
Package ‘DESeq2’
April 23, 2016

Type Package

Title Differential gene expression analysis based on the negative
binomial distribution

Version 1.10.1

Author Michael Love (HSPH Boston), Simon Anders, Wolfgang Huber (EMBL
Heidelberg)

Maintainer Michael Love <michaelisaiahlove@gmail.com>

Description Estimate variance-mean dependence in count data from
high-throughput sequencing assays and test for differential
expression based on a model using the negative binomial
distribution.

License LGPL (>= 3)

VignetteBuilder knitr

Imports BiocGenerics (>= 0.7.5), Biobase, BiocParallel, genefilter,
methods, locfit, geneplotter, ggplot2, Hmisc

Depends S4Vectors, IRanges, GenomicRanges, SummarizedExperiment (>=
0.2.0), Rcpp (>= 0.10.1), RcppArmadillo (>= 0.3.4.4)

Suggests testthat, knitr, BiocStyle, vsn, pheatmap, RColorBrewer,
airway, pasilla (>= 0.2.10), DESeq

LinkingTo Rcpp, RcppArmadillo

biocViews Sequencing, ChIPSeq, RNASeq, SAGE, DifferentialExpression,
GeneExpression

RoxygenNote 5.0.1

NeedsCompilation yes

R topics documented:
DESeq2-package . 2
coef . 3
collapseReplicates . 4
counts . 5

1

2 DESeq2-package

DESeq . 6
DESeqDataSet-class . 9
DESeqResults-class . 11
DESeqTransform-class . 11
design . 12
dispersionFunction . 12
dispersions . 13
estimateBetaPriorVar . 14
estimateDispersions . 15
estimateDispersionsGeneEst . 17
estimateSizeFactors . 19
estimateSizeFactorsForMatrix . 20
fpkm . 22
fpm . 23
makeExampleDESeqDataSet . 24
nbinomLRT . 25
nbinomWaldTest . 26
normalizationFactors . 28
normalizeGeneLength . 30
normTransform . 31
plotCounts . 32
plotDispEsts . 33
plotMA . 34
plotPCA . 35
plotSparsity . 36
replaceOutliers . 37
results . 38
rlog . 43
show . 46
sizeFactors . 46
summary . 47
varianceStabilizingTransformation . 48

Index 51

DESeq2-package DESeq2 package for differential analysis of count data

Description

The main functions for differential analysis are DESeq and results. See the examples at DESeq for
basic analysis steps. Two transformations offered for count data are the "regularized logarithm",
rlog, and varianceStabilizingTransformation. For more detailed information on usage, see
the package vignette, by typing vignette("DESeq2"), or the workflow linked to on the first page
of the vignette. All support questions should be posted to the Bioconductor support site: support.
bioconductor.org.

support.bioconductor.org
support.bioconductor.org

coef 3

Author(s)

Michael Love, Wolfgang Huber, Simon Anders

References

DESeq2 reference:

Michael I Love, Wolfgang Huber, Simon Anders: Moderated estimation of fold change and disper-
sion for RNA-seq data with DESeq2. Genome Biology 2014, 15:550. http://dx.doi.org/10.
1186/s13059-014-0550-8

DESeq reference:

Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data. Genome
Biology 2010, 11:106. http://dx.doi.org/10.1186/gb-2010-11-10-r106

coef Extract a matrix of model coefficients/standard errors

Description

Note: results tables with log2 fold change, p-values, adjusted p-values, etc. for each gene are best
generated using the results function. The coef function is designed for advanced users who wish
to inspect all model coefficients at once.

Usage

S3 method for class 'DESeqDataSet'
coef(object, SE = FALSE, ...)

Arguments

object a DESeqDataSet returned by DESeq, nbinomWaldTest, or nbinomLRT.

SE whether to give the standard errors instead of coefficients. defaults to FALSE so
that the coefficients are given.

... additional arguments

Details

Estimated model coefficients or estimated standard errors are provided in a matrix form, number
of genes by number of parameters, on the log2 scale. The columns correspond to columns of the
model matrix for final GLM fitting, i.e., attr(dds, "modelMatrix").

Author(s)

Michael Love

http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1186/gb-2010-11-10-r106

4 collapseReplicates

Examples

dds <- makeExampleDESeqDataSet(m=4)
dds <- DESeq(dds)
coef(dds)[1,]
coef(dds, SE=TRUE)[1,]

collapseReplicates Collapse technical replicates in a RangedSummarizedExperiment or
DESeqDataSet

Description

Collapses the columns in object by summing within levels of a grouping factor groupby. The
purpose of this function is to sum up read counts from technical replicates to create an object with
a single column of read counts for each sample. Optionally renames the columns of returned object
with the levels of the grouping factor. Note: this function is written very simply and can be easily
altered to produce other behavior by examining the source code.

Usage

collapseReplicates(object, groupby, run, renameCols = TRUE)

Arguments

object A RangedSummarizedExperiment or DESeqDataSet

groupby a grouping factor, as long as the columns of object

run optional, the names of each unique column in object. if provided, a new column
runsCollapsed will be added to the colData which pastes together the names
of run

renameCols whether to rename the columns of the returned object using the levels of the
grouping factor

Value

the object with as many columns as levels in groupby. This object has assay/count data which is
summed from the various columns which are grouped together, and the colData is subset using the
first column for each group in groupby.

Examples

dds <- makeExampleDESeqDataSet(m=12)

make data with two technical replicates for three samples
dds$sample <- factor(sample(paste0("sample",rep(1:9, c(2,1,1,2,1,1,2,1,1)))))

counts 5

dds$run <- paste0("run",1:12)

ddsColl <- collapseReplicates(dds, dds$sample, dds$run)

examine the colData and column names of the collapsed data
colData(ddsColl)
colnames(ddsColl)

check that the sum of the counts for "sample1" is the same
as the counts in the "sample1" column in ddsColl
matchFirstLevel <- dds$sample == levels(dds$sample)[1]
stopifnot(all(rowSums(counts(dds[,matchFirstLevel])) == counts(ddsColl[,1])))

counts Accessors for the ’counts’ slot of a DESeqDataSet object.

Description

The counts slot holds the count data as a matrix of non-negative integer count values, one row for
each observational unit (gene or the like), and one column for each sample.

Usage

S4 method for signature 'DESeqDataSet'
counts(object, normalized = FALSE,
replaced = FALSE)

S4 replacement method for signature 'DESeqDataSet,matrix'
counts(object) <- value

Arguments

object a DESeqDataSet object.

normalized logical indicating whether or not to divide the counts by the size factors or nor-
malization factors before returning (normalization factors always preempt size
factors)

replaced after a DESeq call, this argument will return the counts with outliers replaced
instead of the original counts, and optionally normalized. The replaced counts
are stored by DESeq in assays(object)[['replaceCounts']].

value an integer matrix

Author(s)

Simon Anders

6 DESeq

See Also

sizeFactors, normalizationFactors

Examples

dds <- makeExampleDESeqDataSet(m=4)
head(counts(dds))

dds <- estimateSizeFactors(dds) # run this or DESeq() first
head(counts(dds, normalized=TRUE))

DESeq Differential expression analysis based on the Negative Binomial (a.k.a.
Gamma-Poisson) distribution

Description

This function performs a default analysis through the steps:

1. estimation of size factors: estimateSizeFactors

2. estimation of dispersion: estimateDispersions

3. Negative Binomial GLM fitting and Wald statistics: nbinomWaldTest

For complete details on each step, see the manual pages of the respective functions. After the
DESeq function returns a DESeqDataSet object, results tables (log2 fold changes and p-values) can
be generated using the results function. See the manual page for results for information on
independent filtering and p-value adjustment for multiple test correction.

Usage

DESeq(object, test = c("Wald", "LRT"), fitType = c("parametric", "local",
"mean"), betaPrior, full = design(object), reduced, quiet = FALSE,
minReplicatesForReplace = 7, modelMatrixType, parallel = FALSE,
BPPARAM = bpparam())

Arguments

object a DESeqDataSet object, see the constructor functions DESeqDataSet, DESeqDataSetFromMatrix,
DESeqDataSetFromHTSeqCount.

test either "Wald" or "LRT", which will then use either Wald significance tests (de-
fined by nbinomWaldTest), or the likelihood ratio test on the difference in de-
viance between a full and reduced model formula (defined by nbinomLRT)

fitType either "parametric", "local", or "mean" for the type of fitting of dispersions to
the mean intensity. See estimateDispersions for description.

DESeq 7

betaPrior whether or not to put a zero-mean normal prior on the non-intercept coefficients
See nbinomWaldTest for description of the calculation of the beta prior. By
default, the beta prior is used only for the Wald test, but can also be specified for
the likelihood ratio test.

full for test="LRT", the full model formula, which is restricted to the formula in
design(object). alternatively, it can be a model matrix constructed by the
user. advanced use: specifying a model matrix for full and test="Wald" is
possible if betaPrior=FALSE

reduced for test="LRT", a reduced formula to compare against, i.e., the full formula
with the term(s) of interest removed. alternatively, it can be a model matrix
constructed by the user

quiet whether to print messages at each step
minReplicatesForReplace

the minimum number of replicates required in order to use replaceOutliers
on a sample. If there are samples with so many replicates, the model will be refit
after these replacing outliers, flagged by Cook’s distance. Set to Inf in order to
never replace outliers.

modelMatrixType

either "standard" or "expanded", which describe how the model matrix, X of
the GLM formula is formed. "standard" is as created by model.matrix using
the design formula. "expanded" includes an indicator variable for each level of
factors in addition to an intercept. for more information see the Description of
nbinomWaldTest. betaPrior must be set to TRUE in order for expanded model
matrices to be fit.

parallel if FALSE, no parallelization. if TRUE, parallel execution using BiocParallel,
see next argument BPPARAM. A note on running in parallel using BiocParallel:
it may be advantageous to remove large, unneeded objects from your current
R environment before calling DESeq, as it is possible that R’s internal garbage
collection will copy these files while running on worker nodes.

BPPARAM an optional parameter object passed internally to bplapply when parallel=TRUE.
If not specified, the parameters last registered with register will be used.

Details

The differential expression analysis uses a generalized linear model of the form:

Kij ∼ NB(µij , αi)

µij = sjqij

log2(qij) = xj.βi

where counts Kij for gene i, sample j are modeled using a Negative Binomial distribution with
fitted mean µij and a gene-specific dispersion parameter αi. The fitted mean is composed of a
sample-specific size factor sj and a parameter qij proportional to the expected true concentration
of fragments for sample j. The coefficients βi give the log2 fold changes for gene i for each col-
umn of the model matrix X . The sample-specific size factors can be replaced by gene-specific
normalization factors for each sample using normalizationFactors.

8 DESeq

For details on the fitting of the log2 fold changes and calculation of p-values, see nbinomWaldTest
if using test="Wald", or nbinomLRT if using test="LRT".

Experiments without replicates do not allow for estimation of the dispersion of counts around the
expected value for each group, which is critical for differential expression analysis. If an experi-
mental design is supplied which does not contain the necessary degrees of freedom for differential
analysis, DESeq will provide a message to the user and follow the strategy outlined in Anders and
Huber (2010) under the section ’Working without replicates’, wherein all the samples are consid-
ered as replicates of a single group for the estimation of dispersion. As noted in the reference above:
"Some overestimation of the variance may be expected, which will make that approach conserva-
tive." Furthermore, "while one may not want to draw strong conclusions from such an analysis, it
may still be useful for exploration and hypothesis generation."

The argument minReplicatesForReplace is used to decide which samples are eligible for auto-
matic replacement in the case of extreme Cook’s distance. By default, DESeq will replace outliers
if the Cook’s distance is large for a sample which has 7 or more replicates (including itself). This
replacement is performed by the replaceOutliers function. This default behavior helps to prevent
filtering genes based on Cook’s distance when there are many degrees of freedom. See results
for more information about filtering using Cook’s distance, and the ’Dealing with outliers’ section
of the vignette. Unlike the behavior of replaceOutliers, here original counts are kept in the ma-
trix returned by counts, original Cook’s distances are kept in assays(dds)[["cooks"]], and the
replacement counts used for fitting are kept in assays(object)[["replaceCounts"]].

Note that if a log2 fold change prior is used (betaPrior=TRUE) then expanded model matrices will
be used in fitting. These are described in nbinomWaldTest and in the vignette. The contrast
argument of results should be used for generating results tables.

Value

a DESeqDataSet object with results stored as metadata columns. These results should accessed by
calling the results function. By default this will return the log2 fold changes and p-values for the
last variable in the design formula. See results for how to access results for other variables.

Author(s)

Michael Love

References

Michael I Love, Wolfgang Huber, Simon Anders: Moderated estimation of fold change and disper-
sion for RNA-seq data with DESeq2. Genome Biology 2014, 15:550. http://dx.doi.org/10.
1186/s13059-014-0550-8

See Also

nbinomWaldTest, nbinomLRT

Examples

see vignette for suggestions on generating
count tables from RNA-Seq data

http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1186/s13059-014-0550-8

DESeqDataSet-class 9

cnts <- matrix(rnbinom(n=1000, mu=100, size=1/0.5), ncol=10)
cond <- factor(rep(1:2, each=5))

object construction
dds <- DESeqDataSetFromMatrix(cnts, DataFrame(cond), ~ cond)

standard analysis
dds <- DESeq(dds)
res <- results(dds)

an alternate analysis: likelihood ratio test
ddsLRT <- DESeq(dds, test="LRT", reduced= ~ 1)
resLRT <- results(ddsLRT)

DESeqDataSet-class DESeqDataSet object and constructors

Description

DESeqDataSet is a subclass of RangedSummarizedExperiment, used to store the input values, in-
termediate calculations and results of an analysis of differential expression. The DESeqDataSet
class enforces non-negative integer values in the "counts" matrix stored as the first element in the
assay list. In addition, a formula which specifies the design of the experiment must be provided.
The constructor functions create a DESeqDataSet object from various types of input: a Ranged-
SummarizedExperiment, a matrix, or count files generated by the python package HTSeq. See the
vignette for examples of construction from all three input types.

Usage

DESeqDataSet(se, design, ignoreRank = FALSE)

DESeqDataSetFromMatrix(countData, colData, design, tidy = FALSE,
ignoreRank = FALSE, ...)

DESeqDataSetFromHTSeqCount(sampleTable, directory = ".", design,
ignoreRank = FALSE, ...)

Arguments

se a RangedSummarizedExperiment with columns of variables indicating sample
information in colData, and the counts as the first element in the assays list,
which will be renamed "counts". A RangedSummarizedExperiment object can
be generated by the function summarizeOverlaps in the GenomicAlignments
package.

design a formula which expresses how the counts for each gene depend on the vari-
ables in colData. Many R formula are valid, including designs with multiple
variables, e.g., ~ group + condition, and designs with interactions, e.g.,

10 DESeqDataSet-class

~ genotype + treatment + genotype:treatment. See results for a va-
riety of designs and how to extract results tables. By default, the functions in
this package will use the last variable in the formula for building results tables
and plotting. ~ 1 can be used for no design, although users need to remember
to switch to another design for differential testing.

ignoreRank use of this argument is reserved for DEXSeq developers only. Users will imme-
diately encounter an error upon trying to estimate dispersion using a design with
a model matrix which is not full rank.

countData for matrix input: a matrix of non-negative integers

colData for matrix input: a DataFrame or data.frame with at least a single column.
Rows of colData correspond to columns of countData

tidy for matrix input: whether the first column of countData is the rownames for the
count matrix

... arguments provided to SummarizedExperiment including rowRanges and meta-
data. Note that for Bioconductor 3.1, rowRanges must be a GRanges or GRanges-
List, with potential metadata columns as a DataFrame accessed and stored with
mcols. If a user wants to store metadata columns about the rows of the count-
Data, but does not have GRanges or GRangesList information, first construct the
DESeqDataSet without rowRanges and then add the DataFrame with mcols(dds).

sampleTable for htseq-count: a data.frame with three or more columns. Each row describes
one sample. The first column is the sample name, the second column the file
name of the count file generated by htseq-count, and the remaining columns are
sample metadata which will be stored in colData

directory for htseq-count: the directory relative to which the filenames are specified. de-
faults to current directory

Value

A DESeqDataSet object.

References

See http://www-huber.embl.de/users/anders/HTSeq for htseq-count

Examples

countData <- matrix(1:100,ncol=4)
condition <- factor(c("A","A","B","B"))
dds <- DESeqDataSetFromMatrix(countData, DataFrame(condition), ~ condition)

http://www-huber.embl.de/users/anders/HTSeq

DESeqResults-class 11

DESeqResults-class DESeqResults object and constructor

Description

This constructor function would not typically be used by "end users". This simple class extends
the DataFrame class of the IRanges package to allow other packages to write methods for results
objects from the DESeq2 package. It is used by results to wrap up the results table.

Usage

DESeqResults(DataFrame)

Arguments

DataFrame a DataFrame of results, standard column names are: baseMean, log2FoldChange,
lfcSE, stat, pvalue, padj.

Value

a DESeqResults object

DESeqTransform-class DESeqTransform object and constructor

Description

This constructor function would not typically be used by "end users". This simple class extends the
RangedSummarizedExperiment class of the SummarizedExperiment package. It is used by rlog
and varianceStabilizingTransformation to wrap up the results into a class for downstream
methods, such as plotPCA.

Usage

DESeqTransform(SummarizedExperiment)

Arguments

SummarizedExperiment

a RangedSummarizedExperiment

Value

a DESeqTransform object

12 dispersionFunction

design Accessors for the ’design’ slot of a DESeqDataSet object.

Description

The design holds the R formula which expresses how the counts depend on the variables in
colData. See DESeqDataSet for details.

Usage

S4 method for signature 'DESeqDataSet'
design(object)

S4 replacement method for signature 'DESeqDataSet,formula'
design(object) <- value

Arguments

object a DESeqDataSet object
value a formula used for estimating dispersion and fitting Negative Binomial GLMs

Examples

dds <- makeExampleDESeqDataSet(m=4)
design(dds) <- formula(~ 1)

dispersionFunction Accessors for the ’dispersionFunction’ slot of a DESeqDataSet object.

Description

The dispersion function is calculated by estimateDispersions and used by varianceStabilizingTransformation.
Parametric dispersion fits store the coefficients of the fit as attributes in this slot.

Usage

dispersionFunction(object, ...)

dispersionFunction(object, ...) <- value

S4 method for signature 'DESeqDataSet'
dispersionFunction(object)

S4 replacement method for signature 'DESeqDataSet,`function`'
dispersionFunction(object,
estimateVar = TRUE) <- value

dispersions 13

Arguments

object a DESeqDataSet object.

... additional arguments

value a function

estimateVar whether to estimate the variance of dispersion residuals. setting to FALSE is
needed, e.g. within estimateDispersionsMAP when called on a subset of the
full dataset in parallel execution.

Details

Setting this will also overwrite mcols(object)$dispFit and the estimate the variance of disper-
sion residuals, see estimateVar below.

See Also

estimateDispersions

Examples

dds <- makeExampleDESeqDataSet(m=4)
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
dispersionFunction(dds)

dispersions Accessor functions for the dispersion estimates in a DESeqDataSet
object.

Description

The dispersions for each row of the DESeqDataSet. Generally, these are set by estimateDispersions.

Usage

dispersions(object, ...)

dispersions(object, ...) <- value

S4 method for signature 'DESeqDataSet'
dispersions(object)

S4 replacement method for signature 'DESeqDataSet,numeric'
dispersions(object) <- value

14 estimateBetaPriorVar

Arguments

object a DESeqDataSet object.

... additional arguments

value the dispersions to use for the Negative Binomial modeling

Author(s)

Simon Anders

See Also

estimateDispersions

estimateBetaPriorVar Steps for estimating the beta prior variance

Description

These lower-level functions are called within DESeq or nbinomWaldTest. End users should use
those higher-level function instead. NOTE: estimateBetaPriorVar returns a numeric vector, not a
DESEqDataSet! For advanced users: to use these functions, first run estimateMLEForBetaPriorVar
and then run estimateBetaPriorVar.

Usage

estimateBetaPriorVar(object, betaPriorMethod = c("weighted", "quantile"),
upperQuantile = 0.05)

estimateMLEForBetaPriorVar(object, maxit = 100, useOptim = TRUE,
useQR = TRUE)

Arguments

object a DESeqDataSet
betaPriorMethod

the method for calculating the beta prior variance, either "quanitle" or "weighted":
"quantile" matches a normal distribution using the upper quantile of the finite
MLE betas. "weighted" matches a normal distribution using the upper quantile,
but weighting by the variance of the MLE betas.

upperQuantile the upper quantile to be used for the "quantile" or "weighted" method of beta
prior variance estimation

maxit as defined in link{nbinomWaldTest}

useOptim as defined in link{nbinomWaldTest}

useQR as defined in link{nbinomWaldTest}

estimateDispersions 15

Value

for estimateMLEForBetaPriorVar, a DESeqDataSet, with the necessary information stored in
order to calculate the prior variance. for estimateBetaPriorVar, the vector of variances for the
prior on the betas in the DESeq GLM

estimateDispersions Estimate the dispersions for a DESeqDataSet

Description

This function obtains dispersion estimates for Negative Binomial distributed data.

Usage

S4 method for signature 'DESeqDataSet'
estimateDispersions(object, fitType = c("parametric",
"local", "mean"), maxit = 100, quiet = FALSE, modelMatrix = NULL)

Arguments

object a DESeqDataSet

fitType either "parametric", "local", or "mean" for the type of fitting of dispersions to
the mean intensity.

• parametric - fit a dispersion-mean relation of the form:

dispersion = asymptDisp+ extraPois/mean

via a robust gamma-family GLM. The coefficients asymptDisp and extraPois
are given in the attribute coefficients of the dispersionFunction of the
object.

• local - use the locfit package to fit a local regression of log dispersions over
log base mean (normal scale means and dispersions are input and output
for dispersionFunction). The points are weighted by normalized mean
count in the local regression.

• mean - use the mean of gene-wise dispersion estimates.

maxit control parameter: maximum number of iterations to allow for convergence

quiet whether to print messages at each step

modelMatrix an optional matrix which will be used for fitting the expected counts. by default,
the model matrix is constructed from design(object)

16 estimateDispersions

Details

Typically the function is called with the idiom:

dds <- estimateDispersions(dds)

The fitting proceeds as follows: for each gene, an estimate of the dispersion is found which max-
imizes the Cox Reid-adjusted profile likelihood (the methods of Cox Reid-adjusted profile likeli-
hood maximization for estimation of dispersion in RNA-Seq data were developed by McCarthy, et
al. (2012), first implemented in the edgeR package in 2010); a trend line capturing the dispersion-
mean relationship is fit to the maximum likelihood estimates; a normal prior is determined for
the log dispersion estimates centered on the predicted value from the trended fit with variance
equal to the difference between the observed variance of the log dispersion estimates and the ex-
pected sampling variance; finally maximum a posteriori dispersion estimates are returned. This
final dispersion parameter is used in subsequent tests. The final dispersion estimates can be ac-
cessed from an object using dispersions. The fitted dispersion-mean relationship is also used
in varianceStabilizingTransformation. All of the intermediate values (gene-wise dispersion
estimates, fitted dispersion estimates from the trended fit, etc.) are stored in mcols(dds), with
information about these columns in mcols(mcols(dds)).

The log normal prior on the dispersion parameter has been proposed by Wu, et al. (2012) and is
also implemented in the DSS package.

In DESeq2, the dispersion estimation procedure described above replaces the different methods of
dispersion from the previous version of the DESeq package.

estimateDispersions checks for the case of an analysis with as many samples as the number
of coefficients to fit, and will temporarily substitute a design formula ~ 1 for the purposes of
dispersion estimation. This treats the samples as replicates for the purpose of dispersion estimation.
As mentioned in the DESeq paper: "While one may not want to draw strong conclusions from such
an analysis, it may still be useful for exploration and hypothesis generation."

The lower-level functions called by estimateDispersions are: estimateDispersionsGeneEst,
estimateDispersionsFit, and estimateDispersionsMAP.

Value

The DESeqDataSet passed as parameters, with the dispersion information filled in as metadata
columns, accessible via mcols, or the final dispersions accessible via dispersions.

References

• Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data.
Genome Biology 11 (2010) R106, http://dx.doi.org/10.1186/gb-2010-11-10-r106

• McCarthy, DJ, Chen, Y, Smyth, GK: Differential expression analysis of multifactor RNA-Seq
experiments with respect to biological variation. Nucleic Acids Research 40 (2012), 4288-
4297, http://dx.doi.org/10.1093/nar/gks042

• Wu, H., Wang, C. & Wu, Z. A new shrinkage estimator for dispersion improves differential
expression detection in RNA-seq data. Biostatistics (2012). http://dx.doi.org/10.1093/
biostatistics/kxs033

http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://dx.doi.org/10.1093/nar/gks042
http://dx.doi.org/10.1093/biostatistics/kxs033
http://dx.doi.org/10.1093/biostatistics/kxs033

estimateDispersionsGeneEst 17

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
head(dispersions(dds))

estimateDispersionsGeneEst

Low-level functions to fit dispersion estimates

Description

Normal users should instead use estimateDispersions. These low-level functions are called by
estimateDispersions, but are exported and documented for non-standard usage. For instance, it
is possible to replace fitted values with a custom fit and continue with the maximum a posteriori
dispersion estimation, as demonstrated in the examples below.

Usage

estimateDispersionsGeneEst(object, minDisp = 1e-08, kappa_0 = 1,
dispTol = 1e-06, maxit = 100, quiet = FALSE, modelMatrix = NULL,
niter = 1)

estimateDispersionsFit(object, fitType = c("parametric", "local", "mean"),
minDisp = 1e-08, quiet = FALSE)

estimateDispersionsMAP(object, outlierSD = 2, dispPriorVar, minDisp = 1e-08,
kappa_0 = 1, dispTol = 1e-06, maxit = 100, modelMatrix = NULL,
quiet = FALSE)

estimateDispersionsPriorVar(object, minDisp = 1e-08, modelMatrix = NULL)

Arguments

object a DESeqDataSet

minDisp small value for the minimum dispersion, to allow for calculations in log scale,
one order of magnitude above this value is used as a test for inclusion in mean-
dispersion fitting

kappa_0 control parameter used in setting the initial proposal in backtracking search,
higher kappa_0 results in larger steps

dispTol control parameter to test for convergence of log dispersion, stop when increase
in log posterior is less than dispTol

maxit control parameter: maximum number of iterations to allow for convergence

quiet whether to print messages at each step

18 estimateDispersionsGeneEst

modelMatrix for advanced use only, a substitute model matrix for gene-wise and MAP dis-
persion estimation

niter number of times to iterate between estimation of means and estimation of dis-
persion

fitType either "parametric", "local", or "mean" for the type of fitting of dispersions to
the mean intensity. See estimateDispersions for description.

outlierSD the number of standard deviations of log gene-wise estimates above the prior
mean (fitted value), above which dispersion estimates will be labelled outliers.
Outliers will keep their original value and not be shrunk using the prior.

dispPriorVar the variance of the normal prior on the log dispersions. If not supplied, this is
calculated as the difference between the mean squared residuals of gene-wise
estimates to the fitted dispersion and the expected sampling variance of the log
dispersion

Value

a DESeqDataSet with gene-wise, fitted, or final MAP dispersion estimates in the metadata columns
of the object.

estimateDispersionsPriorVar is called inside of estimateDispersionsMAP and stores the dis-
persion prior variance as an attribute of dispersionFunction(dds), which can be manually pro-
vided to estimateDispersionsMAP for parallel execution.

See Also

estimateDispersions

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersionsGeneEst(dds)
dds <- estimateDispersionsFit(dds)
dds <- estimateDispersionsMAP(dds)
plotDispEsts(dds)

after having run estimateDispersionsFit()
the dispersion prior variance over all genes
can be obtained like so:

dispPriorVar <- estimateDispersionsPriorVar(dds)

estimateSizeFactors 19

estimateSizeFactors Estimate the size factors for a DESeqDataSet

Description

This function estimates the size factors using the "median ratio method" described by Equation
5 in Anders and Huber (2010). The estimated size factors can be accessed using sizeFactors.
Alternative library size estimators can also be supplied using sizeFactors.

Usage

S4 method for signature 'DESeqDataSet'
estimateSizeFactors(object, type = c("ratio",
"iterate"), locfunc = stats::median, geoMeans, controlGenes, normMatrix)

Arguments

object a DESeqDataSet

type either "ratio" or "iterate". "ratio" uses the standard median ratio method in-
troduced in DESeq. The size factor is the median ratio of the sample over a
pseudosample: for each gene, the geometric mean of all samples. "iterate" of-
fers an alternative estimator, which can be used even when all genes contain a
sample with a zero. This estimator iterates between estimating the dispersion
with a design of ~1, and finding a size factor vector by numerically optimizing
the likelihood of the ~1 model.

locfunc a function to compute a location for a sample. By default, the median is used.
However, especially for low counts, the shorth function from the genefilter
package may give better results.

geoMeans by default this is not provided and the geometric means of the counts are cal-
culated within the function. A vector of geometric means from another count
matrix can be provided for a "frozen" size factor calculation

controlGenes optional, numeric or logical index vector specifying those genes to use for size
factor estimation (e.g. housekeeping or spike-in genes)

normMatrix optional, a matrix of normalization factors which do not control for library size
(e.g. average transcript length of genes for each sample). Providing normMatrix
will estimate size factors on the count matrix divided by normMatrix and store
the product of the size factors and normMatrix as normalizationFactors.

Details

Typically, the function is called with the idiom:

dds <- estimateSizeFactors(dds)

See DESeq for a description of the use of size factors in the GLM. One should call this function
after DESeqDataSet unless size factors are manually specified with sizeFactors. Alternatively,

20 estimateSizeFactorsForMatrix

gene-specific normalization factors for each sample can be provided using normalizationFactors
which will always preempt sizeFactors in calculations.

Internally, the function calls estimateSizeFactorsForMatrix, which provides more details on
the calculation.

Value

The DESeqDataSet passed as parameters, with the size factors filled in.

Author(s)

Simon Anders

References

Reference for the median ratio method:

Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data. Genome
Biology 2010, 11:106. http://dx.doi.org/10.1186/gb-2010-11-10-r106

See Also

estimateSizeFactorsForMatrix

Examples

dds <- makeExampleDESeqDataSet(n=1000, m=4)
dds <- estimateSizeFactors(dds)
sizeFactors(dds)

dds <- estimateSizeFactors(dds, controlGenes=1:200)

m <- matrix(runif(1000 * 4, .5, 1.5), ncol=4)
dds <- estimateSizeFactors(dds, normMatrix=m)
normalizationFactors(dds)[1:3,]

geoMeans <- exp(rowMeans(log(counts(dds))))
dds <- estimateSizeFactors(dds,geoMeans=geoMeans)
sizeFactors(dds)

estimateSizeFactorsForMatrix

Low-level function to estimate size factors with robust regression.

http://dx.doi.org/10.1186/gb-2010-11-10-r106

estimateSizeFactorsForMatrix 21

Description

Given a matrix or data frame of count data, this function estimates the size factors as follows:
Each column is divided by the geometric means of the rows. The median (or, if requested, an-
other location estimator) of these ratios (skipping the genes with a geometric mean of zero) is
used as the size factor for this column. Typically, one will not call this function directly, but use
estimateSizeFactors.

Usage

estimateSizeFactorsForMatrix(counts, locfunc = stats::median, geoMeans,
controlGenes)

Arguments

counts a matrix or data frame of counts, i.e., non-negative integer values

locfunc a function to compute a location for a sample. By default, the median is used.
However, especially for low counts, the shorth function from genefilter may
give better results.

geoMeans by default this is not provided, and the geometric means of the counts are cal-
culated within the function. A vector of geometric means from another count
matrix can be provided for a "frozen" size factor calculation

controlGenes optional, numeric or logical index vector specifying those genes to use for size
factor estimation (e.g. housekeeping or spike-in genes)

Value

a vector with the estimates size factors, one element per column

Author(s)

Simon Anders

See Also

estimateSizeFactors

Examples

dds <- makeExampleDESeqDataSet()
estimateSizeFactorsForMatrix(counts(dds))
geoMeans <- exp(rowMeans(log(counts(dds))))
estimateSizeFactorsForMatrix(counts(dds),geoMeans=geoMeans)

22 fpkm

fpkm FPKM: fragments per kilobase per million mapped fragments

Description

The following function returns fragment counts normalized per kilobase of feature length per mil-
lion mapped fragments (by default using a robust estimate of the library size, as in estimateSizeFactors).

Usage

fpkm(object, robust = TRUE)

Arguments

object a DESeqDataSet

robust whether to use size factors to normalize rather than taking the column sums of
the raw counts, using the fpm function.

Details

The length of the features (e.g. genes) is calculated one of two ways: if there is a matrix named
"avgTxLength" in assays(dds), this will take precedence in the length normalization. Otherwise,
feature length is calculated from the rowRanges of the dds object, if a column basepairs is not
present in mcols(dds). The calculated length is the number of basepairs in the union of all GRanges
assigned to a given row of object, e.g., the union of all basepairs of exons of a given gene.

Note that, when the read/fragment counting has inter-feature dependencies, a strict normalization
would not incorporate the basepairs of a feature which overlap another feature. This inter-feature
dependence is not taken into consideration in the internal union basepair calculation.

Value

a matrix which is normalized per kilobase of the union of basepairs in the GRangesList or GRanges
of the mcols(object), and per million of mapped fragments, either using the robust median ratio
method (robust=TRUE, default) or using raw counts (robust=FALSE). Defining a column mcols(object)$basepairs
takes precedence over internal calculation of the kilobases for each row.

See Also

fpm

Examples

create a matrix with 1 million counts for the
2nd and 3rd column, the 1st and 4th have
half and double the counts, respectively.
m <- matrix(1e6 * rep(c(.125, .25, .25, .5), each=4),

ncol=4, dimnames=list(1:4,1:4))

fpm 23

mode(m) <- "integer"
se <- SummarizedExperiment(list(counts=m), colData=DataFrame(sample=1:4))
dds <- DESeqDataSet(se, ~ 1)

create 4 GRanges with lengths: 1, 1, 2, 2.5 Kb
gr1 <- GRanges("chr1",IRanges(1,1000)) # 1kb
gr2 <- GRanges("chr1",IRanges(c(1,1001),c(500,1500))) # 1kb
gr3 <- GRanges("chr1",IRanges(c(1,1001),c(1000,2000))) # 2kb
gr4 <- GRanges("chr1",IRanges(c(1,1001),c(200,1300))) # 500bp
rowRanges(dds) <- GRangesList(gr1,gr2,gr3,gr4)

the raw counts
counts(dds)

the FPM values
fpm(dds)

the FPKM values
fpkm(dds)

fpm FPM: fragments per million mapped fragments

Description

Calculates either a robust version (default) or the traditional matrix of fragments/counts per million
mapped fragments (FPM/CPM). Note: this function is written very simply and can be easily altered
to produce other behavior by examining the source code.

Usage

fpm(object, robust = TRUE)

Arguments

object a DESeqDataSet

robust whether to use size factors to normalize rather than taking the column sums of
the raw counts. If TRUE, the size factors and the geometric mean of column
sums are multiplied to create a robust library size estimate.

Value

a matrix which is normalized per million of mapped fragments, either using the robust median ratio
method (robust=TRUE, default) or using raw counts (robust=FALSE).

See Also

fpkm

24 makeExampleDESeqDataSet

Examples

generate a dataset with size factors: .5, 1, 1, 2
dds <- makeExampleDESeqDataSet(m = 4, n = 1000,

interceptMean=log2(1e3),
interceptSD=0,
sizeFactors=c(.5,1,1,2),
dispMeanRel=function(x) .01)

add a few rows with very high count
counts(dds)[4:10,] <- 2e5L

in this robust version, the counts are comparable across samples
round(head(fpm(dds), 3))

in this column sum version, the counts are still skewed:
sample1 < sample2 & 3 < sample 4
round(head(fpm(dds, robust=FALSE), 3))

the column sums of the robust version
are not equal to 1e6, but the
column sums of the non-robust version
are equal to 1e6 by definition

colSums(fpm(dds))/1e6
colSums(fpm(dds, robust=FALSE))/1e6

makeExampleDESeqDataSet

Make a simulated DESeqDataSet

Description

Constructs a simulated dataset of Negative Binomial data from two conditions. By default, there
are no fold changes between the two conditions, but this can be adjusted with the betaSD argument.

Usage

makeExampleDESeqDataSet(n = 1000, m = 12, betaSD = 0, interceptMean = 4,
interceptSD = 2, dispMeanRel = function(x) 4/x + 0.1,
sizeFactors = rep(1, m))

Arguments

n number of rows

m number of columns

betaSD the standard deviation for non-intercept betas, i.e. beta ~ N(0,betaSD)

nbinomLRT 25

interceptMean the mean of the intercept betas (log2 scale)

interceptSD the standard deviation of the intercept betas (log2 scale)

dispMeanRel a function specifying the relationship of the dispersions on 2^trueIntercept

sizeFactors multiplicative factors for each sample

Value

a DESeqDataSet with true dispersion, intercept and beta values in the metadata columns. Note that
the true betas are provided on the log2 scale.

Examples

dds <- makeExampleDESeqDataSet()
dds

nbinomLRT Likelihood ratio test (chi-squared test) for GLMs

Description

This function tests for significance of change in deviance between a full and reduced model which
are provided as formula. Fitting uses previously calculated sizeFactors (or normalizationFactors)
and dispersion estimates.

Usage

nbinomLRT(object, full = design(object), reduced, betaPrior = FALSE,
betaPriorVar, maxit = 100, useOptim = TRUE, quiet = FALSE,
useQR = TRUE)

Arguments

object a DESeqDataSet

full the full model formula, this should be the formula in design(object). alterna-
tively, can be a matrix

reduced a reduced formula to compare against, e.g. the full model with a term or terms
of interest removed. alternatively, can be a matrix

betaPrior whether or not to put a zero-mean normal prior on the non-intercept coeffi-
cients While the beta prior is used typically, for the Wald test, it can also be
specified for the likelihood ratio test. For more details on the calculation, see
nbinomWaldTest.

betaPriorVar a vector with length equal to the number of model terms including the intercept.
which if missing is estimated from the rows which do not have any zeros

26 nbinomWaldTest

maxit the maximum number of iterations to allow for convergence of the coefficient
vector

useOptim whether to use the native optim function on rows which do not converge within
maxit

quiet whether to print messages at each step

useQR whether to use the QR decomposition on the design matrix X while fitting the
GLM

Details

The difference in deviance is compared to a chi-squared distribution with df = (reduced resid-
ual degrees of freedom - full residual degrees of freedom). This function is comparable to the
nbinomGLMTest of the previous version of DESeq and an alternative to the default nbinomWaldTest.

Value

a DESeqDataSet with new results columns accessible with the results function. The coefficients
and standard errors are reported on a log2 scale.

See Also

DESeq, nbinomWaldTest

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
dds <- nbinomLRT(dds, reduced = ~ 1)
res <- results(dds)

nbinomWaldTest Wald test for the GLM coefficients

Description

This function tests for significance of coefficients in a Negative Binomial GLM, using previously
calculated sizeFactors (or normalizationFactors) and dispersion estimates. See DESeq for the
GLM formula.

Usage

nbinomWaldTest(object, betaPrior, betaPriorVar, modelMatrix = NULL,
modelMatrixType, maxit = 100, useOptim = TRUE, quiet = FALSE,
useT = FALSE, df, useQR = TRUE)

nbinomWaldTest 27

Arguments

object a DESeqDataSet

betaPrior whether or not to put a zero-mean normal prior on the non-intercept coefficients

betaPriorVar a vector with length equal to the number of model terms including the intercept.
betaPriorVar gives the variance of the prior on the sample betas on the log2
scale. if missing (default) this is estimated from the data

modelMatrix an optional matrix, typically this is set to NULL and created within the function.
only can be supplied if betaPrior=FALSE

modelMatrixType

either "standard" or "expanded", which describe how the model matrix, X of the
formula in DESeq, is formed. "standard" is as created by model.matrix using
the design formula. "expanded" includes an indicator variable for each level of
factors in addition to an intercept. betaPrior must be set to TRUE in order for
expanded model matrices to be fit.

maxit the maximum number of iterations to allow for convergence of the coefficient
vector

useOptim whether to use the native optim function on rows which do not converge within
maxit

quiet whether to print messages at each step

useT whether to use a t-distribution as a null distribution, for significance testing of
the Wald statistics. If FALSE, a standard normal null distribution is used.

df the degrees of freedom for the t-distribution

useQR whether to use the QR decomposition on the design matrix X while fitting the
GLM

Details

The fitting proceeds as follows: standard maximum likelihood estimates for GLM coefficients (syn-
onymous with "beta", "log2 fold change", "effect size") are calculated. A zero-centered Normal
prior distribution is assumed for the coefficients other than the intercept. The variance of the prior
distribution for each non-intercept coefficient is calculated using the observed distribution of the
maximum likelihood coefficients. The final coefficients are then maximum a posteriori estimates
using this prior (Tikhonov/ridge regularization). See below for details on the prior variance and the
Methods section of the DESeq2 manuscript for more detail. The use of a prior has little effect on
genes with high counts and helps to moderate the large spread in coefficients for genes with low
counts. For calculating Wald test p-values, the coefficients are scaled by their standard errors and
then compared to a standard Normal distribution.

The prior variance is calculated by matching the 0.05 upper quantile of the observed MLE coef-
ficients to a zero-centered Normal distribution. In a change of methods since the 2014 paper, the
weighted upper quantile is calculated using the wtd.quantile function from the Hmisc package.
The weights are the inverse of the expected variance of log counts, so the inverse of 1/µ̄ + αtr

using the mean of normalized counts and the trended dispersion fit. The weighting ensures that
noisy estimates of log fold changes from small count genes do not overly influence the calculation
of the prior variance. The final prior variance for a factor level is the average of the estimated prior
variance over all contrasts of all levels of the factor. Another change since the 2014 paper: when

28 normalizationFactors

interaction terms are present in the design, the prior on log fold changes is turned off (for more
details, see the vignette section, "Methods changes since the 2014 DESeq2 paper").

When a log2 fold change prior is used (betaPrior=TRUE), then nbinomWaldTest will by default use
expanded model matrices, as described in the modelMatrixType argument, unless this argument is
used to override the default behavior. This ensures that log2 fold changes will be independent of
the choice of reference level. In this case, the beta prior variance for each factor is calculated as
the average of the mean squared maximum likelihood estimates for each level and every possible
contrast. The results function without any arguments will automatically perform a contrast of the
last level of the last variable in the design formula over the first level. The contrast argument of
the results function can be used to generate other comparisons.

The Wald test can be replaced with the nbinomLRT for an alternative test of significance.

Value

a DESeqDataSet with results columns accessible with the results function. The coefficients and
standard errors are reported on a log2 scale.

See Also

DESeq, nbinomLRT

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
dds <- nbinomWaldTest(dds)
res <- results(dds)

normalizationFactors Accessor functions for the normalization factors in a DESeqDataSet
object.

Description

Gene-specific normalization factors for each sample can be provided as a matrix, which will pre-
empt sizeFactors. In some experiments, counts for each sample have varying dependence on
covariates, e.g. on GC-content for sequencing data run on different days, and in this case it makes
sense to provide gene-specific factors for each sample rather than a single size factor.

normalizationFactors 29

Usage

normalizationFactors(object, ...)

normalizationFactors(object, ...) <- value

S4 method for signature 'DESeqDataSet'
normalizationFactors(object)

S4 replacement method for signature 'DESeqDataSet,matrix'
normalizationFactors(object) <- value

Arguments

object a DESeqDataSet object.
... additional arguments
value the matrix of normalization factors

Details

Normalization factors alter the model of DESeq in the following way, for counts Kij and normal-
ization factors NFij for gene i and sample j:

Kij ∼ NB(µij , αi)

µij = NFijqij

Note

Normalization factors are on the scale of the counts (similar to sizeFactors) and unlike offsets,
which are typically on the scale of the predictors (in this case, log counts). Normalization factors
should include library size normalization. They should have row-wise geometric mean near 1,
as is the case with size factors, such that the mean of normalized counts is close to the mean of
unnormalized counts. See example code below.

Examples

dds <- makeExampleDESeqDataSet(n=100, m=4)

normFactors <- matrix(runif(nrow(dds)*ncol(dds),0.5,1.5),
ncol=ncol(dds),nrow=nrow(dds),
dimnames=list(1:nrow(dds),1:ncol(dds)))

the normalization factors matrix should not have 0's in it
it should have geometric mean near 1 for each row
normFactors <- normFactors / exp(rowMeans(log(normFactors)))
normalizationFactors(dds) <- normFactors

dds <- DESeq(dds)

30 normalizeGeneLength

normalizeGeneLength Normalize for gene length

Description

Normalize for gene length using the output of transcript abundance estimators

Usage

normalizeGeneLength(object, files, level = c("tx", "gene"),
geneIdCol = "gene_id", lengthCol = "length", abundanceCol = "FPKM",
dropGenes = FALSE, importer, ...)

Arguments

object the DESeqDataSet, before calling DESeq

files a character vector specifying the filenames of output files containing either tran-
script abundance estimates with transcript length, or average transcript length
information per gene.

level either "tx" or "gene"

geneIdCol the name of the column of the files specifying the gene id. This should line up
with the rownames(object). The information in the files will be re-ordered to
line up with the rownames of the object. See dropGenes for more details.

lengthCol the name of the column of files specifying the length of the feature, either tran-
script for level="tx" or the gene for level="gene".

abundanceCol only needed if level="tx", the name of the column specifying the abundance
estimate of the transcript.

dropGenes whether to drop genes from the object, as labelled by rownames(object), which
are not present in the geneIdCol of the files. Defaults to FALSE and gives an
error upon finding rownames of the object not present in the geneIdCol of the
files. The function will reorder the matching rows of the files to match the
rownames of the object.

importer a function to read the files. fread from the data.table package is quite fast, but
other options include read.table, read.csv. One can pre-test with importer(files[1]).

... further arguments passed to importer

Details

This is a prototype function for importing information about changes in the average transcript length
for each gene. The use of this function is only for testing purposes.

The function simply imports or calculates average transcript length for each gene and each sample
from external files, and provides this matrix to the normMatrix argument of estimateSizeFactors.
By average transcript length, the average refers to a weighted average with respect to the transcript
abundances. The RSEM method includes such a column in their gene.results files, but an es-
timate of average transcript length can be obtained from any software which outputs a file with a

normTransform 31

row for each transcript, specifying: transcript length, estimate of transcript abundance, and the gene
which the transcript belongs to.

Normalization factors accounting for both average transcript length and library size of each sample
are generated and then stored within the data object. The analysis can then continue with DESeq;
the stored normalization factors will be used instead of size factors in the analysis.

For RSEM genes.results files, specify level="gene", geneIdCol="gene_id", and lengthCol="effective_length"

For Cufflinks isoforms.fpkm_tracking files, specify level="tx", geneIdCol="gene_id", lengthCol="length",
and abundanceCol="FPKM".

For Sailfish output files, one can write an importer function which attaches a column gene_id
based on Transcript ID, and then specify level="tx", geneIdCol="gene_id", lengthCol="Length"
and abundanceCol="RPKM".

Along with the normalization matrix which is stored in normalizationFactors(object), the re-
sulting gene length matrix is stored in assays(dds)[["avgTxLength"]], and will take precedence
in calls to fpkm.

Value

a DESeqDataSet with normalizationFactors accounting for average transcript length and library
size

Examples

n <- 10
files <- c("sample1","sample2")
gene_id <- rep(paste0("gene",seq_len(n)),each=3)
set.seed(1)
sample1 <- data.frame(gene_id=gene_id,length=rpois(3*n,2000),FPKM=round(rnorm(3*n,10,1),2))
sample2 <- data.frame(gene_id=gene_id,length=rpois(3*n,2000),FPKM=round(rnorm(3*n,10,1),2))
importer <- get
dds <- makeExampleDESeqDataSet(n=n, m=2)
dds <- normalizeGeneLength(dds, files=files, level="tx",

geneIdCol="gene_id", lengthCol="length", abundanceCol="FPKM",
dropGenes=TRUE, importer=importer)

normTransform Normalized counts transformation

Description

A simple function for creating a DESeqTransform object after applying: f(count + pc).

Usage

normTransform(object, f = log2, pc = 1)

32 plotCounts

Arguments

object a DESeqDataSet object

f a function to apply to normalized counts

pc a pseudocount to add to normalized counts

See Also

varianceStabilizingTransformation, rlog

plotCounts Plot of normalized counts for a single gene on log scale

Description

Note: normalized counts plus a pseudocount of 0.5 are shown.

Usage

plotCounts(dds, gene, intgroup = "condition", normalized = TRUE,
transform = FALSE, main, xlab = "group", returnData = FALSE,
replaced = FALSE, ...)

Arguments

dds a DESeqDataSet

gene a character, specifying the name of the gene to plot

intgroup interesting groups: a character vector of names in colData(x) to use for group-
ing

normalized whether the counts should be normalized by size factor (default is TRUE)

transform whether to present log2 counts (TRUE) or to present the counts on the log scale
(FALSE, default)

main as in ’plot’

xlab as in ’plot’

returnData should the function only return the data.frame of counts and covariates for cus-
tom plotting (default is FALSE)

replaced use the outlier-replaced counts if they exist

... arguments passed to plot

Examples

dds <- makeExampleDESeqDataSet()
plotCounts(dds, "gene1")

plotDispEsts 33

plotDispEsts Plot dispersion estimates

Description

A simple helper function that plots the per-gene dispersion estimates together with the fitted mean-
dispersion relationship.

Usage

S4 method for signature 'DESeqDataSet'
plotDispEsts(object, ymin, genecol = "black",
fitcol = "red", finalcol = "dodgerblue", legend = TRUE, xlab, ylab,
log = "xy", cex = 0.45, ...)

Arguments

object a DESeqDataSet, with dispersions estimated

ymin the lower bound for points on the plot, points beyond this are drawn as triangles
at ymin

genecol the color for gene-wise dispersion estimates

fitcol the color of the fitted estimates

finalcol the color of the final estimates used for testing

legend logical, whether to draw a legend

xlab xlab

ylab ylab

log log

cex cex

... further arguments to plot

Author(s)

Simon Anders

Examples

dds <- makeExampleDESeqDataSet()
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
plotDispEsts(dds)

34 plotMA

plotMA MA-plot from base means and log fold changes

Description

A simple helper function that makes a so-called "MA-plot", i.e. a scatter plot of log2 fold changes
(on the y-axis) versus the mean of normalized counts (on the x-axis).

Usage

S4 method for signature 'DESeqDataSet'
plotMA(object, alpha = 0.1, main = "", ylim, ...)

S4 method for signature 'DESeqResults'
plotMA(object, alpha, main = "", ylim, MLE = FALSE,
...)

Arguments

object a DESeqResults object produced by results; or a DESeqDataSet processed by
DESeq, or the individual functions nbinomWaldTest or nbinomLRT

alpha the significance level for thresholding adjusted p-values

main optional title for the plot

ylim optional y limits

... further arguments passed to plotMA if object is DESeqResults or to results if
object is DESeqDataSet

MLE whether to plot the MLE (unshrunken estimates), defaults to FALSE. Requires
that results was run with addMLE=TRUE. Note that the MLE will be plotted
regardless of this argument, if DESeq() was run with betaPrior=FALSE.

Details

This function is essentially two lines of code: building a data.frame and passing this to the plotMA
method for data.frame from the geneplotter package. The code of this function can be seen with:
getMethod("plotMA","DESeqDataSet") If users wish to modify the graphical parameters of the
plot, it is recommended to build the data.frame in the same manner and call plotMA.

Author(s)

Michael Love

plotPCA 35

Examples

dds <- makeExampleDESeqDataSet()
dds <- DESeq(dds)
plotMA(dds)
res <- results(dds)
plotMA(res)

plotPCA Sample PCA plot for transformed data

Description

This plot helps to check for batch effects and the like.

Usage

S4 method for signature 'DESeqTransform'
plotPCA(object, intgroup = "condition",
ntop = 500, returnData = FALSE)

Arguments

object a DESeqTransform object, with data in assay(x), produced for example by
either rlog or varianceStabilizingTransformation.

intgroup interesting groups: a character vector of names in colData(x) to use for group-
ing

ntop number of top genes to use for principal components, selected by highest row
variance

returnData should the function only return the data.frame of PC1 and PC2 with intgroup
covariates for custom plotting (default is FALSE)

Value

An object created by ggplot, which can be assigned and further customized.

Note

See the vignette for an example of variance stabilization and PCA plots. Note that the source code of
plotPCA is very simple. The source can be found by typing DESeq2:::plotPCA.DESeqTransform
or getMethod("plotPCA","DESeqTransform"), or browsed on github at https://github.com/
Bioconductor-mirror/DESeq2/blob/master/R/plots.R Users should find it easy to customize
this function.

Author(s)

Wolfgang Huber

https://github.com/Bioconductor-mirror/DESeq2/blob/master/R/plots.R
https://github.com/Bioconductor-mirror/DESeq2/blob/master/R/plots.R

36 plotSparsity

Examples

using rlog transformed data:
dds <- makeExampleDESeqDataSet(betaSD=1)
rld <- rlog(dds)
plotPCA(rld)

also possible to perform custom transformation:
dds <- estimateSizeFactors(dds)
shifted log of normalized counts
se <- SummarizedExperiment(log2(counts(dds, normalized=TRUE) + 1),

colData=colData(dds))
the call to DESeqTransform() is needed to
trigger our plotPCA method.
plotPCA(DESeqTransform(se))

plotSparsity Sparsity plot

Description

A simple plot of the concentration of counts in a single sample over the sum of counts per gene.
Not technically the same as "sparsity", but this plot is useful diagnostic for datasets which might
not fit a negative binomial assumption: genes with many zeros and individual very large counts are
difficult to model with the negative binomial distribution.

Usage

plotSparsity(x, normalized = TRUE, ...)

Arguments

x a matrix or DESeqDataSet

normalized whether to normalize the counts from a DESeqDataSEt

... passed to plot

Examples

dds <- makeExampleDESeqDataSet(n=1000,m=4,dispMeanRel=function(x) .5)
dds <- estimateSizeFactors(dds)
plotSparsity(dds)

replaceOutliers 37

replaceOutliers Replace outliers with trimmed mean

Description

Note that this function is called within DESeq, so is not necessary to call on top of a DESeq call. See
the minReplicatesForReplace argument documented in link{DESeq}.

Usage

replaceOutliers(object, trim = 0.2, cooksCutoff, minReplicates = 7,
whichSamples)

replaceOutliersWithTrimmedMean(object, trim = 0.2, cooksCutoff,
minReplicates = 7, whichSamples)

Arguments

object a DESeqDataSet object, which has already been processed by either DESeq,
nbinomWaldTest or nbinomLRT, and therefore contains a matrix contained in
assays(dds)[["cooks"]]. These are the Cook’s distances which will be used
to define outlier counts.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of the nor-
malized counts for a gene before the mean is computed

cooksCutoff the threshold for defining an outlier to be replaced. Defaults to the .99 quantile
of the F(p, m - p) distribution, where p is the number of parameters and m is the
number of samples.

minReplicates the minimum number of replicate samples necessary to consider a sample eligi-
ble for replacement (including itself). Outlier counts will not be replaced if the
sample is in a cell which has less than minReplicates replicates.

whichSamples optional, a numeric or logical index to specify which samples should have out-
liers replaced. if missing, this is determined using minReplicates.

Details

This function replaces outlier counts flagged by extreme Cook’s distances, as calculated by DESeq,
nbinomWaldTest or nbinomLRT, with values predicted by the trimmed mean over all samples (and
adjusted by size factor or normalization factor). This function replaces the counts in the matrix
returned by counts(dds) and the Cook’s distances in assays(dds)[["cooks"]]. Original counts
are preserved in assays(dds)[["originalCounts"]].

The DESeq function calculates a diagnostic measure called Cook’s distance for every gene and every
sample. The results function then sets the p-values to NA for genes which contain an outlying
count as defined by a Cook’s distance above a threshold. With many degrees of freedom, i.e. many
more samples than number of parameters to be estimated– it might be undesirable to remove entire
genes from the analysis just because their data include a single count outlier. An alternate strategy
is to replace the outlier counts with the trimmed mean over all samples, adjusted by the size factor

38 results

or normalization factor for that sample. The following simple function performs this replacement
for the user, for samples which have at least minReplicates number of replicates (including that
sample). For more information on Cook’s distance, please see the two sections of the vignette:
’Dealing with count outliers’ and ’Count outlier detection’.

Value

a DESeqDataSet with replaced counts in the slot returned by counts and the original counts pre-
served in assays(dds)[["originalCounts"]]

See Also

DESeq

results Extract results from a DESeq analysis

Description

results extracts a result table from a DESeq analysis giving base means across samples, log2 fold
changes, standard errors, test statistics, p-values and adjusted p-values; resultsNames returns the
names of the estimated effects (coefficents) of the model; removeResults returns a DESeqDataSet
object with results columns removed.

Usage

results(object, contrast, name, lfcThreshold = 0,
altHypothesis = c("greaterAbs", "lessAbs", "greater", "less"),
listValues = c(1, -1), cooksCutoff, independentFiltering = TRUE,
alpha = 0.1, filter, theta, pAdjustMethod = "BH", filterFun,
format = c("DataFrame", "GRanges", "GRangesList"), test, addMLE = FALSE,
tidy = FALSE, parallel = FALSE, BPPARAM = bpparam())

resultsNames(object)

removeResults(object)

Arguments

object a DESeqDataSet, on which one of the following functions has already been
called: DESeq, nbinomWaldTest, or nbinomLRT

contrast this argument specifies what comparison to extract from the object to build a
results table. one of either:

• a character vector with exactly three elements: the name of a factor in the
design formula, the name of the numerator level for the fold change, and
the name of the denominator level for the fold change (simplest case)

results 39

• a list of 2 character vectors: the names of the fold changes for the numer-
ator, and the names of the fold changes for the denominator. these names
should be elements of resultsNames(object). if the list is length 1, a sec-
ond element is added which is the empty character vector, character().
(more general case, can be to combine interaction terms and main effects)

• a numeric contrast vector with one element for each element in resultsNames(object)
(most general case)

If specified, the name argument is ignored.

name the name of the individual effect (coefficient) for building a results table. Use
this argument rather than contrast for continuous variables, individual effects
or for individual interaction terms. The value provided to name must be an ele-
ment of resultsNames(object).

lfcThreshold a non-negative value, which specifies the test which should be applied to the
log2 fold changes. The standard is a test that the log2 fold changes are not
equal to zero. However, log2 fold changes greater or less than lfcThreshold
can also be tested. Specify the alternative hypothesis using the altHypothesis
argument. If lfcThreshold is specified, the results are Wald tests, and LRT
p-values will be overwritten.

altHypothesis character which specifies the alternative hypothesis, i.e. those values of log2
fold change which the user is interested in finding. The complement of this set
of values is the null hypothesis which will be tested. If the log2 fold change
specified by name or by contrast is written as β, then the possible values for
altHypothesis represent the following alternate hypotheses:

• greaterAbs: |β| > lfcThreshold, and p-values are two-tailed
• lessAbs: |β| < lfcThreshold, NOTE: this requires that betaPrior=FALSE

has been specified in the previous DESeq call. p-values are the maximum of
the upper and lower tests.

• greater: β > lfcThreshold
• less: β < −lfcThreshold

listValues only used if a list is provided to contrast: a numeric of length two: the log2
fold changes in the list are multiplied by these values. the first number should
be positive and the second negative. by default this is c(1,-1)

cooksCutoff theshold on Cook’s distance, such that if one or more samples for a row have a
distance higher, the p-value for the row is set to NA. The default cutoff is the
.99 quantile of the F(p, m-p) distribution, where p is the number of coefficients
being fitted and m is the number of samples. Set to Inf or FALSE to disable
the resetting of p-values to NA. Note: this test excludes the Cook’s distance of
samples belonging to experimental groups with only 2 samples.

independentFiltering

logical, whether independent filtering should be applied automatically

alpha the significance cutoff used for optimizing the independent filtering (by default
0.1). If the adjusted p-value cutoff (FDR) will be a value other than 0.1, alpha
should be set to that value.

filter the vector of filter statistics over which the independent filtering will be opti-
mized. By default the mean of normalized counts is used.

40 results

theta the quantiles at which to assess the number of rejections from independent fil-
tering

pAdjustMethod the method to use for adjusting p-values, see ?p.adjust

filterFun an optional custom function for independent filtering, with arguments alpha,
filter, test, theta, and method similar to genefilter::filtered_R, and
which returns padj

format character, either "DataFrame", "GRanges", or "GRangesList", whether the re-
sults should be printed as a DESeqResults DataFrame, or if the results DataFrame
should be attached as metadata columns to the GRanges or GRangesList rowRanges
of the DESeqDataSet. If the rowRanges is a GRangesList, and GRanges is re-
quested, the range of each gene will be returned

test this is typically automatically detected internally. the one exception is after
nbinomLRT has been run, test="Wald" will generate Wald statistics and Wald
test p-values.

addMLE whether the "unshrunken" maximum likelihood estimates (MLE) of log2 fold
change should be added as a column to the results table (default is FALSE).
only applicable when a beta prior was used during the model fitting. only im-
plemented for ’contrast’ for three element character vectors or ’name’ for inter-
actions.

tidy whether to output the results table with rownames as a first column ’row’. the
table will also be coerced to data.frame

parallel if FALSE, no parallelization. if TRUE, parallel execution using BiocParallel,
see next argument BPPARAM

BPPARAM an optional parameter object passed internally to bplapply when parallel=TRUE.
If not specified, the parameters last registered with register will be used.

Details

The results table when printed will provide the information about the comparison, e.g. "log2 fold
change (MAP): condition treated vs untreated", meaning that the estimates are of log2(treated /
untreated), as would be returned by contrast=c("condition","treated","untreated"). Mul-
tiple results can be returned for analyses beyond a simple two group comparison, so results takes
arguments contrast and name to help the user pick out the comparisons of interest for printing
a results table. The use of the contrast argument is recommended for exact specification of the
levels which should be compared and their order.

If results is run without specifying contrast or name, it will return the comparison of the last
level of the last variable in the design formula over the first level of this variable. For example, for
a simple two-group comparison, this would return the log2 fold changes of the second group over
the first group (the reference level). Please see examples below and in the vignette.

The argument contrast can be used to generate results tables for any comparison of interest, for
example, the log2 fold change between two levels of a factor, and its usage is described below. It
can also accomodate more complicated numeric comparisons. The test statistic used for a contrast
is:

ctβ/
√
ctΣc

results 41

The argument name can be used to generate results tables for individual effects, which must be in-
dividual elements of resultsNames(object). These individual effects could represent continuous
covariates, effects for individual levels, or individual interaction effects.

Information on the comparison which was used to build the results table, and the statistical test
which was used for p-values (Wald test or likelihood ratio test) is stored within the object returned
by results. This information is in the metadata columns of the results table, which is accessible
by calling mcols on the DESeqResults object returned by results.

On p-values:

By default, independent filtering is performed to select a set of genes for multiple test correction
which maximizes the number of adjusted p-values less than a given critical value alpha (by default
0.1). The filter used for maximizing the number of rejections is the mean of normalized counts for
all samples in the dataset. In version >= 1.10, the threshold chosen is the lowest quantile of the filter
for which the number of rejections is close to the peak of a curve fit to the number of rejections over
the filter quantiles. ’Close to’ is defined as within 1 residual standard deviation.

The adjusted p-values for the genes which do not pass the filter threshold are set to NA. By default,
the mean of normalized counts is used to perform this filtering, though other statistics can be pro-
vided. Several arguments from the filtered_p function of genefilter are provided here to control
or turn off the independent filtering behavior.

By default, results assigns a p-value of NA to genes containing count outliers, as identified using
Cook’s distance. See the cooksCutoff argument for control of this behavior. Cook’s distances for
each sample are accessible as a matrix "cooks" stored in the assays() list. This measure is useful
for identifying rows where the observed counts might not fit to a Negative Binomial distribution.

For analyses using the likelihood ratio test (using nbinomLRT), the p-values are determined solely
by the difference in deviance between the full and reduced model formula. A log2 fold change is
included, which can be controlled using the name argument, or by default this will be the estimated
coefficient for the last element of resultsNames(object).

Value

For results: a DESeqResults object, which is a simple subclass of DataFrame. This object con-
tains the results columns: baseMean, log2FoldChange, lfcSE, stat, pvalue and padj, and also
includes metadata columns of variable information. The lfcSE gives the standard error of the
log2FoldChange. For the Wald test, stat is the Wald statistic: the log2FoldChange divided by
lfcSE, which is compared to a standard Normal distribution to generate a two-tailed pvalue. For
the likelihood ratio test (LRT), stat is the difference in deviance between the reduced model and
the full model, which is compared to a chi-squared distribution to generate a pvalue.

For resultsNames: the names of the columns available as results, usually a combination of the
variable name and a level

For removeResults: the original DESeqDataSet with results metadata columns removed

References

Richard Bourgon, Robert Gentleman, Wolfgang Huber: Independent filtering increases detection
power for high-throughput experiments. PNAS (2010), http://dx.doi.org/10.1073/pnas.0914005107

http://dx.doi.org/10.1073/pnas.0914005107

42 results

See Also

DESeq

Examples

Example 1: simple two-group comparison

dds <- makeExampleDESeqDataSet(m=4)

dds <- DESeq(dds)
res <- results(dds)
res[order(res$padj),]

Example 2: two conditions, two genotypes, with an interaction term

dds <- makeExampleDESeqDataSet(n=100,m=12)
dds$genotype <- factor(rep(rep(c("I","II"),each=3),2))

design(dds) <- ~ genotype + condition + genotype:condition
dds <- DESeq(dds)
resultsNames(dds)

Note: design with interactions terms by default have betaPrior=FALSE

the condition effect for genotype I (the main effect)
results(dds, contrast=c("condition","B","A"))

the condition effect for genotype II
this is, by definition, the main effect *plus* the interaction term
(the extra condition effect in genotype II compared to genotype I).
results(dds, list(c("condition_B_vs_A","genotypeII.conditionB")))

the interaction term, answering: is the condition effect *different* across genotypes?
results(dds, name="genotypeII.conditionB")

Example 3: two conditions, three genotypes

~~~ Using interaction terms ~~~

dds <- makeExampleDESeqDataSet(n=100,m=18)
dds$genotype <- factor(rep(rep(c("I","II","III"),each=3),2))
design(dds) <- ~ genotype + condition + genotype:condition
dds <- DESeq(dds)
resultsNames(dds)

the condition effect for genotype I (the main effect)
results(dds, contrast=c("condition","B","A"))

the condition effect for genotype III.
this is the main effect *plus* the interaction term
(the extra condition effect in genotype III compared to genotype I).

rlog 43

results(dds, contrast=list(c("condition_B_vs_A","genotypeIII.conditionB")))

the interaction term for condition effect in genotype III vs genotype I.
this tests if the condition effect is different in III compared to I
results(dds, name="genotypeIII.conditionB")

the interaction term for condition effect in genotype III vs genotype II.
this tests if the condition effect is different in III compared to II
results(dds, contrast=list("genotypeIII.conditionB", "genotypeII.conditionB"))

Note that a likelihood ratio could be used to test if there are any
differences in the condition effect between the three genotypes.

~~~ Using a grouping variable ~~~

This is a useful construction when users just want to compare
specific groups which are combinations of variables.

dds$group <- factor(paste0(dds$genotype, dds$condition))
design(dds) <- ~ group
dds <- DESeq(dds)
resultsNames(dds)

the condition effect for genotypeIII
results(dds, contrast=c("group", "IIIB", "IIIA"))

rlog Apply a ’regularized log’ transformation

Description

This function transforms the count data to the log2 scale in a way which minimizes differences
between samples for rows with small counts, and which normalizes with respect to library size. The
rlog transformation produces a similar variance stabilizing effect as varianceStabilizingTransformation,
though rlog is more robust in the case when the size factors vary widely. The transformation is use-
ful when checking for outliers or as input for machine learning techniques such as clustering or lin-
ear discriminant analysis. rlog takes as input a DESeqDataSet and returns a RangedSummarizedExperiment
object.

Usage

rlog(object, blind = TRUE, intercept, betaPriorVar, fitType = "parametric")

rlogTransformation(object, blind = TRUE, intercept, betaPriorVar,
fitType = "parametric")

44 rlog

Arguments

object a DESeqDataSet, or matrix of counts

blind logical, whether to blind the transformation to the experimental design. blind=TRUE
should be used for comparing samples in an manner unbiased by prior infor-
mation on samples, for example to perform sample QA (quality assurance).
blind=FALSE should be used for transforming data for downstream analysis,
where the full use of the design information should be made. blind=FALSE will
skip re-estimation of the dispersion trend, if this has already been calculated. If
many of genes have large differences in counts due to the experimental design,
it is important to set blind=FALSE for downstream analysis.

intercept by default, this is not provided and calculated automatically. if provided, this
should be a vector as long as the number of rows of object, which is log2 of the
mean normalized counts from a previous dataset. this will enforce the intercept
for the GLM, allowing for a "frozen" rlog transformation based on a previous
dataset. You will also need to provide mcols(object)$dispFit.

betaPriorVar a single value, the variance of the prior on the sample betas, which if missing is
estimated from the data

fitType in case dispersions have not yet been estimated for object, this parameter is
passed on to estimateDispersions (options described there).

Details

Note that neither rlog transformation nor the VST are used by the differential expression estimation
in DESeq, which always occurs on the raw count data, through generalized linear modeling which
incorporates knowledge of the variance-mean dependence. The rlog transformation and VST are
offered as separate functionality which can be used for visualization, clustering or other machine
learning tasks. See the transformation section of the vignette for more details.

The transformation does not require that one has already estimated size factors and dispersions.

The regularization is on the log fold changes of the count for each sample over an intercept, for
each gene. As nearby count values for low counts genes are almost as likely as the observed
count, the rlog shrinkage is greater for low counts. For high counts, the rlog shrinkage has a much
weaker effect. The fitted dispersions are used rather than the MAP dispersions (so similar to the
varianceStabilizingTransformation).

The prior variance for the shrinkag of log fold changes is calculated as follows: a matrix is con-
structed of the logarithm of the counts plus a pseudocount of 0.5, the log of the row means is then
subtracted, leaving an estimate of the log fold changes per sample over the fitted value using only
an intercept. The prior variance is then calculated by matching the upper quantiles of the observed
log fold change estimates with an upper quantile of the normal distribution. A GLM fit is then
calculated using this prior. It is also possible to supply the variance of the prior. See the vignette for
an example of the use and a comparison with varianceStabilizingTransformation.

The transformed values, rlog(K), are equal to rlog(Kij) = log2(qij) = βi0 + βij , with formula
terms defined in DESeq.

The parameters of the rlog transformation from a previous dataset can be frozen and reapplied to
new samples. See the ’Data quality assessment’ section of the vignette for strategies to see if new
samples are sufficiently similar to previous datasets. The frozen rlog is accomplished by saving the

rlog 45

dispersion function, beta prior variance and the intercept from a previous dataset, and running rlog
with ’blind’ set to FALSE (see example below).

Value

a DESeqTransform if a DESeqDataSet was provided, or a matrix if a count matrix was provided
as input. Note that for DESeqTransform output, the matrix of transformed values is stored in
assay(rld). To avoid returning matrices with NA values, in the case of a row of all zeros, the
rlog transformation returns zeros (essentially adding a pseudocount of 1 only to these rows).

References

Reference for regularized logarithm (rlog):

Michael I Love, Wolfgang Huber, Simon Anders: Moderated estimation of fold change and disper-
sion for RNA-seq data with DESeq2. Genome Biology 2014, 15:550. http://dx.doi.org/10.
1186/s13059-014-0550-8

See Also

plotPCA, varianceStabilizingTransformation, normTransform

Examples

dds <- makeExampleDESeqDataSet(m=6,betaSD=1)
rld <- rlog(dds)
dists <- dist(t(assay(rld)))
plot(hclust(dists))

run the rlog transformation on one dataset
design(dds) <- ~ 1
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)
rld <- rlog(dds, blind=FALSE)

apply the parameters to a new sample

ddsNew <- makeExampleDESeqDataSet(m=1)
mcols(ddsNew)$dispFit <- mcols(dds)$dispFit
betaPriorVar <- attr(rld,"betaPriorVar")
intercept <- mcols(rld)$rlogIntercept
rldNew <- rlog(ddsNew, blind=FALSE,

intercept=intercept,
betaPriorVar=betaPriorVar)

http://dx.doi.org/10.1186/s13059-014-0550-8
http://dx.doi.org/10.1186/s13059-014-0550-8

46 sizeFactors

show Show method for DESeqResults objects

Description

Prints out the information from the metadata columns of the results object regarding the log2 fold
changes and p-values, then shows the DataFrame using the standard method.

Usage

S4 method for signature 'DESeqResults'
show(object)

Arguments

object a DESeqResults object

Author(s)

Michael Love

sizeFactors Accessor functions for the ’sizeFactors’ information in a DESeq-
DataSet object.

Description

The sizeFactors vector assigns to each column of the count matrix a value, the size factor, such
that count values in the columns can be brought to a common scale by dividing by the corre-
sponding size factor (as performed by counts(dds, normalized=TRUE)). See DESeq for a de-
scription of the use of size factors. If gene-specific normalization is desired for each sample, use
normalizationFactors.

Usage

S4 method for signature 'DESeqDataSet'
sizeFactors(object)

S4 replacement method for signature 'DESeqDataSet,numeric'
sizeFactors(object) <- value

Arguments

object a DESeqDataSet object.

value a numeric vector, one size factor for each column in the count data.

summary 47

Author(s)

Simon Anders

See Also

estimateSizeFactors

summary Summarize DESeq results

Description

Print a summary of the results from a DESeq analysis.

Usage

S3 method for class 'DESeqResults'
summary(object, alpha, ...)

Arguments

object a DESeqResults object

alpha the adjusted p-value cutoff. if not set, this defaults to the alpha argument which
was used in results to set the target FDR for independent filtering.

... additional arguments

Author(s)

Michael Love

Examples

dds <- makeExampleDESeqDataSet(m=4)
dds <- DESeq(dds)
res <- results(dds)
summary(res)

48 varianceStabilizingTransformation

varianceStabilizingTransformation

Apply a variance stabilizing transformation (VST) to the count data

Description

This function calculates a variance stabilizing transformation (VST) from the fitted dispersion-
mean relation(s) and then transforms the count data (normalized by division by the size factors or
normalization factors), yielding a matrix of values which are now approximately homoskedastic
(having constant variance along the range of mean values). The transformation also normalizes
with respect to library size. The rlog is less sensitive to size factors, which can be an issue when
size factors vary widely. These transformations are useful when checking for outliers or as input for
machine learning techniques such as clustering or linear discriminant analysis.

Usage

varianceStabilizingTransformation(object, blind = TRUE,
fitType = "parametric")

getVarianceStabilizedData(object)

Arguments

object a DESeqDataSet or matrix of counts

blind logical, whether to blind the transformation to the experimental design. blind=TRUE
should be used for comparing samples in an manner unbiased by prior infor-
mation on samples, for example to perform sample QA (quality assurance).
blind=FALSE should be used for transforming data for downstream analysis,
where the full use of the design information should be made. blind=FALSE will
skip re-estimation of the dispersion trend, if this has already been calculated. If
many of genes have large differences in counts due to the experimental design,
it is important to set blind=FALSE for downstream analysis.

fitType in case dispersions have not yet been estimated for object, this parameter is
passed on to estimateDispersions (options described there).

Details

For each sample (i.e., column of counts(dds)), the full variance function is calculated from the raw
variance (by scaling according to the size factor and adding the shot noise). We recommend a blind
estimation of the variance function, i.e., one ignoring conditions. This is performed by default, and
can be modified using the ’blind’ argument.

Note that neither rlog transformation nor the VST are used by the differential expression estimation
in DESeq, which always occurs on the raw count data, through generalized linear modeling which
incorporates knowledge of the variance-mean dependence. The rlog transformation and VST are
offered as separate functionality which can be used for visualization, clustering or other machine
learning tasks. See the transformation section of the vignette for more details.

varianceStabilizingTransformation 49

The transformation does not require that one has already estimated size factors and dispersions.

A typical workflow is shown in Section Variance stabilizing transformation in the package vignette.

If estimateDispersions was called with:

fitType="parametric", a closed-form expression for the variance stabilizing transformation is
used on the normalized count data. The expression can be found in the file ‘vst.pdf’ which is
distributed with the vignette.

fitType="local", the reciprocal of the square root of the variance of the normalized counts, as
derived from the dispersion fit, is then numerically integrated, and the integral (approximated by a
spline function) is evaluated for each count value in the column, yielding a transformed value.

fitType="mean", a VST is applied for Negative Binomial distributed counts, ’k’, with a fixed
dispersion, ’a’: (2 asinh(sqrt(a k)) - log(a) - log(4))/log(2).

In all cases, the transformation is scaled such that for large counts, it becomes asymptotically (for
large values) equal to the logarithm to base 2 of normalized counts.

The variance stabilizing transformation from a previous dataset can be frozen and reapplied to new
samples. See the ’Data quality assessment’ section of the vignette for strategies to see if new
samples are sufficiently similar to previous datasets. The frozen VST is accomplished by saving the
dispersion function accessible with dispersionFunction, assigning this to the DESeqDataSet with
the new samples, and running varianceStabilizingTransformation with ’blind’ set to FALSE (see
example below). Then the dispersion function from the previous dataset will be used to transform
the new sample(s).

Limitations: In order to preserve normalization, the same transformation has to be used for all
samples. This results in the variance stabilizition to be only approximate. The more the size factors
differ, the more residual dependence of the variance on the mean will be found in the transformed
data. rlog is a transformation which can perform better in these cases. As shown in the vignette,
the function meanSdPlot from the package vsn can be used to see whether this is a problem.

Value

varianceStabilizingTransformation returns a DESeqTransform if a DESeqDataSet was pro-
vided, or returns a a matrix if a count matrix was provided. Note that for DESeqTransform output,
the matrix of transformed values is stored in assay(vsd). getVarianceStabilizedData also re-
turns a matrix.

Author(s)

Simon Anders

References

Reference for the variance stabilizing transformation for counts with a dispersion trend:

Simon Anders, Wolfgang Huber: Differential expression analysis for sequence count data. Genome
Biology 2010, 11:106. http://dx.doi.org/10.1186/gb-2010-11-10-r106

See Also

plotPCA, rlog, normTransform

http://dx.doi.org/10.1186/gb-2010-11-10-r106

50 varianceStabilizingTransformation

Examples

dds <- makeExampleDESeqDataSet(m=6)
vsd <- varianceStabilizingTransformation(dds)
dists <- dist(t(assay(vsd)))
plot(hclust(dists))

learn the dispersion function of a dataset
design(dds) <- ~ 1
dds <- estimateSizeFactors(dds)
dds <- estimateDispersions(dds)

use the previous dispersion function for a new sample
ddsNew <- makeExampleDESeqDataSet(m=1)
ddsNew <- estimateSizeFactors(ddsNew)
dispersionFunction(ddsNew) <- dispersionFunction(dds)
vsdNew <- varianceStabilizingTransformation(ddsNew, blind=FALSE)

Index

∗Topic package
DESeq2-package, 2

bplapply, 7, 40

coef, 3
collapseReplicates, 4
counts, 5, 8, 38
counts,DESeqDataSet-method (counts), 5
counts<-,DESeqDataSet,matrix-method

(counts), 5

DESeq, 2, 3, 6, 14, 15, 19, 26–29, 31, 34,
37–39, 42, 44, 46, 48

DESeq2-package, 2
DESeqDataSet, 6, 8, 12, 19, 25, 43
DESeqDataSet (DESeqDataSet-class), 9
DESeqDataSet-class, 9
DESeqDataSetFromHTSeqCount, 6
DESeqDataSetFromHTSeqCount

(DESeqDataSet-class), 9
DESeqDataSetFromMatrix, 6
DESeqDataSetFromMatrix

(DESeqDataSet-class), 9
DESeqResults, 40, 41, 47
DESeqResults (DESeqResults-class), 11
DESeqResults-class, 11
DESeqTransform, 31, 35, 45, 49
DESeqTransform (DESeqTransform-class),

11
DESeqTransform-class, 11
design, 12
design,DESeqDataSet-method (design), 12
design<-,DESeqDataSet,formula-method

(design), 12
dispersionFunction, 12, 15, 49
dispersionFunction,DESeqDataSet-method

(dispersionFunction), 12
dispersionFunction<-

(dispersionFunction), 12

dispersionFunction<-,DESeqDataSet,function-method
(dispersionFunction), 12

dispersions, 13, 16
dispersions,DESeqDataSet-method

(dispersions), 13
dispersions<- (dispersions), 13
dispersions<-,DESeqDataSet,numeric-method

(dispersions), 13

estimateBetaPriorVar, 14
estimateDispersions, 6, 12–14, 15, 17, 18,

44, 48, 49
estimateDispersions,DESeqDataSet-method

(estimateDispersions), 15
estimateDispersionsFit, 16
estimateDispersionsFit

(estimateDispersionsGeneEst),
17

estimateDispersionsGeneEst, 16, 17
estimateDispersionsMAP, 16
estimateDispersionsMAP

(estimateDispersionsGeneEst),
17

estimateDispersionsPriorVar
(estimateDispersionsGeneEst),
17

estimateMLEForBetaPriorVar
(estimateBetaPriorVar), 14

estimateSizeFactors, 6, 19, 21, 22, 30, 47
estimateSizeFactors,DESeqDataSet-method

(estimateSizeFactors), 19
estimateSizeFactorsForMatrix, 20, 20

fpkm, 22, 23, 31
fpm, 22, 23

getVarianceStabilizedData
(varianceStabilizingTransformation),
48

makeExampleDESeqDataSet, 24

51

52 INDEX

nbinomLRT, 3, 6, 8, 25, 28, 34, 37, 38, 41
nbinomWaldTest, 3, 6–8, 14, 25, 26, 26, 34,

37, 38
normalizationFactors, 6, 7, 19, 20, 25, 26,

28, 31, 46
normalizationFactors,DESeqDataSet-method

(normalizationFactors), 28
normalizationFactors<-

(normalizationFactors), 28
normalizationFactors<-,DESeqDataSet,matrix-method

(normalizationFactors), 28
normalizeGeneLength, 30
normTransform, 31, 45, 49

plotCounts, 32
plotDispEsts, 33
plotDispEsts,DESeqDataSet-method

(plotDispEsts), 33
plotMA, 34
plotMA,DESeqDataSet-method (plotMA), 34
plotMA,DESeqResults-method (plotMA), 34
plotPCA, 11, 35, 45, 49
plotPCA,DESeqTransform-method

(plotPCA), 35
plotSparsity, 36

RangedSummarizedExperiment, 43
register, 7, 40
removeResults (results), 38
replaceOutliers, 7, 8, 37
replaceOutliersWithTrimmedMean

(replaceOutliers), 37
results, 2, 3, 6, 8, 10, 11, 26, 28, 34, 37, 38,

47
resultsNames (results), 38
rlog, 2, 11, 32, 35, 43, 48, 49
rlogTransformation (rlog), 43

shorth, 19, 21
show, 46
show,DESeqResults-method (show), 46
sizeFactors, 6, 19, 20, 25, 26, 28, 29, 46
sizeFactors,DESeqDataSet-method

(sizeFactors), 46
sizeFactors<-,DESeqDataSet,numeric-method

(sizeFactors), 46
summary, 47

varianceStabilizingTransformation, 2,
11, 12, 16, 32, 35, 43–45, 48

	DESeq2-package
	coef
	collapseReplicates
	counts
	DESeq
	DESeqDataSet-class
	DESeqResults-class
	DESeqTransform-class
	design
	dispersionFunction
	dispersions
	estimateBetaPriorVar
	estimateDispersions
	estimateDispersionsGeneEst
	estimateSizeFactors
	estimateSizeFactorsForMatrix
	fpkm
	fpm
	makeExampleDESeqDataSet
	nbinomLRT
	nbinomWaldTest
	normalizationFactors
	normalizeGeneLength
	normTransform
	plotCounts
	plotDispEsts
	plotMA
	plotPCA
	plotSparsity
	replaceOutliers
	results
	rlog
	show
	sizeFactors
	summary
	varianceStabilizingTransformation
	Index

