Package 'VanillaICE'

October 16, 2019

Version 1.46.0

Title A Hidden Markov Model for high throughput genotyping arrays

Author Robert Scharpf <rscharpf@jhu.edu>, Kevin Scharpf, and Ingo Ruczinski <ingo@jhsph.edu>

Maintainer Robert Scharpf < rscharpf@jhsph.edu>

Description Hidden Markov Models for characterizing chromosomal alterations in high throughput SNP arrays.

Date Sat Sep 27 11:46:03 EDT 2014

Depends R (>= 3.5.0), BiocGenerics (>= 0.13.6), GenomicRanges (>= 1.27.6), SummarizedExperiment (>= 1.5.3)

Imports Biobase, S4Vectors (>= 0.9.25), IRanges (>= 1.14.0), oligoClasses (>= 1.31.1), foreach, matrixStats, data.table, grid, lattice, methods, GenomeInfoDb (>= 1.11.4), crlmm, tools, stats, utils, BSgenome.Hsapiens.UCSC.hg18

Suggests RUnit, SNPchip, human610quadv1bCrlmm, ArrayTV

Collate 'AllClasses.R' 'AllGenerics.R' 'datasets.R' 'functions.R'

'help.R' 'hmm-methods.R' 'methods-ArrayViews.R'

'methods-CopyNumScanParams.R' 'methods-EmissionParam.R'

'methods-FilterParam.R' 'methods-HMM.R' 'methods-HMMList.R'

'methods-HmmGRanges.R' 'methods-HmmParam.R'

'methods-HmmTrellisParam.R' 'methods-IdiogramParams.R'

'methods-LogLik.R' 'methods-SnpArrayExperiment.R'

 $'methods\hbox{-}SnpDataFrame.R'\ 'methods\hbox{-}TransitionParam.R'$

'methods-Viterbi.R' 'updates.R' 'zzz.R'

Enhances doMC, doMPI, doSNOW, doParallel, doRedis

License LGPL-2

LazyLoad yes

biocViews CopyNumberVariation

Roxygen list(wrap=FALSE)

RoxygenNote 6.1.1

git url https://git.bioconductor.org/packages/VanillaICE

git_branch RELEASE_3_9

git last commit 1566ddf

git_last_commit_date 2019-05-02

Date/Publication 2019-10-15

R topics documented:

	3
	3
1	6
	6
	7
-	8
1.7	1
doUpdate	2
dropDuplicatedMapLocs	3
dropSexChrom	3
emission	4
emissionParam	4
FilterParam-class	5
filters 1	6
genotypes	6
getExampleSnpExperiment	7
getHmmParams	8
	8
	9
	21
	21
	22
	23
	23
	23
	24
	25
	26
· ·	26
	27
	28
	28
	28
	29
	9
	30
	31
	31
segs	
e a constant of the constant o	32
	33
	3
1 1	34
	35
	35
	6
, o 1	6
,	37
	37 37
sweenMode 3	١/

acf2

Index	4	12
	xyplotList	1
	viewports	
	VanillaICE	10
	updateHmmParams	39
	TransitionParam	39
	threshold	38

acf2

Calculate lag10 autocorrelation

Description

A wrapper for the function acf that returns the autocorrelation for the specified lag. Missing values are removed.

Usage

```
acf2(x, lag = 10, ...)
```

Arguments

x numeric vector

lag integer

... additional arguments to acf

See Also

acf

ArrayViews-class

ArrayViews class, constructor, and methods

Description

ArrayViews provides views to the low-level data – log R ratios, B allele frequencies, and genotypes that are stored in parsed files on disk, often scaled and coerced to an integer. Accessors to the low-level data are provided that extract the marker-level summaries from disk, rescaling when appropriate.

4 Array Views-class

Usage

```
ArrayViews(class = "ArrayViews", colData, rowRanges = GRanges(),
  sourcePaths = character(), scale = 1000, sample_ids,
  parsedPath = getwd(), lrrFiles = character(),
  bafFiles = character(), gtFiles = character())
## S4 method for signature 'ArrayViews, ANY, ANY, ANY'
x[i, j, ..., drop = FALSE]
colnames(x) \leftarrow value
## S4 method for signature 'ArrayViews'
colnames(x, do.NULL = TRUE, prefix = "col")
## S4 method for signature 'ArrayViews'
x$name
## S4 replacement method for signature 'ArrayViews'
x$name <- value
## S4 method for signature 'ArrayViews'
show(object)
## S4 method for signature 'ArrayViews'
sapply(X, FUN, ..., simplify = TRUE,
  USE.NAMES = TRUE)
## S4 method for signature 'ArrayViews'
ncol(x)
## S4 method for signature 'ArrayViews'
nrow(x)
## S4 method for signature 'ArrayViews'
dim(x)
## S4 method for signature 'ArrayViews'
start(x)
```

Arguments

class	character string
colData	DataFrame
rowRanges	GRanges object
sourcePaths	character string provide complete path to plain text source files (one file per sample) containing log R ratios and B allele frequencies
scale	$\log R$ ratios and B allele frequencies can be stored as integers on disk to increase IO speed. If scale =1, the raw data is not transformed. If scale = 1000 (default), the $\log R$ ratios and BAFs are multipled by 1000 and coerced to an integer.
sample_ids	character vector indicating how to name samples. Ignored if colData is specified.
parsedPath	character vector indicating where parsed files should be saved

Array Views-class 5

lrrFiles	character vector of file names for storing log R ratios
bafFiles	character vector of file names for storing BAFs
gtFiles	character vector of file names for storing genotypes
X	a ArrayViews object
i	numeric vector or missing
j	numeric vector or missing
	additional arguments to FUN
drop	ignored
value	a character-string vector
do.NULL	ignored
prefix	ignored
name	character string indicating name in colData slot of ArrayViews object
object	a ArrayViews object
Χ	a ArrayViews object
FUN	a function to apply to each column of X
simplify	logical indicating whether result should be simplied
USE.NAMES	whether the output should be a named vector

Slots

```
colData A character string
rowRanges A DataFrame. WARNING: The accessor for this slot is rowRanges, not rowRanges!
index A GRanges object
sourcePaths A character string providing complete path to source files (one file per sample) containing low-level summaries (Log R ratios, B allele frequencies, genotypes)
scale A length-one numeric vector
parsedPath A character string providing full path to where parsed files should be saved
lrrFiles character vector of filenames for log R ratios
bafFiles character vector of filenames for BAFs
gtFiles character vector of filenames for genotypes
```

See Also

CopyNumScanParams parseSourceFile

6 calculateEmission

baumWelchUpdate

Function for updating parameters for emission probabilities

Description

This function is not meant to be called directly by the user. It is exported in the package NAMES-PACE for internal use by other BioC packages.

Usage

```
baumWelchUpdate(param, assay_list)
```

Arguments

param A container for the HMM parameters
assay_list list of log R ratios and B allele frequencies

calculateEmission

Calculate the emission probabilities for the 6-state HMM

Description

Given the data and an object containing parameters for the HMM, this function computes emission probabilities. This function is not intended to be called by the user and is exported for internal use by other BioC packages.

Usage

```
calculateEmission(x, param = EmissionParam())
```

Arguments

x list of low-level data with two elements: a numeric vector of log R ratios and a

numeric vector of B allele frequencies

param parameters for the 6-state HMM

cnvFilter 7

Value

A matrix of emission probabilities. Column correspond to the HMM states and rows correspond to markers on the array (SNPs and nonpolymorphic markers)

See Also

baumWelchUpdate

cnvFilter

Filter the HMM-derived genomic ranges for copy number variants

Description

The HMM-derived genomic ranges are represented as a GRanges-derived object. cnvFilter returns a GRanges object using the filters stipulated in the filters argument.

Usage

```
cnvFilter(object, filters = FilterParam())
cnvSegs(object, filters = FilterParam(state = c("1", "2", "5", "6")))
duplication(object, filters = FilterParam(state = c("5", "6")))
deletion(object, filters = FilterParam(state = c("1", "2")))
hemizygous(object, filters = FilterParam(state = "2"))
homozygous(object, filters = FilterParam(state = "1"))
## S4 method for signature 'HMM'
cnvSegs(object, filters = FilterParam(state =
  as.character(c(1, 2, 5, 6)))
## S4 method for signature 'HMMList'
segs(object)
## S4 method for signature 'HMMList'
hemizygous(object)
## S4 method for signature 'HMMList'
homozygous(object)
## S4 method for signature 'HMMList'
duplication(object)
## S4 method for signature 'HMMList'
cnvSegs(object, filters = FilterParam(state =
  as.character(c(1, 2, 5, 6)))
## S4 method for signature 'HMMList'
```

8 cn_means

```
cnvFilter(object, filters = FilterParam())

## S4 method for signature 'HmmGRanges'
cnvSegs(object, filters = FilterParam(state =
   as.character(c(1, 2, 5, 6))))
```

Arguments

object see showMethods(cnvFilter)
filters a FilterParam object

See Also

FilterParam

Examples

```
data(snp_exp)
fit <- hmm2(snp_exp)
segs(fit) ## all intervals
cnvSegs(fit)
filter_param <- FilterParam(probability=0.95, numberFeatures=10, state=c("1", "2"))
cnvSegs(fit, filter_param)
filter_param <- FilterParam(probability=0.5, numberFeatures=2, state=c("1", "2"))
cnvSegs(fit, filter_param)
hemizygous(fit)
homozygous(fit)
duplication(fit)</pre>
```

cn_means

A parameter class for computing Emission probabilities

Description

Parameters for computing emission probabilities for a 6-state HMM, including starting values for the mean and standard deviations for log R ratios (assumed to be Gaussian) and B allele frequencies (truncated Gaussian), and initial state probabilities.

This function is exported primarily for internal use by other BioC packages.

Usage

```
cn_means(object)
cn_sds(object)
baf_means(object)
baf_sds(object)
baf_means(object) <- value
baf_sds(object) <- value</pre>
```

cn_means 9

```
cn_sds(object) <- value

cn_means(object) <- value

EmissionParam(cn_means = CN_MEANS(), cn_sds = CN_SDS(),
    baf_means = BAF_MEANS(), baf_sds = BAF_SDS(), initial = rep(1/6,
    6), EMupdates = 5L, CN_range = c(-5, 3), temper = 1,
    p_outlier = 1/100, modelHomozygousRegions = FALSE)

EMupdates(object)

## S4 method for signature 'EmissionParam' show(object)</pre>
```

Arguments

object see showMethods("EMupdates")

value numeric vector

cn_means numeric vector of starting values for log R ratio means (order is by copy number

state)

cn_sds numeric vector of starting values for log R ratio standard deviations (order is by

copy number state)

baf_means numeric vector of starting values for BAF means ordered. See example for

details on how these are ordered.

baf_sds numeric vector of starting values for BAF means ordered. See example for

details on how these are ordered.

initial numeric vector of intial state probabilities

EMupdates number of EM updates

CN_range the allowable range of log R ratios. Log R ratios outside this range are thresh-

olded.

temper Emission probabilities can be tempered by emit^temper. This is highly experi-

mental.

p_outlier probability that an observation is an outlier (assumed to be the same for all

markers)

modelHomozygousRegions

logical. If FALSE (default), the emission probabilities for BAFs are modeled from a mixture of truncated normals and a Unif(0,1) where the mixture probabilities are given by the probability that the SNP is heterozygous. See Details below for a discussion of the implications.

Details

The log R ratios are assumed to be emitted from a normal distribution with a mean and standard deviation that depend on the latent copy number. Similarly, the BAFs are assumed to be emitted from a truncated normal distribution with a mean and standard deviation that depends on the latent number of B alleles relative to the total number of alleles (A+B).

Value

numeric vector

10 cn_means

Details

When modelHomozygousRegions is FALSE (the default in versions >= 1.28.0), emission probabilities for B allele frequences are calculated from a mixture of a truncated normal densities and a Unif(0,1) density with the mixture probabilities given by the probability that a SNP is homozygous. In particular, let p denote a 6 dimensional vector of density estimates from a truncated normal distribution for the latent genotypes 'A', 'B', 'AB', 'AAB', 'ABB', 'AAAB', and 'ABBB'. The probability that a genotype is homozygous is estimated as

$$prHom = (p["A"] + p["B"])/sum(p)$$

and the probability that the genotype is heterozygous (any latent genotype that is not 'A' or 'B') is given by

$$prHet = 1 - prHom$$

Since the density of a Unif(0,1) is 1, the 6-dimensional vector of emission probability at a SNP is given by

$$emit = prHet * p + (1 - prHet)$$

The above has the effect of minimizing the influence of BAFs near 0 and 1 on the state path estimated by the Viterbi algorithm. In particular, the emission probability at homozygous SNPs will be virtually the same for states 3 and 4, but at heterozygous SNPs the emission probability for state 3 will be an order of magnitude greater for state 3 (diploid) compared to state 4 (diploid region of homozygosity). The advantage of this parameterization are fewer false positive hemizygous deletion calls. [Log R ratios tend to be more sensitive to technical sources of variation than the corresponding BAFs/ genotypes. Regions in which the log R ratios are low due to technical sources of variation will be less likely to be interpreted as evidence of copy number loss if heterozygous genotypes have more 'weight' in the emission estimates than homozgous genotypes.] The trade-off is that only states estimated by the HMM are those with copy number alterations. In particular, copy-neutral regions of homozygosity will not be called.

By setting modelHomozygousRegions = TRUE, the emission probabilities at a SNP are given simply by the p vector described above and copy-neutral regions of homozygosity will be called.#'

```
ep <- EmissionParam()</pre>
cn_means(ep)
ep <- EmissionParam()</pre>
cn_sds(ep)
ep <- EmissionParam()</pre>
baf_means(ep)
ep <- EmissionParam()</pre>
baf_sds(ep)
ep <- EmissionParam()</pre>
baf_means(ep) <- baf_means(ep)</pre>
ep <- EmissionParam()</pre>
baf_sds(ep) <- baf_sds(ep)</pre>
ep <- EmissionParam()</pre>
cn_sds(ep) <- cn_sds(ep)</pre>
ep <- EmissionParam()</pre>
cn_means(ep) <- cn_means(ep)</pre>
```

```
ep <- EmissionParam()
show(ep)
cn_means(ep)
cn_sds(ep)
baf_means(ep)
baf_sds(ep)</pre>
```

CopyNumScanParams-class

Parameters for parsing source files containing SNP-array processed data, such as GenomeStudio files for the Illumina platform

Description

Raw SNP array processed files have headers and variable labels that may depend the software, how the output files was saved, the software version, and other factors. The purpose of this container is to collect the parameters relevant for reading in the source files for a particular project in a single container. This may require some experimentation as the example illustrates. The function fread in the data.table package greatly simplifies this process.

Usage

```
CopyNumScanParams(cnvar = "Log R Ratio", bafvar = "B Allele Freq",
  gtvar = c("Allele1 - AB", "Allele2 - AB"), index_genome = integer(),
  select = integer(), scale = 1000, row.names = 1L)

## S4 method for signature 'CopyNumScanParams'
show(object)
```

Arguments

cnvar	length-one character vector providing name of variable for log R ratios
bafvar	length-one character vector providing name of variable for B allele frequencies
gtvar	length-one character vector providing name of variable for genotype calls
index_genome	integer vector indicating which rows of the of the source files (e.g., GenomeStudio) to keep. By matching on a sorted GRanges object containing the feature annotation (see example), the information on the markers will also be sorted.
select	integer vector specifying indicating which columns of the source files to import (see examples)
scale	length-one numeric vector for rescaling the raw data and coercing to class integer. By default, the low-level data will be scaled and saved on disk as integers.
row.names	length-one numeric vector indicating which column the SNP names are in
object	a CopyNumScanParams object

doUpdate

Slots

index_genome an integer vector

cnvar the column label for the log R ratios

bafvar the column label for the B allele frequencies

gtvar the column label(s) for the genotypes

scale length-one numeric vector indicating how the low-level data should be scaled prior to saving on disk

select numeric vector indicating which columns to read

row.names length-one numeric vector indicating which column the SNP names are in

See Also

ArrayViews parseSourceFile

Examples

```
CopyNumScanParams() ## empty container
```

doUpdate

Helper function to determine whether to update the HMM parameters via the Baum-Welch algorithm

Description

This function is not intended to be called directly by the user, and is exported only for internal use by other BioC packages.

Usage

doUpdate(param)

Arguments

param

An object containing parameters for the HMM

See Also

HmmParam

Description

If there are multiple markers on the same chromosome with the same annotated position, only the first is kept.

Usage

```
dropDuplicatedMapLocs(object)
```

Arguments

object

a container for which the methods seqnames and start are defined

Value

an object of the same class with duplicated genomic positions removed

Examples

```
data(snp_exp)
g <- rowRanges(snp_exp)
## duplicate the first row
g[length(g)] <- g[1]
rowRanges(snp_exp) <- g
snp_exp2 <- dropDuplicatedMapLocs(snp_exp)</pre>
```

dropSexChrom

Filter sex chromosomes

Description

Removes markers on chromosomes X and Y.

Usage

```
dropSexChrom(object)
```

Arguments

object

an object for which the methods seqnames and rowRanges are defined.

Value

an object of the same class as the input

14 emissionParam

 ${\tt emission}$

Methods to set and get emission probabilities

Description

Get or set a matrix of emission probabilities. This function is exported primarily for internal use by other BioC packages.

Usage

```
emission(object)
emission(object) <- value</pre>
```

Arguments

object see showMethods(emission)
value a matrix of emission probabilities

Value

matrix

emissionParam

Accessor for parameters used to compute emission probabilities

Description

Parameters for computing emission probabilities include the starting values for the Baum Welch update and initial state probabilities.

Usage

```
emissionParam(object)
emissionParam(object) <- value</pre>
```

Arguments

object an object of class EmissionParam value an object of class EmissionParam

Value

EmissionParam instance

FilterParam-class 15

Examples

```
hparam <- HmmParam()
emissionParam(hparam)
ep <- EmissionParam()
cn_means(ep) <- log2(c(.1/2, 1/2, 2/2, 2/2, 3/2, 4/2))
emissionParam(hparam) <- ep</pre>
```

FilterParam-class

Container for the common criteria used to filtering genomic ranges

Description

The maximum a posteriori estimate of the trio copy number state for each genomic range is represented in a GRanges-derived class. Ultimately, these ranges will be filtered based on the trio copy number state (e.g., denovo deletions), size, number of features (SNPs), or chromosome. FilterParam is a container for the parameters commmonly used to filter the genomic ranges.

Usage

```
FilterParam(probability = 0.99, numberFeatures = 10,
   seqnames = paste0("chr", c(1:22, "X", "Y")),
   state = as.character(1:6), width = 1L)

## S4 method for signature 'FilterParam'
probability(object)

## S4 method for signature 'FilterParam'
state(object)

## S4 method for signature 'FilterParam'
show(object)
```

Arguments

probability minumum probability for the call

numberFeatures minumum number of SNPs/nonpolymorphic features in a region

seqnames the seqnames (character string or R1e to keep)

state character: the HMM states to keep width the minimum widht of a region

object a FilterParam object

Slots

probability a length-one numeric vector indicating the minimum posterior probability for the called state. Genomic intervals with posterior probabilities below probability will be filtered.

numberFeatures a positive integer indicating the minimum number of features in a segment seqnames a character vector of seqnames to select (i.e., 'chr1' for only those intervals on chromosome 1)

width positive integer indicating the minimal width of genomic intervals state character string indicating which hidden Markov model states to select 16 genotypes

See Also

```
cnvFilter cnvSegs hmm2
```

Examples

```
fp <- FilterParam()
width(fp)
numberFeatures(fp)
seqnames(fp)
## To select CNV segments for which
## - the CNV call has a 'posterior' probability of at least 0.95
## - the number of features is at least 10
## - the HMM states are 1 (homozygous deletion) or 2 (hemizygous deletion)
FilterParam(probability=0.95, numberFeatures=10, state=c("1", "2"))</pre>
```

filters

Accessor for HMM filter parameters

Description

Accessor for HMM filter parameters

Usage

```
filters(object)
```

Arguments

object

see showMethods(filters)

genotypes

Accessor for SNP genotypes

Description

Extract SNP genotypes. Genotypes are assumed to be represented as integers: 1=AA, 2=AB, 3=BB.

Usage

```
genotypes(object)
## S4 method for signature 'ArrayViews'
lrr(object)
## S4 method for signature 'ArrayViews'
baf(object)
## S4 method for signature 'ArrayViews'
genotypes(object)
```

```
## S4 method for signature 'SnpArrayExperiment'
baf(object)

## S4 method for signature 'SnpArrayExperiment'
copyNumber(object)

## S4 method for signature 'SnpArrayExperiment'
lrr(object)

## S4 method for signature 'SnpArrayExperiment'
genotypes(object)
Arguments
```

see showMethods("genotypes")

object See Also

copyNumber

getExampleSnpExperiment

Create an example SnpArrayExperiment from source files containing marker-level genomic data that are provided in this package

Description

Create an example SnpArrayExperiment from source files containing marker-level genomic data that are provided in this package

Usage

```
getExampleSnpExperiment(bsgenome)
```

Arguments

bsgenome a BSgenome object

Value

A SnpArrayExperiment

```
## Not run:
    if(require("BSgenome.Hsapiens.UCSC.hg18")){
        genome <- BSgenome.Hsapiens.UCSC.hg18
        snp_exp <- getExampleSnpExperiment(genome)
    }
## End(Not run)</pre>
```

18 HMM-class

getHmmParams

Accessor for HMM model parameters

Description

Accessor for HMM model parameters

Usage

```
getHmmParams(object)
```

Arguments

object

see showMethods(HmmParam)

Examples

```
hmm_object <- HMM()
getHmmParams(hmm_object)</pre>
```

HMM-class

Container for the segmented data and the 6-state HMM model param-

Description

The contructor HMM creates and object of class HMM. Not typically called directly by the user.

Usage

```
HMM(granges = GRanges(), param = HmmParam(), posterior = matrix(),
  filters = FilterParam())

## S4 method for signature 'HMM'
state(object)

## S4 method for signature 'HMM'
show(object)
```

Arguments

granges a GRanges object param a HmmParam object

posterior matrix of posterior probabilities filters an object of class FilterParam

object a HMM object

hmm2

Slots

```
granges a GRanges object
param a HmmParam object
posterior a matrix of posterior probabilities
filters a FilterParam object
```

See Also

hmm2

Examples

```
data(snp_exp)
hmm_list <- hmm2(snp_exp[,1])
resultsFirstSample <- hmm_list[[1]]
resultsFirstSample
HMM()</pre>
```

hmm2

Fit a 6-state HMM to log R ratios and B allele frequencies estimated from SNP arrays

Description

This function is intended for estimating the integer copy number from germline or DNA of clonal origin using a 6-state HMM. The states are homozygous deletion, hemizygous deletion, diploid copy number, diploid region of homozygosity, single copy gain, and two+ copy gain. Because heterozygous markers are more informative for copy number than homozygous markers and regions of homozgosity are common in normal genomes, we currently computed a weighted average of the BAF emission matrix with a uniform 0,1 distribution by the probability that the marker is heterozygous, thereby downweighting the contribution of homozygous SNPs to the likelihood. In addition to making the detection of copy-neutral regions of homozygosity less likely, it also helps prevent confusing hemizygous deletions with copy neutral regions of homozygosity – the former would be driven mostly by the log R ratios. This is experimental and subject to change.

Usage

```
hmm2(object, emission_param = EmissionParam(),
    transition_param = TransitionParam(), ...)

## S4 method for signature 'SnpArrayExperiment'
hmm2(object,
    emission_param = EmissionParam(),
    transition_param = TransitionParam(), ...)

## S4 method for signature 'oligoSnpSet'
hmm2(object, emission_param = EmissionParam(),
    transition_param = TransitionParam(), ...)

## S4 method for signature 'ArrayViews'
```

20 hmm2

```
hmm2(object, emission_param = EmissionParam(),
  transition_param = TransitionParam(), tolerance = 2,
  verbose = FALSE, ...)
```

Arguments

Details

The hmm2 method allows parallelization across samples using the foreach paradigm. Parallelization is automatic when enabled via packages such as snow/doSNOW.

```
tp <- TransitionParam()</pre>
TransitionParam(taup=1e12)
data(snp_exp)
emission_param <- EmissionParam(temper=1/2)</pre>
fit <- hmm2(snp_exp, emission_param)</pre>
unlist(fit)
cnvSegs(fit)
## There is too little data to infer cnv reliably in this trivial example.
## To illustrate filtering options on the results, we select
## CNVs for which
\#\# - the CNV call has a posterior probability of at least 0.5
## - the number of features is 2 or more
## - the HMM states are 1 (homozygous deletion) or 2 (hemizygous deletion)
fp <- FilterParam(probability=0.5, numberFeatures=2, state=c("1", "2"))</pre>
cnvSegs(fit, fp)
## for parallelization
## Not run:
   library(snow)
   library(doSNOW)
   cl <- makeCluster(2, type = "SOCK")</pre>
   registerDoSNOW(cl)
   fit <- hmm2(snp_exp, emission_param)</pre>
## End(Not run)
```

HMMList 21

HMMList

Constructor for HMMList class

Description

The constructor function for the HMMList class. The constructor is useful for representing a list of HMM objects.

Usage

```
HMMList(object)
```

Arguments

object

a list. Each element of the list is in instance of the HMM class.

See Also

HMMList HMM hmm2

HMMList-class

Class, constructor, and methods for representing HMM results from multiple samples

Description

Each element of the HMMList contains the genomic intervals of the HMM segmentation (GRanges-derived object), parameters from the Baum-Welch, and a FilterParam object.

Usage

```
## S4 method for signature 'HMMList'
show(object)
## S4 method for signature 'HMMList'
unlist(x, recursive = TRUE, use.names = TRUE)
```

Arguments

object a HMMList object x a HMMList object

recursive logical; currently ignored use.names logical; currently ignored

Slots

.Data a list. Each element of the list should be a HMM object.

22 HmmParam

See Also

HMM

Examples

```
data(snp_exp)
fit <- hmm2(snp_exp)
class(fit)
identical(length(fit), ncol(snp_exp))
unlist(fit)</pre>
```

HmmParam

Constructor for HmmParam class

Description

Contains emission probabilities, parameters for emission probabilities, and transition probabilities required for computing the most likely state path via the Viterbi algorithm

Usage

```
HmmParam(emission = matrix(0, 0, 0), emission_param = EmissionParam(),
  transition = rep(0.99, nrow(emission)),
  chromosome = character(nrow(emission)), loglik = LogLik(),
  viterbi = Viterbi(), compute_posteriors = TRUE, verbose = FALSE)

## S4 method for signature 'HmmParam'
show(object)

## S4 method for signature 'HmmParam'
nrow(x)

## S4 method for signature 'HmmParam'
ncol(x)
```

Arguments

emission A matrix of emission probabilities emission_param an object of class EmissionParam

transition vector of transition probabilities whose length is N-1, where N is the number

of markers. User should provide the probability that the state at marker j is the same as the state at marker j-1. It is assumed that the probability of transitioning

to state_j from state_j-1 is the same for all states != state_j-1.

chromosome character vector

loglik an object of class LogLik viterbi an object of class Viterbi

compute_posteriors

logical

verbose logical

object a HmmParam object x a HmmParam object

hmmResults 23

Examples

HmmParam()

hmmResults

Example output from the hidden markov model

Description

The results of a 6-state HMM fit to simulated copy number and genotype data.

Format

a GRanges object

HmmTrellisParam

Constructor for HmmTrellisParam class

Description

Constructor for HmmTrellisParam class

Usage

```
HmmTrellisParam(ylimits = list(c(0, 1), c(-3, 1)),
expandfun = function(g) { width(g) * 50 })
```

Arguments

ylimits length-two list of the y-axis limits for B allele frequencies and log R ratios,

respectively

expandfun a function that takes a length-one GRanges object as an argument and computes

a width relative to the width of the GRanges object

IdiogramParams

Constructor for IdiogramParam objects

Description

Parameters for plotting idiograms

Usage

```
IdiogramParams(seqnames = character(), seqlengths = numeric(),
   unit = "kb", genome = "hg19", box = list(color = "blue", lwd = 1))
## S4 method for signature 'IdiogramParams, ANY'
plot(x, y, ...)
```

Arguments

seqnames length-one character vector providing chromosome name
seqlengths length-one numeric vector indicating size of chromosome
unit character string indicating unit for genomic position
genome character string indicating genome build
box a list of parameters for plotting the box around the part of the idiogram that is plotted

x an IdiogramParam object
y ignored

Value

IdiogramParam object

IdiogramParams-class Paramater class for plotting idiograms

Description

Paramater class for plotting idiograms

ignored

Usage

```
## S4 method for signature 'IdiogramParams'
show(object)
```

Arguments

object an IdiogramParam object

Slots

seqnames length-one character vector providing chromosome name seqlengths length-one numeric vector indicating size of chromosome unit character string indicating unit for genomic position (default is 'kb') genome character string indicating genome build box a list of parameters for plotting the box around the part of the idiogram that is plotted.

isHeterozygous 25

Examples

isHeterozygous

Assess whether genotype is heterozygous based on BAFs

Description

Assess whether genotype is heterozygous based on BAFs

Usage

```
isHeterozygous(object, cutoff)
## S4 method for signature 'ArrayViews'
isHeterozygous(object, cutoff)
## S4 method for signature 'SnpArrayExperiment'
isHeterozygous(object, cutoff)
## S4 method for signature 'numeric'
isHeterozygous(object, cutoff)
## S4 method for signature 'matrix'
isHeterozygous(object, cutoff)
```

Arguments

object a SnpArrayExperiment or ArrayViews object containing BAFs, a matrix of BAFs,

or a numeric vector of BAFs. vector of BAFs

cutoff a length-two numeric vector providing the range of BAFs consistent with allelic

heterozygosity

```
if(require("BSgenome.Hsapiens.UCSC.hg18")){
  bsgenome <- BSgenome.Hsapiens.UCSC.hg18
  snp_exp <- getExampleSnpExperiment(bsgenome)</pre>
```

26 LogLik-class

```
is_het <- isHeterozygous(snp_exp[, 1], c(0.4, 0.6))
table(is_het)
}</pre>
```

LogLik

Constructor for LogLik class

Description

A container for the log likelihood of the Viterbi state path. Stores the log likelihood from succesive updates of model parameters. When the difference between the log likelihoods at iteration i and i-1 is below the tolerance, no additional updates are performed.

Usage

```
LogLik(loglik = numeric(), tolerance = 1L)
```

Arguments

loglik length-one numeric vector for the log likelihood of the Viterbi state path

tolerance if the difference in the log-likelihood of the Viterbi state path after the Baum-

Welch update is less than the specified tolerance, no additional Baum-Welch

updates are required

See Also

LogLik

LogLik-class

Classes and methods for storing/getting log-likelihoods from Viterbi algorithm

Description

Exported for internal use by other BioC packages

Usage

```
## S4 method for signature 'LogLik'
length(x)

## S4 method for signature 'LogLik'
show(object)
```

Arguments

x object of class LogLik object a LogLik object

IrrFile 27

Slots

```
loglik a numeric vector tolerance a numeric vector
```

See Also

LogLik

lrrFile

Accessors for objects of class ArrayViews

Description

Accessors for objects of class ArrayViews

Usage

```
lrrFile(object)
lrrFile(object) <- value

bafFile(object)

gtFile(object)

## S4 method for signature 'ArrayViews'
lrrFile(object)

## S4 replacement method for signature 'ArrayViews'
lrrFile(object) <- value

## S4 method for signature 'ArrayViews'
bafFile(object)

## S4 method for signature 'ArrayViews'
gtFile(object)</pre>
```

Arguments

object see showMethods("lrrFile")

value a character vector of filenames for the log R ratios

```
views <- ArrayViews(parsedPath=tempdir())
sourcePaths(views)
lrrFile(views)
bafFile(views)
gtFile(views)</pre>
```

28 numberFeatures

matrixOrNULL

A class allowing matrix or NULL objects

Description

Exported for internal use by other BioC packages

NA_filter

Remove SNPs with NAs in any of the low-level estimates

Description

Remove SNPs with NAs in any of the low-level estimates

Usage

```
NA_filter(x, i)
```

Arguments

x a container for SNP data (SnpArrayExperiment)

i integer vector to subset

Value

An object of the same class

numberFeatures

The number of SNP/nonpolymorphic probes contained in a genomic interval

Description

The number of SNP/nonpolymorphic probes contained in a genomic interval

Usage

```
numberFeatures(object)
```

Arguments

object

see showMethods(numberFeatures)

parsedPath 29

parsedPath

Complete path to directory for keeping parsed files

Description

A character string indicating the complete path for storing parsed files.

Usage

```
parsedPath(object)
## S4 method for signature 'ArrayViews'
parsedPath(object)
```

Arguments

object a ArrayViews object

See Also

```
parseSourceFile ArrayViews
ArrayViews
```

parseSourceFile

Function for parsing GenomeStudio files

Description

This function parses genome studio files, writing the low-level data for log R ratios, B allele frequencies, and genotypes to disk as integers (1 file per subject per data type).

Usage

```
parseSourceFile(object, param)
## S4 method for signature 'ArrayViews,CopyNumScanParams'
parseSourceFile(object, param)
```

Arguments

object An ArrayViews object

param An object of class CopyNumScanParams

See Also

ArrayViews ArrayViews CopyNumScanParams

30 probability

Examples

```
require(BSgenome.Hsapiens.UCSC.hg18)
  bsgenome <- BSgenome.Hsapiens.UCSC.hg18
  require(data.table)
  extdir <- system.file("extdata", package="VanillaICE", mustWork=TRUE)</pre>
  features <- suppressWarnings(fread(file.path(extdir, "SNP_info.csv")))</pre>
  fgr <- GRanges(paste0("chr", features$Chr), IRanges(features$Position, width=1),</pre>
                  isSnp=features[["Intensity Only"]]==0)
  fgr <- SnpGRanges(fgr)</pre>
  names(fgr) <- features[["Name"]]</pre>
  seqlevels(fgr) \leftarrow seqlevels(bsgenome)[seqlevels(bsgenome) %in% seqlevels(fgr)]
  seqinfo(fgr) <- seqinfo(bsgenome)[seqlevels(fgr),]</pre>
  fgr <- sort(fgr)</pre>
  files <- list.files(extdir, full.names=TRUE, recursive=TRUE, pattern="FinalReport")</pre>
  views <- ArrayViews(rowRanges=fgr, sourcePaths=files, parsedPath=tempdir())</pre>
## read the first file
dat <- fread(files[1], skip="[Data]")</pre>
## information to store on the markers
select <- match(c("SNP Name", "Allele1 - AB", "Allele2 - AB",</pre>
                   "Log R Ratio", "B Allele Freq"), names(dat))
## which rows to keep in the MAP file. By matching on the sorted GRanges object
## containing the feature annotation, the low-level data for the log R ratios/
## B allele frequencies will also be sorted
index_genome <- match(names(fgr), dat[["SNP Name"]])</pre>
scan_params <- CopyNumScanParams(index_genome=index_genome, select=select)</pre>
##
## parse the source files
##
parseSourceFile(views, scan_params)
list.files(parsedPath(views))
## Inspecting source data through accessors defined on the views object
##
require(oligoClasses)
## log R ratios
r <- head(lrr(views))</pre>
## B allele frequencies
b <- head(baf(views))</pre>
g <- head(genotypes(views))</pre>
```

probability

Accessor for probability filter

Description

Accessor for probability filter

Usage

```
probability(object)
```

rescale 31

Arguments

object a FilterParam object

rescale

Rescale a numeric vector

Description

Rescale a numeric vector

Usage

```
rescale(x, 1, u)
```

Arguments

x numeric vector

lower limit of rescaled xu upper limit of rescaled x

rowModes

Robust statistics for matrices

Description

Compute the column-wide or row-wise mode of numeric matrices

Usage

```
rowModes(x)
colModes(x)
rowMAD(x, ...)
```

Arguments

x matrix

. . . additional arguments to rowMedians

Value

numeric vector

See Also

mad

mad rowMedians

show, Viterbi-method

Examples

```
X <- matrix(rnorm(100), 10, 10)
rowMAD(X)</pre>
```

segs

Accessor for the HMM segments

Description

Accessor to obtain all segments from the HMM.

Usage

```
segs(object)
```

Arguments

object

see showMethods(segs)

Value

a GRanges-derived object

show, Viterbi-method

Show method for objects of class Viterbi

Description

Show method for objects of class Viterbi

Usage

```
## S4 method for signature 'Viterbi'
show(object)
```

Arguments

object

a Viterbi object

snpArrayAssays 33

snpArrayAssays

Create an assays object from log R ratios and B allele frequencies

Description

This function is exported primarily for internal use by other BioC packages.

Usage

```
snpArrayAssays(cn = new("matrix"), baf = new("matrix"), ...)
```

Arguments

```
    cn matrix of log R ratios
    baf matrix of B allele frequencies
    ... additional matrices of the same dimension, such as SNP genotypes.
```

Examples

```
data(snp_exp)
r <- lrr(snp_exp)
b <- baf(snp_exp)
sl <- snpArrayAssays(cn=r, baf=b)</pre>
```

SnpArrayExperiment-class

A RangedSummarizedExperiment-derived class of marker-level SNP array data for copy number inference

Description

Constructor for SnpArrayExperiment

Usage

```
SnpArrayExperiment(cn, baf, rowRanges = GRanges(),
   colData = DataFrame(), isSnp = logical(), ...)

## S4 method for signature 'missing'
SnpArrayExperiment(cn, baf, rowRanges = GRanges(),
   colData = DataFrame(), isSnp = logical(), ...)

## S4 method for signature 'matrix'
SnpArrayExperiment(cn, baf, rowRanges = GRanges(),
   colData = DataFrame(row.names = colnames(cn)), isSnp = logical(),
   ...)
```

34 SnpExperiment

Arguments

cn matrix of copy number estimates (e.g., log R ratios)

baf matrix of B allele frequencies

rowRanges GRanges object for SNPs/nonpolymorphic markers

colData DataFrame containing sample-level covariates

isSnp logical vector indicating whether marker is a SNP

... additional arguments passed to SummarizedExperiment() constructor function

Examples

SnpExperiment

Constructor for SnpArrayExperiment

Description

A single-argument generic function to construct a SnpArrayExperiment.

Usage

```
SnpExperiment(object)
## S4 method for signature 'ArrayViews'
SnpExperiment(object)
```

Arguments

object see showMethods('SnpExperiment') for a list of supported objects

```
view <- ArrayViews()
SnpExperiment(view)</pre>
```

SnpGRanges-class 35

SnpGRanges-class

An extension to GRanges for representing SNPs

Description

```
An extension to GRanges for representing SNPs
Constructor for SnpGRanges class
```

Usage

```
SnpGRanges(object = GRanges(), isSnp, ...)
## S4 method for signature 'missing'
SnpGRanges(object, isSnp)
## S4 method for signature 'GRanges'
SnpGRanges(object, isSnp)
```

Arguments

object A GRanges object

isSnp A logical vector. Each genomic interval in the GRanges container corresponds to

a marker on the genotyping array. is Snp is FALSE for nonpolymorphic markers

such as those included on the Affymetrix 6.0 chips.

.. ignored

Slots

elementMetadata a SnpDataFrame

Examples

```
SnpGRanges()
g <- GRanges("chr1", IRanges(15L, 15L))
SnpGRanges(g, isSnp=TRUE)</pre>
```

snp_exp

An example SnpArrayExperiment

Description

A container for low-level summaries used for downstream copy number estimation, including log R ratios, B allele frequencies, and genotypes

Format

```
a SnpArrayExperiment object
```

sourcePaths

Accessor for file paths containing SNP-level summaries

Description

Files containing SNP-level summaries for log R ratios, B allele frequencies, and genotypes – one sample per subject – are required.

Usage

```
sourcePaths(object)
```

Arguments

object

an ArrayViews object

Examples

```
sourcePaths(ArrayViews())
```

```
start,oligoSnpSet-method
```

Retrieve genomic location of SNPs

Description

Retrieve genomic location of SNPs

Usage

```
## S4 method for signature 'oligoSnpSet'
start(x)
```

Arguments

Х

a oligoSnpSet object

```
state, HmmGRanges-method
```

Accessor for copy number state

Description

Extract the copy number state for each genomic interval.

Usage

```
## S4 method for signature 'HmmGRanges'
state(object)
```

Arguments

object

a HmmGRanges object

state-methods

Accessor for the Viterbi state path

Description

The states are represented as integers: 1=homozygous deletion, 2=hemizygous deletion, 3=diploid normal heterozygosity, 4=diploid region of homozygosity, 5=single copy gain, 6=two or more copy gain.

Usage

```
## S4 method for signature 'Viterbi'
state(object)
```

Arguments

object

a Viterbi object

sweepMode

Sweep the modal $log\ R$ ratio (by row or column) from a matrix of $log\ R$ ratios

Description

This function simplifies the process of sweeping the modal log R ratio from the rows or columns of a SnpArrayExperiment object. It is most useful when a large number of samples (more than 10) are available and the dataset is a collection of germline samples. We assume that the samples are from a single batch and that the modal value will be a robust estimate of the mean log R ratio for diploid copy number. Variation in the modal estimates between markers is presumed to be attributable to probe effects (e.g., differences hybridization efficiency/PCR do to sequence composition). For sex chromosomes, one should apply this function separately to men and women and then recenter the resulting matrix according to the expected copy number.

38 threshold

Usage

```
sweepMode(x, MARGIN)
## S4 method for signature 'SnpArrayExperiment'
sweepMode(x, MARGIN)
```

Arguments

x see showMethods(sweepMode)

MARGIN integer indicating which margin (1=rows, 2=columns) to sweep the mode

Value

an object of the same class as x

Examples

```
data(snp_exp)
snp_exp_rowcentered <- sweepMode(snp_exp, 1)
snp_exp_colcentered <- sweepMode(snp_exp, 2)
x <- lrr(snp_exp)
x_rowcentered <- sweep(x, 1, rowModes(x))
all.equal(lrr(snp_exp_rowcentered), x_rowcentered)</pre>
```

threshold

Threshold numeric values

Description

Threshold numeric values according to user-specific limits. The thresholded values can also be jittered near the limits.

Usage

```
threshold(x, \lim = c(-\inf, \inf), amount = 0)
```

Arguments

x numeric matrix or vector

limit at which to threshold entries in x

amount see jitter

See Also

jitter

```
x <- rnorm(1000, 0, 3)
y <- threshold(x, c(-5,5))
range(y)</pre>
```

TransitionParam 39

TransitionParam Co	onstructor for TransitionParam class
--------------------	--------------------------------------

Description

Contains parameters for computing transition probabilities

Usage

```
TransitionParam(taup = 1e+10, taumax = 1 - 5e+06)
## S4 method for signature 'TransitionParam'
show(object)
```

Arguments

taup length-one numeric vector

taumax The maximum probability that the current state is the same as the preceding

state. See details

object a TransitionParam object

Details

Diagonal elements of the transition probability matrix are computed as e^-2*d/taup, where d is the distance between markers i and i-1 and taup is typically in the range of 1xe10. This probability is constrained to be no larger than taumax. The probabilities on the off-diagonal elements are the same and are subject to the constraint that the rows of the transition probability matrix sum to 1.

Examples

```
TransitionParam()
## higher values of taup make transitions between states less likely
TransitionParam(taup=1e12)
```

updateHmmParams

Run the Baum-Welch algorithm to update HMM parameters

Description

This function is not intended to be called directly by the user. It is exported in the package NAMES-PACE for internal use by other BioC packages.

Usage

```
updateHmmParams(object, emission_param = EmissionParam(),
    transition_param = TransitionParam())
```

40 viewports

Arguments

```
object a SnpArrayExperiment object
emission_param a EmissionParam object
transition_param
a TransitionParam object
```

VanillaICE

A hidden markov model for detection of germline copy number variants from arrays

Description

A hidden markov model for detection of germline copy number variants from arrays

viewports

Default viewports for plotting CNV data with lattice-style graphics

Description

Default viewports for plotting CNV data with lattice-style graphics

Usage

```
viewports()
```

Value

list

See Also

```
xyplotList xygrid
```

```
vps <- viewports()</pre>
```

xyplotList 41

xyplotList

Lattice-style plots for granges and SnpArrayExperiment objects

Description

Data for the graphic is generated by a call to grangesData.

Usage

```
xyplotList(granges, se, param = HmmTrellisParam())
## S4 method for signature 'HmmGRanges,SnpArrayExperiment'
xyplotList(granges, se,
   param = HmmTrellisParam())
## S4 method for signature 'GRangesList,SnpArrayExperiment'
xyplotList(granges, se,
   param = HmmTrellisParam())
xygrid(trellis_plot, viewports, granges)
```

Arguments

granges a HmmGRanges object se a SnpArrayExperiment

param trellis parameters for plotting HMM

trellis_plot an object of class trellis

viewports a list of viewports as provided by the viewports function

See Also

viewports

```
if(require("BSgenome.Hsapiens.UCSC.hg18")){
  bsgenome <- BSgenome.Hsapiens.UCSC.hg18
  snp_exp <- getExampleSnpExperiment(bsgenome)
  seqlevels(snp_exp, pruning.mode="coarse") <- "chr22"
  fit <- hmm2(snp_exp)
  g <- reduce(hemizygous(fit), min.gapwidth=500e3)
  trellis_param <- HmmTrellisParam()
  fig <- xyplotList(g, snp_exp, trellis_param)
  vps <- viewports()
  xygrid(fig[[1]], vps, g)
}</pre>
```

Index

*Topic datasets	<pre>bafFile,ArrayViews-method(lrrFile), 27</pre>
hmmResults, 23	baumWelchUpdate,6
snp_exp, 35	
*Topic manip	calculateEmission, 6
rescale, 31	calculateEmission,list-method
'[',ArrayViews,ANY-method	(calculateEmission), 6
(ArrayViews-class), 3	calculateEmission,numeric-method
[,ArrayViews,ANY,ANY,ANY-method	(calculateEmission), 6
(ArrayViews-class), 3	calculateEmission,RangedSummarizedExperiment-method
[,ArrayViews,ANY-method	(calculateEmission), 6
(ArrayViews-class), 3	cn_means, 8
<pre>\$,ArrayViews-method(ArrayViews-class),</pre>	cn_means, EmissionParam-method
3	(cn_means), 8
<pre>\$<-,ArrayViews-method</pre>	cn_means, HmmParam-method (cn_means), 8
(ArrayViews-class), 3	cn_means<- (cn_means), 8
	cn_means<-,EmissionParam,numeric-method
acf, 3	(cn_means), 8
acf2, 3	cn_sds (cn_means), 8
ArrayViews, 12, 29	cn_sds,EmissionParam-method(cn_means),
ArrayViews (ArrayViews-class), 3	8
ArrayViews, numeric, numeric-method	cn_sds,HmmParam-method(cn_means),8
(ArrayViews-class), 3	cn_sds<- (cn_means), 8
ArrayViews-class, 3	cn_sds<-,EmissionParam,numeric-method
	(cn_means), 8
baf, ArrayViews-method (genotypes), 16	cnvFilter, 7, 16
baf, SnpArrayExperiment-method	cnvFilter, GRanges-method (cnvFilter), 7
(genotypes), 16	cnvFilter, HMM-method (cnvFilter), 7
baf_means (cn_means), 8	cnvFilter,HMMList-method(cnvFilter),7
baf_means, ArrayViews-method	cnvSegs, 16
(ArrayViews-class), 3	cnvSegs (cnvFilter), 7
baf_means, EmissionParam-method	cnvSegs,HMM-method(cnvFilter),7
(cn_means), 8	cnvSegs,HmmGRanges-method (cnvFilter), 7
baf_means, HmmParam-method (cn_means), 8	cnvSegs,HMMList-method(cnvFilter),7
baf_means<- (cn_means), 8	
baf_means<-,EmissionParam,numeric-method	colModes (rowModes), 31
(cn_means), 8	colnames (ArrayViews-class), 3
baf_sds (cn_means), 8	colnames, ArrayViews-method
baf_sds,EmissionParam-method	(ArrayViews-class), 3
(cn_means), 8	colnames <- (ArrayViews-class), 3
baf_sds,HmmParam-method(cn_means), 8	colnames<-, ArrayViews, character-method
baf_sds<- (cn_means), 8	(ArrayViews-class), 3
baf_sds<-,EmissionParam,numeric-method	copyNumber, SnpArrayExperiment-method
(cn_means), 8	(genotypes), 16
bafFile (lrrFile), 27	CopyNumScanParams, 5, 29

INDEX 43

CopyNumScanParams	genotypes,ArrayViews-method
(CopyNumScanParams-class), 11	(genotypes), 16
CopyNumScanParams-class, 11	genotypes, SnpArrayExperiment-method
	(genotypes), 16
deletion (cnvFilter), 7	<pre>getExampleSnpExperiment, 17</pre>
deletion, HMM-method (cnvFilter), 7	getHmmParams, 18
dim,ArrayViews-method	<pre>getHmmParams,HMM-method(getHmmParams),</pre>
(ArrayViews-class), 3	18
doUpdate, 12	getHmmParams,HmmParam-method
dropDuplicatedMapLocs, 13	(getHmmParams), 18
dropSexChrom, 13	GRanges, 15
duplication (cnvFilter), 7	gtFile (lrrFile), 27
duplication, HMM-method (cnvFilter), 7	gtFile, ArrayViews-method(lrrFile), 27
<pre>duplication, HMMList-method (cnvFilter),</pre>	80. 110,7.11. 43, 120.10 11.00 (21.1.1210), 17
7	hemizygous (cnvFilter), 7
	hemizygous, HMM-method (cnvFilter), 7
emission, 14	hemizygous, HMMList-method (cnvFilter), 7
emission, HmmParam-method (emission), 14	HMM, 21, 22
emission<- (emission), 14	HMM (HMM-class), 18
emission<-,HMM-method (emission), 14	HMM-class, 18
<pre>emission<-,HmmParam-method(emission),</pre>	hmm2, 16, 19, 19, 21
14	hmm2, ArrayViews-method (hmm2), 19
EmissionParam, $14, 20, 40$	hmm2, oligoSnpSet-method (hmm2), 19
EmissionParam(cn_means), 8	hmm2, SnpArrayExperiment-method (hmm2),
emissionParam, 14	19
emissionParam,HMM-method	
(emissionParam), 14	HMMList, 21, 21
emissionParam,HmmGRanges-method	HMMList-class, 21
(emissionParam), 14	HmmParam, 12, 22
emissionParam,HmmParam-method	HmmParam, matrix-method (HmmParam), 22
(emissionParam), 14	HmmParam, missing-method (HmmParam), 22
EmissionParam, missing-method	hmmResults, 23
(cn_means), 8	HmmTrellisParam, 23
EmissionParam, numeric-method	homozygous (cnvFilter), 7
(cn_means), 8	homozygous, HMM-method (cnvFilter), 7
emissionParam<- (emissionParam) 14	homozygous, HMMList-method (cnvFilter), 7
emissionParam<-,HmmGRanges,EmissionParam-met	hod.
(emissionParam), 14	IdiogramParams, 23
emissionParam<-,HmmParam,EmissionParam-metho	d IdiogramParams-class, 24
(emissionParam), 14	20000. 0298000, 20
EMupdates (cn_means), 8	isHeterozygous,ArrayViews-method
EMupdates, EmissionParam-method	(isHeterozygous), 25
(cn_means), 8	isHeterozygous, matrix-method
EMupdates, HmmParam-method (cn_means), 8	(isHeterozygous), 25
Lindpaces, Tillilli at all lilettion (Cit_lilearis), o	isHeterozygous, numeric-method
FilterParam, 8	(isHeterozygous), 25
FilterParam (FilterParam-class), 15	<pre>isHeterozygous,SnpArrayExperiment-method</pre>
FilterParam-class, 15	(isHeterozygous), 25
filters, 16	• • • • • • • • • • • • • • • • • • • •
filters, HMM-method (filters), 16	jitter, <i>38</i>
filters, HmmParam-method (filters), 16	
fread, 11	<pre>length,LogLik-method(LogLik-class), 26</pre>
11 666, 11	LogLik, 26, 26, 27
genotypes, 16	LogLik-class, 26

INDEX

<pre>1rr,ArrayViews-method(genotypes), 16</pre>	rowModes, 31
lrr, SnpArrayExperiment-method	
(genotypes), 16	sapply,ArrayViews-method
lrrFile, 27	(ArrayViews-class), 3
<pre>lrrFile,ArrayViews-method(lrrFile), 27</pre>	segs, 32
<pre>lrrFile<- (lrrFile), 27</pre>	segs, HMM-method(segs), 32
<pre>lrrFile<-,ArrayViews-method(lrrFile),</pre>	segs,HMMList-method(cnvFilter),7
27	show,ArrayViews-method
	(ArrayViews-class), 3
mad, 31	show, CopyNumScanParams-method
matrixOrNULL, 28	(CopyNumScanParams-class), 11
matrixOrNULL-class (matrixOrNULL), 28	<pre>show,EmissionParam-method(cn_means), 8</pre>
, , , , , , , , , , , , , , , , , , , ,	show,FilterParam-method
NA_filter, 28	(FilterParam-class), 15
NA_filter, character-method (NA_filter),	show, HMM-method (HMM-class), 18
28	show, HMMList-method (HMMList-class), 21
NA_filter, list-method (NA_filter), 28	show, HmmParam-method (HmmParam), 22
NA_filter, numeric-method (NA_filter), 28	show,IdiogramParams-method
NA_filter,oligoSnpSet-method	(IdiogramParams-class), 24
(NA_filter), 28	show, LogLik-method (LogLik-class), 26
NA_filter,SnpArrayExperiment-method	show, TransitionParam-method
(NA_filter), 28	(TransitionParam), 39
ncol, ArrayViews-method	show, Viterbi-method, 32
(ArrayViews-class), 3	snp_exp, 35
ncol, HmmParam-method (HmmParam), 22	snpArrayAssays, 33
nrow, ArrayViews-method	SnpArrayExperiment, <i>17</i> , <i>20</i> , <i>28</i> , <i>40</i>
(ArrayViews-class), 3	SnpArrayExperiment
	(SnpArrayExperiment-class), 33
nrow, HmmParam-method (HmmParam), 22	SnpArrayExperiment, matrix-method
numberFeatures, 28	(SnpArrayExperiment-class), 33
numberFeatures, FilterParam-method	SnpArrayExperiment, missing-method
(numberFeatures), 28	(SnpArrayExperiment-class), 33
numberFeatures, HMM-method	SnpArrayExperiment-class, 33
(numberFeatures), 28	SnpExperiment, 34
numberFeatures, HmmGRanges-method	
(numberFeatures), 28	SnpExperiment, ArrayViews-method
name of Datala 20	(SnpExperiment), 34
parsedPath, 29	SnpGRanges (SnpGRanges-class), 35
parsedPath, ArrayViews-method	SnpGRanges, GRanges-method
(parsedPath), 29	(SnpGRanges-class), 35
parseSourceFile, 5, 12, 29, 29	SnpGRanges, missing-method
parseSourceFile,ArrayViews,CopyNumScanParams	
(parseSourceFile), 29	SnpGRanges-class, 35
plot,IdiogramParams,ANY-method	sourcePaths, 36
(IdiogramParams), 23	sourcePaths, ArrayViews-method
plot,IdiogramParams-method	(sourcePaths), 36
(IdiogramParams), 23	start, ArrayViews-method
probability, 30	(ArrayViews-class), 3
probability,FilterParam-method	start,oligoSnpSet-method,36
(FilterParam-class), 15	state, FilterParam-method
	(FilterParam-class), 15
rescale, 31	state,HMM-method(HMM-class),18
rowMAD (rowModes), 31	state, HmmGRanges-method, 37
rowMedians, 31	state, Viterbi-method (state-methods), 37

INDEX 45

```
state-methods, 37
sweepMode, 37
{\tt sweepMode,SnpArrayExperiment-method}
        (sweepMode), 37
threshold, 38
TransitionParam, 20, 39, 40
TransitionParam, missing-method
        (TransitionParam), 39
TransitionParam, numeric-method
        (TransitionParam), 39
unlist, HMMList-method (HMMList-class),
updateHmmParams, 39
VanillaICE, 40
VanillaICE-package (VanillaICE), 40
viewports, 40, 41
xygrid, 40
xygrid(xyplotList), 41
xyplotList, 40, 41
{\tt xyplotList}, {\tt GRangesList}, {\tt SnpArrayExperiment-method}
         (xyplotList), 41
{\tt xyplotList, HmmGRanges, SnpArrayExperiment-method}
        (xyplotList), 41
```