corresponding exons.

Value

If incoming is not provided, a GRanges object will be returned containing ranges for the exons,
promoters and gene bodies. Gene IDs, symbol and exon numbers are also stored as metadata.

If incoming is a GRanges object, a list will be returned with overlap, left and right elements.
Each element is a character vector of length equal to the number of ranges in incoming. Each non-
empty string records the gene symbol, the overlapped exons and the strand. For left and right,
the gap between the range and the annotated feature is also included.

8 extractReads

Author(s)

Aaron Lun

Examples

require(org.Mm.eg.db)
require(TxDb.Mmusculus.UCSC.mm10.knownGene)

current <- readRDS(system.file("exdata"”, "exrange.rds"”, package="csaw"))

output <- detailRanges(current, TxDb.Mmusculus.UCSC.mm10.knownGene,
org.Mm.eg.db)

head (output$overlap)

head(output$right)

head(output$left)

output <- detailRanges(current, TxDb.Mmusculus.UCSC.mm10.knownGene,
org.Mm.eg.db, promoter=c(2000, 1000))

head(output$overlap)

head(output$right)

head(output$left)

detailRanges (txdb=TxDb.Mmusculus.UCSC.mm10.knownGene, orgdb=org.Mm.eg.db)

extractReads Extract reads from a BAM file

Description

Extract reads from a BAM file with the specified parameter settings.

Usage

extractReads(cur.region, bam.file, param=readParam())

Arguments
cur.region a GRanges object of length 1 describing the region of interest
bam.file a character string containing the path to a sorted and indexed BAM file
param a readParam object specifying how reads should be extracted

Details

This function extracts the reads from a BAM file overlapping a given genomic interval. The inter-
pretation of the values in param is the same as that throughout the package. The aim is to supply
the raw data for visualization, in a manner that maintains consistency with the rest of the analysis.

Note that this does not account for any read extension that might have been performed during read
counting. In such cases, users are advised to expand cur.region by the extension length on each

getBestTest 9

side. Counted reads can then be extracted by identifying their extended counterparts that overlap
with the original cur.region.

Value

A GRanges object is returned. If pet="both" in param, intervals are unstranded and correspond to
fragments. Otherwise, strand-specific intervals that represent reads are returned.

Author(s)

Aaron Lun

See Also

readParam

Examples

bamFile <- system.file("exdata”, "repl.bam”, package="csaw")
extractReads(GRanges("chrA”, IRanges(100, 500)), bamFile)
extractReads(GRanges("chrA”, IRanges(100, 500)), bamFile, param=readParam(dedup=TRUE))

bamFile <- system.file("exdata”, "pet.bam”, package="csaw")
extractReads(GRanges("chrB”, IRanges(100, 500)), bamFile)

extractReads(GRanges("chrB"”, IRanges(100, 500)), bamFile, param=readParam(pet="both"))
extractReads(GRanges("chrB”, IRanges(100, 500)), bamFile, param=readParam(pet="first"))

Dealing with the extension length.

bamFile <- system.file("exdata”, "repl.bam”, package="csaw")

ext <- 100

my.reg <- GRanges("chrA", IRanges(10, 200))

my.reg2 <- resize(my.reg, fix="center"”, width=width(my.reg)+2*ext)
collected <- extractReads(my.reg2, bamFile)

expanded <- resize(collected, width=ext)
strand(expanded) <- "x"

relevant <- overlapsAny(expanded, my.reg)
collected[relevant,]

getBestTest Get the best test in a cluster

Description

Find the test with the strongest evidence for rejection of the null in each cluster.

Usage

getBestTest(ids, tab, mode=c("PValue"”, "logCPM"),
weight=rep(1, length(ids)))

10 getBestTest

Arguments
ids an integer vector containing the cluster ID for each test
tab a table of results with a PValue field for each test
mode a string specifying the metric to use for selection of the best test
weight a numeric vector of weights for each window
Details

If mode="PValue", this function identifies the test with the lowest p-value as that with the strongest
evidence against the null in each cluster. The p-value of the chosen test is adjusted using the Bonfer-
roni correction, based on the total number of tests in the parent cluster. This is necessary to obtain
strong control of the family-wise error rate such that the best test can be taken from each cluster for
further consideration.

The importance of each window in each cluster can be adjusted by supplying different relative
weight values. Each weight is interpreted as a different threshold for each test in the cluster. Larger
weights correspond to lower thresholds, i.e., less evidence is needed to reject the null for tests
deemed to be more important. This may be useful for upweighting particular tests, e.g., windows
containing a motif for the TF of interest.

Note the difference between this function and combineTests. The latter presents evidence for any
rejections within a cluster. This function specifies the exact location of the rejection in the cluster,
which may be more useful in some cases but at the cost of conservativeness. In both cases, clustering
procedures such as mergeWindows can be used to identify the cluster.

If mode="10gCPM", the best test is defined as that with the highest log-CPM value. This should
be independent of the p-value so no adjustment is necessary. Weights are not applied here. This
mode may be useful when abundance is correlated to rejection under the alternative hypothesis, e.g.,
picking high-abundance regions that are more likely to contain peaks.

Value

A dataframe with one row per cluster and the numeric fields best, the index for the best test in
the cluster; PValue, the adjusted p-value for that test; and FDR, the g-value corresponding to the
adjusted p-value.

Author(s)

Aaron Lun

References
Genovese CR, Roeder K and Wasserman L (2006). False discovery control with p-value weighting.
Biometrika 93, 509-524.

See Also

combineTests, mergeWindows

getPETSizes 11

Examples

ids <- round(runif (100, 1, 10))

tab <- data.frame(logFC=rnorm(100), logCPM=rnorm(100),
PValue=rbeta(100, 1, 2))

combined <- getBestTest(ids, tab)

head(combined)

With window weighting.

w <= round(runif (100, 1, 5))

combined <- getBestTest(ids, tab, weight=w)
head(combined)

By logCPM.
combined <- getBestTest(ids, tab, mode="logCPM")
head(combined)

getPETSizes Compute fragment lengths for paired-end tags

Description

Compute the length of the sequenced fragment for each read pair in paired-end tag (PET) data.

Usage

getPETSizes(bam.file, param=readParam(pet="both"))

Arguments
bam.file a character string containing the file path to a sorted and indexed BAM file
param a readParam object containing read extraction parameters

Details

This function assembles a number of paired-end diagnostics. First, any read pairs with one or more
unmapped reads are ignored. A read is only mapped if it is not removed by dedup, ming, restrict
or discard in readParam. Otherwise, the alignment is not considered to be reliable. The total
number of read pairs with one unmapped read is recorded.

Of the mapped pairs, the valid (i.e., proper) read pairs are identified. These refer to intrachromoso-
mal read pairs where the reads with the lower and higher genomic coordinate map to the forward
and reverse strand, respectively. The distance between the positions of the mapped 5° ends of the
two reads must also be equal to or greater than the read lengths. Any intrachromosomal read pair
that fails these criteria will be considered as improperly orientated. If the reads are on different
chromosomes, the read pair will be recorded as being interchromosomal.

Each valid read pair corresponds to a DNA fragment where both ends are sequenced. The size of the
fragment can be determined by calculating the distance between the 5’ ends of the mapped reads.
The distribution of sizes is useful for assessing the quality of the library preparation, along with all
of the recorded diagnostics.

12 mergeWindows

Value
A list containing:

sizes an integer vector of fragment lengths for all valid read pairs in the library

diagnostics an integer vector containing the total number of reads, number of singleton
reads, pairs with one unmapped read, number of improperly orientated read pairs
and interchromosomal pairs

Author(s)

Aaron Lun

See Also

readParam

Examples

bamFile <- system.file("exdata”, "pet.bam”, package="csaw")

out <- getPETSizes(bamFile, param=readParam(pet="both"))

out <- getPETSizes(bamFile, param=readParam(pet="both", restrict="chrA"))

out <- getPETSizes(bamFile, param=readParam(pet="both", discard=GRanges("chrA”, IRanges(1, 50))))

mergeWindows Merge windows into clusters

Description

Uses a simple single-linkage approach to merge adjacent or overlapping windows into clusters.

Usage

mergeWindows(regions, tol, sign=NULL, max.width=NULL)

Arguments
regions a GRanges object
tol a numeric scalar specifying the maximum distance between adjacent windows
sign a logical vector specifying whether each window has a positive log-FC

max.width a numeric scalar specifying the maximum size of merged intervals

mergeWindows 13

Details

Windows are merged if the gap between the end of one window and the start of the next is no greater
than tol. Adjacent windows can then be chained together to build a cluster of windows across the
linear genome. A value of zero means that the windows must be contiguous whereas negative values
specify minimum overlaps.

If sign!=NULL, windows are only merged if they have the same sign of the log-FC and are not
separated by windows with opposite log-FC values. This can be useful when summarizing adja-
cent regions. However, it is not recommended for routine clustering in differential analyses as the
resulting clusters will not be independent of the p-value.

The max.width parameter can be specified to avoid the formation of excessively large clusters when
many adjacent regions are present. For typical ChIP-seq datasets, suggested values range from 2000
to 10000 bp. Clusters are split if they exceed this size, albeit in a rather ad hoc manner. If NULL, no
limits are placed on the maximum size.

The tolerance should reflect the minimum distance at which two regions of enrichment are consid-
ered separate. If two windows are more than tol apart, they will be placed into separate clusters.
In contrast, the max.width value reflects the maximum distance at which two windows can be
considered part of the same region.

Note that in the output, the cluster ID reported in id corresponds to the index of the cluster coordi-
nates in the input region.

Value

A list containing id, an integer vector containing the cluster ID for each window; and region, a
GRanges object containing the start/stop coordinates for each cluster of windows.

Author(s)

Aaron Lun

See Also

combineTests, windowCounts

Examples

x <= round(runif (10, 100, 1000))

gr <- GRanges(rep(”chrA”, 10), IRanges(x, x+40))
mergeWindows(gr, 1)

mergeWindows(gr, 10)

mergeWindows(gr, 100)

mergeWindows(gr, 100, sign=rep(c(TRUE, FALSE), 5))

14 normalizeCounts

normalizeCounts Normalize counts between libraries

Description

Calculate normalization factors or offsets using count data from multiple libraries.

Usage
normalizeCounts(counts, lib.sizes, type=c("scaling”, "loess"),
weighted=FALSE, dispersion=0.05, ...)
Arguments
counts a matrix of integer counts with one column per library
lib.sizes a numeric vector specifying the total number of reads per library
type a character string indicating what type of normalization is to be performed
weighted a logical scalar indicating whether precision weights should be used for TMM
normalization
dispersion a numeric scalar specifying the NB dispersion for calculation of the average
count in type="1oess"
other arguments to be passed to calcNormFactors for type="scaling”, or
loessFit for type="1loess"
Details

If type="scaling”, this function provides a convenience wrapper for the calcNormFactors func-
tion in the edgeR package. Specifically, it uses the trimmed mean of M-values (TMM) method
to perform normalization. Precision weighting is turned off by default so as to avoid upweighting
high-abundance regions. These are more likely to be bound and thus more likely to be differen-
tially bound. Assigning excessive weight to such regions will defeat the purpose of trimming when
normalizing the coverage of background regions.

If type="1oess", this function performs non-linear normalization similar to the fast loess algorithm
in normalizeCyclicloess. For each sample, a lowess curve is fitted to the log-counts against the
log-average count. The fitted value for each bin pair is used as the generalized linear model offset
for that sample. The use of the average count provides more stability than the average log-count
when low counts are present for differentially bound regions.

If 1ib. sizes is not specified, the column sums of counts are used instead and a warning is issued.
The same 1ib.sizes should be used throughout the analysis if multiple normalizeCounts calls
are involved. This ensures that the normalization factors or offsets are comparable between calls.

normalizeCounts 15

Value

For type="scaling”, a numeric vector containing the relative normalization factors for each li-
brary.

For type="1oess", a numeric matrix of the same dimensions as counts, containing the log-based
offsets for use in GLM fitting.
Author(s)

Aaron Lun

References

Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression anal-
ysis of RNA-seq data. Genome Biology 11, R25.

Ballman KV, Grill DE, Oberg AL, Therneau TM (2004). Faster cyclic loess: normalizing RNA
arrays via linear models. Bioinformatics 20, 2778-86.

See Also

calcNormFactors, loessFit, normalizeCycliclLoess

Examples

A trivial example

counts <- matrix(rnbinom(400, mu=10, size=20), ncol=4)
normalizeCounts(counts)

normalizeCounts(counts, lib.sizes=rep(400, 4))

Adding undersampling

n <- 1000L
mul <- rep(10, n)
mu2 <- mul

mu2[1:100] <- 100

mu2 <- mu2/sum(mu2)*sum(mul)

counts <- cbind(rnbinom(n, mu=mul, size=20), rnbinom(n, mu=mu2, size=20))
actual.lib.size <- rep(sum(mul), 2)

normalizeCounts(counts, lib.sizes=actual.lib.size)
normalizeCounts(counts, logratioTrim=0.4, lib.sizes=actual.lib.size)
normalizeCounts(counts, sumTrim=0.3, lib.size=actual.lib.size)

With and without weighting, for high-abundance spike-ins.
n <- 100000

blah <- matrix(rnbinom(2*n, mu=10, size=20), ncol=2)
tospike <- 10000

blah[1:tospike,1] <- rnbinom(tospike, mu=1000, size=20)
blah[1:tospike,2] <- rnbinom(tospike, mu=2000, size=20)
full.lib.size <- colSums(blah)

normalizeCounts(blah, weighted=TRUE, lib.sizes=full.lib.size)
normalizeCounts(blah, lib.sizes=full.lib.size)

16 readParam

true.value <- colSums(blah[(tospike+1):n,]1)/colSums(blah)
true.value <- true.value/exp(mean(log(true.value)))
true.value

Using loess-based normalization, instead.

offsets <- normalizeCounts(counts, type="loess", lib.size=full.lib.size)
head(offsets)

offsets <- normalizeCounts(counts, type="loess"”, span=0.4, lib.size=full.lib.size)
offsets <- normalizeCounts(counts, type="loess", iterations=1, lib.size=full.lib.size)

readParam readParam class and methods

Description

Class to specify read loading parameters

Details

Each readParam object stores a number of parameters to extract reads from a BAM file. Slots are
defined as:

pet: a character string indicating whether paired-end data is present

max.frag: aninteger scalar, specifying the maximum fragment length corresponding to a read pair
rescue.pairs: alogical scalar indicating whether invalid read pairs should be rescued
rescue.ext: an integer scalar indicating the extension length for invalid read pairs

dedup: alogical scalar indicating whether marked duplicate reads should be ignored

ming: an integer scalar, specifying the minimum mapping quality score for an aligned read

restrict: a character vector containing the names of allowable chromosomes from which reads
will be extracted

discard: a GRanges object containing intervals in which any alignments will be discarded

Marked duplicate reads will be removed with dedup=TRUE. This may be necessary when many
rounds of PCR have been performed during library preparation. However, it is not recommended
for routine counting as it will interfere with the downstream statistical methods. Note that the
duplicate field must be set beforehand in the BAM file for this argument to have any effect.

Reads can also be filtered by their mapping quality scores if ming is specified at a non-NA value.
This is generally recommended to remove low-confidence alignments. The exact threshold for ming
will depend on the range of scores provided by the aligner. If ming=NA, no filtering on the score will
be performed.

If restrict is supplied, reads will only be extracted for the specified chromosomes. This is useful
to restrict the analysis to interesting chromosomes, e.g., no contigs/scaffolds or mitochondria. Con-
versely, if discard is set, a read will be removed if the corresponding alignment is wholly contained
within the supplied ranges. This is useful for removing reads in repeat regions.

The pet parameter can take values of "none"”, "both”, "first” or "second". If pet="none", reads
are assumed to be single-end. Each read will then be processed on its own merits. The other settings
for pet and the values of max.frag and rescue.pairs describe the treatment of paired-end data;
see below for more information.

readParam 17

Additional advice for paired-end data

Reads are first extracted in a single-end manner, using the parameters described above, e.g., discard,
ming, dedup. For pet="both", the extracted reads are grouped into proper pairs. Proper pairs are
defined as reads that are close together and in an inward-facing orientation. The fragment interval
is defined as that bounded by the 5’ ends of the two reads in a proper pair. Fragment sizes above
max . frag are removed; use getPETSizes to pick an appropriate value.

If rescue.pairs=FALSE, only reads in proper pairs are used to construct a fragment interval. Oth-
erwise, if rescue.pairs=TRUE, the function will first attempt to assign reads into proper pairs. For
the remaining reads in improper pairs, the read with the higher MAPQ score will be taken and direc-
tionally extended to a length of rescue.ext. The extended read will then be used as the fragment
interval. Similarly, any reads without a mapped mate will be extended. Note that both reads will be
rescued and extended for interchromosomal read pairs.

Finally, paired-end data can also be treated as single-end data by only using one read from each
pair with pet="first"” or "second”. This is useful for poor-quality data where the paired-end
procedure has obviously failed, e.g., with many interchromosomal read pairs or pairs with large
fragment lengths. Treating the data as single-end may allow the analysis to be salvaged.

In all cases, users should ensure that each BAM file containing paired-end data is properly synchro-
nized prior to count loading.

Constructor

readParam(pet="none", max.frag=500, rescue.pairs=FALSE, rescue.ext=200, dedup=FALSE, ming=NA, restri
Creates a readParam object. Each argument is placed in the corresponding slot, with coercion
into the appropriate type.

Subsetting

In the code snippets below, x is a readParam object.

x$name: Returns the value in slot name.

Other methods

In the code snippets below, x is a readParam object.

show(x): Describes the parameter settings in plain English.

reform(x, ...): Creates a new readParam object, based on the existing x. Any named arguments
in ... are used to modify the values of the slots in the new object, with type coercion as
necessary.
Author(s)
Aaron Lun
See Also

windowCounts, regionCounts, extractReads, getPETSizes

18 regionCounts

Examples

blah <- readParam()

blah <- readParam(discard=GRanges("chrA", IRanges(1, 10)))
blah <- readParam(restrict=chr2)

blah$pet

blah$dedup

Use reform if only some arguments need to be changed.
blah

reform(blah, dedup=TRUE)

reform(blah, pet="both"”, max.frag=212.0)

regionCounts Count reads overlapping each region

Description

Count the number of extended reads overlapping pre-specified regions

Usage

regionCounts(bam.files, regions, ext=100, param=readParam())

Arguments
bam.files a character vector containing paths to sorted and indexed BAM files
regions a GRanges object containing the regions over which reads are to be counted
ext an integer scalar describing the average length of the sequenced fragment
param a readParam object containing read extraction parameters

Details

This function simply provides a wrapper around countOverlaps for read counting into specified
regions. It is provided so as to allow for counting with awareness of the other parameters, e.g., ext,
pet. This allows users to coordinate region-based counts with those from windowCounts. Checking
that the output totals are the same between the two calls is strongly recommended.

Value

A SummarizedExperiment object is returned containing one integer matrix. Each entry of the
matrix contains the count for each library (column) at each region (row). The coordinates of each
region are stored as the rowData. The total number of reads in each library are stored as totals in
the colData.

Author(s)

Aaron Lun

SEmethods 19

See Also

countOverlaps, windowCounts, readParam, SummarizedExperiment

Examples

A low filter is only used here as the examples have very few reads.
bamFiles <- system.file("exdata”, c("repl.bam”, "rep2.bam"), package="csaw")
incoming <- GRanges(c(chrA, chrA, chrB, chrC),

IRanges(c(1, 500, 100, 1000), c(200, 1000, 700, 1500)))
regionCounts(bamFiles, regions=incoming)
regionCounts(bamFiles, regions=incoming, param=readParam(restrict="chrB"))

Loading PET data.

bamFile <- system.file("exdata”, "pet.bam”, package="csaw")
regionCounts(bamFile, regions=incoming, param=readParam(pet="both"))
regionCounts(bamFile, regions=incoming, param=readParam(max.frag=100,
pet="first", restrict="chrA"))

regionCounts(bamFile, regions=incoming, param=readParam(max.frag=100,
pet="both"”, restrict="chrA”, rescue.pairs=TRUE))

SEmethods Statistical wrappers for SummarizedExperiment objects

Description

Convenience wrappers for statistical routines operating on SummarizedExperiment objects

Usage
normalize(object, ...)
asDGEList(object, ...)
Arguments
object a SummarizedExperiment object, like that produced by windowCounts
other arguments to be passed to the function being wrapped
Details

Counts are extracted using the matrix corresponding to the first assay in the SummarizedExperiment
object. The total library size is taken from the totals entry in the column data; warnings will be
generated if this entry is not present. In the normalize method, the extracted counts and library
sizes are supplied to normalizeCounts, along wth arguments in Similarly, the asDGEList
method wraps the DGEList constructor.

Value

For normalize, either a numeric matrix or vector is returned; see normalizeCounts.
For asDGEList, a DGEList object is returned.

20 windowCounts

Author(s)

Aaron Lun

See Also

normalizeCounts, DGEList, windowCounts

Examples
bamFiles <- system.file("”exdata"”, c("repl.bam”, "rep2.bam"), package="csaw")
data <- windowCounts(bamFiles, width=100, filter=1)
normalize(data)

head(normalize(data, type="loess"))

asDGEList(data)
asDGEList(data, norm.factors=c(1.11, 2.23), group=c("a", "b"))

windowCounts Count reads overlapping each window

Description

Count the number of extended reads overlapping a sliding window at spaced positions across the
genome.

Usage

windowCounts(bam.files, spacing=50, width=1, ext=100, shift=0,
filter=NULL, bin=FALSE, param=readParam())

Arguments
bam.files a character vector containing paths to sorted and indexed BAM files
spacing an integer scalar specifying the distance between consecutive windows
width an integer scalar specifying the width of the window
ext an integer scalar describing the average length of the sequenced fragment
shift an integer scalar specifying how much the start of each window should be shifted
to the left
filter an integer scalar for the minimum count sum across libraries for each window
bin an integer scalar indicating whether binning should be performed

param a readParam object containing read extraction parameters

windowCounts 21

Details

A window is defined as a genomic interval of size equal to width. The value of width can be
interpreted as the width of the contact area between the DNA and protein. In practical terms, it
determines the spatial resolution of the analysis. Larger windows count reads over a larger region
which results in larger counts. This results in greater detection power at the cost of resolution.

By default, the first window on a chromosome starts at base position 1. This can be shifted to the
left by specifying an appropriate value for shift. New windows are found by sliding the current
window to the right by the specified spacing. Increasing spacing will reduce the frequency at
which counts are extracted from the genome. This results in some loss of resolution but it may be
necessary when machine memory is limited.

Each read in bam. files is extended by ext in the direction of the read to obtain a rough estimate of
the fragment boundaries. The number of fragments overlapping the window for each library is then
counted for each window position. For single-end data, the value of ext can be estimated using
correlateReads or from fragment length diagnostics during library preparation. For paired-end
data, the fragment boundaries can be computed exactly for proper pairs, by specifying pet="both"
in readParam. If rescue.pairs=TRUE, improperly paired reads are salvaged by directional exten-
sion to ext.

Windows will be removed if the count sum across all libraries is below filter. This reduces the
memory footprint of the output by not returning empty or near-empty windows, which are usually
uninteresting anyway. If filter=NULL, the count sum filter threshold is automatically defined as
the number of libraries multiplied by 5.

If bin is set, settings are internally adjusted so that all reads are counted into non-overlapping
adjacent bins of size width. Specifically, spacing is set to bin and filter is setto 1. Only the 5’
end of each read or left-most position of each fragment (for paired-end data) is used in counting.

Value

A SummarizedExperiment object is returned containing one integer matrix. Each entry of the
matrix contains the count for each library (column) at each window (row). The coordinates of each
window are stored as the rowData. The total number of reads in each library are stored as totals
in the colData.

Author(s)

Aaron Lun

See Also

correlateReads, readParam, SummarizedExperiment

Examples

A low filter is only used here as the examples have very few reads.
bamFiles <- system.file("”exdata”, c("repl.bam”, "rep2.bam"), package="csaw”
windowCounts(bamFiles, filter=1)

windowCounts(bamFiles, width=100, filter=1)

windowCounts(bamFiles, spacing=100, filter=1)

22

windowCounts

Loading PET data.

bamFile <- system.file("exdata”, "pet.bam”, package="csaw")

windowCounts(bamFile, param=readParam(pet="both"), filter=1)

windowCounts(bamFile, param=readParam(pet="first"), filter=1)

windowCounts(bamFile, param=readParam(max.frag=100, pet="both"), filter=1)
windowCounts(bamFile, param=readParam(max.frag=100, pet="both", restrict="chrA"), filter=1)

Running rescues of PET data (use -1 to coerce single-endedness).
windowCounts(bamFile, param=readParam(max.frag=50, pet="both”, rescue.pairs=TRUE), filter=1)

Index

*Topic annotation
detailRanges, 6
+Topic clustering
mergeWindows, 12
+Topic counting
readParam, 16
regionCounts, 18
windowCounts, 20
+Topic diagnostics
correlateReads, 3
getPETSizes, 11
+Topic documentation
csawUsersGuide, 5
xTopic normalization
normalizeCounts, 14
SEmethods, 19
xTopic testing
combineTests, 2
getBestTest, 9
*Topic visualization
extractReads, 8
$,readParam-method (readParam), 16

asDGEList (SEmethods), 19

asDGEList, SummarizedExperiment-method
(SEmethods), 19

average (SEmethods), 19

average,SummarizedExperiment-method
(SEmethods), 19

calcNormFactors, 14, 15
ccf, 5

colData, 18, 21
combineTests, 2, 10, 13
correlateReads, 3, 4, 21
countOverlaps, 18, 19
csawUsersGuide, 5

detailRanges, 6
DGEList, 19, 20

23

extractReads, 8, 17

getBestTest, 9
getPETSizes, 11, 17

loessFit, 14, 15
mergeWindows, 2, 3, 10, 12

normalize (SEmethods), 19
normalize,SummarizedExperiment-method
(SEmethods), 19
normalizeCounts, 14, 14, 19, 20
normalizeCyclicloess, 14, 15

readParam, 4, 9, 11, 12,16, 19, 21
readParam-class (readParam), 16

reform (readParam), 16

reform, readParam-method (readParam), 16
regionCounts, 17, 18

rowData, 18, 21

SEmethods, 19

show, readParam-method (readParam), 16
SummarizedExperiment, I8, 19, 21
Sweave, 5

system, 6

windowCounts, 13, 17-19, 20, 20

	combineTests
	correlateReads
	csawUsersGuide
	detailRanges
	extractReads
	getBestTest
	getPETSizes
	mergeWindows
	normalizeCounts
	readParam
	regionCounts
	SEmethods
	windowCounts
	Index

