Package 'Wrench'

October 16, 2019

Depends R (>= 3.5.0)

Type Package

Title Wrench normalization for sparse count data

Version 1.2.0

Description Wrench is a package for normalization sparse genomic count data, like that arising from 16s metagenomic surveys.

Imports limma, matrixStats, locfit, stats, graphics

License Artistic-2.0

LazyData TRUE

RoxygenNote 6.1.0

Suggests knitr, rmarkdown, metagenomeSeq, DESeq2, edgeR

VignetteBuilder knitr

biocViews Normalization, Sequencing, Software

URL https://github.com/HCBravoLab/Wrench

BugReports https://github.com/HCBravoLab/Wrench/issues

git_url https://git.bioconductor.org/packages/Wrench

git_branch RELEASE_3_9

git_last_commit ec6e98a

git_last_commit_date 2019-05-02

Date/Publication 2019-10-15

Author Senthil Kumar Muthiah [aut], Hector Corrada Bravo [aut, cre]

Maintainer Hector Corrada Bravo <hcorrada@gmail.com>

R topics documented:

.estimSummary					•		•		•			•	•	•	•			2
.getCondLogWeights					•													2
.getCondWeights																		3
.getHurdle					•													3
.getMargWeights					•													4
.getReference					•										•			4

	gets2
	getWeightedMean
	getWeightedMedian
	wrench \ldots \ldots \ldots \ldots \ldots \ldots ϵ
Index	g

.estimSummary Obtain robust means. .

Description

Obtain robust means. .

Usage

```
.estimSummary(res, estim.type = "s2.w.mean", ...)
```

Arguments

res	result structure of wrench
estim.type	estimator type
	other parameters

Value

a chosen summary statistic

.getCondLogWeights Log Postive-conditional weight computations for wrench estimators.

Description

Log Postive-conditional weight computations for wrench estimators.

Usage

```
.getCondLogWeights(res)
```

Arguments

res result structure of wrench

Value

inverse variance weights when using positive conditional models.

2

.getCondWeights Postive-conditional weight computations for wrench estimators.

Description

Postive-conditional weight computations for wrench estimators.

Usage

```
.getCondWeights(res)
```

Arguments

res

result structure of wrench

Value

positive conditional weights for each sample

.getHurdle	Obtains logistic fits for presence/absence and fitted probabilities of a
	zero occurring.

Description

This function is used to derive weights for feature-wise compositional estimates. Our (default) intention is to derive these based on average occurrences across the dataset, as just a function of sample depth, and not with particular relevance to groups.

Usage

```
.getHurdle(mat, hdesign = model.matrix(~-1 + log(colSums(mat))),
    pres.abs.mod = TRUE, thresh = FALSE, thresh.val = 1e-08, ...)
```

Arguments

mat	count matrix
hdesign	design matrix for the logistic; the default is usually sufficient.
pres.abs.mod	TRUE if glm regression is for presence or absence. FALSE if glm regression is for counts.
thresh	TRUE if numerically one/zero probability occurrences must be thresholded
thresh.val	if thresh is true, the numerically one/zero probability occurrences is thresholded to this value
	other parameters

Value

A list with components:

- pi0.fit list with feature-wise glm.fit objects
- pi0 matrix with fitted probabilities

.getMargWeights

Description

Marginal weight computations for wrench estimators.

Usage

```
.getMargWeights(res, z.adj, ...)
```

Arguments

res	result structure of wrench
z.adj	TRUE if the result structure was generated with wrench with z . adj set to TRUE.
	other parameters

Value

inverse marginal variances for robust mean computing

.getReference This function generates the reference.

Description

This function generates the reference.

Usage

```
.getReference(mat, ref.est = "sw.means", ...)
```

Arguments

mat	count matrix; rows are features and columns are samples
ref.est	reference estimate method
	other parameters

Value

the reference to be used for normalization

.gets2

Description

Obtain variances of logged counts.

Usage

```
.gets2(mat, design = model.matrix(mat[1, ] ~ 1), plot = FALSE,
    ebs2 = TRUE, smoothed = FALSE, ...)
```

Arguments

mat	count matrix; rows are features and columns are samples.
design	model matrix for the count matrix
plot	if the mean-variance trend function (the same as that of voom) needs to be plot.
ebs2	if regularization of variances needs to be performed.
smoothed	TRUE if all the variance estimates must be based on the mean-variance trend function.
	other parameters

Value

a vector with variance estimates for logged feature-wise counts.

.getWeightedMean Get weighted means for matrix

Description

Get weighted means for matrix

Usage

```
.getWeightedMean(mat, w = rep(1, nrow(mat)))
```

Arguments

mat	input matrix
W	weights

Value

column-wise weighted means.

.getWeightedMedian Get weighted median for matrix

Description

Get weighted median for matrix

Usage

```
.getWeightedMedian(mat, w = rep(1, nrow(mat)))
```

Arguments

mat	input matrix
W	weights

Value

column-wise weighted means.

wrench

Normalization for sparse, under-sampled count data.

Description

Obtain normalization factors for sparse, under-sampled count data that often arise with metagenomic count data.

Usage

```
wrench(mat, condition, etype = "w.marg.mean", ebcf = TRUE,
    z.adj = FALSE, phi.adj = TRUE, detrend = FALSE, ...)
```

Arguments

mat	count matrix; rows are features and columns are samples
condition	a vector with group information on the samples
etype	weighting strategy with the following options:
	• hurdle.w.mean, the W1 estimator in manuscript.
	• w.marg.mean, the W2 estimator in manuscript. These are appropriately computed depending on whether z.adj=TRUE (see below)
	• s2.w.mean, weight by inverse of feature-variances of logged count data.
ebcf	TRUE if empirical bayes regularization of ratios needs to be performed. Default recommended.
z.adj	TRUE if the feature-wise ratios need to be adjusted by hurdle probabilities (arises when taking marginal expectation). Default recommended.
phi.adj	TRUE if estimates need to be adjusted for variance terms (arises when considering positive-part expectations). Default recommended.

wrench

detrend	FALSE if any linear dependence between sample-depth and compositional fac-
	tors needs to be removed. (setting this to TRUE reduces variation in composi-
	tional factors and can improve accuracy, but requires an extra assumption that no
	linear dependence between compositional factors and sample depth is present in samples).
•••	other parameters

Value

a list with components:

- nf, *normalization factors* for samples passed. Samples with zero total counts are removed from output.
- ccf, compositional correction factors. Samples with zero total counts are removed from output.
- others, a list with results from intermediate computations.
 - qref, reference chosen.
 - design, design matrix used for computation of positive-part parameters.
 - s2, feature-wise variances of logged count data.
 - r, (regularized) ratios of feature-wise proportions.
 - radj, adjustments made to the regularized ratios based on z.adj and phi.adj settings.

Author(s)

M. Senthil Kumar

Examples

```
#Obtain counts matrix and some group information
require(metagenomeSeq)
data(mouseData)
cntsMatrix <- MRcounts(mouseData)
group <- pData(mouseData)$diet
#Running wrench with defaults
W <- wrench( cntsMatrix, condition=group )
compositionalFactors <- W$ccf
normalizationFactors <- W$nf</pre>
```

#Introducing the above normalization factors for the most # commonly used tools is shown below.

```
#If using metagenomeSeq
normalizedObject <- mouseData
normFactors(normalizedObject) <- normalizationFactors</pre>
```

```
#If using DESeq/DESeq2
require(DESeq2)
deseq.obj <- DESeqDataSetFromMatrix(countData = cntsMatrix,</pre>
```

wrench

DataFrame(group), ~ group) DESeq2::sizeFactors(deseq.obj) <- normalizationFactors

Index

.estimSummary, 2 .getCondLogWeights, 2 .getCondWeights, 3 .getHurdle, 3 .getMargWeights, 4 .getReference, 4 .getWeightedMean, 5 .getWeightedMedian, 6 .gets2, 5

wrench, 6