This vignette shows how to build a SpatialExperiment (SPE) from: - Nanostring CosMx (RNA/protein) outputs - 10x Genomics Xenium outputs
For each technology, we demonstrate: - Route A: SpaceTrooper’s high-level reader (readCosmxSPE, readCosmxProteinSPE, readXeniumSPE) - Route B: read with SpatialExperimentIO, then standardize with updateCosmxSPE / updateXeniumSPE
We begin with CosMx. The package ships with a small CosMx example for demonstration.
cospath <- system.file(file.path("extdata", "CosMx_DBKero_Tiny"), package="SpaceTrooper")
cospath
#> [1] "/tmp/Rtmpq1Jpor/Rinst1af82b7047ed96/SpaceTrooper/extdata/CosMx_DBKero_Tiny"
Use readCosmxSPE() to construct an SPE from CosMx outputs; it also normalizes names/metadata and records polygons/FOV info if present.
spe_cos <- readCosmxSPE(
dirName=cospath,
sampleName="DBKero_Tiny",
coordNames=c("CenterX_global_px", "CenterY_global_px"),
countMatFPattern="exprMat_file.csv",
metadataFPattern="metadata_file.csv",
polygonsFPattern="polygons.csv",
fovPosFPattern="fov_positions_file.csv",
fovdims=c(xdim=4256, ydim=4256)
)
spe_cos
#> class: SpatialExperiment
#> dim: 1010 905
#> metadata(4): fov_positions fov_dim polygons technology
#> assays(1): counts
#> rownames(1010): RAMP2 CD83 ... NegPrb09 NegPrb10
#> rowData names(0):
#> colnames(905): f16_c1 f16_c10 ... f16_c98 f16_c99
#> colData names(20): fov cellID ... sample_id cell_id
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(2) : CenterX_global_px CenterY_global_px
#> imgData names(1): sample_id
Inspect essentials:
assayNames(spe_cos)
#> [1] "counts"
dim(spe_cos)
#> [1] 1010 905
head(colnames(spatialCoords(spe_cos)))
#> [1] "CenterX_global_px" "CenterY_global_px"
metadata(spe_cos)$technology
#> [1] "Nanostring_CosMx"
metadata(spe_cos)$polygons
#> [1] "/tmp/Rtmpq1Jpor/Rinst1af82b7047ed96/SpaceTrooper/extdata/CosMx_DBKero_Tiny/DBKero-polygons.csv"
If working with CosMx Protein, use the convenience wrapper:
protfolder <- system.file("extdata", "S01_prot", package = "SpaceTrooper")
spe_cos_prot <- readCosmxProteinSPE(
dirName=protfolder,
sampleName="cosmx_prots",
coordNames=c("CenterX_global_px", "CenterY_global_px"),
countMatFPattern="exprMat_file.csv",
metadataFPattern="metadata_file.csv",
polygonsFPattern="polygons.csv",
fovPosFPattern="fov_positions_file.csv",
fovdims=c(xdim=4256, ydim=4256)
)
metadata(spe_cos_prot)$technology
If you prefer to read with SpatialExperimentIO first, upgrade the object with updateCosmxSPE() to harmonize names/metadata and attach polygons.
spe_cos_raw <- SpatialExperimentIO::readCosmxSXE(
dirName=cospath,
returnType="SPE",
countMatPattern="exprMat_file.csv",
metaDataPattern="metadata_file.csv",
coordNames=c("CenterX_global_px", "CenterY_global_px"),
addFovPos=TRUE,
fovPosPattern="fov_positions_file.csv",
altExps=NULL,
addParquetPaths=FALSE
)
spe_cos_std<-updateCosmxSPE(
spe=spe_cos_raw,
dirName=cospath,
sampleName="DBKero_Tiny",
polygonsFPattern="polygons.csv",
fovdims=c(xdim=4256, ydim=4256)
)
identical(spe_cos_std, spe_cos)
#> [1] TRUE
A small Xenium example is also included for demonstration.
xepath <- system.file("extdata", "Xenium_small", package = "SpaceTrooper")
xepath
#> [1] "/tmp/Rtmpq1Jpor/Rinst1af82b7047ed96/SpaceTrooper/extdata/Xenium_small"
readXeniumSPE() builds the SPE from a Xenium Output Bundle (root or outs/) and standardizes metadata.
Key options: - type: "HDF5" or "sparse" (feature matrix) - boundariesType: "parquet" or "csv" (cell boundaries) - computeMissingMetrics: compute QC metrics (area/aspect ratio) if needed - keepPolygons: append polygons to colData - addFOVs: derive FOV IDs from transcript parquet
spe_xen_a <- readXeniumSPE(
dirName=xepath,
type="HDF5",
coordNames=c("x_centroid", "y_centroid"),
boundariesType="parquet",
computeMissingMetrics=TRUE,
keepPolygons=TRUE,
countsFilePattern="cell_feature_matrix",
metadataFPattern="cells.csv.gz",
polygonsFPattern="cell_boundaries",
polygonsCol="polygons",
txPattern="transcripts",
addFOVs=FALSE
)
#> Computing missing metrics, this could take some time...
spe_xen_a
#> class: SpatialExperiment
#> dim: 4 6
#> metadata(2): polygons technology
#> assays(1): counts
#> rownames(4): ABCC11 ACTA2 ACTG2 ADAM9
#> rowData names(3): ID Symbol Type
#> colnames(6): 1 2 ... 5 6
#> colData names(11): X cell_id ... Area_um polygons
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(2) : x_centroid y_centroid
#> imgData names(1): sample_id
Quick checks:
assayNames(spe_xen_a)
#> [1] "counts"
dim(spe_xen_a)
#> [1] 4 6
colnames(spatialCoords(spe_xen_a))
#> [1] "x_centroid" "y_centroid"
metadata(spe_xen_a)$polygons
#> [1] "/tmp/Rtmpq1Jpor/Rinst1af82b7047ed96/SpaceTrooper/extdata/Xenium_small/cell_boundaries.parquet"
metadata(spe_xen_a)$technology
#> [1] "10X_Xenium"
Read with SpatialExperimentIO and then pass through updateXeniumSPE() for SpaceTrooper-standardized metadata and optional metrics/FOV extraction.
spe_xen_b <- SpatialExperimentIO::readXeniumSXE(
dirName=xepath,
countMatPattern="cell_feature_matrix.h5",
metaDataPattern="cells.csv.gz",
coordNames=c("x_centroid", "y_centroid"),
returnType="SPE",
addExperimentXenium=FALSE,
altExps=NULL,
addParquetPaths=FALSE
)
spe_xen_b <- updateXeniumSPE(
spe=spe_xen_b,
dirName=xepath,
boundariesType="parquet",
computeMissingMetrics=TRUE,
keepPolygons=TRUE,
polygonsFPattern="cell_boundaries",
polygonsCol="polygons",
txPattern="transcripts",
addFOVs=FALSE
)
#> Computing missing metrics, this could take some time...
spe_xen_b
#> class: SpatialExperiment
#> dim: 4 6
#> metadata(2): polygons technology
#> assays(1): counts
#> rownames(4): ABCC11 ACTA2 ACTG2 ADAM9
#> rowData names(3): ID Symbol Type
#> colnames(6): 1 2 ... 5 6
#> colData names(11): X cell_id ... Area_um polygons
#> reducedDimNames(0):
#> mainExpName: NULL
#> altExpNames(0):
#> spatialCoords names(2) : x_centroid y_centroid
#> imgData names(1): sample_id
Validate:
identical(metadata(spe_xen_b)$technology, "10X_Xenium")
#> [1] TRUE
identical(spe_xen_a, spe_xen_b)
#> [1] TRUE
metadata_file.csv), expression matrix (exprMat_file.csv), optional polygon CSV (polygons.csv), and FOV positions. updateCosmxSPE() also fixes common field names and records FOV dims in metadata.outs/ folder. Feature matrix may be cell_feature_matrix.h5 (HDF5) or sparse folder; cells metadata cells.csv.gz; boundaries as .parquet or .csv.gz; transcript parquet for FOV attribution. readXeniumSPE() auto-detects outs/ if you pass the bundle root.sessionInfo()
#> R version 4.5.1 Patched (2025-08-23 r88802)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.3 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.22-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0 LAPACK version 3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats4 stats graphics grDevices utils datasets methods
#> [8] base
#>
#> other attached packages:
#> [1] SpaceTrooper_0.99.47 SpatialExperiment_1.19.1
#> [3] SingleCellExperiment_1.31.1 SummarizedExperiment_1.39.2
#> [5] Biobase_2.69.1 GenomicRanges_1.61.5
#> [7] Seqinfo_0.99.2 IRanges_2.43.5
#> [9] S4Vectors_0.47.4 BiocGenerics_0.55.4
#> [11] generics_0.1.4 MatrixGenerics_1.21.0
#> [13] matrixStats_1.5.0 BiocStyle_2.37.1
#>
#> loaded via a namespace (and not attached):
#> [1] DBI_1.2.3 gridExtra_2.3
#> [3] rlang_1.1.6 magrittr_2.0.4
#> [5] scater_1.37.0 e1071_1.7-16
#> [7] compiler_4.5.1 DelayedMatrixStats_1.31.0
#> [9] SpatialExperimentIO_1.1.0 sfheaders_0.4.4
#> [11] vctrs_0.6.5 shape_1.4.6.1
#> [13] pkgconfig_2.0.3 crayon_1.5.3
#> [15] fastmap_1.2.0 backports_1.5.0
#> [17] magick_2.9.0 XVector_0.49.1
#> [19] labeling_0.4.3 scuttle_1.19.0
#> [21] rmarkdown_2.30 ggbeeswarm_0.7.2
#> [23] tinytex_0.57 purrr_1.1.0
#> [25] bit_4.6.0 glmnet_4.1-10
#> [27] xfun_0.53 cachem_1.1.0
#> [29] beachmat_2.25.5 jsonlite_2.0.0
#> [31] rhdf5filters_1.21.4 DelayedArray_0.35.3
#> [33] Rhdf5lib_1.31.1 BiocParallel_1.43.4
#> [35] irlba_2.3.5.1 broom_1.0.10
#> [37] parallel_4.5.1 R6_2.6.1
#> [39] bslib_0.9.0 RColorBrewer_1.1-3
#> [41] limma_3.65.7 car_3.1-3
#> [43] jquerylib_0.1.4 iterators_1.0.14
#> [45] Rcpp_1.1.0 bookdown_0.45
#> [47] assertthat_0.2.1 knitr_1.50
#> [49] R.utils_2.13.0 splines_4.5.1
#> [51] Matrix_1.7-4 tidyselect_1.2.1
#> [53] viridis_0.6.5 dichromat_2.0-0.1
#> [55] abind_1.4-8 yaml_2.3.10
#> [57] codetools_0.2-20 lattice_0.22-7
#> [59] tibble_3.3.0 withr_3.0.2
#> [61] S7_0.2.0 evaluate_1.0.5
#> [63] sf_1.0-21 survival_3.8-3
#> [65] units_1.0-0 proxy_0.4-27
#> [67] pillar_1.11.1 BiocManager_1.30.26
#> [69] ggpubr_0.6.2 carData_3.0-5
#> [71] KernSmooth_2.23-26 foreach_1.5.2
#> [73] ggplot2_4.0.0 sparseMatrixStats_1.21.0
#> [75] scales_1.4.0 class_7.3-23
#> [77] glue_1.8.0 tools_4.5.1
#> [79] BiocNeighbors_2.3.1 robustbase_0.99-6
#> [81] data.table_1.17.8 ScaledMatrix_1.17.0
#> [83] locfit_1.5-9.12 ggsignif_0.6.4
#> [85] cowplot_1.2.0 rhdf5_2.53.6
#> [87] grid_4.5.1 tidyr_1.3.1
#> [89] DropletUtils_1.29.7 edgeR_4.7.6
#> [91] beeswarm_0.4.0 BiocSingular_1.25.0
#> [93] HDF5Array_1.37.0 vipor_0.4.7
#> [95] rsvd_1.0.5 Formula_1.2-5
#> [97] cli_3.6.5 viridisLite_0.4.2
#> [99] S4Arrays_1.9.1 arrow_21.0.0.1
#> [101] dplyr_1.1.4 DEoptimR_1.1-4
#> [103] gtable_0.3.6 R.methodsS3_1.8.2
#> [105] rstatix_0.7.3 sass_0.4.10
#> [107] digest_0.6.37 classInt_0.4-11
#> [109] ggrepel_0.9.6 SparseArray_1.9.1
#> [111] dqrng_0.4.1 rjson_0.2.23
#> [113] farver_2.1.2 htmltools_0.5.8.1
#> [115] R.oo_1.27.1 lifecycle_1.0.4
#> [117] h5mread_1.1.1 statmod_1.5.1
#> [119] bit64_4.6.0-1