Package ‘genoset’

October 16, 2019
Type Package

Title A RangedSummarizedExperiment with methods for copy number
analysis

Version 1.40.0

Date 2018-02-06

Author Peter M. Haverty

Maintainer Peter M. Haverty <phaverty@gene.com>

Description GenoSet provides an extension of the RangedSummarizedExperiment
class with additional API features. This class provides convenient and fast
methods for working with segmented genomic data. Additionally, GenoSet provides
the class RleDataFrame which stores runs of data along the genome for multiple
samples and provides very fast summaries of arbitrary row sets (regions of the
genome).

License Artistic-2.0
LazyLoad yes

Depends R (>=2.10), BiocGenerics (>= 0.11.3), GenomicRanges (>=
1.17.19), SummarizedExperiment (>= 1.1.6)

Imports S4Vectors (>= 0.13.13), GenomelnfoDb (>= 1.1.3), IRanges (>=
2.5.12), methods, graphics

Suggests testthat, knitr, BiocStyle, rmarkdown, DNAcopy, stats,
BSgenome, Biostrings

Enhances parallel
ByteCompile TRUE

biocViews Infrastructure, DataRepresentation, Microarray, SNP,
CopyNumber Variation

Collate 'genoset-class.R' 'RleDataFrame-class.R'
'RleDataFrame-methods.R' 'bounds.R' 'ordering.R' 'plots.R’
'rangeSummaries.R' 'segments.R' utils.R’

VignetteBuilder knitr

URL https://github.com/phaverty/genoset
RoxygenNote 6.0.1.9000

Roxygen list(markdown = TRUE)

Encoding UTF-8

https://github.com/phaverty/genoset

2 R topics documented:

git_url https://git.bioconductor.org/packages/genoset
git_branch RELEASE_3_9

git_last commit 102035f

git_last_commit_date 2019-05-02
Date/Publication 2019-10-15

R topics documented:

genoset-package L. 3
baf2mbaf 3
boundinglndices 4
boundingIndicesByChr 5
bounds2Rle e 6
calcGC e 6
calcGC2 e e 7
chr . . . e 7
chrindices 8
chrinfo. L 9
chrNames e e 9
chrOrder e 10
chrPartitioning 11
Cn2lr . . L e 11
IXSEENAS . . . e e e 12
GCCOITECE v o o e e e e e e e e 12
GENOME o v vt e e e e e e e e e e e e e 13
GENOMEAXIS v v v e it e e 13
genoPlot L L 14
genoPOS L e e 15
GenoSet e 16
GenoSet-Class e e 17
genoset-datasets L. L e e e 18
isGenomeOrder 18
Ir2en . . . e 19
modeCenter e e e e 19
nrow,GenomicRanges-method oL 0oL 20
numCallable L 20
pos,GenoSetOrGenomicRanges-method L. 21
rangeSampleMeans oL e e 21
rangeSegMeanlength 22
rbindDataframe oL 23
readGenoSet L e e e 23
RleDataFrame-class 24
RleDataFrame-views e 26
runCBS . . . 27
segPairTable e 28
$gS2GTanges e e e e 30
segs2Rle L 30
segs2RleDataFrame 31
segTable L 32
toGenomeOrder 33

[,GenoSet, ANY,ANY,ANY-method 34

genoset-package 3

Index 35

genoset-package GenoSet: An eSet for data with genome locations

Description

Load, manipulate, and plot copynumber and BAF data.

See Also

genoset-datasets

baf2mbaf Calculate mBAF from BAF

Description

Calculate Mirrored B-Allele Frequence (mBAF) from B-Allele Frequency (BAF) as in Staaf et al.,
Genome Biology, 2008. BAF is converted to mBAF by folding around 0.5 so that is then between
0.5 and 1. HOM value are then made NA to leave only HET values that can be easily segmented.
Values > hom.cutoff are made NA. Then, if genotypes (usually from a matched normal) are provided
as the matrix ’calls’ additional HOMs can be set to NA. The argument ’call.pairs’ is used to match
columns in ’calls’ to columns in ’baf’.

Usage
baf2mbaf (baf, hom.cutoff = .95, calls = NULL, call.pairs = NULL)

Arguments
baf numeric matrix of BAF values
hom. cutoff numeric, values above this cutoff to be made NA (considered HOM)
calls matrix of NA, CT, AG, etc. genotypes to select HETs (in normals). Dimnames
must match baf matrix.
call.pairs list, names represent target samples for HOMs to set to NA. Values represent
columns in "calls" matrix.
Value

numeric matix of mBAF values

Examples

data(genoset,package="genoset")

mbaf = baf2mbaf(genoset.ds[, , "baf"], hom.cutoff=0.9)

calls = matrix(sample(c("AT","AA","CG","GC","AT","GG"), (nrow(genoset.ds) * 2),replace=TRUE),ncol=2,dimname
mbaf = baf2mbaf(genoset.ds[, , "baf”], hom.cutoff=0.9, calls = calls, call.pairs = list(K="L",L="L")) # Sam
genoset.ds[, ,"mbaf”] = baf2mbaf(genoset.ds[, , "baf"], hom.cutoff=0.9) # Put mbaf back into the BAFSet obje

4 boundingIndices

boundingIndices Find indices of features bounding a set of chromosome ranges/genes

Description

This function is similar to findOverlaps but it guarantees at least two features will be covered. This is
useful in the case of finding features corresponding to a set of genes. Some genes will fall entirely
between two features and thus would not return any ranges with findOverlaps. Specifically, this
function will find the indices of the features (first and last) bounding the ends of a range/gene (start
and stop) such that first <= start < stop <= last. Equality is necessary so that multiple conversions
between indices and genomic positions will not expand with each conversion. Ranges/genes that
are outside the range of feature positions will be given the indices of the corresponding first or last
index rather than O or n + 1 so that genes can always be connected to some data.

Usage

boundingIndices(starts, stops, positions, all.indices = FALSE)

Arguments

starts integer vector of first base position of each query range

stops integer vector of last base position of each query range

positions Base positions in which to search

all.indices logical, return a list containing full sequence of indices for each query
Details

This function uses some tricks from findIntervals, where is for k queries and n features it is O(k
* log(n)) generally and ~O(k) for sorted queries. Therefore will be dramatically faster for sets of
query genes that are sorted by start position within each chromosome. The index of the stop position
for each gene is found using the left bound from the start of the gene reducing the search space for
the stop position somewhat. boundingIndices does not check for NAs or unsorted data in the subject
positions. These assumptions are safe for position info coming from a GenoSet or GRanges.

Value
integer matrix of 2 columms for start and stop index of range in data or a list of full sequences of
indices for each query (see all.indices argument)

See Also

Other "range summaries": boundingIndicesByChr, rangeSampleMeans

Examples

starts = seq(10,100,10)
boundingIndices(starts=starts, stops=starts+5, positions = 1:100)

boundingIndicesByChr 5

boundingIndicesByChr Find indices of features bounding a set of chromosome ranges/genes,
across chromosomes

Description

Finds subject ranges corresponding to a set of genes (query ranges), taking chromosome into ac-
count. Specifically, this function will find the indices of the features (first and last) bounding the
ends of a range/gene (start and stop) such that first <= start < stop <= last. Equality is necessary
so that multiple conversions between indices and genomic positions will not expand with each con-
version. Ranges/genes that are outside the range of feature positions will be given the indices of
the corresponding first or last index on that chromosome, rather than O or n + 1 so that genes can
always be connected to some data. Checking the left and right bound for equality will tell you when
a query is off the end of a chromosome.

Usage

boundingIndicesByChr(query, subject)

Arguments
query GRanges or something coercible to GRanges
subject GenomicRanges

Details

This function uses some tricks from findIntervals, where is for k queries and n features it is O(k
* log(n)) generally and ~O(k) for sorted queries. Therefore will be dramatically faster for sets of
query genes that are sorted by start position within each chromosome. The index of the stop position
for each gene is found using the left bound from the start of the gene reducing the search space for
the stop position somewhat.

This function differs from boundinglIndices in that 1. it uses both start and end positions for the
subject, and 2. query and subject start and end positions are processed in blocks corresponding to
chromosomes.

Both query and subject must be in at least weak genome order (sorted by start within chromosome
blocks).
Value

integer matrix with two columns corresponding to indices on left and right bound of queries in
subject

See Also

Other "range summaries": boundingIndices, rangeSampleMeans

calcGC

bounds2Rle

Convert bounding indices into a Rle

Description

Given a matrix of first/last indices, like from boundingIndicesByChr, and values for each range,
convert to a Rle. This function takes the expected length of the Rle, n, so that any portion of the full
length not covered by a first/last range will be a run with the value NA. This is typical in the case
where data is segmented with CBS and some of the data to be segmented is NA.

Usage

bounds2Rle(bounds, values, n)

Arguments

bounds
values
n

Value

Rle

See Also

matrix, two columns, with first and last index, like from boundingIndicesByChr
ANY, some value to be associated with each range, like segmented copy number.

integer, the expected length of the Rle, i.e. the number of features in the genome/target
ranges processed by boundingIndicesByChr.

Other "segmented data": rangeSegMeanLength, runCBS, segPairTable, segTable, segs2Granges,
segs2RleDataFrame, segs2Rle

calcGC

Calculate GC Percentage in windows

Description

Local GC content can be used to remove GC artifacts from copynumber data (see Diskin et al, Nu-

cleic Acids Research, 2008, PMID: 18784189). This function will calculate GC content fraction in
expanded windows around a set of ranges following example in http://www.bioconductor.org/help/course-
materials/2012/useR2012/Bioconductor-tutorial.pdf. Currently all ranges are tabulated, later I may

do letterFrequencylInSlidingWindow for big windows and then match to the nearest.

Usage

calcGC(object, bsgenome, expand = 1e+06, bases = c("G", "C"))

Arguments

object
bsgenome
expand
bases

GenomicRanges or GenoSet

BSgenome, like Hsapiens from BSgenome.Hsapiens.UCSC.hg19 or DNAStringSet.
scalar integer, amount to expand each range before calculating gc

character, alphabet to count, usually c("G", "C"), but "N" is useful too

calcGC2 7

Value

named numeric vector, fraction of nucleotides that are G or C in expanded ranges of object

Examples

Not run: library(BSgenome.Hsapiens.UCSC.hg19)
Not run: gc = calcGC(genoset.ds, Hsapiens)

calcGC2 Calculate GC Percentage in sliding window

Description

Local GC content can be used to remove GC artifacts from copynumber data (see Diskin et al, Nu-

cleic Acids Research, 2008, PMID: 18784189). This function will calculate GC content fraction in
expanded windows around a set of ranges following example in http://www.bioconductor.org/help/course-
materials/2012/useR2012/Bioconductor-tutorial.pdf. Values are as.integer(le4 * fraction) for
space reasons.

Usage
calcGC2(dna)

Arguments

dna BSgenome or DNAStringSet

Value

SimpleRleList, integer le4 * GC fraction, chromosomes 1:22, X and Y

Examples

Not run: library(BSgenome.Hsapiens.UCSC.hg19)
Not run: gc = calcGC2(Hsapiens)

chr Chromosome name for each feature

Description

Get chromosome name for each feature. Returns character.

Usage
chr(object)

S4 method for signature 'GenoSet'
chr(object)

S4 method for signature 'GenomicRanges'
chr(object)

8 chrilndices

Arguments

object GRanges GenoSet

Value

character vector of chromosome positions for each feature

Examples

data(genoset,package="genoset")
chr(genoset.ds) # c("chr1”,"chr1”,"chr1”,"chr1”,"chr3"”,"chr3"”,"chrX","chrXx","chrX"”,"chrXx")
chr(rowRanges(genoset.ds)) # The same

chrIndices Get a matrix of first and last index of features in each chromosome

Description

Sometimes it is handy to know the first and last index for each chr. This is like chrInfo but for
feature indices rather than chromosome locations. If chr is specified, the function will return a
sequence of integers representing the row indices of features on that chromosome.

Usage

chrIndices(object, chr = NULL)

S4 method for signature 'GenoSetOrGenomicRanges'
chrindices(object, chr = NULL)

Arguments

object GenoSet or GRanges

chr character, specific chromosome name
Value

data.frame with "first" and "last" columns

Examples

data(genoset,package="genoset")
chrindices(genoset.ds)
chrindices(rowRanges(genoset.ds)) # The same

chrinfo

chrinfo Get chromosome start and stop positions

Description

Provides a matrix of start, stop and offset, in base numbers for each chromosome.

Usage
chrinfo(object)
S4 method for signature 'GenoSetOrGenomicRanges'
chrinfo(object)

Arguments

object A GenoSet object or similar

Value

list with start and stop position, by ordered chr

Examples

data(genoset,package="genoset")
chrInfo(genoset.ds)
chrinfo(rowRanges(genoset.ds)) # The same

chrNames Get list of unique chromosome names

Description

Get list of unique chromosome names

Usage

chrNames (object)

S4 method for signature 'GenoSet'
chrNames(object)

S4 method for signature 'GenomicRanges'
chrNames (object)

chrNames(object) <- value

S4 replacement method for signature 'GenoSet'
chrNames(object) <- value

S4 replacement method for signature 'GenomicRanges'
chrNames(object) <- value

10 chrOrder

Arguments
object GenomicRanges or GenoSet
value return value of chrNames
Value

character vector with names of chromosomes

Examples

data(genoset,package="genoset")
chrNames(genoset.ds) # c("chr1”,"chr3”,"chrXx")
chrNames(rowRanges(genoset.ds)) # The same

chrNames(genoset.ds) = sub("*chr”,"" chrNames(genoset.ds))
chrOrder Order chromosome names in proper genome order
Description

Chromosomes make the most sense orded by number, then by letter.

Usage

chrOrder(chr.names)

Arguments

chr.names character, vector of unique chromosome names

Value

character vector of chromosome names in proper order

See Also

Other "genome ordering": isGenomeOrder, toGenomeOrder

Examples

chrOrder(c("chr5”,"chrX","chr3”,"chr7”,"chrY")) # c("chr3”,"chr5”,"chr7","chrX","chrY")

chrPartitioning 11

chrPartitioning Partitioning by Chromosome

Description

Get indices of first and last element in each chromosome.

Usage

chrPartitioning(object)

Arguments

object GenoSet or GenomicRanges

Value

PartitioningByEnd

cn2lr Take vector or matrix of copynumber values, convert to log2ratios

Description
Utility function for converting copynumber units (2 is normal) to log2ratio units (two is normal). If
ploidy is provided Ir is log2(cn/ploidy), otherwise log2(cn/2).

Usage
cn2lr(x, ploidy)

S4 method for signature 'numeric'
cn2lr(x, ploidy)

S4 method for signature 'matrix’
cn2lr(x, ploidy)

S4 method for signature 'DataFrame’
cn2lr(x, ploidy)

Arguments
X numeric vector or matrix, or DataFrame with numeric-like columns (Rle typi-
caly). Assumed to be in copynumber units.
ploidy numeric, of length ncol(x). Ploidy of each sample.
Value

nyn

data of same type as "x" transformed into log2ratio units

12 gcCorrect

See Also

Ir2¢cn

fixSegNAs Fix NA runs in a Rle

Description

Fix NA runs in a Rle when the adjacent runs have equal values

Usage

fixSegNAs(x, max.na.run = 3)

Arguments

X Rle to be fixed
max.na.run integer, longest run of NAs that will be fixed

Value

Rle

gcCorrect Correct copy number for GC content

Description

Copy number estimates from various platforms show "Genomic Waves" (Diskin et al., Nucleic
Acids Research, 2008, PMID: 18784189) where copy number trends with local GC content. This
function regresses copy number on GC percentage and removes the effect (returns residuals). GC
content should be smoothed along the genome in wide windows >= 100kb.

Usage

gcCorrect(ds, gc, retain.mean = TRUE)

Arguments
ds numeric matrix of copynumber or log2ratio values, samples in columns
gc numeric vector, GC percentage for each row of ds, must not have NAs
retain.mean logical, center on zero or keep same mean?

Value

numeric matrix, residuals of ds regressed on gc

Examples

gc = runif(n=100, min=1, max=100)
ds = rnorm(100) + (0.1 * gc)
gcCorrect(ds, gc)

genome 13

genome Get and set the genome universe annotation.

Description

Genome version

Arguments

X GenoSet

Details
The genome positions of the features in locData. The UCSC notation (e.g. hg18, hgl19, etc.) should
be used.

Value

character, e.g. hg19

Examples

data(genoset)
genome (genoset.ds)
genome(genoset.ds) = "hgl19”

genomeAxis Label axis with base pair units

Description

Label an axis with base positions

Usage

genomeAxis(locs = NULL, side = 1, log = FALSE, do.other.side = TRUE)

Arguments
locs GenomicRanges to be used to draw chromosome boundaries, if necessary. Usu-
ally rowRanges slot from a GenoSet.
side integer side of plot to put axis
log logical Is axis logged?

do.other.side logical, label non-genome side with data values at tick marks?

Details

Label a plot with Mb, kb, bp as appropriate, using tick locations from axTicks

14 genoPlot

Value

nothing

See Also

Other "genome plots": genoPlot

Examples

data(genoset,package="genoset")

genoPlot(genoPos(genoset.ds), genoset.ds[,1, "baf"])

genomeAxis(locs=rowRanges(genoset.ds)) # Add chromosome names and boundaries to a plot assuming genome alon
genomeAxis(locs=rowRanges(genoset.ds), do.other.side=FALSE) # As above, but do not label y-axis with data ve

genomeAxis() # Add nucleotide position in sensible units assuming genome along x-axis
genoPlot Plot data along the genome
Description

Plot location data and chromosome boundaries from a GenoSet or GRanges object against data
from a numeric or Rle. Specifying a chromosome name and optionally a ’xlim’ will zoom into one
chromosome region. If more than one chromosome is present, the chromosome boundaries will be
marked. Alternatively, for a numeric x and a numeric or Rle y, data in y can be plotted at genome
positions x. In this case, chromosome boundaries can be taken from the argument locs. If data for
y-axis comes from a Rle lines are plotted representing segments. X-axis tickmarks will be labeled
with genome positions in the most appropriate units.

Usage

genoPlot(x, vy, ...)

S4 method for signature 'numeric,numeric'
genoPlot(x, y, add = FALSE, xlab = "",
ylab = "", col = "black”, locs = NULL, ...)

S4 method for signature 'numeric,Rle’
genoPlot(x, y, add = FALSE, xlab = "", ylab = "",
col = "red"”, locs = NULL, 1lwd = 2, xlim = NULL, ...)

S4 method for signature 'GenoSetOrGenomicRanges,ANY'
genoPlot(x, y, chr = NULL,

add = FALSE, pch = ".", xlab = "", ylab = "", ...)
Arguments
X GenoSet (or descendant) or GRanges
y numeric or Rle

Additional plotting args
add Add plot to existing plot

genoPos 15

x1lab character, label for x-axis of plot
ylab character, label for y-axis of plot
col character, color to plot lines or points
locs GRanges, like rowRanges slot of GenoSet
lwd numeric, line width for segment plots from an Rle
x1lim integer, length two, bounds for genome positions. Used in conjunction with
"chr" to subset data for plotting.
chr Chromosome to plot, NULL by default for full genome
pch character or numeric, printing character, see points
Value
TRUE
Methods

signature(x = "GenoSetOrGenomicRanges"”, y = "ANY") Plot feature locations and data from one
sample.

signature(x = "numeric”, y = "numeric") Plot numeric location and a vector of numeric data.

signature(x = "numeric”, y = "R1le") Plot numeric location and a vector of Rle data. Uses lines
for Rle runs.

See Also

Other "genome plots": genomeAxis

Examples

data(genoset,package="genoset")

genoPlot(x=genoset.ds,y=genoset.ds[,1,"1rr"])

genoPlot(genoPos(genoset.ds), genoset.ds[,1,"1rr"], locs=rowRanges(genoset.ds)) # The same
genoPlot(1:10, Rle(c(rep(@,5),rep(3,4),rep(1,1))))

genoPos Get base positions of features in genome-scale units

Description

Get base positions of array features in bases counting from the start of the genome. Chromosomes
are ordered numerically, when possible, then lexically.

Usage
genoPos(object)

S4 method for signature 'GenoSetOrGenomicRanges'
genoPos(object)

16 GenoSet

Arguments

object A GenoSet object or a GenomicRanges object

Value

numeric position of each feature in whole genome units, in original order

Examples

data(genoset,package="genoset")
head(genoPos(genoset.ds))
head(genoPos(rowRanges(genoset.ds))) # The same

GenoSet Create a GenoSet object

Description

This function is the preferred method for creating a new GenoSet object. Currently, a GenoSet is
simply a RangedSummarizedExperiment with some API changes and extra methods. Therefore, a
GenoSet must always have a rowRanges.

Usage

GenoSet(rowRanges, assays, colData, metadata = list())

S4 method for signature 'GenoSet'

lengths(x)
Arguments
rowRanges GenomicRanges, not a GenomicRangesList
assays list, SimpleList or matrix-like object
colData a data.frame or DataFrame of sample metadata with rownames matching the
colnames of the matrices in assays
metadata a list of any other data you want to attach to the GenoSet object
X A GenoSet
Details

locations. Rownames are required to match featureNames.

Value

A GenoSet object

GenoSet-class 17

Examples

test.sample.names = LETTERS[11:13]

probe.names = letters[1:10]
assays=list(matrix(31:60,nrow=10,ncol=3,dimnames=1ist(probe.names, test.sample.names)))
rowRanges=GRanges(ranges=IRanges(start=1:10,width=1,names=probe.names), seqnames=c(rep("chri1”,4),rep("chr3”
colData=data.frame(matrix(LETTERS[1:15],nrow=3,ncol=5,dimnames=1ist(test.sample.names,letters[1:5])))
rse=SummarizedExperiment (rowRanges=rowRanges, assays=assays,colData=colData,metadata=metadata)

gs = GenoSet(rowRanges, assays, colData)

GenoSet-class Class "GenoSet”

Description

GenoSet extends RangedSummarizedExperiment by adding some additional methods to the API.
Examples include subsetting rows with a GenomicRanges and combining this with access to assays
like genoset[i, j,assayl.

Extends

Class RangedSummarizedExperiment, directly.

Methods

[signature(x = "GenoSet"”,i ="ANY",j="ANY", drop = "ANY"): ...
[signature(x = "GenoSet",i = "character”,j="ANY" drop = "ANY"): ...
[<- signature(x = "GenoSet",i ="ANY",j="ANY",6value = "ANY"): ...
chr signature(object = "GenoSet"): ...

chrNames signature(object = "GenoSet"): ...

dim signature(object = "GenoSet"): ...

genoPlot signature(x = "GenoSet"”,y = "ANY"): ...

rowRanges signature(object = "GenoSet"): ...

names signature(x = "GenoSet"): ...

ranges signature(x = "GenoSet"): ...

chrInfo signature(x = "GenoSet"): ...

chrindices signature(x = "GenoSet"): ...

show signature(object = "GenoSet"): ...

toGenomeOrder signature(ds = "GenoSet"): ...

isGenomeOrder signature(ds = "GenoSet"): ...

assays signature(x = "GenoSet"): ...

assay signature(x = "GenoSet”,i="ANY"): ...

assay<- signature(x = "GenoSet"”,i="ANY" value="ANY"): ...
assayNames signature(x = "GenoSet"): ...

colData signature(x = "GenoSet"): ...

locData signature(x = "GenoSet"): ...

locData<- signature(x = "GenoSet"”,value="GenomicRanges"): ...

18 isGenomeOrder

See Also

GenoSet

Examples

showClass("GenoSet")

test.sample.names = LETTERS[11:13]

probe.names = letters[1:10]
assays=list(matrix(31:60,nrow=10,ncol=3,dimnames=1ist(probe.names,test.sample.names)))
rowRanges=GRanges(ranges=IRanges(start=1:10,width=1,names=probe.names), seqnames=c(rep(”"chri1”,4),rep("chr3”
colData=data.frame(matrix (LETTERS[1:15],nrow=3,ncol=5,dimnames=1ist(test.sample.names,letters[1:5])))
rse=SummarizedExperiment (rowRanges=rowRanges,assays=assays,colData=colData,metadata=metadata)

gs = GenoSet(rowRanges, assays, colData)

genoset-datasets Example GenoSet object

Description

A GenoSet object the *baf’ (B-Allele Frequency) and ’Irr’ (Log-R Ratio) assay matrices. The ’Irr’
assay matrix contains DNA copy number on the scale of tumor/ploidy and the ’baf’ assay matrix
contains data in the range O to 1 where O indicates the AA genotype, 0.5 indicates the AB genotype
and 1 indicates the BB genotype.

Source

Simulated data

isGenomeOrder Check if a GRanges orGenoSet is in genome order

Description

Checks that rows in each chr are ordered by start. If strict=TRUE, then chromosomes must be in
order specified by chrOrder. isGenomeOrder for GRanges differs from order in that it orders by
chromsome and start position only, rather than chromsome, strand, start, and width.

Usage

isGenomeOrder(ds, strict = TRUE)

Arguments

ds GenoSet or GRanges

strict logical, should space/chromosome order be identical to that from chrOrder?
Value

logical

Ir2cn 19

See Also

Other "genome ordering": chrOrder, toGenomeOrder

Examples

data(genoset,package="genoset")
isGenomeOrder(rowRanges(genoset.ds))

1lr2cn Take vector or matrix of log2 ratios, convert to copynumber

Description

Utility function for converting log2ratio units (zero is normal) to copynumber units (two is normal)

Usage
1r2cen(x)

Arguments

X numeric data in log2ratio values

Value

data of same type as "x" transformed into copynumber units

See Also

cn2lr

modeCenter Center continuous data on mode

Description

Copynumber data distributions are generally multi-modal. It is often assumed that the tallest peak
represents "normal” and should therefore be centered on a log2ratio of zero. This function uses the
density function to find the mode of the dominant peak and subtracts that value from the input data.

Usage

modeCenter (ds)

Arguments

ds numeric matrix

Value

numeric matrix

20 numCallable

Examples

modeCenter(matrix(rnorm(15@, mean=0), ncol=3))

nrow,GenomicRanges-method
GenomicRanges API Additions

Description

I have extended the API for GenomicRanges a bit so that genoset and GenomicRanges can have the
same API, at least as far as genome location based features go.

Usage
S4 method for signature 'GenomicRanges'
nrow(x)

Arguments

X A GenomicRanges

numCallable Count Rle positions >= min

Description

For Rle coverage vector, count number of positions where value >= min, think callable bases.

Usage

numCallable(rle, bounds, min)

Arguments
rle integer Rle, no NAs
bounds IRanges or matrix, positions in Rle to consider. If bounds is a matrix, the first
two columns are used as start and end.
min scalar integer, count Rle positions >= this value.
Value

integer vector of length nrow(bounds)

pos,GenoSetOrGenomicRanges-method 21

pos,GenoSetOrGenomicRanges-method
Chromosome position of features

Description

Get chromosome position of features/ranges. Defined as floor of mean of start and end.

Usage
S4 method for signature 'GenoSetOrGenomicRanges'
pos(x)

Arguments

X GRanges GenoSet

Value

numeric vector of feature positions within a chromosome

Examples

data(genoset,package="genoset")
pos(genoset.ds) # 1:10
pos(rowRanges(genoset.ds)) # The same

rangeSampleMeans Average features in ranges per sample

Description

This function takes per-feature genomic data and returns averages for each of a set of genomic
ranges. The most obvious application is determining the copy number of a set of genes. The
features corresponding to each gene are determined with boundingIndices such that all features
with the bounds of a gene (overlaps). The features on either side of the gene unless those positions
exactly match the first or last base covered by the gene. Therefore, genes falling between two
features will at least cover two features. Range bounding is performed by the boundinglndices
function.

Usage

rangeSampleMeans(query, subject, assay.element, na.rm = FALSE)

Arguments
query GRanges object representing genomic regions (genes) to be averaged.
subject A GenoSet object or derivative

assay.element character, name of element in assayData to use to extract data

na.rm scalar logical, ignore NAs?

22 rangeSegMeanLength

Value

numeric matrix of features in each range averaged by sample

See Also

Other "range summaries": boundingIndicesByChr, boundingIndices

Examples

data(genoset)

my.genes = GRanges(ranges=IRanges(start=c(35e6,128e6),end=c(37e6,129e6),names=c("HER2","CMYC")), seqgnames:
rangeSampleMeans(my.genes, genoset.ds, "lrr"”)

rangeSegMeanlLength Get segment widths

Description

The width of a genomic segment helps inform us about the importance of a copy number value.
Focal amplifications are more interesting than broad gains, for example. Given a range of interesting
regions (i.e. genes) this function determines all genomics segments covered by each gene and
returns the average length of the segments covered by each gene in each sample. Often only a
single segment covers a given gene in a given sample.

Usage
rangeSegMeanLength(range.gr, segs)

S4 method for signature 'GRanges,list'
rangeSegMeanLength(range.gr, segs)

S4 method for signature 'GRanges,data.frame'
rangeSegMeanLength(range.gr, segs)

Arguments

range.gr GRanges, genome regions of interest, usually genes

segs data.frame of segments, like from segTable, or a list of these
Value

named vector of lengths, one per item in range.gr, or a range x length(segs) of these if segs is also
list-like.

See Also

Other "segmented data": bounds2R1e, runCBS, segPairTable, segTable, segs2Granges, segs2R1eDataFrame,
segs2Rle

rbindDataframe 23

rbindDataframe A fast method for concatenating data.frames

Description

Performs the same action as do.call(rbind, list_of_dataframes), but dramatically faster. Part of the
speed comes from assuming that all of the data.frames have the same column names and types. If
desirved an additional factor column can be added that specifies the original list element associated
with each row. The argument ‘element.colname* is used to name this column.

Usage

rbindDataframe(dflist, element.colname)

Arguments

dflist list of data.frames

element.colname
scalar character, name for additional factor column giving the name of the el-
ement of ‘dflist* corresponding to each row. ‘dflist* must be named to use this
feature.

Details

For a list of 1000 data.frames with 884 rows and 12 columns ‘rbindDataframe* takes 0.553s and
‘do.call(rbind,x)* takes 327.304s, a 600X speedup. This pure-R solution is made possible by the
lovely shallow copy features Michael Lawrence has added to base R.

Value

data.frame

readGenoSet Load a GenoSet from a RData file

Description

Given a rds file or a rda file with one GenoSet, load it, and return. Objects that pre-date the switch
to a RangedSummarizedExperiment internal representation (V 1.29.0) are automatically switched
to the new format.

Usage

readGenoSet(path)

Arguments

path character, path to rds or rda file

24 RleDataFrame-class

Value

GenoSet or related object (only object in RData file)

Examples

Not run: ds = readGenoSet("/path/to/genoset.RData")
Not run: ds = readGenoSet("/path/to/genoset.rda")
Not run: ds = readGenoSet("/path/to/genoset.rds")

RleDataFrame-class Class "RleDataFrame”

Description

The RleDataFrame class serves to hold a collection of Run Length Encoded vectors (Rle objects)
of the same length. For example, it could be used to hold information along the genome for a
number of samples, such as sequencing coverage, DNA copy number, or GC content. This class
inherits from both DataFrame and SimpleRleList (one of the AtomicVector types). This means that
all of the usual subsetting and applying functions will work. Also, the AtomicList functions, like
mean and sum, that automatically apply over the list elements will work. The scalar mathematical
AtomicList methods can make this class behave much like a matrix (see Examples).

New objects can be created with the RleDataFrame constructor: RleDataFrame(. . ., row.names=NULL),
where . .. can be a list of Rle objects, or one or more individual Rle objects.

Use in Biobase eSet objects

The genoset class defines an annotatedDataFrameFrom method for DataFrame, which makes it
possible to include DataFrames as assayData elements. The column names for DataFrame cannot
be NULL, which makes it impossible to use them as assays in SummarizedExperiment at this time.

Row and Column Summaries

These objects will sometimes be in place of a matrix, as in the eSet example above. It is conve-
nient to have some of the summarization methods for matrices. Each of these methods takes an
RleDataFrame and returns a single Rle. The time required is similar to that required for a matrix.
For an RleDataFrame x,

rowSums:Sum across Tows’.

rowMeans:Means across ‘rows’.

colSums:Sum each Rle. This is just the sum method for SimpleRleList.
colSums:Mean of each Rle. This is just the mean method for SimpleRleList.

Slots

rownames: Object of class "character_OR_NULL" Names to describe each row of the DataFrame.
These may end up taking more space than your collection of Rle objects, so consider leaving
this NULL.

nrows: Object of class "integer” Number of rows.

elementType: Object of class "character” Notes that elements of the internal list are Rle objects.
elementMetadata: Objectof class "DataTable_OR_NULL" Metadata on the elements, see DataFrame.
metadata: Object of class "1ist"” Metadata on the whole object, see DataFrame.

listData: Object of class "1ist" Base list containing the Rle objects.

RleDataFrame-class 25

Extends

Class "SimpleRleList", directly. Class "DataFrame”, directly.

Methods

as.matrix signature(x = "RleDataFrame”): Convert to matrix.
coerce signature(x = "RleDataFrame"): Convert to other classes.
colMeans signature(x = "RleDataFrame”): Mean of each column.
colSums signature(x = "RleDataFrame"): Sum of each column.
rowMeans signature(x = "RleDataFrame"): Mean of each 'row’.
rowSums signature(x = "RleDataFrame"): Sum of each 'row’.

show signature(object = "RleDataFrame”): Short and pretty description of an object of this
type.

Author(s)

Peter M. Haverty, design suggestion from Michael Lawrence.

See Also

DataFrame AtomicList Rle RleList rowMeans colMeans rowSums colSums view-summarization-methods

Examples

showClass("RleDataFrame")

Constructors
df = new("RleDataFrame"”, listData=list(A=Rle(c(NA, 2:3, NA, 5), rep(2,
5)), B=Rle(c(6:7, NA, 8:10),c(3,2,1,2,1,1))), nrows=10L)

df2 = RleDataFrame(list(A=Rle(c(NA, 2:3, NA, 5), rep(2, 5)),
B=Rle(c(6:7, NA, 8:10),c(3,2,1,2,1,1))))

df3 = RleDataFrame(A=Rle(c(NA, 2:3, NA, 5), rep(2, 5)), B=Rle(c(6:7,
NA, 8:10),c(3,2,1,2,1,1)))

AtomicList Methods
runValue(df)
runLength(df)
ranges(df)

mean (df)

sum(df)

df + 5

log2(df) - 1

Row and Column Summaries
rowSums (df)
colSums (df)
rowMeans (df)
colMeans(df)

Coercion
as(df, "matrix")

26 RleDataFrame-views

as(df, "list")
as(df, "RleList")
as(df, "DataFrame")
as(df, "data.frame")

RleDataFrame-views Calculate summary statistics on views of an RleDataFrame

Description

These methods mirror the viewMeans type functions from IRanges for SimpleRleList. They differ
in that they work on an RleDataFrame and an IRanges directly and also have a simplify argument.
This works out to be faster (compute-wise) and also convenient.

Still, an RleDataFrame inherits from SimpleRleList, so all of the views functions will work.

Usage

rangeSums(x, bounds, na.rm=FALSE, simplify=TRUE)
rangeMeans(x, bounds, na.rm=FALSE, simplify=TRUE, ...)
rangeMins(x, bounds, na.rm=FALSE, simplify=TRUE)
rangeMaxs(x, bounds, na.rm=FALSE, simplify=TRUE)
rangeWhichMins(x, bounds, na.rm=FALSE, simplify=TRUE)
rangeWhichMaxs(x, bounds, na.rm=FALSE, simplify=TRUE)

Arguments
X RleDataFrame
bounds Matrix with two columns or IRanges representing ranges of rows of x to pro-
cess. If bounds is a matrix, an IRanges is constructed assuming the first two
columns represent the start and end of the ranges. The names for the IRanges
is taken from the rownames of the matrix. Such a matrix can constructed with
boundingIndicesByChr and is the preferred input.
na.rm Scalar logical. Ignore NAs in calculations?
simplify Scalar logical. Simplify result? If TRUE, the return value will be a vector or
matrix. For a single view, a vector will be returned. Otherwise a matrix with one
row per view and one column per column of x will be returned. If FALSE, the
return value will be a list of length ncol (x) of vectors of length nrow(bounds).
Additional arguments for other methods.
Details

The "range" name prefixes here serve to differentiate these functions from the "view" functions.
This may change. I will be asking the IRanges team to add "..." and "simplify" to the "view"
methods so that I can just make additional methods for RleDataFrame.

Value

With simplify == TRUE, a vector for single view or a matrix otherwise. When simplify == FALSE,
a list of vectors length ncol(x) where each element is of length nrows (bounds).

runCBS 27

See Also

RleDataFrame boundingIndicesByChr

Examples

df = RleDataFrame(list(a=Rle(1:5, rep(2, 5))), b=Rle(1:5, rep(2, 5)),
row.names=LETTERS[1:10])

mat = matrix(c(1,4,3,5),ncol=2,dimnames=1ist(c("Genel"”,"Gene2"),c("start”,"end")))
bounds = IRanges(start=c(1, 4), end=c(3, 5), names=c("Genel","Gene2"))

rangeMeans (df ,bounds, simplify=FALSE)
rangeMeans (df,bounds, simplify=TRUE)
rangeMeans(df,mat,simplify=TRUE)

rangeMeans (df,bounds)
rangeSums (df ,bounds)
rangeMins (df,bounds)
rangeMaxs (df, bounds)
rangeWhichMins(df,bounds)
rangeWhichMaxs (df, bounds)

RleDataFrame isa SimpleRlelList, so all the IRanges view* methods work too:
v = RleViewsList(lapply(df, Views, start=bounds))
viewMeans(v)

runCBS Run CBS Segmentation

Description

Utility function to run CBS’s three functions on one or more samples

Usage

runCBS(data, locs, return.segs = FALSE, n.cores = 1, smooth.region = 2,
outlier.SD.scale = 4, smooth.SD.scale = 2, trim = 0.025,
alpha = 0.001)

Arguments
data numeric matrix with continuous data in one or more columns
locs GenomicRanges, like rowRanges slot of GenoSet
return.segs logical, if true list of segment data.frames return, otherwise a DataFrame of Rle
vectors. One Rle per sample.
n.cores numeric, number of cores to ask mclapply to use

smooth.region number of positions to left and right of individual positions to consider when
smoothing single point outliers

outlier.SD.scale

number of SD single points must exceed smooth.region to be considered an
outlier

28 segPairTable

smooth.SD.scale
floor used to reset single point outliers

trim fraction of sample to smooth
alpha pvalue cutoff for calling a breakpoint
Details

Takes care of running CBS segmentation on one or more samples. Makes appropriate input,
smooths outliers, and segment

Value

data frame of segments from CBS

See Also

Other "segmented data": bounds2Rle, rangeSegMeanLength, segPairTable, segTable, segs2Granges,
segs2RleDataFrame, segs2Rle

Examples

sample.names = paste("”a",1:2,sep="")

probe.names = paste("p”,1:30,sep="")
ds = matrix(c(c(rep(5,20),rep(3,10)),c(rep(2,10),rep(7,10),rep(9,10))),ncol=2,dimnames=1ist (probe.names,:
locs = GRanges(ranges=IRanges(start=c(1:20,1:10),width=1,names=probe.names), seqnames=paste("chr”,c(rep(1

seg.rle.result = RleDataFrame(al = Rle(c(rep(5,20),rep(3,10))), a2 = Rle(c(rep(2,10),rep(7,10),rep(9,10))
seg.list.result = list(
al = data.frame(ID=rep(”al”,2), chrom=factor(c("chri1”,"chr2")), loc.start=c(1,1), loc.end=c(20,10), num.
a2 = data.frame(ID=rep("a2",3), chrom=factor(c("chr1”,"chr1”,"chr2")), loc.start=c(1,11,1), loc.end=c(1¢

)

runCBS(ds,locs) # Should give seg.rle.result
runCBS(ds, locs,return.segs=TRUE) # Should give seg.list.result

segPairTable Convert Rle objects to tables of segments

Description

Like segTable, but for two Rle objects. Takes a pair of Rle or DataFrames with Rle columns and
makes one or more data.frames with bounds of each new segment. Rle objects are broken up so
that each resulting segment has one value from each Rle. For a DataFrame, the argument stack
combines all of the individual data.frames into one large data.frame and adds a "Sample" column
of sample ids.

Usage
segPairTable(x, vy, ...)

S4 method for signature 'Rle,Rle’
segPairTable(x, y, locs = NULL, chr.ind = NULL,

segPairTable 29

start = NULL, end = NULL, factor.chr = TRUE)

S4 method for signature 'DataFrame,DataFrame’
segPairTable(x, y, locs, stack = FALSE,
factor.chr = TRUE)

Arguments

X Rle or list/DataFrame of Rle vectors

y Rle or list/DataFrame of Rle vectors

in generic, extra arguments for methods

locs GenomicRanges with rows corresponding to rows of df

chr.ind matrix, like from chrlndices method

start integer, vector of feature start positions

end integer, vector of feature end positions

factor.chr scalar logical, make ’chrom’ column a factor?

stack logical, rbind list of segment tables for each sample and add "Sample" column?
Details

For a Rle, the user can provide locs or chr.ind, start and stop. The latter is surprisingly much
faster and this is used in the DataFrame version.

Value

one or a list of data.frames with columns chrom, loc.start, loc.end, num.mark, seg.mean

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, runCBS, segTable, segs2Granges,
segs2RleDataFrame, segs2Rle

Examples

cn = Rle(c(3,4,5,6),rep(3,4))

loh = Rle(c(2,4,6,8,10,12),rep(2,6))

start = ¢(9:11,4:9,15:17)

end = start

locs = GRanges(IRanges(start=start,end=end), seqnames=c(rep("chr1”,3),rep("chr2",6),rep("chr3",3)))
segPairTable(cn,loh,locs)

30 segs2Rle

segs2Granges GRanges from segment table

Description

GenoSet contains a number of functions that work on segments. Many work on a data.frame of
segments, like segTable and runCBS. This function converts one of these tables in a GRanges. The
three columns specifying the ranges become the GRanges and all other columns go into the *mcols’
portion of the GRanges object.

Usage

segs2Granges(segs)

Arguments
segs data.frame with loc.start, loc.end, and chrom columns, like from segTable or
runCBS
Value

GRanges

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, runCBS, segPairTable, segTable,
segs2RleDataFrame, segs2Rle

segs2Rle Make Rle from segments for one sample

Description

Take output of CBS, make Rle representing all features in ’locs’ ranges. CBS output contains run
length and run values for genomic segmetns, which could very directly be converted into a Rle.
However, as NA values are often removed, especially for mBAF data, these run lengths do not
necessarily cover all features in every sample. Using the start and top positions of each segment
and the location of each feature, we can make a Rle that represents all features.

Usage

segs2Rle(segs, locs)

Arguments

segs data.frame of segments, formatted as output of segment function from DNAcopy
package

locs GenomicRanges, like rowRanges slot of a GenoSet

segs2RleDataFrame 31

Value

Rle with run lengths and run values covering all features in the data set.

See Also

Other "segmented data": bounds2Rle, rangeSegMeanLength, runCBS, segPairTable, segTable,
segs2Granges, segs2RleDataFrame

Examples

data(genoset,package="genoset")
segs = runCBS(genoset.ds[, , "lrr"], rowRanges(genoset.ds), return.segs=TRUE)
segs2Rle(segs[[1]], rowRanges(genoset.ds)) # Take a data.frame of segments, say from DNAcopy's segment func

segs2RleDataFrame CBS segments to probe matrix

Description

Given segments, make an RleDataFrame of Rle objects for each sample

Usage

segs2RleDataFrame(seg.list, locs)

Arguments
seg.list list, list of data frames, one per sample, each is result from CBS
locs rowRanges from a GenoSet object

Details

Take table of segments from CBS, convert DataTable of Rle objects for each sample.

Value

RleDataFrame with nrows same as locs and one column for each sample

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, runCBS, segPairTable, segTable,
segs2Granges, segs2Rle

Examples

data(genoset,package="genoset")
seg.list = runCBS(genoset.ds[, , "lrr"], rowRanges(genoset.ds), return.segs=TRUE)
segs2RleDataFrame(seg.list, rowRanges(genoset.ds)) # Loop segs2Rle on list of data.frames in seg.list

32 segTable

segTable Convert Rle objects to tables of segments

Description

Like the inverse of segs2Rle and segs2RleDataFrame. Takes a Rle or a RleDataFrame and the
rowRanges both from a GenoSet object and makes a list of data.frames each like the result of CBS’s
segment. Note the loc.start and loc.stop will correspond exactly to probe locations in rowRanges
and the input to segs2RleDataFrame are not necessarily so. For a DataFrame, the argument stack
combines all of the individual data.frames into one large data.frame and adds a "Sample" column
of sample ids.

Usage

segTable(object, ...)

S4 method for signature 'Rle’
segTable(object, locs = NULL, chr.ind = NULL,
start = NULL, end = NULL, factor.chr = TRUE)

S4 method for signature 'DataFrame’
segTable(object, locs, factor.chr = TRUE,
stack = FALSE)

Arguments

object Rle or RleDataFrame

in generic, for extra args in methods

locs GenomicRanges with rows corresponding to rows of df

chr.ind matrix, like from chrIndices method

start integer, vector of feature start positions

end integer, vector of feature end positions

factor.chr scalar logical, make ’chrom’ column a factor?

stack logical, rbind list of segment tables for each sample and add "Sample" column?
Details

For a Rle, the user can provide locs or chr.ind, start and stop. The latter is surprisingly much
faster and this is used in the DataFrame version.
Value

one or a list of data.frames with columns chrom, loc.start, loc.end, num.mark, seg.mean

See Also

Other "segmented data": bounds2R1e, rangeSegMeanLength, runCBS, segPairTable, segs2Granges,
segs2RleDataFrame, segs2Rle

toGenomeOrder 33

Examples

data(genoset,package="genoset")

seg.list = runCBS(genoset.ds[, , "lrr"], rowRanges(genoset.ds), return.segs=TRUE)

df = segs2RleDataFrame(seg.list, rowRanges(genoset.ds)) # Loop segs2Rle on list of data.frames in seg.list
genoset.ds[, , "lrr.segs"] = df

segTable(df, rowRanges(genoset.ds))

segTable(genoset.ds[, , "lrr.segs"], rowRanges(genoset.ds))

segTable(genoset.ds[, 1, "lrr.segs"], rowRanges(genoset.ds), colnames(genoset.ds)[1])

toGenomeOrder Set a GRanges or GenoSet to genome order

Description

Returns a re-ordered object sorted by chromosome and start position. If strict=TRUE, then chro-
mosomes must be in order specified by chrOrder. If ds is already ordered, no re-ordering is
done. Therefore, checking order with isGenomeOrder, is unnecessary if order will be corrected
if isGenomeOrder is FALSE.

Usage

toGenomeOrder(ds, strict = TRUE)

Arguments

ds GenoSet or GRanges

strict logical, should chromosomes be in order specified by chrOrder?
Details

toGenomeOrder for GRanges differs from sort in that it orders by chromsome and start position
only, rather than chromsome, strand, start, and width.

Value

re-ordered ds

See Also

Other "genome ordering": chrOrder, isGenomeOrder

Examples

data(genoset,package="genoset")
toGenomeOrder(genoset.ds, strict=TRUE)
toGenomeOrder(genoset.ds, strict=FALSE)
toGenomeOrder (rowRanges(genoset.ds))

34 [,GenoSet, ANY,ANY,ANY-method

[,GenoSet,ANY,ANY,ANY-method
Subset a GenoSet

Description

Subset a GenoSet

Usage

S4 method for signature 'GenoSet,ANY,ANY,ANY'
x[i, j, k, ..., withDimnames = TRUE,
drop = FALSE]

S4 replacement method for signature 'GenoSet,ANY,ANY,ANY'
x[i, j, kI <- value

Arguments
X GenoSet
i character, GRanges, logical, integer
j character, logical, integer
k character or integer

additional subsetting args

withDimnames scalar logical, put dimnames on returned assay?

drop logical drop levels of space factor?
value incoming data for assay "k", rows "i" and cols "j"
Examples

data(genoset,package="genoset")

genoset.ds[1:5,2:3] # first five probes and samples 2 and 3

genoset.ds[, "K"] # Sample called K

gr = GRanges(ranges=IRanges(start=seq(from=15e6,by=1e6,length=7) ,width=1,names=letters[8:14]), seqnames=rey
genoset.ds[gr, "K" 1 # sample K and probes overlapping those in rd, which overlap specifed ranges on chri17

Index

*Topic classes
GenoSet-class, 17
RleDataFrame-class, 24
*Topic datasets
genoset-datasets, 18
*Topic methods
RleDataFrame-class, 24
RleDataFrame-views, 26
[,GenoSet,ANY,ANY, ANY-method, 34
[<-,GenoSet,ANY,ANY, ANY-method
(L,GenoSet,ANY,ANY, ANY-method),
34

as.matrix,RleDataFrame-method
(RleDataFrame-class), 24
Atomiclist, 25

baf2mbaf, 3
boundingIndices, 4, 5, 22
boundingIndicesByChr, 4, 5, 22, 27
bounds2Rle, 6, 22, 28-32

calcGC, 6

calcGC2,7

chr,7
chr,GenomicRanges-method (chr), 7
chr,GenoSet-method (chr), 7
chrindices, 8

chrindices,GenoSetOrGenomicRanges-method

(chrindices), 8
chrinfo, 9
chrinfo,GenoSetOrGenomicRanges-method
(chrInfo), 9
chrNames, 9
chrNames, GenomicRanges-method
(chrNames), 9
chrNames,GenoSet-method (chrNames), 9
chrNames<- (chrNames), 9
chrNames<-, GenomicRanges-method
(chrNames), 9
chrNames<-,GenoSet-method (chrNames), 9
chrOrder, 10, 19, 33
chrPartitioning, 11
cn2lr, 11

35

cn2lr,DataFrame-method (cn2lr), 11
cn2lr,matrix-method (cn2lr), 11
cn2lr,numeric-method (cn2lr), 11
coerce,RleDataFrame,matrix-method
(RleDataFrame-class), 24
colMeans, 25
colMeans,DataFrame-method
(RleDataFrame-class), 24
colMeans,RleDataFrame-method
(RleDataFrame-class), 24
colSums, 25
colSums,RleDataFrame-method
(RleDataFrame-class), 24

DataFrame, 25
fixSegNAs, 12
gcCorrect, 12
genome, 13

genomeAxis, 13, 15
genoPlot, /4, 14

genoPlot, GenoSetOrGenomicRanges, ANY-method

(genoPlot), 14

genoPlot,numeric,numeric-method
(genoPlot), 14

genoPlot,numeric,Rle-method (genoPlot),
14

genoPos, 15

genoPos, GenoSetOrGenomicRanges-method
(genoPos), 15

GenoSet, 16, I8

genoset (genoset-package), 3

GenoSet-class, 17

genoset-datasets, 18

genoset-package, 3

genoset.ds (genoset-datasets), 18

GenoSetOrGenomicRanges-class
(GenoSet-class), 17

isGenomeOrder, 10, 18, 33

lengths,GenoSet-method (GenoSet), 16
1r2cn, 19

36

modeCenter, 19

nrow, GenomicRanges-method, 20
numCallable, 20

pos,GenoSetOrGenomicRanges-method, 21

rangeColMeans (RleDataFrame-views), 26
RangedSummarizedExperiment, /7
rangeMaxs (RleDataFrame-views), 26
rangeMaxs,RleDataFrame-method
(RleDataFrame-views), 26
rangeMeans (RleDataFrame-views), 26
rangeMeans,matrix-method
(RleDataFrame-views), 26
rangeMeans, numeric-method
(RleDataFrame-views), 26
rangeMeans,RleDataFrame-method
(RleDataFrame-views), 26
rangeMins (RleDataFrame-views), 26
rangeMins,RleDataFrame-method
(RleDataFrame-views), 26
rangeSampleMeans, 4, 5, 21
rangeSegMeanlLength, 6, 22, 28-32

rangeSegMeanlLength, GRanges,data. frame-method

(rangeSegMeanLength), 22
rangeSegMeanlLength,GRanges, list-method
(rangeSegMeanlLength), 22
rangeSums (RleDataFrame-views), 26
rangeSums,RleDataFrame-method
(RleDataFrame-views), 26
rangeWhichMaxs (RleDataFrame-views), 26
rangeWhichMaxs,RleDataFrame-method
(RleDataFrame-views), 26
rangeWhichMins (RleDataFrame-views), 26
rangeWhichMins,RleDataFrame-method
(RleDataFrame-views), 26
rbindDataframe, 23
readGenoSet, 23
Rle, 25
RleDataFrame, 27
RleDataFrame (RleDataFrame-class), 24
RleDataFrame-class, 24
RleDataFrame-views, 26
RlelList, 25
rowMeans, 25
rowMeans,RleDataFrame-method
(RleDataFrame-class), 24
rowSums, 25
rowSums,RleDataFrame-method
(RleDataFrame-class), 24
runCBS, 6, 22, 27, 29-32

segPairTable, 6, 22, 28, 28, 30-32

INDEX

segPairTable,DataFrame,DataFrame-method

(segPairTable), 28
segPairTable,Rle,Rle-method

(segPairTable), 28
segs2Granges, 6, 22, 28, 29, 30, 31, 32
segs2Rle, 6, 22, 28-30, 30, 31, 32
segs2RleDataFrame, 6, 22, 28-31, 31, 32
segTable, 6, 22, 28-31, 32
segTable,DataFrame-method (segTable), 32
segTable,Rle-method (segTable), 32
show,RleDataFrame-method

(RleDataFrame-class), 24
SimpleRlelist, 25

toGenomeOrder, 10, 19, 33

	genoset-package
	baf2mbaf
	boundingIndices
	boundingIndicesByChr
	bounds2Rle
	calcGC
	calcGC2
	chr
	chrIndices
	chrInfo
	chrNames
	chrOrder
	chrPartitioning
	cn2lr
	fixSegNAs
	gcCorrect
	genome
	genomeAxis
	genoPlot
	genoPos
	GenoSet
	GenoSet-class
	genoset-datasets
	isGenomeOrder
	lr2cn
	modeCenter
	nrow,GenomicRanges-method
	numCallable
	pos,GenoSetOrGenomicRanges-method
	rangeSampleMeans
	rangeSegMeanLength
	rbindDataframe
	readGenoSet
	RleDataFrame-class
	RleDataFrame-views
	runCBS
	segPairTable
	segs2Granges
	segs2Rle
	segs2RleDataFrame
	segTable
	toGenomeOrder
	[,GenoSet,ANY,ANY,ANY-method
	Index

