
Package ‘ChIPpeakAnno’
April 22, 2016

Type Package

Title Batch annotation of the peaks identified from either ChIP-seq,
ChIP-chip experiments or any experiments resulted in large
number of chromosome ranges

Version 3.4.6

Date 2016-02-10

Author Lihua Julie Zhu, Jianhong Ou, Jun Yu, Herve Pages, Claude Gazin,
Nathan Lawson, Ryan Thompson, Simon Lin, David Lapointe and
Michael Green

Maintainer Lihua Julie Zhu <julie.zhu@umassmed.edu>,
Jianhong Ou <Jianhong.ou@umassmed.edu>

Depends R (>= 3.1), methods, grid, IRanges, Biostrings, GenomicRanges,
S4Vectors, VennDiagram

Imports BiocGenerics (>= 0.15.1), GO.db, biomaRt, BSgenome,
GenomicFeatures, GenomeInfoDb, matrixStats, AnnotationDbi,
limma, multtest, RBGL, graph, BiocInstaller, stats, regioneR,
DBI, ensembldb, Biobase

Suggests reactome.db, BSgenome.Ecoli.NCBI.20080805, org.Ce.eg.db,
org.Hs.eg.db, BSgenome.Celegans.UCSC.ce10,
BSgenome.Drerio.UCSC.danRer7, EnsDb.Hsapiens.v75,
EnsDb.Hsapiens.v79, TxDb.Hsapiens.UCSC.hg19.knownGene,
TxDb.Hsapiens.UCSC.hg38.knownGene, gplots, RUnit, BiocStyle,
rtracklayer, knitr

Description The package is to facilitate the downstream analysis for
ChIP-seq experiments. It includes functions to find the nearest
gene, exon, miRNA or custom features such as the most conserved
elements and other transcription factor binding sites supplied
by users, retrieve the sequences around the peak, obtain enriched
Gene Ontology (GO) terms or pathways. Starting 2.0.5, new functions
have been added for finding the peaks with bi-directional promoters
with summary statistics (peaksNearBDP), for summarizing the occurrence
of motifs in peaks (summarizePatternInPeaks) and for adding other IDs
to annotated peaks or enrichedGO (addGeneIDs). Starting 3.4, we also

1

2 R topics documented:

implement functions for permutation test to determine the association
between two sets of peaks, and to plot heatmaps for given feature/peak
ranges. This package leverages the biomaRt, IRanges, Biostrings,
BSgenome, GO.db, multtest and stat packages.

License GPL (>= 2)

LazyLoad yes

biocViews Annotation, ChIPSeq, ChIPchip

VignetteBuilder knitr

NeedsCompilation no

R topics documented:
ChIPpeakAnno-package . 3
addAncestors . 4
addGeneIDs . 5
annoGR-class . 7
annotatedPeak . 8
annotatePeakInBatch . 9
assignChromosomeRegion . 13
BED2RangedData . 15
bindist-class . 16
binOverFeature . 17
ChIPpeakAnno-deprecated . 18
condenseMatrixByColnames . 20
convert2EntrezID . 20
countPatternInSeqs . 21
egOrgMap . 22
enrichedGO . 23
ExonPlusUtr.human.GRCh37 . 24
featureAlignedDistribution . 25
featureAlignedHeatmap . 26
featureAlignedSignal . 27
findOverlappingPeaks . 28
findOverlapsOfPeaks . 30
findVennCounts . 32
getAllPeakSequence . 33
getAnnotation . 34
getEnrichedGO . 35
getEnrichedPATH . 37
getVennCounts . 39
GFF2RangedData . 40
HOT.spots . 41
makeVennDiagram . 42
mergePlusMinusPeaks . 44
myPeakList . 46
peakPermTest . 46

ChIPpeakAnno-package 3

Peaks.Ste12.Replicate1 . 48
Peaks.Ste12.Replicate2 . 48
Peaks.Ste12.Replicate3 . 49
peaksNearBDP . 50
permPool-class . 52
pie1 . 53
preparePool . 54
summarizePatternInPeaks . 55
toGRanges . 56
translatePattern . 57
TSS.human.GRCh37 . 58
TSS.human.GRCh38 . 59
TSS.human.NCBI36 . 59
TSS.mouse.GRCm38 . 60
TSS.mouse.NCBIM37 . 61
TSS.rat.RGSC3.4 . 61
TSS.rat.Rnor_5.0 . 62
TSS.zebrafish.Zv8 . 63
TSS.zebrafish.Zv9 . 64
wgEncodeTfbsV3 . 64
write2FASTA . 66

Index 67

ChIPpeakAnno-package Batch annotation of the peaks identified from either ChIP-seq or ChIP-
chip experiments.

Description

The package includes functions to retrieve the sequences around the peak, obtain enriched Gene On-
tology (GO) terms, find the nearest gene, exon, miRNA or custom features such as most conserved
elements and other transcription factor binding sites leveraging biomaRt, IRanges, Biostrings, BSgenome,
GO.db, hypergeometric test phyper and multtest package.

Details

Package: ChIPpeakAnno
Type: Package
Version: 3.0.0
Date: 2014-10-24
License: LGPL
LazyLoad: yes

4 addAncestors

Author(s)

Lihua Julie Zhu, Jianhong Ou, Herve Pages, Claude Gazin, Nathan Lawson, Simon Lin, David
Lapointe and Michael Green

Maintainer: Jianhong Ou <jianhong.ou@umassmed.edu>, Lihua Julie Zhu <julie.zhu@umassmed.edu>

References

1. Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.
2. Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypoth-
esis testing under dependency. Annals of Statistics. Accepted.
3. S. Durinck et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.
4. S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray
experiments.
5. Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hy-
pothesis, Technical Report #633 of UCB Stat. http://www.stat.berkeley.edu/~gyc
6. Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, Biometrika.
Vol. 75: 800-802.
7. S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist.. Vol.
6: 65-70.
8. N. L. Johnson,S. Kotz and A. W. Kemp (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley
9. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237.

Examples

if(interactive()){
data(myPeakList)
library(EnsDb.Hsapiens.v75)
anno <- annoGR(EnsDb.Hsapiens.v75)
annotatedPeak <-
annotatePeakInBatch(myPeakList[1:6], AnnotationData=anno)

}

addAncestors Add GO IDs of the ancestors for a given vector of GO ids

Description

Add GO IDs of the ancestors for a given vector of GO IDs leveraging GO.db package

Usage

addAncestors(go.ids, ontology = c("bp", "cc", "mf"))

addGeneIDs 5

Arguments

go.ids A matrix with 4 columns: first column is GO IDs and 4th column is entrez IDs.

ontology bp for biological process, cc for cellular component and mf for molecular func-
tion

Value

A vector of GO IDs containing the input GO IDs with the GO IDs of their ancestors added

Author(s)

Lihua Julie Zhu

Examples

go.ids = cbind(c("GO:0008150", "GO:0005576", "GO:0003674"),
c("ND", "IDA", "ND"),
c("BP", "BP", "BP"), c("1", "1", "1"))

addAncestors(go.ids, ontology="bp")

addGeneIDs Add common IDs to annotated peaks such as gene symbol, entrez ID,
ensemble gene id and refseq id.

Description

Add common IDs to annotated peaks such as gene symbol, entrez ID, ensemble gene id and
refseq id leveraging organism annotation dataset. For example, org.Hs.eg.db is the dataset from
orgs.Hs.eg.db package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db pack-
age for mouse

Usage

addGeneIDs(annotatedPeak, orgAnn, IDs2Add=c("symbol"),
feature_id_type="ensembl_gene_id", silence=TRUE, mart)

Arguments

annotatedPeak GRanges or a vector of feature IDs

orgAnn organism annotation dataset such as org.Hs.eg.db

IDs2Add a vector of annotation identifiers to be added
feature_id_type

type of ID to be annotated, default is ensembl_gene_id

silence TRUE or FALSE. If TRUE, will not show unmapped entrez id for feature ids.

mart mart object, see useMart of biomaRt package for details

6 addGeneIDs

Details

One of orgAnn and mart should be assigned.

• If orgAnn is given, parameter feature_id_type should be ensemble_gene_id, entrez_id, gene_symbol,
gene_alias or refseq_id. And parameter IDs2Add can be set to any combination of identifiers
such as "accnum", "ensembl", "ensemblprot", "ensembltrans", "entrez_id", "enzyme", "gene-
name", "pfam", "pmid", "prosite", "refseq", "symbol", "unigene" and "uniprot". Some IDs are
unique to an organism, such as "omim" for org.Hs.eg.db and "mgi" for org.Mm.eg.db.
Here is the definition of different IDs :

– accnum: GenBank accession numbers
– ensembl: Ensembl gene accession numbers
– ensemblprot: Ensembl protein accession numbers
– ensembltrans: Ensembl transcript accession numbers
– entrez_id: entrez gene identifiers
– enzyme: EC numbers
– genename: gene name
– pfam: Pfam identifiers
– pmid: PubMed identifiers
– prosite: PROSITE identifiers
– refseq: RefSeq identifiers
– symbol: gene abbreviations
– unigene: UniGene cluster identifiers
– uniprot: Uniprot accession numbers
– omim: OMIM(Mendelian Inheritance in Man) identifiers
– mgi: Jackson Laboratory MGI gene accession numbers

• If mart is used instead of orgAnn, for valid parameter feature_id_type and IDs2Add pa-
rameters, please refer to getBM in bioMart package. Parameter feature_id_type should be
one valid filter name listed by listFilters(mart) such as ensemble_gene_id. And parameter
IDs2Add should be one or more valid attributes name listed by listAttributes(mart) such as
external_gene_id, entrezgene, wikigene_name, or mirbase_transcript_name.

Value

GRanges if the input is a GRanges or dataframe if input is a vector.

Author(s)

Jianhong Ou, Lihua Julie Zhu

References

http://www.bioconductor.org/packages/release/data/annotation/

See Also

getBM, AnnotationDbi

annoGR-class 7

Examples

data(annotatedPeak)
library(org.Hs.eg.db)
addGeneIDs(annotatedPeak[1:6,],orgAnn="org.Hs.eg.db",

IDs2Add=c("symbol","omim"))
##addGeneIDs(annotatedPeak$feature[1:6],orgAnn="org.Hs.eg.db",
IDs2Add=c("symbol","genename"))
if(interactive()){
mart <- useMart("ENSEMBL_MART_ENSEMBL",host="www.ensembl.org",

dataset="hsapiens_gene_ensembl")
##mart <- useMart(biomart="ensembl",dataset="hsapiens_gene_ensembl")
addGeneIDs(annotatedPeak[1:6,], mart=mart,

IDs2Add=c("hgnc_symbol","entrezgene"))
}

annoGR-class Class annoGR

Description

An object of class annoGR represents the annotation data could be used by annotationPeakInBatch.

Usage

S4 method for signature 'GRanges'
annoGR(ranges, feature="group", date, ...)

S4 method for signature 'TxDb'
annoGR(ranges, feature=c(

"gene", "transcript", "exon",
"CDS", "fiveUTR", "threeUTR",
"microRNA", "tRNAs", "geneModel"),

date, source, metadata, OrganismDb)
S4 method for signature 'EnsDb'

annoGR(ranges,
feature=c("gene", "transcript", "exon", "disjointExons"),
date, source, metadata)

Arguments

ranges an object of GRanges, TxDb or EnsDb

feature annotation type

date a Date object

... could be following parameters

source character, where the annotation comes from

metadata data frame, metadata from annotation

OrganismDb an object of OrganismDb. It is used for extracting gene symbol for geneModel
group for TxDb

8 annotatedPeak

Objects from the Class

Objects can be created by calls of the form new("annoGR", date, elementMetadata, feature, metadata, ranges, seqinfo, seqnames, source, strand)

Slots

seqnames, ranges, strand, elementMetadata, seqinfo slots inherit from GRanges. The ranges
must have unique names.

source character, where the annotation comes from

date a Date object

feature annotation type, could be "gene", "exon", "transcript", "CDS", "fiveUTR", "threeUTR",
"microRNA", "tRNAs", "geneModel" for TxDb object, or "gene", "exon" "transcript" for
EnsDb object

metadata data frame, metadata from annotation

Coercion

as(from, "annoGR"): Creates a annoGR object from a GRanges object.

as(from, "GRanges"): Create a GRanges object from a annoGR object.

Methods

info Print basic info for annoGR object

annoGR("TxDb"), annoGR("EnsDb") Create a annoGR object from TxDb or EnsDb object

Author(s)

Jianhong Ou

Examples

if(interactive()){
library(EnsDb.Hsapiens.v79)
anno <- annoGR(EnsDb.Hsapiens.v79)

}

annotatedPeak Annotated Peaks

Description

TSS annotated putative STAT1-binding regions that are identified in un-stimulated cells using ChIP-
seq technology (Robertson et al., 2007)

Usage

data(annotatedPeak)

annotatePeakInBatch 9

Format

GRanges with slot start holding the start position of the peak, slot end holding the end position
of the peak, slot names holding the id of the peak, slot strand holding the strands and slot space
holding the chromosome location where the peak is located. In addition, the following variables are
included.

feature id of the feature such as ensembl gene ID

insideFeature upstream: peak resides upstream of the feature; downstream: peak resides down-
stream of the feature; inside: peak resides inside the feature; overlapStart: peak overlaps with
the start of the feature; overlapEnd: peak overlaps with the end of the feature; includeFeature:
peak include the feature entirely

distancetoFeature distance to the nearest feature such as transcription start site

start_position start position of the feature such as gene

end_position end position of the feature such as the gene

Details

obtained by data(TSS.human.GRCh37)

data(myPeakList)

annotatePeakInBatch(myPeakList, AnnotationData = TSS.human.GRCh37, output="b", multiple=F)

Examples

data(annotatedPeak)
str(annotatedPeak)
if (interactive()) {
y = annotatedPeak$distancetoFeature[!is.na(annotatedPeak$distancetoFeature)]
hist(as.numeric(as.character(y)),

xlab="Distance To Nearest TSS", main="", breaks=1000,
ylim=c(0, 50), xlim=c(min(as.numeric(as.character(y)))-100,
max(as.numeric(as.character(y)))+100))
}

annotatePeakInBatch Obtain the distance to the nearest TSS, miRNA, and/or exon for a list
of peaks

Description

Obtain the distance to the nearest TSS, miRNA, exon et al for a list of peak locations leveraging
IRanges and biomaRt package

10 annotatePeakInBatch

Usage

annotatePeakInBatch(myPeakList, mart, featureType = c("TSS", "miRNA","Exon"),
AnnotationData, output=c("nearestLocation", "overlapping", "both",

"shortestDistance", "inside",
"upstream&inside", "inside&downstream",
"upstream", "downstream",
"upstreamORdownstream"),

multiple=c(TRUE,FALSE),
maxgap=0L, PeakLocForDistance=c("start", "middle", "end"),
FeatureLocForDistance=c("TSS", "middle","start", "end","geneEnd"),
select=c("all", "first","last","arbitrary"),
ignore.strand=TRUE)

Arguments

myPeakList A GRanges object

mart A mart object, used if AnnotationData is not supplied, see useMart of bioMaRt
package for details

featureType A charcter vector used with mart argument if AnnotationData is not supplied;
it’s value is "TSS"", "miRNA"" or "Exon"

AnnotationData A GRanges or annoGR oject. It can be obtained from function getAnnotation or
customized annotation of class GRanges containing additional variable: strand
(1 or + for plus strand and -1 or - for minus strand). Pre-compliled annota-
tions, such as TSS.human.NCBI36, TSS.mouse.NCBIM37, TSS.rat.RGSC3.4
and TSS.zebrafish.Zv8, are provided by this package (attach them with data()
function). Another method to provide annotation data is to obtain through biomaRt
real time by using the parameters of mart and featureType

output nearestLocation (default): will output the nearest features calculated as Peak-
LocForDistance - FeatureLocForDistance; overlapping: will output overlapping
features with maximum gap specified as maxgap between peak range and fea-
ture range; shortestDistance: will output nearest features; both: will output all
the nearest features, in addition, will output any features that overlap the peak
that is not the nearest features. upstream&inside: will output all upstream and
overlapping features with maximum gap. inside&downstream: will output all
downstream and overlapping features with maximum gap. upstream: will output
all upstream features with maximum gap. downstream: will output all down-
stream features with maximum gap. upstreamORdownstream: will output all
upstream features with maximum gap or downstream with maximum gap.

multiple Not applicable when output is nearest. TRUE: output multiple overlapping fea-
tures for each peak. FALSE: output at most one overlapping feature for each
peak. This parameter is kept for backward compatibility, please use select.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping

PeakLocForDistance

Specify the location of peak for calculating distance,i.e., middle means using
middle of the peak to calculate distance to feature, start means using start of

annotatePeakInBatch 11

the peak to calculate the distance to feature. To be compatible with previous
version, by default using start

FeatureLocForDistance

Specify the location of feature for calculating distance,i.e., middle means using
middle of the feature to calculate distance of peak to feature, start means using
start of the feature to calculate the distance to feature, TSS means using start
of feature when feature is on plus strand and using end of feature when feature
is on minus strand, geneEnd means using end of feature when feature is on
plus strand and using start of feature when feature is on minus strand. To be
compatible with previous version, by default using TSS

select "all" may return multiple overlapping peaks, "first" will return the first overlap-
ping peak, "last" will return the last overlapping peak and "arbitrary" will return
one of the overlapping peaks.

ignore.strand When set to TRUE, the strand information is ignored in the annotation.

Value

An object of GRanges with slot start holding the start position of the peak, slot end holding the end
position of the peak, slot space holding the chromosome location where the peak is located, slot
rownames holding the id of the peak. In addition, the following variables are included.

feature id of the feature such as ensembl gene ID

insideFeature upstream: peak resides upstream of the feature; downstream: peak resides down-
stream of the feature; inside: peak resides inside the feature; overlapStart: peak
overlaps with the start of the feature; overlapEnd: peak overlaps with the end of
the feature; includeFeature: peak include the feature entirely

distancetoFeature

distance to the nearest feature such as transcription start site. By default, the
distance is calculated as the distance between the start of the binding site and the
TSS that is the gene start for genes located on the forward strand and the gene
end for genes located on the reverse strand. The user can specify the location of
peak and location of feature for calculating this

start_position start position of the feature such as gene

end_position end position of the feature such as the gene

strand 1 or + for positive strand and -1 or - for negative strand where the feature is
located

shortestDistance

The shortest distance from either end of peak to either end the feature.
fromOverlappingOrNearest

nearest: indicates this feature’s start (feature’s end for features at minus strand)
is closest to the peak start; Overlapping: indicates this feature overlaps with this
peak although it is not the nearest feature start

Author(s)

Lihua Julie Zhu, Jianhong Ou

12 annotatePeakInBatch

References

1. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

2. Zhu L (2013). "Integrative analysis of ChIP-chip and ChIP-seq dataset." In Lee T and Luk ACS
(eds.), Tilling Arrays, volume 1067, chapter 4, pp. -19. Humana Press. http://dx.doi.org/10.1007/978-
1-62703-607-8_8

See Also

getAnnotation, findOverlappingPeaks, makeVennDiagram, addGeneIDs, peaksNearBDP, summa-
rizePatternInPeaks, annoGR

Examples

#if (interactive()){
example 1: annotate myPeakList by TxDb or EnsDb.
data(myPeakList)
library(EnsDb.Hsapiens.v75)
annoData <- annoGR(EnsDb.Hsapiens.v75)
annotatePeak = annotatePeakInBatch(myPeakList[1:6], AnnotationData=annoData)
annotatePeak

example 2: annotate myPeakList (GRanges)
with TSS.human.NCBI36 (Granges)
data(TSS.human.NCBI36)
annotatedPeak = annotatePeakInBatch(myPeakList[1:6],

AnnotationData=TSS.human.NCBI36)
annotatedPeak

example 3: you have a list of transcription factor biding sites from
literature and are interested in determining the extent of the overlap
to the list of peaks from your experiment. Prior calling the function
annotatePeakInBatch, need to represent both dataset as RangedData
where start is the start of the binding site, end is the end of the
binding site, names is the name of the binding site, space and strand
are the chromosome name and strand where the binding site is located.

myexp <- GRanges(seqnames=c(6,6,6,6,5,4,4),
IRanges(start=c(1543200,1557200,1563000,1569800,

167889600,100,1000),
end=c(1555199,1560599,1565199,1573799,

167893599,200,1200),
names=c("p1","p2","p3","p4","p5","p6", "p7")),

strand="+")
literature <- GRanges(seqnames=c(6,6,6,6,5,4,4),

IRanges(start=c(1549800,1554400,1565000,1569400,
167888600,120,800),

end=c(1550599,1560799,1565399,1571199,
167888999,140,1400),

names=c("f1","f2","f3","f4","f5","f6","f7")),

assignChromosomeRegion 13

strand=rep(c("+", "-"), c(5, 2)))
annotatedPeak1 <- annotatePeakInBatch(myexp,

AnnotationData=literature)
pie(table(annotatedPeak1$insideFeature))
annotatedPeak1
use toGRanges or rtracklayer::import to convert BED or GFF format
to GRanges before calling annotatePeakInBatch
test.bed <- data.frame(space=c("4", "6"),

start=c("100", "1000"),
end=c("200", "1100"),
name=c("peak1", "peak2"))

test.GR = toGRanges(test.bed)
annotatePeakInBatch(test.GR, AnnotationData = literature)

#}

assignChromosomeRegion

Summarize peak distribution over exon, intron, enhancer, proximal
promoter, 5 prime UTR and 3 prime UTR

Description

Summarize peak distribution over exon, intron, enhancer, proximal promoter, 5 prime UTR and 3
prime UTR

Usage

assignChromosomeRegion(peaks.RD, exon, TSS, utr5, utr3,
proximal.promoter.cutoff=1000L, immediate.downstream.cutoff=1000L,
nucleotideLevel=FALSE, precedence=NULL, TxDb=NULL)

Arguments

peaks.RD peaks in GRanges: See example below

exon exon data obtained from getAnnotation or customized annotation of class GRanges
containing additional variable: strand (1 or + for plus strand and -1 or - for mi-
nus strand). This parameter is for backward compatibility only. TxDb should be
used instead.

TSS TSS data obtained from getAnnotation or customized annotation of class GRanges
containing additional variable: strand (1 or + for plus strand and -1 or - for minus
strand). For example, data(TSS.human.NCBI36),data(TSS.mouse.NCBIM37),
data(TSS.rat.RGSC3.4) and data(TSS.zebrafish.Zv8). This parameter is for back-
ward compatibility only. TxDb should be used instead.

utr5 5 prime UTR data obtained from getAnnotation or customized annotation of
class GRanges containing additional variable: strand (1 or + for plus strand and
-1 or - for minus strand). This parameter is for backward compatibility only.
TxDb should be used instead.

14 assignChromosomeRegion

utr3 3 prime UTR data obtained from getAnnotation or customized annotation of
class GRanges containing additional variable: strand (1 or + for plus strand and
-1 or - for minus strand). This parameter is for backward compatibility only.
TxDb should be used instead.

proximal.promoter.cutoff

Specify the cutoff in bases to classify proximal promoter or enhencer. Peaks that
reside within proximal.promoter.cutoff upstream from or overlap with transcrip-
tion start site are classified as proximal promoters. Peaks that reside upstream
of the proximal.promoter.cutoff from gene start are classified as enhancers. The
default is 1000 bases.

immediate.downstream.cutoff

Specify the cutoff in bases to classify immediate downstream region or enhancer
region. Peaks that reside within immediate.downstream.cutoff downstream of
gene end but not overlap 3 prime UTR are classified as immediate downstream.
Peaks that reside downstream over immediate.downstreatm.cutoff from gene
end are classified as enhancers. The default is 1000 bases.

nucleotideLevel

Logical. Choose between peak centric and nucleotide centric view. Default=FALSE

precedence If no precedence specified, double count will be enabled, which means that if
a peak overlap with both promoter and 5’UTR, both promoter and 5’UTR will
be incremented. If a precedence order is specified, for example, if promoter is
specified before 5’UTR, then only promoter will be incremented for the same ex-
ample. The values could be any conbinations of "Promoters", "immediateDown-
stream", "fiveUTRs", "threeUTRs", "Exons" and "Introns", Default=NULL

TxDb an object of TxDb

Value

A list of two named vectors: percentage and jacard (Jacard Index). The information in the vectors:

Exons Percent or the picard index of the peaks resided in exon regions.

Introns Percent or the picard index of the peaks resided in intron regions.

fiveUTRs Percent or the picard index of the peaks resided in 5 prime UTR regions.

threeUTRs Percent or the picard index of the peaks resided in 3 prime UTR regions.

Promoter Percent or the picard index of the peaks resided in proximal promoter regions.

ImmediateDownstream

Percent or the picard index of the peaks resided in immediate downstream re-
gions.

Enhancer.Silencer

Percent or the picard index of the peaks resided in enhancer/silencer regions.

Author(s)

Jianhong Ou, Lihua Julie Zhu

BED2RangedData 15

References

1. Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

2. Zhu L.J. (2013) Integrative analysis of ChIP-chip and ChIP-seq dataset. Methods Mol Biol.
2013;1067:105-24. doi: 10.1007/978-1-62703-607-8_8.

See Also

annotatePeakInBatch, findOverlapsOfPeaks,getEnriched, makeVennDiagram,addGeneIDs, peaksNearBDP,summarizePatternInPeaks

Examples

if (interactive()){
##Display the list of genomes available at UCSC:
#library(rtracklayer)
#ucscGenomes()[, "db"]
Display the list of Tracks supported by makeTxDbFromUCSC()
#supportedUCSCtables()
##Retrieving a full transcript dataset for Human from UCSC
##TranscriptDb <-
makeTxDbFromUCSC(genome="hg19", tablename="ensGene")
if(require(TxDb.Hsapiens.UCSC.hg19.knownGene)){

TxDb <- TxDb.Hsapiens.UCSC.hg19.knownGene
exons <- exons(TxDb, columns=NULL)
fiveUTRs <- unique(unlist(fiveUTRsByTranscript(TxDb)))
Feature.distribution <-

assignChromosomeRegion(exons, nucleotideLevel=TRUE, TxDb=TxDb)
barplot(Feature.distribution$percentage)
assignChromosomeRegion(fiveUTRs, nucleotideLevel=FALSE, TxDb=TxDb)
data(myPeakList)
assignChromosomeRegion(myPeakList, nucleotideLevel=TRUE,

precedence=c("Promoters", "immediateDownstream",
"fiveUTRs", "threeUTRs",
"Exons", "Introns"),

TxDb=TxDb)
}

}

BED2RangedData Convert BED format to RangedData

Description

Convert BED format to RangedData. This function will be depreciated.

Usage

BED2RangedData(data.BED,header=FALSE, ...)

16 bindist-class

Arguments

data.BED BED format data frame or BED filename, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format1
for details

header TRUE or FALSE, default to FALSE, indicates whether data.BED file has BED
header

... any parameter need to be passed into read.delim function

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position
of the feature, slot names holding the id of the feature, slot space holding the chromosome location
where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located.
Default to 1 if not present in the BED formated data frame

Note

For converting the peakList in BED format to RangedData before calling annotatePeakInBatch
function

Author(s)

Lihua Julie Zhu

See Also

See also as toGRanges.

Examples

test.bed = data.frame(cbind(chrom = c("1", "2"),
chromStart=c("100", "1000"),
chromEnd=c("200", "1100"),
name=c("peak1", "peak2")))

test.rangedData = BED2RangedData(test.bed)

bindist-class Class "bindist"

Description

An object of class "bindist" represents the relevant fixed-width range of binding site from the
feature and number of possible binding site in each range.

Objects from the Class

Objects can be created by calls of the form new("bindist", counts="integer", mids="integer", halfBinSize="integer", bindingType="character", featureType="character").

binOverFeature 17

Slots

counts vector of "integer" The count number in each binding range

mids vector of "integer" The center of each range relevant to feature

halfBinSize "integer", length must be 1. the fixed half-width of each binding range

bindingType a "character". could be "TSS", "geneEnd"

featureType a "character". could be "transcript", "exon"

Methods

$, $<- Get or set the slot of bindist

See Also

preparePool, peakPermTest

binOverFeature Aggregate peaks over bins from the TSS

Description

Aggregate peaks over bins from the feature sites.

Usage

binOverFeature(..., annotationData=GRanges(),
select=c("all", "nearest"),
radius=5000L, nbins=50L,
minGeneLen=1L, aroundGene=FALSE, mbins=nbins,
featureSite=c("FeatureStart", "FeatureEnd", "bothEnd"),
PeakLocForDistance=c("all", "end","start","middle"),
FUN=sum, xlab, ylab, main)

Arguments

... Objects of GRanges to be analyzed

annotationData An object of GRanges or annoGR for annotation

select Logical: annotate the peaks to all features or the nearest one

radius The radius of the longest distance to feature site

nbins The number of bins

minGeneLen The minimal gene length

aroundGene Logical: count peaks around features or a given site of the features. Default =
FALSE

mbins if aroundGene set as TRUE, the number of bins intra-feature

18 ChIPpeakAnno-deprecated

featureSite which site of features should be used for distance calculation
PeakLocForDistance

which site of peaks should be used for distance calculation

FUN the function to be used for score calculation

xlab titles for each x axis

ylab titles for each y axis

main overall titles for each plot

Value

A data.frame with bin values.

Author(s)

Jianhong Ou

Examples

bed <- system.file("extdata", "MACS_output.bed", package="ChIPpeakAnno")
gr1 <- toGRanges(bed, format="BED", header=FALSE)
data(TSS.human.GRCh37)
binOverFeature(gr1, annotationData=TSS.human.GRCh37,

radius=5000, nbins=10, FUN=length)

ChIPpeakAnno-deprecated

Deprecated Functions in Package ChIPpeakAnno

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as the next release.

Usage

findOverlappingPeaks(Peaks1, Peaks2, maxgap = 0L,
minoverlap=1L, multiple = c(TRUE, FALSE),
NameOfPeaks1 = "TF1", NameOfPeaks2 = "TF2",
select=c("all", "first","last","arbitrary"),
annotate = 0, ignore.strand=TRUE,
connectedPeaks=c("min", "merge"), ...)

BED2RangedData(data.BED,header=FALSE, ...)
GFF2RangedData(data.GFF,header=FALSE, ...)

ChIPpeakAnno-deprecated 19

Arguments

Peaks1 RangedData: See example below.

Peaks2 RangedData: See example below.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

multiple TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for
one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2
for one peak in Peaks1. This parameter is kept for backward compatibility,
please use select.

NameOfPeaks1 Name of the Peaks1, used for generating column name.

NameOfPeaks2 Name of the Peaks2, used for generating column name.

select all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

annotate Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1
means yes and 0 means no. Default to 0.

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

connectedPeaks If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

... Objects of GRanges or RangedData: See also findOverlapsOfPeaks. Or any
parameter need to be passed into read.delim function for 2RangedData function.

header TRUE or FALSE, default to FALSE, indicates whether data file has header

data.BED BED format data frame or BED filename, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format1
for details

data.GFF GFF format data frame or GFF file name, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format3
for details

Details

findOverlappingPeaks is now deprecated wrappers for findOverlapsOfPeaks

See Also

Deprecated, findOverlapsOfPeaks, toGRanges

20 convert2EntrezID

condenseMatrixByColnames

Condense matrix by colnames

Description

Condense matrix by colnames

Usage

condenseMatrixByColnames(mx,iname,sep=";",cnt=FALSE)

Arguments

mx a matrix to be condensed

iname the name of the column to be condensed

sep separator for condensed values,default ;

cnt TRUE/FALSE specifying whether adding count column or not?

Value

dataframe of condensed matrix

Author(s)

Jianhong Ou, Lihua Julie Zhu

Examples

a<-matrix(c(rep(rep(1:5,2),2),rep(1:10,2)),ncol=4)
colnames(a)<-c("con.1","con.2","index.1","index.2")
condenseMatrixByColnames(a,"con.1")
condenseMatrixByColnames(a,2)

convert2EntrezID Convert other common IDs to entrez gene ID.

Description

Convert other common IDs such as ensemble gene id, gene symbol, refseq id to entrez gene ID lever-
aging organism annotation dataset. For example, org.Hs.eg.db is the dataset from orgs.Hs.eg.db
package for human, while org.Mm.eg.db is the dataset from the org.Mm.eg.db package for mouse.

Usage

convert2EntrezID(IDs, orgAnn, ID_type="ensembl_gene_id")

countPatternInSeqs 21

Arguments

IDs a vector of IDs such as ensembl gene ids

orgAnn organism annotation dataset such as org.Hs.eg.db

ID_type type of ID: can be ensemble_gene_id, gene_symbol or refseq_id

Value

vector of entrez ids

Author(s)

Lihua Julie Zhu

Examples

ensemblIDs = c("ENSG00000115956", "ENSG00000071082", "ENSG00000071054",
"ENSG00000115594", "ENSG00000115594", "ENSG00000115598", "ENSG00000170417")

library(org.Hs.eg.db)
entrezIDs = convert2EntrezID(IDs=ensemblIDs, orgAnn="org.Hs.eg.db",
ID_type="ensembl_gene_id")

countPatternInSeqs Output total number of patterns found in the input sequences

Description

Output total number of patterns found in the input sequences

Usage

countPatternInSeqs(pattern, sequences)

Arguments

pattern DNAstringSet object

sequences a vector of sequences

Value

Total number of occurrence of the pattern in the sequences

Author(s)

Lihua Julie Zhu

See Also

summarizePatternInPeaks, translatePattern

22 egOrgMap

Examples

filepath =
system.file("extdata", "examplePattern.fa", package="ChIPpeakAnno")

dict = readDNAStringSet(filepath = filepath, format="fasta", use.names=TRUE)
sequences = c("ACTGGGGGGGGCCTGGGCCCCCAAAT",

"AAAAAACCCCTTTTGGCCATCCCGGGACGGGCCCAT",
"ATCGAAAATTTCC")

countPatternInSeqs(pattern=dict[1], sequences=sequences)
countPatternInSeqs(pattern=dict[2], sequences=sequences)
pattern = DNAStringSet("ATNGMAA")
countPatternInSeqs(pattern=pattern, sequences=sequences)

egOrgMap Convert between the name of the organism annotation package
("OrgDb") and the name of the organism.

Description

Give a species name and return the organism annotation package name or give an organism annota-
tion package name then return the species name.

Usage

egOrgMap(name)

Arguments

name The name of the organism annotation package or the species.

Value

A object of character

Author(s)

Jianhong Ou

Examples

egOrgMap("org.Hs.eg.db")
egOrgMap("Mus musculus")

enrichedGO 23

enrichedGO Enriched Gene Ontology terms used as example

Description

Enriched Gene Ontology terms used as example

Usage

data(enrichedGO)

Format

A list of 3 dataframes.

bp dataframe described the enriched biological process with 9 columns
go.id:GO biological process id
go.term:GO biological process term
go.Definition:GO biological process description
Ontology: Ontology branch, i.e. BP for biological process
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

mf dataframe described the enriched molecular function with the following 9 columns
go.id:GO molecular function id
go.term:GO molecular function term
go.Definition:GO molecular function description
Ontology: Ontology branch, i.e. MF for molecular function
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

cc dataframe described the enriched cellular component the following 9 columns
go.id:GO cellular component id
go.term:GO cellular component term
go.Definition:GO cellular component description
Ontology: Ontology type, i.e. CC for cellular component
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

24 ExonPlusUtr.human.GRCh37

Author(s)

Lihua Julie Zhu

Examples

data(enrichedGO)
dim(enrichedGO$mf)
dim(enrichedGO$cc)
dim(enrichedGO$bp)

ExonPlusUtr.human.GRCh37

Gene model with exon, 5’ UTR and 3’ UTR information for human
sapiens (GRCh37) obtained from biomaRt

Description

Gene model with exon, 5’ UTR and 3’ UTR information for human sapiens (GRCh37) obtained
from biomaRt

Usage

data(ExonPlusUtr.human.GRCh37)

Format

RangedData with slot start holding the start position of the exon, slot end holding the end position
of the exon, slot rownames holding ensembl transcript id and slot space holding the chromosome
location where the gene is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand
description description of the transcript
ensembl_gene_id gene id
utr5start 5’ UTR start
utr5end 5’ UTR end
utr3start 3’ UTR start
utr3end 3’ UTR end

Details

used in the examples Annotation data obtained by: mart = useMart(biomart = "ensembl", dataset
= "hsapiens_gene_ensembl") ExonPlusUtr.human.GRCh37 = getAnnotation(mart=human, feature-
Type="ExonPlusUtr")

Examples

data(ExonPlusUtr.human.GRCh37)
slotNames(ExonPlusUtr.human.GRCh37)

featureAlignedDistribution 25

featureAlignedDistribution

plot distribution in given ranges

Description

plot distribution in the given feature ranges

Usage

featureAlignedDistribution(cvglists, feature.gr,
upstream, downstream,
n.tile=100, zeroAt, ...)

Arguments

cvglists Output of featureAlignedSignal or a list of SimpleRleList or RleList

feature.gr An object of GRanges with identical width. If the width equal to 1, you can use
upstream and downstream to set the range for plot. If the width not equal to 1,
you can use zeroAt to set the zero point of the heatmap.

upstream, downstream

upstream or dwonstream from the feature.gr.

zeroAt zero point position of feature.gr

n.tile The number of tiles to generate for each element of feature.gr, default is 100

... any paramters could be used by matplot

Value

invisible matrix of the plot.

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedSignal, featureAlignedHeatmap

Examples

cvglists <- list(A=RleList(chr1=Rle(sample.int(5000, 100),
sample.int(300, 100))),

B=RleList(chr1=Rle(sample.int(5000, 100),
sample.int(300, 100))))

feature.gr <- GRanges("chr1", IRanges(seq(1, 4900, 100), width=100))
featureAlignedDistribution(cvglists, feature.gr, zeroAt=50, type="l")

26 featureAlignedHeatmap

featureAlignedHeatmap Heatmap representing signals in given ranges

Description

plot heatmap in the given feature ranges

Usage

featureAlignedHeatmap(cvglists, feature.gr, upstream, downstream,
zeroAt, n.tile=100,
annoMcols=c(), sortBy=names(cvglists)[1],
color=colorRampPalette(c("yellow", "red"))(50),
lower.extreme, upper.extreme,
margin=c(0.1, 0.01, 0.15, 0.1), gap=0.01,
newpage=TRUE, gp=gpar(fontsize=10),
...)

Arguments

cvglists Output of featureAlignedSignal or a list of SimpleRleList or RleList

feature.gr An object of GRanges with identical width. If the width equal to 1, you can use
upstream and downstream to set the range for plot. If the width not equal to 1,
you can use zeroAt to set the zero point of the heatmap.

upstream, downstream

upstream or dwonstream from the feature.gr.

zeroAt zero point position of feature.gr

n.tile The number of tiles to generate for each element of feature.gr, default is 100

annoMcols The columns of metadata of feature.gr that specifies the annotations shown of
the right side of the heatmap.

sortBy Sort the feature.gr by columns by annoMcols and then the signals of the given
samples. Default is the first sample.

color vector of colors used in heatmap
lower.extreme, upper.extreme

The lower and upper boundary value of each samples

margin Margin for of the plot region.

gap Gap between each heatmap columns.

newpage Call grid.newpage or not. Default, TRUE

gp A gpar object can be used for text.

... Not used.

Value

invisible gList object.

featureAlignedSignal 27

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedSignal, featureAlignedDistribution

Examples

cvglists <- list(A=RleList(chr1=Rle(sample.int(5000, 100),
sample.int(300, 100))),

B=RleList(chr1=Rle(sample.int(5000, 100),
sample.int(300, 100))))

feature.gr <- GRanges("chr1", IRanges(seq(1, 4900, 100), width=100))
feature.gr$anno <- rep(c("type1", "type2"), c(25, 24))
featureAlignedHeatmap(cvglists, feature.gr, zeroAt=50, annoMcols="anno")

featureAlignedSignal extract signals in given ranges

Description

extract signals in the given feature ranges

Usage

featureAlignedSignal(cvglists, feature.gr,
upstream, downstream,
n.tile=100, ...)

Arguments

cvglists List of SimpleRleList or RleList

feature.gr An object of GRanges with identical width. If the width equal to 1, you can use
upstream and downstream to set the range for plot. If the width not equal to 1,
you can use zeroAt to set the zero point of the heatmap.

upstream, downstream

upstream or dwonstream from the feature.gr.

n.tile The number of tiles to generate for each element of feature.gr, default is 100

... Not used.

Value

A list of matrix. In each matrix, each row record the signals for corresponding feature.

28 findOverlappingPeaks

Author(s)

Jianhong Ou

See Also

See Also as featureAlignedHeatmap, featureAlignedDistribution

Examples

cvglists <- list(A=RleList(chr1=Rle(sample.int(5000, 100),
sample.int(300, 100))),

B=RleList(chr1=Rle(sample.int(5000, 100),
sample.int(300, 100))))

feature.gr <- GRanges("chr1", IRanges(seq(1, 4900, 100), width=100))
featureAlignedSignal(cvglists, feature.gr, zeroAt=50, type="l")

findOverlappingPeaks Find the overlapping peaks for two peak ranges.

Description

Find the overlapping peaks for two input peak ranges.

This function is to keep the backward compatibility with previous versions for RangedData object.

The new function findOverlapsOfPeaks is recommended.

Convert RangedData to GRanges with toGRanges function.

Usage

findOverlappingPeaks(Peaks1, Peaks2, maxgap = 0L,
minoverlap=1L, multiple = c(TRUE, FALSE),
NameOfPeaks1 = "TF1", NameOfPeaks2 = "TF2",
select=c("all", "first","last","arbitrary"), annotate = 0,
ignore.strand=TRUE,
connectedPeaks=c("min", "merge"), ...)

Arguments

Peaks1 RangedData: See example below.

Peaks2 RangedData: See example below.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

findOverlappingPeaks 29

multiple TRUE or FALSE: TRUE may return multiple overlapping peaks in Peaks2 for
one peak in Peaks1; FALSE will return at most one overlapping peaks in Peaks2
for one peak in Peaks1. This parameter is kept for backward compatibility,
please use select.

NameOfPeaks1 Name of the Peaks1, used for generating column name.

NameOfPeaks2 Name of the Peaks2, used for generating column name.

select all may return multiple overlapping peaks, first will return the first overlapping
peak, last will return the last overlapping peak and arbitrary will return one of
the overlapping peaks.

annotate Include overlapFeature and shortestDistance in the OverlappingPeaks or not. 1
means yes and 0 means no. Default to 0.

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

connectedPeaks If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

... Objects of GRanges or RangedData: See also findOverlapsOfPeaks.

Details

Efficiently perform overlap queries with an interval tree implemented in IRanges.

Value
OverlappingPeaks

a data frame consists of input peaks information with added information: over-
lapFeature (upstream: peak1 resides upstream of the peak2; downstream: peak1
resides downstream of the peak2; inside: peak1 resides inside the peak2 en-
tirely; overlapStart: peak1 overlaps with the start of the peak2; overlapEnd:
peak1 overlaps with the end of the peak2; includeFeature: peak1 include the
peak2 entirely) and shortestDistance (shortest distance between the overlapping
peaks)

MergedPeaks RangedData contains merged overlapping peaks

Author(s)

Lihua Julie Zhu

References

1.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN
0-262-53196-8

2.Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237 doi:10.1186/1471-2105-11-237

3. Zhu L (2013). Integrative analysis of ChIP-chip and ChIP-seq dataset. In Lee T and Luk ACS
(eds.), Tilling Arrays, volume 1067, chapter 4, pp. -19. Humana Press. http://dx.doi.org/10.1007/978-
1-62703-607-8_8

30 findOverlapsOfPeaks

See Also

findOverlapsOfPeaks, annotatePeakInBatch, makeVennDiagram

Examples

if (interactive())
{
peaks1 =

RangedData(IRanges(start=c(1543200,1557200,1563000,1569800,167889600),
end=c(1555199,1560599,1565199,1573799,167893599),
names=c("p1","p2","p3","p4","p5")),

strand=as.integer(1),space=c(6,6,6,6,5))
peaks2 =

RangedData(IRanges(start=c(1549800,1554400,1565000,1569400,167888600),
end=c(1550599,1560799,1565399,1571199,167888999),
names=c("f1","f2","f3","f4","f5")),

strand=as.integer(1),space=c(6,6,6,6,5))
t1 =findOverlappingPeaks(peaks1, peaks2, maxgap=1000,

NameOfPeaks1="TF1", NameOfPeaks2="TF2", select="all", annotate=1)
r = t1$OverlappingPeaks
pie(table(r$overlapFeature))
as.data.frame(t1$MergedPeaks)
}

findOverlapsOfPeaks Find the overlapped peaks among two or more set of peaks.

Description

Find the overlapping peaks for two or more (less than five) set of peak ranges.

Usage

findOverlapsOfPeaks(..., maxgap=0L, minoverlap=1L,
ignore.strand=TRUE, connectedPeaks=c("min", "merge", "keepAll"))

Arguments

... Objects of GRanges: See example below.

maxgap Non-negative integer. Peak intervals with a separation of maxgap or less are
considered to be overlapped.

minoverlap Non-negative integer. Peak intervals with an overlapping of minoverlap or more
are considered to be overlapped.

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

connectedPeaks If multiple peaks involved in overlapping in several groups, set it to "merge" will
count it as 1, while set it to "min" will count it as the minimal involved peaks in
any group of connected/overlapped peaks.

findOverlapsOfPeaks 31

Details

Efficiently perform overlap queries with an interval tree implemented with GRanges.

Value

return value is An object of overlappingPeaks.

venn_cnt an object of VennCounts

peaklist a list consists of all overlapping peaks or unique peaks
overlappingPeaks

a list of data frame consists of the annotation of all the overlapped peaks

Author(s)

Jianhong Ou

References

1.Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.;
Stein, Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN
0-262-53196-8

2.Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-
chip data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

3. Zhu L (2013). "Integrative analysis of ChIP-chip and ChIP-seq dataset." In Lee T and Luk ACS
(eds.), Tilling Arrays, volume 1067, chapter 4, pp. -19. Humana Press. http://dx.doi.org/10.1007/978-
1-62703-607-8_8, http://link.springer.com/protocol/10.1007%2F978-1-62703-607-8_8

See Also

annotatePeakInBatch, makeVennDiagram, getVennCounts, findOverlappingPeaks

Examples

peaks1 <- GRanges(seqnames=c(6,6,6,6,5),
IRanges(start=c(1543200,1557200,1563000,1569800,167889600),

end=c(1555199,1560599,1565199,1573799,167893599),
names=c("p1","p2","p3","p4","p5")),

strand="+")
peaks2 <- GRanges(seqnames=c(6,6,6,6,5),

IRanges(start=c(1549800,1554400,1565000,1569400,167888600),
end=c(1550599,1560799,1565399,1571199,167888999),
names=c("f1","f2","f3","f4","f5")),

strand="+")
t1 <- findOverlapsOfPeaks(peaks1, peaks2, maxgap=1000)
makeVennDiagram(t1)
t1$venn_cnt
t1$peaklist

32 findVennCounts

findVennCounts Obtain Venn Counts for Venn Diagram, internal function for makeVen-
nDigram

Description

Obtain Venn Counts for two peak ranges using chromosome ranges or feature field, internal function
for makeVennDigram

Usage

findVennCounts(Peaks, NameOfPeaks, maxgap = 0L, minoverlap = 1L,
totalTest, useFeature=FALSE)

Arguments

Peaks RangedDataList: See example below.

NameOfPeaks Character vector to specify the name of Peaks, e.g., c("TF1", "TF2"), this will
be used as label in the Venn Diagram.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

totalTest Numeric value to specify the total number of tests performed to obtain the list
of peaks.

useFeature TRUE or FALSE, default FALSE, true means using feature field in the Ranged-
Data for calculating overlap, false means using chromosome range for calculat-
ing overlap.

Value

p.value hypergeometric testing result

vennCounts vennCounts objects containing counts for Venn Diagram generation, see details
in limma package vennCounts

Author(s)

Lihua Julie Zhu

See Also

makeVennDiagram

getAllPeakSequence 33

getAllPeakSequence Obtain genomic sequences around the peaks

Description

Obtain genomic sequences around the peaks leveraging the BSgenome and biomaRt package

Usage

getAllPeakSequence(myPeakList, upstream = 200L, downstream = upstream,
genome, AnnotationData)

Arguments

myPeakList An object of GRanges: See example below

upstream upstream offset from the peak start, e.g., 200

downstream downstream offset from the peak end, e.g., 200

genome BSgenome object or mart object. Please refer to available.genomes in BSgenome
package and useMart in bioMaRt package for details

AnnotationData RangedData used if mart object is parsed in which can be obtained from getAn-
notation with featureType="TSS". For example, data(TSS.human.NCBI36), data(TSS.mouse.NCBIM37),
data(GO.rat.RGSC3.4) and data(TSS.zebrafish.Zv8). If not supplied, then anno-
tation will be obtained from biomaRt automatically using the mart object

Value

GRanges with slot start holding the start position of the peak, slot end holding the end position
of the peak, slot rownames holding the id of the peak and slot seqnames holding the chromosome
where the peak is located. In addition, the following variables are included:

upstream upstream offset from the peak start

downstream downstream offset from the peak end

sequence the sequence obtained

Author(s)

Lihua Julie Zhu, Jianhong Ou

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

34 getAnnotation

Examples

use Annotation data from BSgenome
peaks <- GRanges(seqnames=c("NC_008253", "NC_010468"),

IRanges(start=c(100, 500), end=c(300, 600),
names=c("peak1", "peak2")))

library(BSgenome.Ecoli.NCBI.20080805)
seq <- getAllPeakSequence(peaks, upstream=20, downstream=20, genome=Ecoli)
write2FASTA(seq, file="test.fa")

getAnnotation Obtain the TSS, exon or miRNA annotation for the specified species

Description

Obtain the TSS, exon or miRNA annotation for the specified species using the biomaRt package

Usage

getAnnotation(mart,
featureType=c("TSS","miRNA", "Exon", "5utr", "3utr",

"ExonPlusUtr", "transcript"))

Arguments

mart A mart object, see useMart of biomaRt package for details.

featureType TSS, miRNA, Exon, 5’UTR, 3’UTR, transcript or Exon plus UTR. The default
is TSS.

Value

GRanges or RangedData with slot start holding the start position of the feature, slot end holding
the end position of the feature, slot names holding the id of the feature, slot space holding the
chromosome location where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located

description description of the feeature such as gene

Note

For featureType of TSS, start is the transcription start site if strand is 1 (plus strand), otherwise, end
is the transcription start site

Author(s)

Lihua Julie Zhu, Jianhong Ou

getEnrichedGO 35

References

Durinck S. et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts
and microarray data analysis. Bioinformatics, 21, 3439-3440.

Examples

if (interactive())
{

mart <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl")
Annotation <- getAnnotation(mart, featureType="TSS")

}

getEnrichedGO Obtain enriched gene ontology (GO) terms that near the peaks

Description

Obtain enriched gene ontology (GO) terms based on the features near the enriched peaks using
GO.db package and GO gene mapping package such as org.Hs.db.eg to obtain the GO annotation
and using hypergeometric test (phyper) and multtest package for adjusting p-values

Usage

getEnrichedGO(annotatedPeak, orgAnn, feature_id_type="ensembl_gene_id",
maxP=0.01, multiAdj=FALSE, minGOterm=10, multiAdjMethod="", condense=FALSE)

Arguments

annotatedPeak A GRanges object or a vector of feature IDs

orgAnn Organism annotation package such as org.Hs.eg.db for human and org.Mm.eg.db
for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and
org.Dr.eg.db for zebrafish

feature_id_type

The feature type in annotatedPeak such as ensembl_gene_id, refseq_id, gene_symbol
or entrez_id

maxP The maximum p-value to be considered to be significant

multiAdj Logical: whether apply multiple hypothesis testing adjustment, TURE or FALSE

minGOterm The minimum count in a genome for a GO term to be included

multiAdjMethod The multiple testing procedures, for details, see mt.rawp2adjp in multtest pack-
age

condense condense the results or not.

36 getEnrichedGO

Value

A list with 3 elements

bp enriched biological process with the following 9 variables
go.id:GO biological process id
go.term:GO biological process term
go.Definition:GO biological process description
Ontology: Ontology branch, i.e. BP for biological process
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

mf enriched molecular function with the following 9 variables
go.id:GO molecular function id
go.term:GO molecular function term
go.Definition:GO molecular function description
Ontology: Ontology branch, i.e. MF for molecular function
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

cc enriched cellular component the following 9 variables
go.id:GO cellular component id
go.term:GO cellular component term
go.Definition:GO cellular component description
Ontology: Ontology type, i.e. CC for cellular component
count.InDataset: count of this GO term in this dataset
count.InGenome: count of this GO term in the genome
pvalue: pvalue from the hypergeometric test
totaltermInDataset: count of all GO terms in this dataset
totaltermInGenome: count of all GO terms in the genome

Author(s)

Lihua Julie Zhu

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

getEnrichedPATH 37

See Also

phyper, hyperGtest

Examples

data(enrichedGO)
enrichedGO$mf[1:10,]
enrichedGO$bp[1:10,]
enrichedGO$cc
if (interactive()) {

data(annotatedPeak)
library(org.Hs.eg.db)
enriched.GO = getEnrichedGO(annotatedPeak[1:6,],

orgAnn="org.Hs.eg.db",
maxP=0.01,
multiAdj=FALSE,
minGOterm=10,
multiAdjMethod="")

dim(enriched.GO$mf)
colnames(enriched.GO$mf)
dim(enriched.GO$bp)
enriched.GO$cc

}

getEnrichedPATH Obtain enriched PATH that near the peaks

Description

Obtain enriched PATH that are near the peaks using path package such as reactome.db and path
mapping package such as org.Hs.db.eg to obtain the path annotation and using hypergeometric test
(phyper) and multtest package for adjusting p-values

Usage

getEnrichedPATH(annotatedPeak, orgAnn, pathAnn,
feature_id_type="ensembl_gene_id",
maxP=0.01, minPATHterm=10, multiAdjMethod=NULL)

Arguments

annotatedPeak GRanges such as data(annotatedPeak) or a vector of feature IDs

orgAnn organism annotation package such as org.Hs.eg.db for human and org.Mm.eg.db
for mouse, org.Dm.eg.db for fly, org.Rn.eg.db for rat, org.Sc.eg.db for yeast and
org.Dr.eg.db for zebrafish

pathAnn pathway annotation package such as KEGG.db, reactome.db

38 getEnrichedPATH

feature_id_type

the feature type in annotatedPeakRanges such as ensembl_gene_id, refseq_id,
gene_symbol or entrez_id

maxP maximum p-value to be considered to be significant

minPATHterm minimum count in a genome for a path to be included

multiAdjMethod multiple testing procedures, for details, see mt.rawp2adjp in multtest package

Value

A dataframe of enriched path with the following variables.

path.id KEGG PATH ID

EntrezID Entrez ID
count.InDataset

count of this PATH in this dataset

count.InGenome count of this PATH in the genome

pvalue pvalue from the hypergeometric test
totaltermInDataset

count of all PATH in this dataset
totaltermInGenome

count of all PATH in the genome

PATH PATH name

Author(s)

Jianhong Ou

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edition.
New York: Wiley

See Also

phyper, hyperGtest

Examples

if (interactive()) {
data(annotatedPeak)
library(org.Hs.eg.db)
library(reactome.db)
enriched.PATH = getEnrichedPATH(annotatedPeak, orgAnn="org.Hs.eg.db",

pathAnn="reactome.db", maxP=0.01,
minPATHterm=10, multiAdjMethod=NULL)

head(enriched.PATH)
}

getVennCounts 39

getVennCounts Obtain Venn Counts for Venn Diagram, internal function for makeVen-
nDigram

Description

Obtain Venn Counts for peak ranges using chromosome ranges or feature field, internal function for
makeVennDigram

Usage

getVennCounts(..., maxgap = 0L, minoverlap=1L,
by=c("region", "feature", "base"),
ignore.strand=TRUE, connectedPeaks=c("min", "merge", "keepAll"))

Arguments

... Objects of GRanges or RangedData: See example below.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

by region, feature or base, default region. feature means using feature field in the
RangedData or GRanges for calculating overlap, region means using chromo-
some range for calculating overlap, and base means using calculating overlap in
nucleotide level.

ignore.strand When set to TRUE, the strand information is ignored in the overlap calculations.

connectedPeaks If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any concered groups

Value

vennCounts vennCounts objects containing counts for Venn Diagram generation, see details
in limma package vennCounts

Author(s)

Jianhong Ou

See Also

makeVennDiagram, findOverlappingPeaks

40 GFF2RangedData

Examples

if(interactive()){
peaks1 = RangedData(IRanges(start = c(967654, 2010897, 2496704),

end = c(967754, 2010997, 2496804),
names = c("Site1", "Site2", "Site3")),

space = c("1", "2", "3"),
strand=as.integer(1),
feature=c("a","b", "c"))

peaks2 =
RangedData(IRanges(start=c(967659, 2010898, 2496700, 3075866, 3123260),

end=c(967869, 2011108, 2496920, 3076166, 3123470),
names = c("t1", "t2", "t3", "t4", "t5")),

space = c("1", "2", "3", "1", "2"),
strand = c(1, 1, -1,-1,1),
feature=c("a","c","d","e", "a"))

getVennCounts(peaks1,peaks2, maxgap=0)
getVennCounts(peaks1,peaks2, maxgap=0, by="feature")
getVennCounts(peaks1, peaks2, maxgap=0, by="base")

}

GFF2RangedData Convert GFF format to RangedData

Description

Convert GFF format to RangedData. This function will be depreciated. Use function toGRanges
instead.

Usage

GFF2RangedData(data.GFF,header=FALSE, ...)

Arguments

data.GFF GFF format data frame or GFF file name, please refer to http://genome.ucsc.edu/FAQ/FAQformat#format3
for details

header TRUE or FALSE, default to FALSE, indicates whether data.GFF file has GFF
header

... any parameter need to be passed into read.delim function

Value

RangedData with slot start holding the start position of the feature, slot end holding the end position
of the feature, slot names holding the id of the feature, slot space holding the chromosome location
where the feature is located. In addition, the following variables are included.

strand 1 for positive strand and -1 for negative strand where the feature is located.

HOT.spots 41

Note

For converting the peakList in GFF format to RangedData before calling annotatePeakInBatch func-
tion

Author(s)

Lihua Julie Zhu

Examples

test.GFF = data.frame(cbind(seqname = c("chr1", "chr2"),
source=rep("Macs", 2),
feature=rep("peak", 2),
start=c("100", "1000"),
end=c("200", "1100"),
score=c(60, 26),
strand=c(1, -1),
frame=c(".", 2),
group=c("peak1", "peak2")))
test.rangedData = GFF2RangedData(test.GFF)

HOT.spots High Occupancy of Transcription Related Factors regions

Description

High Occupancy of Transcription Related Factors regions of human (hg19)

Usage

data("HOT.spots")

Format

An object of GRangesList

Details

How to generated the data:

temp <- tempfile()

url <- "http://metatracks.encodenets.gersteinlab.org"

download.file(file.path(url, "HOT_All_merged.tar.gz"), temp)

temp2 <- tempfile()

download.file(file.path(url, "HOT_intergenic_All_merged.tar.gz"), temp2)

untar(temp, exdir=dirname(temp))

untar(temp2, exdir=dirname(temp))

42 makeVennDiagram

f <- dir(dirname(temp), "bed$")

HOT.spots <- sapply(file.path(dirname(temp), f), toGRanges, format="BED")

names(HOT.spots) <- gsub("_merged.bed", "", f)

HOT.spots <- sapply(HOT.spots, unname)

HOT.spots <- GRangesList(HOT.spots)

save(list="HOT.spots",

file="data/HOT.spots.rda",

compress="xz", compression_level=9)

Source

http://metatracks.encodenets.gersteinlab.org/

References

Yip KY, Cheng C, Bhardwaj N, Brown JB, Leng J, Kundaje A, Rozowsky J, Birney E, Bickel
P, Snyder M, Gerstein M. Classification of human genomic regions based on experimentally de-
termined binding sites of more than 100 transcription-related factors. Genome Biol. 2012 Sep
26;13(9):R48. doi: 10.1186/gb-2012-13-9-r48. PubMed PMID: 22950945; PubMed Central PM-
CID: PMC3491392.

Examples

data(HOT.spots)
elementLengths(HOT.spots)

makeVennDiagram Make Venn Diagram from a list of peaks

Description

Make Venn Diagram from two or more peak ranges, Also calculate p-value to determine whether
those peaks overlap significantly.

Usage

makeVennDiagram(Peaks, NameOfPeaks, maxgap = 0L, minoverlap = 1L,
totalTest, by = c("region", "feature", "base"),
ignore.strand = TRUE, connectedPeaks = c("min",
"merge", "keepAll"), method = c("hyperG",
"permutation"), TxDb, ...)

makeVennDiagram 43

Arguments

Peaks A list of peaks in GRanges format: See example below.

NameOfPeaks Character vector to specify the name of Peaks, e.g., c("TF1", "TF2"). This will
be used as label in the Venn Diagram.

maxgap Non-negative integer. Intervals with a separation of maxgap or less are consid-
ered to be overlapping.

minoverlap Non-negative integer. Intervals with an overlapping of minoverlap or more are
considered to be overlapping.

totalTest Numeric value to specify the total number of tests performed to obtain the list
of peaks. It should be much larger than the number of peaks in the largest peak
set.

by "region, "feature" or "base", default = "region". feature means using feature field
in the GRanges for calculating overlap, region means using chromosome range
for calculating overlap, and base means calculating overlap in nucleotide level.

ignore.strand Logical: when set to TRUE, the strand information is ignored in the overlap
calculations.

connectedPeaks If multiple peaks involved in overlapping in several groups, set it to "merge"
will count it as only 1, while set it to "min" will count it as the minimal involved
peaks in any connected peak group.

method method used for p value calculation. hyperG means hypergeometric test and
permutation means peakPermTest

TxDb An object of TxDb

... Additional arguments to be passed to venn.diagram

Details

For customized graph options, please see venn.diagram in VennDiagram package.

Value

In addition to a Venn Diagram produced, a p.value is calculated by hypergeometric test to determine
whether the peaks or features are overlapped significantly.

Author(s)

Lihua Julie Zhu, Jianhong Ou

See Also

findOverlapsOfPeaks, venn.diagram, peakPermTest

44 mergePlusMinusPeaks

Examples

if (interactive()){
peaks1 <- GRanges(seqnames=c("1", "2", "3"),

IRanges(start=c(967654, 2010897, 2496704),
end=c(967754, 2010997, 2496804),
names=c("Site1", "Site2", "Site3")),

strand="+",
feature=c("a","b","f"))

peaks2 = GRanges(seqnames=c("1", "2", "3", "1", "2"),
IRanges(start = c(967659, 2010898,2496700,

3075866,3123260),
end = c(967869, 2011108, 2496920,

3076166, 3123470),
names = c("t1", "t2", "t3", "t4", "t5")),

strand = c("+", "+", "-", "-", "+"),
feature=c("a","b","c","d","a"))

makeVennDiagram(list(peaks1, peaks2), NameOfPeaks=c("TF1", "TF2"),
totalTest=100,scaled=FALSE, euler.d=FALSE)

makeVennDiagram(list(peaks1, peaks2), NameOfPeaks=c("TF1", "TF2"),
totalTest=100)

4-way diagram using annotated feature instead of chromosome ranges

makeVennDiagram(list(peaks1, peaks2, peaks1, peaks2),
NameOfPeaks=c("TF1", "TF2","TF3", "TF4"),
totalTest=100, by="feature",
main = "Venn Diagram for 4 peak lists",
fill=c(1,2,3,4))

}

mergePlusMinusPeaks Merge peaks from plus strand and minus strand

Description

Merge peaks from plus strand and minus strand within certain distance apart, and output merged
peaks as bed format.

Usage

mergePlusMinusPeaks(peaks.file,
columns=c("name", "chromosome", "start", "end", "strand",

"count", "count", "count", "count"),
sep = "\t", header = TRUE, distance.threshold = 100,
plus.strand.start.gt.minus.strand.end = TRUE, output.bedfile)

mergePlusMinusPeaks 45

Arguments

peaks.file Specify the peak file. The peak file should contain peaks from both plus and
minus strand

columns Specify the column names in the peak file
sep Specify column delimiter, default tab-delimited
header Specify whether the file has a header row, default TRUE
distance.threshold

Specify the maximum gap allowed between the plus stranded and the nagative
stranded peak

plus.strand.start.gt.minus.strand.end

Specify whether plus strand peak start greater than the paired negative strand
peak end. Default to TRUE

output.bedfile Specify the bed output file name

Value

output the merged peaks in bed file and a data frame of the bed format

Author(s)

Lihua Julie Zhu

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, findOverlappingPeaks, makeVennDiagram

Examples

if (interactive())
{

data(myPeakList)
data(TSS.human.NCBI36)
library(matrixStats)

peaks <- system.file("extdata", "guide-seq-peaks.txt",
package = "ChIPpeakAnno")

merged.bed <- mergePlusMinusPeaks(peaks.file = peaks,
columns=c("name", "chromosome",

"start", "end", "strand",
"count", "count"),

sep = "\t", header = TRUE,
distance.threshold = 100,

plus.strand.start.gt.minus.strand.end = TRUE,
output.bedfile = "T2test100bp.bed")

}

46 peakPermTest

myPeakList An example GRanges object representing a ChIP-seq peak dataset

Description

the putative STAT1-binding regions identified in un-stimulated cells using ChIP-seq technology
(Robertson et al., 2007)

Usage

data(myPeakList)

Format

GRanges with slot rownames containing the ID of peak as character, slot start containing the start
position of the peak, slot end containing the end position of the peak and seqnames containing the
chromosome where the peak is located.

Source

Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, et al. (2007) Genome-wide profiles of
STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing.
Nat Methods 4:651-7

Examples

data(myPeakList)
slotNames(myPeakList)

peakPermTest Permutation Test for two given peak lists

Description

Performs a permutation test to seee if there is an association between two given peak lists.

Usage

peakPermTest(peaks1, peaks2, ntimes=100,
seed=as.integer(Sys.time()),
mc.cores=getOption("mc.cores", 2L),
maxgap=0L, pool,
TxDb, bindingDistribution,
bindingType=c("TSS", "geneEnd"),
featureType=c("transcript", "exon"),
seqn=NA, ...)

peakPermTest 47

Arguments

peaks1, peaks2 an object of GRanges

ntimes number of permutations

seed random seed

mc.cores The number of cores to use. see mclapply

maxgap See findOverlaps in the IRanges package for a description of these arguments.

pool an object of permPool

TxDb an object of TxDb
bindingDistribution

an object of bindist

bindingType where the peaks should bind, TSS or geneEnd

featureType what annotation type should be used for detecting the binding distribution.

seqn default is NA, which means not filter the universe pool for sampling. Otherwise
the universe pool will be filtered by the seqnames in seqn.

... further arguments to be passed to numOverlaps.

Value

A list of class permTestResults. See permTest

Author(s)

Jianhong Ou

References

Davison, A. C. and Hinkley, D. V. (1997) Bootstrap methods and their application, Cambridge
University Press, United Kingdom, 156-160

See Also

preparePool, bindist

Examples

path <- system.file("extdata", package="ChIPpeakAnno")
#files <- dir(path, pattern="[12]_WS170.bed", full.names=TRUE)
#peaks1 <- toGRanges(files[1], skip=5)
#peaks2 <- toGRanges(files[2], skip=5)
#peakPermTest(peaks1, peaks2, TxDb=TxDb.Celegans.UCSC.ce6.ensGene)
if(interactive()){

peaks1 <- toGRanges(file.path(path, "MACS2_peaks.xls"),
format="MACS2")

peaks2 <- toGRanges(file.path(path, "peaks.narrowPeak"),
format="narrowPeak")

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
peakPermTest(peaks1, peaks2,

48 Peaks.Ste12.Replicate2

TxDb=TxDb.Hsapiens.UCSC.hg19.knownGene, min.pctA=10)
}

Peaks.Ste12.Replicate1

Ste12-binding sites from biological replicate 1 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 1 in yeast (see reference)

Usage

data(Peaks.Ste12.Replicate1)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37

Examples

data(Peaks.Ste12.Replicate1)
str(Peaks.Ste12.Replicate1)

Peaks.Ste12.Replicate2

Ste12-binding sites from biological replicate 2 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 2 in yeast (see reference)

Usage

data(Peaks.Ste12.Replicate2)

Peaks.Ste12.Replicate3 49

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

Source

http://www.biomedcentral.com/1471-2164/10/37

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

Examples

data(Peaks.Ste12.Replicate2)
str(Peaks.Ste12.Replicate2)

Peaks.Ste12.Replicate3

Ste12-binding sites from biological replicate 3 in yeast (see reference)

Description

Ste12-binding sites from biological replicate 3 in yeast (see reference)

Usage

data(Peaks.Ste12.Replicate3)

Format

RangedData with slot rownames containing the ID of peak as character, slot start containing the
start position of the peak, slot end containing the end position of the peak and space containing the
chromosome where the peak is located.

Source

http://www.biomedcentral.com/1471-2164/10/37

References

Philippe Lefranois, Ghia M Euskirchen, Raymond K Auerbach, Joel Rozowsky, Theodore Gibson,
Christopher M Yellman, Mark Gerstein and Michael Snyder (2009) Efficient yeast ChIP-Seq using
multiplex short-read DNA sequencing BMC Genomics 10:37doi:10.1186/1471-2164-10-37

50 peaksNearBDP

Examples

data(Peaks.Ste12.Replicate3)
str(Peaks.Ste12.Replicate3)

peaksNearBDP obtain the peaks near bi-directional promoters

Description

Obtain the peaks near bi-directional promoters. Also output percent of peaks near bi-directional
promoters.

Usage

peaksNearBDP(myPeakList, mart,AnnotationData, MaxDistance=5000,
PeakLocForDistance = c("start", "middle", "end"),
FeatureLocForDistance = c("TSS", "middle", "start",

"end","geneEnd"))

Arguments

myPeakList GRanges or RangedData: See example below

mart used if AnnotationData not supplied, a mart object, see useMart of bioMaRt
package for details

AnnotationData annotation data obtained from getAnnotation or customized annotation of class
GRanges or annoGR containing additional variable: strand (1 or + for plus
strand and -1 or - for minus strand). For example, data(TSS.human.NCBI36),
data(TSS.mouse.NCBIM37), data(TSS.rat.RGSC3.4) and data(TSS.zebrafish.Zv8)
. If not supplied, then annotation will be obtained from biomaRt automatically
using the parameters of mart and featureType TSS

MaxDistance Specify the maximum gap allowed between the peak and nearest gene
PeakLocForDistance

Specify the location of peak for calculating distance,i.e., middle means using
middle of the peak to calculate distance to feature, start means using start of
the peak to calculate the distance to feature. To be compatible with previous
version, by default using start

FeatureLocForDistance

Specify the location of feature for calculating distance,i.e., middle means using
middle of the feature to calculate distance of peak to feature, start means using
start of the feature to calculate the distance to feature, TSS means using start
of feature when feature is on plus strand and using end of feature when feature
is on minus strand, geneEnd means using end of feature when feature is on
plus strand and using start of feature when feature is on minus strand. To be
compatible with previous version, by default using TSS

peaksNearBDP 51

Value

A list of 4

peaksWithBDP annotated Peaks containing bi-directional promoters.
RangedData with slot start holding the start position of the peak, slot end holding
the end position of the peak, slot space holding the chromosome location where
the peak is located, slot rownames holding the id of the peak. In addition, the
following variables are included.
feature: id of the feature such as ensembl gene ID
insideFeature: upstream: peak resides upstream of the feature; downstream:
peak resides downstream of the feature; inside: peak resides inside the fea-
ture; overlapStart: peak overlaps with the start of the feature; overlapEnd: peak
overlaps with the end of the feature; includeFeature: peak include the feature
entirely.
distancetoFeature: distance to the nearest feature such as transcription start site.
By default, the distance is calculated as the distance between the start of the
binding site and the TSS that is the gene start for genes located on the forward
strand and the gene end for genes located on the reverse strand. The user can
specify the location of peak and location of feature for calculating this
start_position: start position of the feature such as gene
end_position: end position of the feature such as the gene
strand: 1 or + for positive strand and -1 or - for negative strand where the feature
is located
shortestDistance: The shortest distance from either end of peak to either end the
feature
fromOverlappingOrNearest: NearestStart: indicates this PeakLocForDistance is
closest to the FeatureLocForDistance

percentPeaksWithBDP

The percent of input peaks containing bi-directional promoters

n.peaks The total number of input peaks

n.peaksWithBDP The # of input peaks containing bi-directional promoters

Author(s)

Lihua Julie Zhu, Jianhong Ou

References

Zhu L.J. et al. (2010) ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip
data. BMC Bioinformatics 2010, 11:237doi:10.1186/1471-2105-11-237

See Also

annotatePeakInBatch, findOverlappingPeaks, makeVennDiagram

52 permPool-class

Examples

if (interactive())
{

data(myPeakList)
data(TSS.human.NCBI36)
annotatedBDP = peaksNearBDP(myPeakList[1:6,],

AnnotationData=TSS.human.NCBI36,
MaxDistance=5000,
PeakLocForDistance = "middle",
FeatureLocForDistance = "TSS")

c(annotatedBDP$percentPeaksWithBDP, annotatedBDP$n.peaks,
annotatedBDP$n.peaksWithBDP)

}

permPool-class Class "permPool"

Description

An object of class "permPool" represents the possible locations to do permutation test.

Objects from the Class

Objects can be created by calls of the form new("permPool", grs="GRangesList", N="integer").

Slots

grs object of "GRangesList" The list of binding ranges

N vector of "integer", permutation number for each ranges

Methods

$, $<- Get or set the slot of permPool

See Also

preparePool, peakPermTest

pie1 53

pie1 Pie Charts

Description

Draw a pie chart with percentage

Usage

pie1(x, labels = names(x), edges = 200,
radius = 0.8, clockwise = FALSE,
init.angle = if (clockwise) 90 else 0,
density = NULL, angle = 45,
col = NULL, border = NULL, lty = NULL,
main = NULL, percentage=TRUE, rawNumber=FALSE,
digits=3, cutoff=0.01,
legend=FALSE, legendpos="topright", legendcol=2, ...)

Arguments

x a vector of non-negative numerical quantities. The values in x are displayed as
the areas of pie slices.

labels one or more expressions or character strings giving names for the slices. Other
objects are coerced by as.graphicsAnnot. For empty or NA (after coercion to
character) labels, no label nor pointing line is drawn.

edges the circular outline of the pie is approximated by a polygon with this many
edges.

radius the pie is drawn centered in a square box whose sides range from -1 to 1. If the
character strings labeling the slices are long it may be necessary to use a smaller
radius.

clockwise logical indicating if slices are drawn clockwise or counter clockwise (i.e., math-
ematically positive direction), the latter is default.

init.angle number specifying the starting angle (in degrees) for the slices. Defaults to 0
(i.e., "3 o’clock") unless clockwise is true where init.angle defaults to 90 (de-
grees), (i.e., "12 o’clock").

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. Non-positive values of density also inhibit the
drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a vector of colors to be used in filling or shading the slices. If missing a set of 6
pastel colours is used, unless density is specified when par("fg") is used.

border, lty (possibly vectors) arguments passed to polygon which draws each slice.

main an overall title for the plot.

percentage logical. Add percentage in the figure or not. default TRUE.

54 preparePool

rawNumber logical. Instead percentage, add raw number in the figure or not. default FALSE.
digits When set percentage as TRUE, how many significant digits are to be used for

percentage. see format. default 3.
cutoff When percentage is TRUE, if the percentage is lower than cutoff, it will NOT

be shown. default 0.01.
legend logical. Instead of lable, draw legend for the pie. default, FALSE.
legendpos, legendcol

legend position and legend columns. see legend
... graphical parameters can be given as arguments to pie. They will affect the main

title and labels only.

Author(s)

Jianhong Ou

See Also

pie

Examples

pie1(1:5)

preparePool prepare data for permutation test

Description

prepare data for permutation test peakPermTest

Usage

preparePool(TxDb, template, bindingDistribution,
bindingType = c("TSS", "geneEnd"),
featureType = c("transcript", "exon"),
seqn = NA)

Arguments

TxDb an object of TxDb
template an object of GRanges
bindingDistribution

an object of bindist
bindingType the relevant position to features
featureType feature type, transcript or exon.
seqn seqnames. If given, the pool for permutation will be restrict in the given chro-

mosomes.

summarizePatternInPeaks 55

Value

a list with two elements, grs, a list of GRanges. N, the numbers of elements should be drawn from
in each GRanges.

Author(s)

Jianhong Ou

See Also

peakPermTest, bindist

Examples

if(interactive()){
path <- system.file("extdata", package="ChIPpeakAnno")
peaksA <- toGRanges(file.path(path, "peaks.narrowPeak"),

format="narrowPeak")
peaksB <- toGRanges(file.path(path, "MACS2_peaks.xls"), format="MACS2")
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
ppp <- preparePool(TxDb.Hsapiens.UCSC.hg19.knownGene,

peaksA, bindingType="TSS",
featureType="transcript")

}

summarizePatternInPeaks

Output a summary of the occurrence of each pattern in the sequences.

Description

Output a summary of the occurrence of each pattern in the sequences.

Usage

summarizePatternInPeaks(patternFilePath, format = "fasta",skip=0L,
BSgenomeName, peaks, outfile, append = FALSE)

Arguments

patternFilePath

A character vector containing the path to the file to read the patterns from.

format Either "fasta" (the default) or "fastq"

skip Single non-negative integer. The number of records of the pattern file to skip
before beginning to read in records.

BSgenomeName BSgenome object. Please refer to available.genomes in BSgenome package for
details

56 toGRanges

peaks GRanges or RangedData containing the peaks

outfile A character vector containing the path to the file to write the summary output.

append TRUE or FALSE, default FALSE

Value

A data frame with 3 columns as n.peaksWithPattern (number of peaks with the pattern), n.totalPeaks
(total number of peaks in the input) and Pattern (the corresponding pattern).

Author(s)

Lihua Julie Zhu

Examples

peaks = RangedData(IRanges(start=c(100, 500), end=c(300, 600),
names=c("peak1", "peak2")),

space=c("NC_008253", "NC_010468"))
filepath =system.file("extdata", "examplePattern.fa",

package="ChIPpeakAnno")
library(BSgenome.Ecoli.NCBI.20080805)
summarizePatternInPeaks(patternFilePath=filepath, format="fasta",

skip=0L, BSgenomeName=Ecoli, peaks=peaks)

toGRanges Convert dataset to GRanges

Description

Convert UCSC BED format and its variants, such as GFF, or any user defined dataset such as
RangedDate or MACS output file to GRanges

Usage

toGRanges(data, format=c("BED", "GFF",
"MACS", "MACS2",
"narrowPeak", "broadPeak",
"others"),

header=FALSE, comment.char="#", colNames=NULL, ...)

Arguments

data BED, GFF, RangedData or any user defined dataset or their file path. Alterna-
tively, data can be a readable txt-mode connection (See ?read.table).

format data format. If the data format is set to BED, GFF, narrowPeak or broadPeak,
please refer to http://genome.ucsc.edu/FAQ/FAQformat#format1 for column or-
der. "MACS" is for converting the excel output file from MACS1. "MACS2" is
for converting the output file from MACS2.

translatePattern 57

header A logical value indicating whether the file contains the names of the variables as
its first line. If missing, the value is determined from the file format: header is
set to TRUE if and only if the first row contains one fewer field than the number
of columns.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

colNames If the data format is set to "others", colname must be defined. And the colname
must contain space, start and end. The column name for the chromosome #
should be named as space.

... parameters passed to read.table

Value

An object of GRanges

Author(s)

Jianhong Ou

Examples

macs <- system.file("extdata", "MACS_peaks.xls", package="ChIPpeakAnno")
macsOutput <- toGRanges(macs, format="MACS")

translatePattern translate pattern from IUPAC Extended Genetic Alphabet to regular
expression

Description

translate pattern containing the IUPAC nucleotide ambiguity codes to regular expression. For
example,Y->[C|T], R-> [A|G], S-> [G|C], W-> [A|T], K-> [T|U|G], M-> [A|C], B-> [C|G|T], D-
> [A|G|T], H-> [A|C|T], V-> [A|C|G] and N-> [A|C|T|G].

Usage

translatePattern(pattern)

Arguments

pattern a character vector with the IUPAC nucleotide ambiguity codes

Value

a character vector with the pattern represented as regular expression

58 TSS.human.GRCh37

Author(s)

Lihua Julie Zhu

See Also

countPatternInSeqs, summarizePatternInPeaks

Examples

pattern1 = "AACCNWMK"
translatePattern(pattern1)

TSS.human.GRCh37 TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Description

TSS annotation for human sapiens (GRCh37) obtained from biomaRt

Usage

data(TSS.human.GRCh37)

Format

A GRanges object with slot start holding the start position of the gene, slot end holding the end
position of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome
location where the gene is located and slot strand holding the strinad information. In addition, the
following variables are included.

description description of the gene

Details

The dataset TSS.human.GRCh37 was obtained by:

mart = useMart(biomart = "ENSEMBL_MART_ENSEMBL", host="grch37.ensembl.org", path="/biomart/martservice",
dataset = "hsapiens_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.GRCh37)
slotNames(TSS.human.GRCh37)

TSS.human.GRCh38 59

TSS.human.GRCh38 TSS annotation for human sapiens (GRCh38) obtained from biomaRt

Description

TSS annotation for human sapiens (GRCh38) obtained from biomaRt

Usage

data(TSS.human.GRCh38)

Format

A ’GRanges’ [package "GenomicRanges"] object with ensembl id as names.

Details

used in the examples Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "hsapiens_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.GRCh38)
slotNames(TSS.human.GRCh38)

TSS.human.NCBI36 TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Description

TSS annotation for human sapiens (NCBI36) obtained from biomaRt

Usage

data(TSS.human.NCBI36)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

60 TSS.mouse.GRCm38

Details

used in the examples Annotation data obtained by:

mart = useMart(biomart = "ensembl_mart_47", dataset = "hsapiens_gene_ensembl", archive=TRUE)

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.human.NCBI36)
slotNames(TSS.human.NCBI36)

TSS.mouse.GRCm38 TSS annotation data for Mus musculus (GRCm38.p1) obtained from
biomaRt

Description

TSS annotation data for Mus musculus (GRCm38.p1) obtained from biomaRt

Usage

data(TSS.mouse.GRCm38)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "mmusculus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.mouse.GRCm38)
slotNames(TSS.mouse.GRCm38)

TSS.mouse.NCBIM37 61

TSS.mouse.NCBIM37 TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Description

TSS annotation data for mouse (NCBIM37) obtained from biomaRt

Usage

data(TSS.mouse.NCBIM37)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "mmusculus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.mouse.NCBIM37)
slotNames(TSS.mouse.NCBIM37)

TSS.rat.RGSC3.4 TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Description

TSS annotation data for rat (RGSC3.4) obtained from biomaRt

Usage

data(TSS.rat.RGSC3.4)

62 TSS.rat.Rnor_5.0

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "rnorvegicus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.rat.RGSC3.4)
slotNames(TSS.rat.RGSC3.4)

TSS.rat.Rnor_5.0 TSS annotation data for Rattus norvegicus (Rnor_5.0) obtained from
biomaRt

Description

TSS annotation data for Rattus norvegicus (Rnor_5.0) obtained from biomaRt

Usage

data(TSS.rat.Rnor_5.0)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:

mart = useMart(biomart = "ensembl", dataset = "rnorvegicus_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

TSS.zebrafish.Zv8 63

Examples

data(TSS.rat.Rnor_5.0)
slotNames(TSS.rat.Rnor_5.0)

TSS.zebrafish.Zv8 TSS annotation data for zebrafish (Zv8) obtained from biomaRt

Description

A GRanges object to annotate TSS for zebrafish (Zv8) obtained from biomaRt

Usage

data(TSS.zebrafish.Zv8)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by: mart <- useMart(biomart="ENSEMBL_MART_ENSEMBL", host="may2009.archive.ensembl.org",
path="/biomart/martservice", dataset="drerio_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.zebrafish.Zv8)
slotNames(TSS.zebrafish.Zv8)

64 wgEncodeTfbsV3

TSS.zebrafish.Zv9 TSS annotation for Danio rerio (Zv9) obtained from biomaRt

Description

TSS annotation for Danio rerio (Zv9) obtained from biomaRt

Usage

data(TSS.zebrafish.Zv9)

Format

GRanges with slot start holding the start position of the gene, slot end holding the end position
of the gene, slot names holding ensembl gene id, slot seqnames holding the chromosome location
where the gene is located and slot strand holding the strinad information. In addition, the following
variables are included.

description description of the gene

Details

Annotation data obtained by:

mart <- useMart(biomart="ENSEMBL_MART_ENSEMBL", host="mar2015.archive.ensembl.org",
path="/biomart/martservice", dataset="drerio_gene_ensembl")

getAnnotation(mart, featureType = "TSS")

Examples

data(TSS.zebrafish.Zv9)
slotNames(TSS.zebrafish.Zv9)

wgEncodeTfbsV3 transcription factor binding site clusters (V3) from ENCODE

Description

possible binding pool for human (hg19) from transcription factor binding site clusters (V3) from
ENCODE data and removed the HOT spots

Usage

data("wgEncodeTfbsV3")

wgEncodeTfbsV3 65

Format

An object of GRanges.

Details

How to generate the data:

temp <- tempfile()

download.file(file.path("http://hgdownload.cse.ucsc.edu", "goldenPath",

"hg19", "encodeDCC",

"wgEncodeRegTfbsClustered",

"wgEncodeRegTfbsClusteredV3.bed.gz"), temp)

data <- read.delim(gzfile(temp, "r"), header=FALSE)

unlink(temp)

colnames(data)[1:4] <- c("seqnames", "start", "end", "TF")

wgEncodeRegTfbsClusteredV3 <- GRanges(as.character(data$seqnames),

IRanges(data$start, data$end),

TF=data$TF)

data(HOT.spots)

hot <- reduce(unlist(HOT.spots))

ol <- findOverlaps(wgEncodeRegTfbsClusteredV3, hot)

wgEncodeTfbsV3 <- wgEncodeRegTfbsClusteredV3[-unique(queryHits(ol))]

wgEncodeTfbsV3 <- reduce(wgEncodeTfbsV3)

save(list="wgEncodeTfbsV3",

file="data/wgEncodeTfbsV3.rda",

compress="xz", compression_level=9)

Source

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/ wgEncodeRegTfbsClustered/wgEncodeRegTfbsClusteredV3.bed.gz

Examples

data(wgEncodeTfbsV3)
head(wgEncodeTfbsV3)

66 write2FASTA

write2FASTA Write sequences to a file in fasta format

Description

Write the sequences obtained from getAllPeakSequence to a file in fasta format leveraging write-
FASTA in Biostrings package. FASTA is a simple file format for biological sequence data. A
FASTA format file contains one or more sequences and there is a header line which begins with a >
proceeding each sequence.

Usage

write2FASTA(mySeq, file="", width=80)

Arguments

mySeq GRanges with varibles name and sequence ,e.g., results obtained from getAll-
PeakSequence

file Either a character string naming a file or a connection open for reading or writ-
ing. If "" (the default for write2FASTA), then the function writes to the standard
output connection (the console) unless redirected by sink

width The maximum number of letters per line of sequence

Value

Output as FASTA file format to the naming file or the console.

Author(s)

Lihua Julie Zhu

Examples

peaksWithSequences = GRanges(seqnames=c("1", "2"),
IRanges(start=c(1000, 2000),
end=c(1010, 2010),
names=c("id1", "id2")),
sequence= c("CCCCCCCCGGGGG", "TTTTTTTAAAAAA"))

write2FASTA(peaksWithSequences, file="testseq.fasta", width=50)

Index

∗Topic classes
annoGR-class, 7
bindist-class, 16
permPool-class, 52

∗Topic datasets
annotatedPeak, 8
enrichedGO, 23
ExonPlusUtr.human.GRCh37, 24
HOT.spots, 41
myPeakList, 46
Peaks.Ste12.Replicate1, 48
Peaks.Ste12.Replicate2, 48
Peaks.Ste12.Replicate3, 49
TSS.human.GRCh37, 58
TSS.human.GRCh38, 59
TSS.human.NCBI36, 59
TSS.mouse.GRCm38, 60
TSS.mouse.NCBIM37, 61
TSS.rat.RGSC3.4, 61
TSS.rat.Rnor_5.0, 62
TSS.zebrafish.Zv8, 63
TSS.zebrafish.Zv9, 64
wgEncodeTfbsV3, 64

∗Topic graph
makeVennDiagram, 42

∗Topic misc
addAncestors, 4
addGeneIDs, 5
annotatePeakInBatch, 9
assignChromosomeRegion, 13
BED2RangedData, 15
binOverFeature, 17
condenseMatrixByColnames, 20
convert2EntrezID, 20
countPatternInSeqs, 21
egOrgMap, 22
featureAlignedDistribution, 25
featureAlignedHeatmap, 26
featureAlignedSignal, 27

findOverlappingPeaks, 28
findOverlapsOfPeaks, 30
findVennCounts, 32
getAllPeakSequence, 33
getAnnotation, 34
getEnrichedGO, 35
getEnrichedPATH, 37
getVennCounts, 39
GFF2RangedData, 40
mergePlusMinusPeaks, 44
peakPermTest, 46
peaksNearBDP, 50
pie1, 53
preparePool, 54
summarizePatternInPeaks, 55
toGRanges, 56
translatePattern, 57
write2FASTA, 66

∗Topic package
ChIPpeakAnno-package, 3

$,bindist-method (bindist-class), 16
$,permPool-method (permPool-class), 52
$<-,bindist-method (bindist-class), 16
$<-,permPool-method (permPool-class), 52

addAncestors, 4
addGeneIDs, 5, 12
annoGR, 10, 12, 17, 50
annoGR (annoGR-class), 7
annoGR,EnsDb-method (annoGR-class), 7
annoGR,GRanges-method (annoGR-class), 7
annoGR,TxDb-method (annoGR-class), 7
annoGR-class, 7
annotatedPeak, 8
annotatePeakInBatch, 9, 31
AnnotationDbi, 6
assignChromosomeRegion, 13

BED2RangedData, 15

67

68 INDEX

BED2RangedData-deprecated
(BED2RangedData), 15

bindist, 17, 47, 54, 55
bindist (bindist-class), 16
bindist-class, 16
bindist-method (bindist-class), 16
binOverFeature, 17

ChIPpeakAnno (ChIPpeakAnno-package), 3
ChIPpeakAnno-deprecated, 18
ChIPpeakAnno-package, 3
coerce,annoGR,GRanges-method

(annoGR-class), 7
coerce,GRanges,annoGR-method

(annoGR-class), 7
condenseMatrixByColnames, 20
convert2EntrezID, 20
countPatternInSeqs, 21

Date, 7, 8
Deprecated, 19

egOrgMap, 22
enrichedGO, 23
EnsDb, 7, 8
ExonPlusUtr.human.GRCh37, 24

featureAlignedDistribution, 25, 27, 28
featureAlignedHeatmap, 25, 26, 28
featureAlignedSignal, 25–27, 27
findOverlappingPeaks, 12, 28, 31, 39
findOverlappingPeaks-deprecated

(findOverlappingPeaks), 28
findOverlaps, 47
findOverlapsOfPeaks, 19, 29, 30, 43
findVennCounts, 32
format, 54

getAllPeakSequence, 33
getAnnotation, 12, 34
getBM, 6
getEnrichedGO, 35
getEnrichedPATH, 37
getVennCounts, 31, 39
GFF2RangedData, 40
GFF2RangedData-deprecated

(GFF2RangedData), 40
gList, 26
GRanges, 7, 8, 10, 11, 17, 19, 25–27, 29, 30,

33, 34, 39, 43, 47, 50, 54–57

HOT.spots, 41

info (annoGR-class), 7
info,annoGR-method (annoGR-class), 7

legend, 54
listAttributes(mart), 6
listFilters(mart), 6

makeVennDiagram, 12, 31, 39, 42
matplot, 25
mclapply, 47
mergePlusMinusPeaks, 44
myPeakList, 46

numOverlaps, 47

OrganismDb, 7

peakPermTest, 17, 43, 46, 52, 54, 55
Peaks.Ste12.Replicate1, 48
Peaks.Ste12.Replicate2, 48
Peaks.Ste12.Replicate3, 49
peaksNearBDP, 12, 50
permPool, 47, 52
permPool (permPool-class), 52
permPool-class, 52
permPool-method (permPool-class), 52
permTest, 47
pie, 54
pie1, 53
preparePool, 17, 47, 52, 54

RangedData, 19, 29, 34, 39, 50, 56
read.table, 57
RleList, 25–27

SimpleRleList, 25–27
summarizePatternInPeaks, 12, 55

toGRanges, 16, 19, 56
translatePattern, 57
TSS.human.GRCh37, 58
TSS.human.GRCh38, 59
TSS.human.NCBI36, 59
TSS.mouse.GRCm38, 60
TSS.mouse.NCBIM37, 61
TSS.rat.RGSC3.4, 61
TSS.rat.Rnor_5.0, 62
TSS.zebrafish.Zv8, 63

INDEX 69

TSS.zebrafish.Zv9, 64
TxDb, 7, 8, 13, 14, 43, 47, 54

useMart, 5

venn.diagram, 43

wgEncodeTfbsV3, 64
write2FASTA, 66

	ChIPpeakAnno-package
	addAncestors
	addGeneIDs
	annoGR-class
	annotatedPeak
	annotatePeakInBatch
	assignChromosomeRegion
	BED2RangedData
	bindist-class
	binOverFeature
	ChIPpeakAnno-deprecated
	condenseMatrixByColnames
	convert2EntrezID
	countPatternInSeqs
	egOrgMap
	enrichedGO
	ExonPlusUtr.human.GRCh37
	featureAlignedDistribution
	featureAlignedHeatmap
	featureAlignedSignal
	findOverlappingPeaks
	findOverlapsOfPeaks
	findVennCounts
	getAllPeakSequence
	getAnnotation
	getEnrichedGO
	getEnrichedPATH
	getVennCounts
	GFF2RangedData
	HOT.spots
	makeVennDiagram
	mergePlusMinusPeaks
	myPeakList
	peakPermTest
	Peaks.Ste12.Replicate1
	Peaks.Ste12.Replicate2
	Peaks.Ste12.Replicate3
	peaksNearBDP
	permPool-class
	pie1
	preparePool
	summarizePatternInPeaks
	toGRanges
	translatePattern
	TSS.human.GRCh37
	TSS.human.GRCh38
	TSS.human.NCBI36
	TSS.mouse.GRCm38
	TSS.mouse.NCBIM37
	TSS.rat.RGSC3.4
	TSS.rat.Rnor_5.0
	TSS.zebrafish.Zv8
	TSS.zebrafish.Zv9
	wgEncodeTfbsV3
	write2FASTA
	Index

