Package ‘beachmat’

April 10, 2023
Version 2.14.2
Date 2023-04-06
Title Compiling Bioconductor to Handle Each Matrix Type
Encoding UTF-8
Imports methods, DelayedArray (>= 0.15.14), BiocGenerics, Matrix, Rcpp

Suggests testthat, BiocStyle, knitr, rmarkdown, remdcheck,
BiocParallel, HDF5Array

LinkingTo Rcpp
biocViews DataRepresentation, Datalmport, Infrastructure

Description Provides a consistent C++ class interface for reading from and
writing data to a variety of commonly used matrix types. Ordinary
matrices and several sparse/dense Matrix classes are directly supported,
third-party S4 classes may be supported by external linkage, while all
other matrices are handled by DelayedArray block processing.

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

SystemRequirements C++11

RoxygenNote 7.1.1

git_url https://git.bioconductor.org/packages/beachmat
git branch RELEASE 3 16

git_last_commit bfc3e8a

git_last_commit_date 2023-04-06

Date/Publication 2023-04-10

Author Aaron Lun [aut, cre],
Hervé Pages [aut],
Mike Smith [aut]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

1

2

colBlockApply

R topics documented:

colBlockApply e 2
realizeFileBackedMatrix e 4
tOCSPATSE . . . ¢ o i e e e e e e e 5
whichNonZero e 6
Index 8
colBlockApply Apply over blocks of columns or rows
Description

Apply a function over blocks of columns or rows using DelayedArray’s block processing mecha-

nism.
Usage
colBlockApply(
X’
FUN,
grid = NULL,

coerce.sparse = TRUE,
BPPARAM = getAutoBPPARAM()

)
rowBlockApply (
X,
FUN,
grid = NULL,

coerce.sparse = TRUE,
BPPARAM = getAutoBPPARAM()

Arguments

X

FUN

grid

A matrix-like object to be split into blocks and looped over. This can be of any
class that respects the matrix contract.

A function that operates on columns or rows in X, for colBlockApply and
rowBlockApply respectively. Ordinary matrices, CsparseMatrix or SparseAr-
raySeed objects may be passed as the first argument.

Further arguments to pass to FUN.

An ArrayGrid object specifying how x should be split into blocks. For colBlockApply
and rowBlockApply, blocks should consist of consecutive columns and rows,
respectively. Alternatively, this can be set to TRUE or FALSE, see Details.

colBlockApply 3

coerce.sparse Logical scalar indicating whether blocks of a sparse DelayedMatrix x should be
automatically coerced into CsparseMatrix objects.

BPPARAM A BiocParallelParam object from the BiocParallel package, specifying how par-
allelization should be performed across blocks.

Details

This is a wrapper around blockApply that is dedicated to looping across rows or columns of x. The
aim is to provide a simpler interface for the common task of applying across a matrix, along with
a few modifications to improve efficiency for parallel processing and for natively supported x.

Note that the fragmentation of x into blocks is not easily predictable, meaning that FUN should be
capable of operating on each row/column independently. Users can retrieve the current location of
each block of x by calling currentViewport inside FUN.

If grid is not explicitly set to an ArrayGrid object, it can take several values:

* If TRUE, the function will choose a grid that (i) respects the memory limits in getAutoBlockSize
and (ii) fragments x into sufficiently fine chunks that every worker in BPPARAM gets to do some-
thing. If FUN might make large allocations, this mode should be used to constrain memory
usage.

e The default grid=NULL is very similar to TRUE except that that memory limits are ignored
when x is of any type that can be passed directly to FUN. This avoids unnecessary copies of x
and is best used when FUN itself does not make large allocations.

* If FALSE, the function will choose a grid that covers the entire x. This is provided for com-
pleteness and is only really useful for debugging.

The default of coerce.sparse=TRUE will generate dgCMatrix objects during block processing of
a sparse DelayedMatrix x. This is convenient as it avoids the need for FUN to specially handle
SparseArraySeed objects. If the coercion is not desired (e.g., to preserve integer values in x), it can
be disabled with coerce. sparse=FALSE.

Value
A list of length equal to the number of blocks, where each entry is the output of FUN for the results
of processing each the rows/columns in the corresponding block.

See Also

blockApply, for the original DelayedArray implementation.

toCsparse, to convert SparseArraySeeds to CsparseMatrix objects prior to further processing in
FUN.

Examples

x <= matrix(runif(10000), ncol=10)
str(colBlockApply(x, colSums))
str(rowBlockApply(x, rowSums))

library(Matrix)
y <- rsparsematrix (10000, 10000, density=0.01)

4 realizeFileBackedMatrix

str(colBlockApply(y, colSums))
str(rowBlockApply(y, rowSums))

library(DelayedArray)

z <- DelayedArray(y) + 1
str(colBlockApply(z, colSums))
str(rowBlockApply(z, rowSums))

We can also force multiple blocks:
library(BiocParallel)

BPPARAM <- SnowParam(2)

str(colBlockApply(x, colSums, BPPARAM=BPPARAM))
str(rowBlockApply(x, rowSums, BPPARAM=BPPARAM))

realizeFileBackedMatrix
Realize a file-backed DelayedMatrix

Description

Realize a file-backed DelayedMatrix into its corresponding in-memory format.

Usage

realizeFileBackedMatrix(x)

isFileBackedMatrix(x)

Arguments

X A DelayedMatrix object.

Details

A file-backed matrix representation is recognized based on whether it has a path method for any one
of its seeds. If so, and the "beachmat.realizeFileBackedMatrix" option is not FALSE, we will
load it into memory. This is intended for DelayedMatrix objects that have already been subsetted
(e.g., to highly variable genes), which can be feasibly loaded into memory for rapid calculations.

Value

For realizeFileBackedMatrix, an ordinary matrix or adgCMatrix, depending on whether is_sparse(x).

For isFileBackedMatrix, a logical scalar indicating whether x has file-backed components.

Author(s)

Aaron Lun

toCsparse 5

Examples

mat <- matrix(rnorm(50), ncol=5)
realizeFileBackedMatrix(mat) # no effect

library(HDF5Array)
mat2 <- as(mat, "HDF5Array")
realizeFileBackedMatrix(mat2) # realized into memory

toCsparse Convert a SparseArraySeed to a CsparseMatrix

Description

Exactly what it says in the title.

Usage
toCsparse(x)
Arguments
X Any object produced by block processing with colBlockApply or rowBlockApply.
This can be a matrix, sparse matrix or a two-dimensional SparseArraySeed.
Details

This is intended for use inside functions to be passed to colBlockApply or rowBlockApply. The
idea is to pre-process blocks for user-defined functions that don’t know how to deal with SparseAr-
raySeed objects, which is often the case for R-defined functions that do not benefit from beachmat’s
C++ abstraction.

Value
x is returned unless it was a SparseArraySeed, in which case an appropriate CsparseMatrix object
is returned instead.

Author(s)

Aaron Lun

Examples

library(DelayedArray)

out <- SparseArraySeed(c(10, 10),
nzindex=cbind(1:10, sample(10)),
nzdata=runif(10))

toCsparse(out)

6 whichNonZero

whichNonZero Find non-zero entries of a matrix

Description

Finds the non-zero entries of a matrix in the most efficient manner for each matrix representation.
Not sure there’s much more to say here.

Usage
whichNonZero(x, ...)

S4 method for signature 'ANY'
whichNonZero(x, ...)

S4 method for signature 'TsparseMatrix'
whichNonZero(x, ...)

S4 method for signature 'CsparseMatrix'
whichNonZero(x, ...)

S4 method for signature 'SparseArraySeed'
whichNonZero(x, ...)

S4 method for signature 'DelayedMatrix’

whichNonZero(x, BPPARAM = NULL, ...)
Arguments
X A numeric matrix-like object, usually sparse in content if not in representation.

For the generic, additional arguments to pass to the specific methods.
For the methods, additional arguments that are currently ignored.

BPPARAM A BiocParallelParam object from the BiocParallel package controlling how par-
allelization should be performed. Only used when x is a DelayedMatrix object;
defaults to no parallelization.

Value

A list containing i, an integer vector of the row indices of all non-zero entries; j, an integer vector
of the column indices of all non-zero entries; and x, a (usually atomic) vector of the values of the
non-zero entries.

Author(s)

Aaron Lun

whichNonZero

See Also

which, obviously.

Examples

X <- Matrix::rsparsematrix(le6, 1e6, 0.000001)
out <- whichNonZero(x)
str(out)

Index

apply, 3
ArrayGrid, 2, 3

blockApply, 3

colBlockApply, 2, 5
CsparseMatrix, 2, 3,5
currentViewport, 3

DelayedMatrix, 3, 4, 6
dgCMatrix, 3, 4

getAutoBlockSize, 3

is_sparse, 4
isFileBackedMatrix
(realizeFileBackedMatrix), 4

path, 4

realizeFileBackedMatrix, 4
rowBlockApply, 5
rowBlockApply (colBlockApply), 2

SparseArraySeed, 2, 3, 5
toCsparse, 3,5

which, 7

whichNonZero, 6

whichNonZero, ANY-method (whichNonZero),
6

whichNonZero,CsparseMatrix-method
(whichNonZero), 6

whichNonZero,DelayedMatrix-method
(whichNonZero), 6

whichNonZero, SparseArraySeed-method
(whichNonZero), 6

whichNonZero, TsparseMatrix-method
(whichNonZero), 6

	colBlockApply
	realizeFileBackedMatrix
	toCsparse
	whichNonZero
	Index

