Package 'genotypeeval'

April 23, 2016

Title QA/QC of a gVCF or VCF file

Version 1.0.0

Description Takes in a gVCF or VCF and reports metrics to assess quality of calls.

Depends R (>= 3.2.0), VariantAnnotation

Imports ggplot2, rtracklayer, BiocGenerics, GenomicRanges, GenomeInfoDb, IRanges, methods, BiocParallel

Collate GoldDataParam.R GoldData.R VCFData.R VCFQAParam.R VCFQAReport.R PopulationSummary.R

License file LICENSE

LazyData true

Suggests knitr, testthat, SNPlocs.Hsapiens.dbSNP141.GRCh38, TxDb.Hsapiens.UCSC.hg38.knownGene

VignetteBuilder knitr

Author Jennifer Tom [aut, cre]

Maintainer Jennifer Tom <tom.jennifer@gene.com>

biocViews Genetics, BatchEffect, Sequencing, SNP, VariantAnnotation, DataImport

NeedsCompilation no

R topics documented:

lidSamplePass	2
lidSamplePassOverall	3
etName	3
getPlots	4
etResults	5
yetVR	5
GoldData-class	6
GoldDataFromGRanges	6
GoldDataParam	7

didSamplePass

oldDataParam-class	3
eadGoldData	9
eadVCFData	9
eadVCFDataChunk	C
formatData	2
CFData-class	2
CFEvaluate	3
CFQAParam	4
CFQAParam-class	5
CFQAReport-class	5
-	
12	7

Index

didSamplePass Getter for VCFEvaluate class to check if Sample Passed. Using thresholds from VCFQAParam object return a list. First return whether each test was passed (TRUE) or failed (FALSE). Then return an overall pass (TRUE) or fail (FALSE).

Description

Getter for VCFEvaluate class to check if Sample Passed. Using thresholds from VCFQAParam object return a list. First return whether each test was passed (TRUE) or failed (FALSE). Then return an overall pass (TRUE) or fail (FALSE).

Usage

```
didSamplePass(Object)
```

Arguments

Object an object of type VCFQAReport

Value

Vector of True and False

```
vcffn <- system.file("ext-data", "chr22.GRCh38.vcf.gz", package="genotypeeval")
mydir <- paste(dirname(vcffn), "/", sep="")
myfile <-basename(vcffn)
svp <- ScanVcfParam(which=GRanges("22", IRanges(0,200e5)), geno="GT")
vcfparams <- VCFQAParam(count.limits=c(3014580000, Inf), readdepth.target = 30)
vcf <- ReadVCFData(mydir, myfile, "GRCh38")
ev <- VCFEvaluate(vcf, vcfparams)
didSamplePass(ev)</pre>
```

didSamplePassOverall Getter for VCFEvaluate class to check if Sample Passed. Using thresholds from VCFQAParam object return a list. First return whether each test was passed (TRUE) or failed (FALSE). Then return an overall pass (TRUE) or fail (FALSE).

Description

Getter for VCFEvaluate class to check if Sample Passed. Using thresholds from VCFQAParam object return a list. First return whether each test was passed (TRUE) or failed (FALSE). Then return an overall pass (TRUE) or fail (FALSE).

Usage

```
didSamplePassOverall(Object)
```

Arguments

Object an object of type VCFQAReport

Value

True or False if sample passed all thresholds

Examples

```
vcffn <- system.file("ext-data", "chr22.GRCh38.vcf.gz", package="genotypeeval")
mydir <- paste(dirname(vcffn), "/", sep="")
myfile <-basename(vcffn)
svp <- ScanVcfParam(which=GRanges("22", IRanges(0,200e5)), geno="GT")
vcfparams <- VCFQAParam(count.limits=c(3014580000, Inf), readdepth.target = 30)
vcf <- ReadVCFData(mydir, myfile, "GRCh38")
ev <- VCFEvaluate(vcf, vcfparams)
didSamplePassOverall(ev)</pre>
```

getName

Getter for VCFQAReport class to return filename slot

Description

Getter for VCFQAReport class to return filename slot

Usage

getName(Object)

Arguments

Object

Object of class VCFQAReport

Value

Name of file

Examples

```
vcffn <- system.file("ext-data", "chr22.GRCh38.vcf.gz", package="genotypeeval")
mydir <- paste(dirname(vcffn), "/", sep="")
myfile <-basename(vcffn)
svp <- ScanVcfParam(which=GRanges("22", IRanges(0,200e5)), geno="GT")
vcfparams <- VCFQAParam(count.limits=c(3014580000, Inf), readdepth.target = 30)
vcf <- ReadVCFData(mydir, myfile, "GRCh38")
ev <- VCFEvaluate(vcf, vcfparams)
getName(ev)</pre>
```

```
getPlots
```

Getter for VCFQAReport class to return plots slot.

Description

Getter for VCFQAReport class to return plots slot.

Usage

```
getPlots(Object)
```

Arguments

Object Object of Class VCFQAReport

Value

List of named ggplots

```
vcffn <- system.file("ext-data", "chr22.GRCh38.vcf.gz", package="genotypeeval")
mydir <- paste(dirname(vcffn), "/", sep="")
myfile <-basename(vcffn)
svp <- ScanVcfParam(which=GRanges("22", IRanges(0,200e5)), geno="GT")
vcfparams <- VCFQAParam(count.limits=c(3014580000, Inf), readdepth.target = 30)
vcf <- ReadVCFData(mydir, myfile, "GRCh38")
ev <- VCFEvaluate(vcf, vcfparams)
getPlots(ev)</pre>
```

getResults

Getter for VCFQAReport class to return results. Return a list showing values that the sample was evaluated on.

Description

Getter for VCFQAReport class to return results. Return a list showing values that the sample was evaluated on.

Usage

getResults(Object)

Arguments

Object an object of type VCFQAReport

Value

numeric vector of results

Examples

```
vcffn <- system.file("ext-data", "chr22.GRCh38.vcf.gz", package="genotypeeval")
mydir <- paste(dirname(vcffn), "/", sep="")
myfile <-basename(vcffn)
svp <- ScanVcfParam(which=GRanges("22", IRanges(0,200e5)), geno="GT")
vcfparams <- VCFQAParam(count.limits=c(3014580000, Inf), readdepth.target = 30)
vcf <- ReadVCFData(mydir, myfile, "GRCh38")
ev <- VCFEvaluate(vcf, vcfparams)
getResults(ev)</pre>
```

getVR

getVr is a Getter. Returns vr slot.

Description

getVr is a Getter. Returns vr slot.

Usage

getVR(x)

Arguments

x VCFData object

VRanges

Examples

```
vcffn <- system.file("ext-data", "chr22.GRCh38.vcf.gz", package="genotypeeval")
mydir <- paste(dirname(vcffn), "/", sep="")
myfile <-basename(vcffn)
svp <- ScanVcfParam(which=GRanges("22", IRanges(0,1e5)), geno="GT")
vcf <- ReadVCFData(mydir, myfile, "GRCh38")
getVR(vcf)</pre>
```

GoldData-class	Declare class Gold to store information from Gold" (1000 Genomes
	for example) along with the GoldDataParam

Description

Declare class Gold to store information from Gold" (1000 Genomes for example) along with the GoldDataParam

Arguments

genome	Genome build, GRCh37 or GRCh38
track	Where the gold data is stored
goldparams	The Param file with the limits to be applied
track.rare	Stores the Gold data with MAF < 0.01 if MAF exists

Value

Object of class GoldData

GoldDataFromGRanges	User Constructor for class. Used to associate the gold params object
	with the gold granges and to check if MAF is present.

Description

User Constructor for class. Used to associate the gold params object with the gold granges and to check if MAF is present.

Usage

GoldDataFromGRanges(genome, gold.granges, goldparams)

GoldDataParam

Arguments

genome	Genome build, GRCh37 or GRCh38
gold.granges	Gold file as GRanges
goldparams	GoldDataParam object setting thresholds for evaluation

Value

Object of class GoldData

Examples

```
gparam <- GoldDataParam(percent.confirmed=0.792, percent.het.rare = 0.93)
gr <- GRanges(seqnames="22", IRanges(1e7,5e7))
gold <- GoldDataFromGRanges("GRCh38", gr, gparam)</pre>
```

GoldDataParam

User Constructor for class

Description

User Constructor for class

Usage

```
GoldDataParam(titv.coding.confirmed.l = 0, titv.coding.confirmed.u = 5,
    titv.noncoding.confirmed.l = 0, titv.noncoding.confirmed.u = 5,
    titv.coding.unconfirmed.l = 0, titv.coding.unconfirmed.u = 5,
    titv.noncoding.unconfirmed.l = 0, titv.noncoding.unconfirmed.u = 5,
    percent.confirmed.limits = 0, percent.het.rare.limits = 0)
```

<pre>titv.coding.confirmed.l</pre>
Lower limit of transition transversion ratio in coding confirmed
titv.coding.confirmed.u
upper limit of transition transverion ratio coding confirmed
<pre>titv.noncoding.confirmed.l</pre>
Lower limit of transition transversion ratio in noncoding confirmed
<pre>titv.noncoding.confirmed.u</pre>
upper limit of transition transverion ratio noncoding confirmed
<pre>titv.coding.unconfirmed.l</pre>
Lower limit of transition transversion ratio in coding unconfirmed
titv.coding.unconfirmed.u
upper limit of transition transverion ratio coding unconfirmed
<pre>titv.noncoding.unconfirmed.l</pre>
Lower limit of transition transversion ratio in noncoding unconfirmed

titv.noncoding.unconfirmed.u
upper limit of transition transverion ratio noncoding unconfirmed
percent.confirmed.limits
lower limit, upper limit, percent confirmed in Gold comparator
percent.het.rare.limits
lower limit, upper limit, (Percent Het in Rare, MAF < 0.01 in Gold) / Tota number of Heterozygotes

Object of type GoldDataParam

Examples

```
gparam <- GoldDataParam(percent.confirmed=0.792, percent.het.rare = 0.93)</pre>
```

GoldDataParam-class Dec.	are class GoldDataParam which will store thresholds to apply to
VCF	Evaluate object. This is intended for use in batch mode when a
larg	e number of vcf files needs to be screened and individual vcf files
that	fail flagged. All limits follow the format lower limit than upper
limit	

Description

Declare class GoldDataParam which will store thresholds to apply to VCFEvaluate object. This is intended for use in batch mode when a large number of vcf files needs to be screened and individual vcf files that fail flagged. All limits follow the format lower limit than upper limit

Arguments

coding, Transition transversion ratios for confirmed snps titv.unconfirmed.limits lower limit coding, upper limit coding, lower limit non- coding, Transition transversion ratios for unconfirmed snps percent.confirmed.limits lower limit, upper limit, percent confirmed in Gold comparator percent.het.rare.limits		titv.confirmed.limits
lower limit coding, upper limit coding, lower limit noncoding, upper limit non- coding, Transition transversion ratios for unconfirmed snps percent.confirmed.limits lower limit, upper limit, percent confirmed in Gold comparator percent.het.rare.limits lower limit, upper limit, (Percent Het in Rare, MAF < 0.01 in Gold) / Total		lower limit coding, upper limit coding, lower limit noncoding, upper limit non- coding, Transition transversion ratios for confirmed snps
<pre>coding, Transition transversion ratios for unconfirmed snps percent.confirmed.limits lower limit, upper limit, percent confirmed in Gold comparator percent.het.rare.limits lower limit, upper limit, (Percent Het in Rare, MAF < 0.01 in Gold) / Total</pre>		titv.unconfirmed.limits
lower limit, upper limit, percent confirmed in Gold comparator percent.het.rare.limits lower limit, upper limit, (Percent Het in Rare, MAF < 0.01 in Gold) / Total		lower limit coding, upper limit coding, lower limit noncoding, upper limit non- coding, Transition transversion ratios for unconfirmed snps
percent.het.rare.limits lower limit, upper limit, (Percent Het in Rare, MAF < 0.01 in Gold) / Total		percent.confirmed.limits
lower limit, upper limit, (Percent Het in Rare, MAF < 0.01 in Gold) / Total		lower limit, upper limit, percent confirmed in Gold comparator
	percent.het.rare.limits	
		lower limit, upper limit, (Percent Het in Rare, $MAF < 0.01$ in Gold) / Total number of Heterozygotes

Value

Object of type GoldDataParam

ReadGoldData

Description

User Constructor for class

Usage

ReadGoldData(genome, vcffilename, goldparams)

Arguments

genome	Genome build, GRCh37 or GRCh38
vcffilename	path and filename of vcf file
goldparams	GoldDataParam object setting thresholds for evaluation

Value

Object of class GoldData

Examples

```
gparam <- GoldDataParam(percent.confirmed=0.792, percent.het.rare = 0.93)
g1000fn <- system.file("ext-data", "example_gold_file.vcf", package="genotypeeval")
g1000 <- ReadGoldData("GRCh38", g1000fn, gparam)</pre>
```

ReadVCFData	User Constructor for class. Calls VCFData constructor: ReadVCF-
	Data is a wrapper for readVcfAsVRanges. It removes indels, GL chro-
	mosomes, and MULTI calls. It scans the header of the vcf file and adds
	in the following fields for analysis if present: AD, GT, DP, GQ. Looks
	for the "END" tag in the header and reads in file as gVCF if necessary.

Description

User Constructor for class. Calls VCFData constructor: ReadVCFData is a wrapper for readVcfAsVRanges. It removes indels, GL chromosomes, and MULTI calls. It scans the header of the vcf file and adds in the following fields for analysis if present: AD, GT, DP, GQ. Looks for the "END" tag in the header and reads in file as gVCF if necessary.

Usage

```
ReadVCFData(mydir, myfile, genome)
```

Arguments

mydir	Directory of vcf file
myfile	Filename of vcf file
genome	GRCh37 or GRCh38

Value

Object of class VCFData

Examples

```
vcffn <- system.file("ext-data", "chr22.GRCh38.vcf.gz", package="genotypeeval")
mydir <- paste(dirname(vcffn), "/", sep="")
myfile <-basename(vcffn)
vcf <- ReadVCFData(mydir, myfile, "GRCh38")</pre>
```

ReadVCFDataChunk	User Constructor for class. Calls VCFData constructor: ReadVCF- DataChunk is a wrapper for readVcfAsVRanges. It removes indels, GL chromosomes, and MULTI calls. It scans the header of the vcf file and adds in the following fields for analysis if present: AD, GT, DP, GQ. Looks for the "END" tag in the header and reads in file as gVCF if necessary. This is a multi core version of readVCFData. Note, input file must have been zipped and have a corresponding tabix file. It will drop all hom ref sites not in the admixture file but retain the counts of homref and multi in the VCF file. This means that a few of the metrics and the hom ref plot can no longer be calculated in VCFQAReport. If the metrics can no longer be calculated, it will not be output. Please note that if using a filter on the data (eg gq.filter) this will not be ap- plied to the hom ref and total number of calls. The filter is applied in the VCFQAReport step and the metrics number of hom ref and total number of calls is calculated while reading in the file. When calling this function keep in mind the memory requirements. For example, if numcores=6, then when submitting the job you may request 12 Gb each core (72 Gb total). However the VCF in memory will need to fit back onto a single core or else R will not be able to allocate the mem- ory. The given example here does not make sense to run as it includes
	ory. The given example here does not make sense to run as it includes only chromosome 22.

Description

User Constructor for class. Calls VCFData constructor: ReadVCFDataChunk is a wrapper for readVcfAsVRanges. It removes indels, GL chromosomes, and MULTI calls. It scans the header of the vcf file and adds in the following fields for analysis if present: AD, GT, DP, GQ. Looks for the "END" tag in the header and reads in file as gVCF if necessary. This is a multi core version of readVCFData. Note, input file must have been zipped and have a corresponding tabix file. It

10

will drop all hom ref sites not in the admixture file but retain the counts of homref and multi in the VCF file. This means that a few of the metrics and the hom ref plot can no longer be calculated in VCFQAReport. If the metrics can no longer be calculated, it will not be output. Please note that if using a filter on the data (eg gq.filter) this will not be applied to the hom ref and total number of calls. The filter is applied in the VCFQAReport step and the metrics number of hom ref and total number of calls is calculated while reading in the file. When calling this function keep in mind the memory requirements. For example, if numcores=6, then when submitting the job you may request 12 Gb each core (72 Gb total). However the VCF in memory will need to fit back onto a single core or else R will not be able to allocate the memory. The given example here does not make sense to run as it includes only chromosome 22.

Usage

ReadVCFDataChunk(mydir, myfile, genome, admixture.ref, numcores)

Arguments

mydir	Directory of vcf file
myfile	Filename of vcf file (zipped)
genome	GRCh37 or GRCh38
admixture.ref	VRanges with MAF for superpopulations (EAS, AFR, EUR)
numcores	Number of cores to read in VCF (passed to bplapply)

Value

Object of type VCFData

```
vcffn <- system.file("ext-data", "chr22.GRCh38.vcf.gz", package="genotypeeval")
mydir <- paste(dirname(vcffn), "/", sep="")
myfile <-basename(vcffn)
svp <- ScanVcfParam(which=GRanges("22", IRanges(0,1e5)), geno="GT")
vcf <- ReadVCFData(mydir, myfile, "GRCh38")
admix.var <- getVR(vcf)[getVR(vcf)$GT %in% c("0|1", "1|0", "1|1"),][,1:2]
admix.var$EAS_AF <- ifelse(admix.var$GT %in% c("1|1"), 1, .5)
admix.var$ENR_AF<- 0
admix.hom <- getVR(vcf)[getVR(vcf)$GT %in% c("0|0"),][,1:2]
admix.hom$EAS_AF<- 0
admix.hom$EAS_AF<- 0
admix.hom$AFR_AF<- 1
admix.hom$EAS_AF<- 1
admix.hom$EUR_AF<- 1
admix.hom$EUR_AF<- 1
admix.ref <- c(admix.var, admix.hom)
ReadVCFDataChunk(mydir, myfile, "GRCh38", admix.ref, numcores=2)</pre>
```

reformatData

Description

Take in the results from the population data and re-format it

Usage

```
reformatData(results)
```

Arguments

results

The list of results from running the package using BatchJobs

Value

list, data frame of logical (passed or not), data frame of numeric (all results)

VCFData-class	Declare class Reads in VCF using readVCFAsVRanges

Description

Declare class Reads in VCF using readVCFAsVRanges

Arguments

mydir	Directory of vcf file
myfile	Filename of vcf file
vr.homref	All SNPs from VCF with INDELs, MULTIs (seperately removed for variant and non variant), weird chromosomes removed
genoString	A character vector of all genotype fields present (looks for AD, GQ, GT, DP)
infoString	A character vector looking for "END" tag indicating file is a gVCF
genome	Declare if the genome is GRCh37 or GRCh38
n.dup	Counts the number of MULTIs removed
chunked	Whether data was read in using ReadVCFDataChunk which means hom refs not in the admixture file were dropped

Value

Object of class VCFData

VCFEvaluate	Constructor for class. Calls constructor for class. Using the GENO
	fields present in the vcf header will evaluate the vcf file using metrics
	and generate plots. Each metric will be tested against the params
	specified in the params class. For example, if Read Depth is in the
	GENO header will calculate median read depth, percent in target (50
	percent to 200 percent of the target specified in the params file) and
	generate a histogram of Read Depth.

Description

Constructor for class. Calls constructor for class. Using the GENO fields present in the vcf header will evaluate the vcf file using metrics and generate plots. Each metric will be tested against the params specified in the params class. For example, if Read Depth is in the GENO header will calculate median read depth, percent in target (50 percent to 200 percent of the target specified in the params file) and generate a histogram of Read Depth.

Usage

```
VCFEvaluate(myvcf, vcfparams, gold.ref = NA, cds.ref = NA,
masked.ref = NA, admixture.ref = NA)
```

Arguments

myvcf	Vcf file to evaluate
vcfparams	object of VCFQAParam class. Sets thresholds to evaluate the VCF File against.
gold.ref	Object of class Gold that contains the 1000 Genomes reference
cds.ref	Coding Region as GRanges
masked.ref	optional regions as GRanges to mask eg repeats, self chain, paralogs, etc.
admixture.ref	VRanges with MAF for superpopulations (EAS, AFR, EUR)

Value

Object of VCFQAReport.

```
vcffn <- system.file("ext-data", "chr22.GRCh38.vcf.gz", package="genotypeeval")
mydir <- paste(dirname(vcffn), "/", sep="")
myfile <-basename(vcffn)
svp <- ScanVcfParam(which=GRanges("22", IRanges(0,200e5)), geno="GT")
vcfparams <- VCFQAParam(count.limits=c(3014580000, Inf), readdepth.target = 30)
vcf <- ReadVCFData(mydir, myfile, "GRCh38")
ev <- VCFEvaluate(vcf, vcfparams)</pre>
```

```
VCFQAParam
```

Description

User Constructor for class. Call limits are set as default to pass.

Usage

```
VCFQAParam(homref.limits = c(-Inf, Inf), het.limits = c(-Inf, Inf),
homvar.limits = c(-Inf, Inf), percenthets.limits = c(-Inf, Inf),
titv.noncoding.limits = c(-Inf, Inf), titv.coding.limits = c(-Inf, Inf),
readdepth.target = -1, readdepth.limits = c(-Inf, Inf),
readdepth.percent.limits = 0, gq.limit = 0, masked.limits = c(-Inf,
Inf), non.masked.limits = c(-Inf, Inf), het.gap.limits = rep(Inf, 24),
count.limits = c(-Inf, Inf), gq.filter = 0, dp.filter = -1)
```

homref.limits	lower limit, upper limit, number of homozygous reference	
het.limits	lower limit, upper limit, number of heterozygous calls	
homvar.limits	lower limit, upper limit, number of homozygous alternative	
percenthets.lim	nits	
	lower limit, upper limit, Number of Heterozgyous / (Total Number of Counts) or percent het	
titv.noncoding.	limits	
	lower limit, upper limit, Transition transversion ratio in noncoding regions	
titv.coding.limits		
	lower limit, upper limit, Transition transversion ratio in coding regions	
readdepth.target		
	The sequencing depth target (eg 30x)	
readdepth.limits		
	lower limit, upper limit, Mean read depth	
readdepth.percent.limits		
	lower limit, upper limit, Percent read depth in target (50 percent to 200 percent of target read depth)	
gq.limit	lower limit, Mean genotype quality (does not make sense to have an upper limit)	
masked.limits	lower limit, upper limit, (Number of heterozygous in self chained regions)/(Total number of heterozygotes)	
non.masked.limits		
	lower limit, upper limit, (Number of heterozygous in non-self chained regions)/(Total number of heterozygotes)	
het.gap.limits	lower limit, upper limit, Largest gap within chromosome between two heterozy- gous calls	

count.limits	lower limit, upper limit, total number of counts
gq.filter	filter for the VCF file on genotype quality (eg only $GQ > 90$)
dp.filter	filter for the VCF file on read depth (eg only $DP > 0$)

Object of class VCFQAParam

Examples

```
vcfparams <- VCFQAParam(count.limits=c(3014580000, Inf), readdepth.target = 30)</pre>
```

VCFQAParam-class	Declare class VCFQAParam which will store thresholds to apply to
	VCFEvaluate object. This is intended for use in batch mode when a
	large number of vcf files needs to be screened and individual vcf files
	that fail flagged. All limits follow the format lower limit than upper
	limit

Description

Declare class VCFQAParam which will store thresholds to apply to VCFEvaluate object. This is intended for use in batch mode when a large number of vcf files needs to be screened and individual vcf files that fail flagged. All limits follow the format lower limit than upper limit

homref.limits lower limit, upper limit, number of homozygous reference		
het.limits lower limit, upper limit, number of heterozygous calls		
homvar.limits lower limit, upper limit, number of homozygous alternative		
count.limits lower limit, upper limit, total number of counts		
percenthets.limits		
lower limit, upper limit, Number of Heterozgyous / (Total Number of Counts) or percent het		
titv.noncoding.limits		
lower limit, upper limit, Transition transversion ratio in noncoding regions		
titv.coding.limits		
lower limit, upper limit, Transition transversion ratio in coding regions		
readdepth.target		
The sequencing depth target (eg 30x)		
readdepth.limits		
lower limit, upper limit, Mean read depth		
readdepth.percent.limits		
lower limit, upper limit, Percent read depth in target (50 percent to 200 percent of target read depth)		

gq.limit	lower limit, Mean genotype quality (does not make sense to have an upper limit)	
masked.limits	lower limit, upper limit, (Number of heterozygous in masked regions)/(Total number of heterozygotes)	
non.masked.limits		
	lower limit, upper limit, (Number of heterozygous in non-self chained regions)/(Total number of heterozygotes)	
het.gap.limits	lower limit, upper limit, Largest gap within chromosome between two heterozy- gous calls	
gq.filter	filter for the VCF file on genotype quality (eg only $GQ > 90$)	
dp.filter	filter for the VCF file on read depth (eg only $DP > 0$)	

VCFQAParam object

VCFQAReport-class	Declare class VCFQAReport which will evaluate a VCF stored as a
	ReadData object.

Description

Declare class VCFQAReport which will evaluate a VCF stored as a ReadData object.

printnames	List of tests applied to VCF
results	Numeric vector of metrics calculated from VCF file
plots	List of plots created from VCF File
tests	TRUE (passed) or FALSE (failed) logical vector of whether VCF passed metrics using thresholds from VCFQAParam
fn	Filename of VCF evaluated (for plot titles)

Index

*Topic **private** reformatData, 12

didSamplePass, 2
didSamplePassOverall, 3

getName, 3
getPlots, 4
getResults, 5
getVR, 5
GoldData-class, 6
GoldDataFromGRanges, 6
GoldDataParam, 7
GoldDataParam-class, 8

ReadGoldData,9 ReadVCFData,9 ReadVCFDataChunk,10 reformatData,12

VCFData-class, 12 VCFEvaluate, 13 VCFQAParam, 14 VCFQAParam-class, 15 VCFQAReport-class, 16