## ----style, echo = FALSE, results = 'asis'----------------
BiocStyle::markdown()
options(width=60, max.print=1000)
knitr::opts_chunk$set(
    eval=as.logical(Sys.getenv("KNITR_EVAL", "TRUE")),
    cache=as.logical(Sys.getenv("KNITR_CACHE", "TRUE")), 
    tidy.opts=list(width.cutoff=60), tidy=TRUE)

## ----setup, echo=FALSE, messages=FALSE, warnings=FALSE----
suppressPackageStartupMessages({
    library(systemPipeR)
    library(BiocParallel)
    library(Biostrings)
    library(Rsamtools)
    library(GenomicRanges)
    library(ggplot2)
    library(GenomicAlignments)
    library(ShortRead)
    library(ape)
    library(batchtools)
})

## ----install, eval=FALSE----------------------------------
#  if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager")
#  BiocManager::install("systemPipeR")
#  BiocManager::install("systemPipeRdata")

## ----documentation, eval=FALSE----------------------------
#  library("systemPipeR") # Loads the package
#  library(help="systemPipeR") # Lists package info
#  vignette("systemPipeR") # Opens vignette

## ----genRna_workflow, eval=FALSE--------------------------
#  library(systemPipeRdata)
#  genWorkenvir(workflow="rnaseq")
#  setwd("rnaseq")

## ----targetsSE, eval=TRUE---------------------------------
library(systemPipeR)
targetspath <- system.file("extdata", "targets.txt", package="systemPipeR") 
read.delim(targetspath, comment.char = "#")

## ----targetsPE, eval=TRUE---------------------------------
targetspath <- system.file("extdata", "targetsPE.txt", package="systemPipeR")
read.delim(targetspath, comment.char = "#")[1:2,1:6]

## ----comment_lines, echo=TRUE-----------------------------
readLines(targetspath)[1:4]

## ----targetscomp, eval=TRUE-------------------------------
readComp(file=targetspath, format="vector", delim="-")

## ----param_structure, eval=TRUE---------------------------
parampath <- system.file("extdata", "tophat.param", package="systemPipeR")
read.delim(parampath, comment.char = "#")

## ----param_import, eval=TRUE------------------------------
args <- suppressWarnings(systemArgs(sysma=parampath, mytargets=targetspath))
args

## ----sysarg_access, eval=TRUE-----------------------------
names(args)

## ----sysarg_access2, eval=TRUE----------------------------
sysargs(args)[1]
modules(args)
cores(args)
outpaths(args)[1]

## ----sysarg_json, eval=TRUE-------------------------------
systemArgs(sysma=parampath, mytargets=targetspath, type="json")

## ----CWL_structure, eval=FALSE----------------------------
#  hisat2.cwl <- system.file("extdata", "cwl/hisat2-se/hisat2-mapping-se.cwl", package="systemPipeR")
#  yaml::read_yaml(hisat2.cwl)

## ----yaml_structure, eval=FALSE---------------------------
#  hisat2.yml <- system.file("extdata", "cwl/hisat2-se/hisat2-mapping-se.yml", package="systemPipeR")
#  yaml::read_yaml(hisat2.yml)

## ----SYSargs2_structure, eval=TRUE------------------------
library(systemPipeR)
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl/hisat2-se", package="systemPipeR")
WF <- loadWorkflow(targets=targets, wf_file="hisat2-mapping-se.cwl",
                   input_file="hisat2-mapping-se.yml",
                   dir_path=dir_path)

WF <- renderWF(WF, inputvars=c(FileName="_FASTQ_PATH_", SampleName="_SampleName_"))

## ----names_WF, eval=TRUE----------------------------------
names(WF)

## ----cmdlist, eval=TRUE-----------------------------------
cmdlist(WF)[1]
modules(WF)
targets(WF)[1]
targets.as.df(targets(WF))[1:4,1:4]
output(WF)[1]
cwlfiles(WF)
inputvars(WF)

## ----output_WF, eval=TRUE---------------------------------
output(WF)[1]

## ----load_package, eval=FALSE-----------------------------
#  library(systemPipeR)
#  library(systemPipeRdata)
#  genWorkenvir(workflow="rnaseq", mydirname=NULL)
#  setwd("rnaseq")

## ----construct_sysargs, eval=FALSE------------------------
#  args <- systemArgs(sysma="param/trim.param", mytargets="targets.txt")

## ----preprocessing, eval=FALSE----------------------------
#  preprocessReads(args=args, Fct="trimLRPatterns(Rpattern='GCCCGGGTAA',
#                  subject=fq)",
#                  batchsize=100000, overwrite=TRUE, compress=TRUE)
#  writeTargetsout(x=args, file="targets_trim.txt")

## ----custom_preprocessing, eval=FALSE---------------------
#  args <- systemArgs(sysma="param/trimPE.param", mytargets="targetsPE.txt")
#  filterFct <- function(fq, cutoff=20, Nexceptions=0) {
#      qcount <- rowSums(as(quality(fq), "matrix") <= cutoff, na.rm=TRUE)
#      # Retains reads where Phred scores are >= cutoff with N exceptions
#      fq[qcount <= Nexceptions]
#  }
#  preprocessReads(args=args, Fct="filterFct(fq, cutoff=20, Nexceptions=0)",
#                  batchsize=100000)
#  writeTargetsout(x=args, file="targets_PEtrim.txt")

## ----fastq_quality, eval=FALSE----------------------------
#  fqlist <- seeFastq(fastq=infile1(args), batchsize=10000, klength=8)
#  pdf("./results/fastqReport.pdf", height=18, width=4*length(fqlist))
#  seeFastqPlot(fqlist)
#  dev.off()

## ----fastq_quality_parallel_single, eval=FALSE------------
#  args <- systemArgs(sysma="param/tophat.param", mytargets="targets.txt")
#  f <- function(x) seeFastq(fastq=infile1(args)[x], batchsize=100000, klength=8)
#  fqlist <- bplapply(seq(along=args), f, BPPARAM = MulticoreParam(workers=8))
#  seeFastqPlot(unlist(fqlist, recursive=FALSE))

## ----fastq_quality_parallel_cluster, eval=FALSE-----------
#  library(BiocParallel); library(batchtools)
#  f <- function(x) {
#      library(systemPipeR)
#      args <- systemArgs(sysma="param/tophat.param", mytargets="targets.txt")
#      seeFastq(fastq=infile1(args)[x], batchsize=100000, klength=8)
#  }
#  resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
#  param <- BatchtoolsParam(workers = 4, cluster = "slurm", template = "batchtools.slurm.tmpl", resources = resources)
#  fqlist <- bplapply(seq(along=args), f, BPPARAM = param)
#  seeFastqPlot(unlist(fqlist, recursive=FALSE))

## ----bowtie_index, eval=FALSE-----------------------------
#  args <- systemArgs(sysma="param/tophat.param", mytargets="targets.txt")
#  moduleload(modules(args)) # Skip if module system is not available
#  system("bowtie2-build ./data/tair10.fasta ./data/tair10.fasta")

## ----run_bowtie_single, eval=FALSE------------------------
#  bampaths <- runCommandline(args=args)

## ----run_bowtie_parallel, eval=FALSE----------------------
#  resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
#  reg <- clusterRun(args, conffile = ".batchtools.conf.R", Njobs=18, template = "batchtools.slurm.tmpl", runid="01", resourceList=resources)
#  waitForJobs(reg=reg)

## ----process_monitoring, eval=FALSE-----------------------
#  getStatus(reg=reg)
#  file.exists(outpaths(args))
#  sapply(1:length(args), function(x) loadResult(reg, id=x))
#  # Works after job completion

## ----hisat_alignment2, eval=TRUE--------------------------
targets <- system.file("extdata", "targets.txt", package="systemPipeR")
dir_path <- system.file("extdata/cwl/hisat2-se", package="systemPipeR")
align <- loadWorkflow(targets=targets, wf_file="hisat2-mapping-se.cwl",
                   input_file="hisat2-mapping-se.yml",
                   dir_path=dir_path)
align <- renderWF(align, inputvars=c(FileName="_FASTQ_PATH_", SampleName="_SampleName_"))
align

## ----subset, eval=TRUE------------------------------------
subsetWF(align, slot="input", subset='FileName')[1:2]
subsetWF(align, slot="output", subset=1)[1:2]
subsetWF(align, slot="step", subset=1)[1] ## subset all the HISAT2 commandline 
subsetWF(align, slot="output", subset=1, delete=TRUE)[1] ##DELETE

## ----runCommandline_WF, eval=FALSE------------------------
#  cmdlist(align)[1:2]
#  system("hisat2-build ./data/tair10.fasta ./data/tair10.fasta")
#  runCommandline(align, make_bam = FALSE) ## generates alignments and writes *.sam files to ./results folder
#  runCommandline(align, dir=TRUE, make_bam = TRUE) ## same as above but writes files to ./results/workflowName/Samplename folders and converts *.sam files to sorted and indexed BAM files

## ----output, eval=FALSE-----------------------------------
#  align <- output_update(align, dir=TRUE, replace = ".bam") ## Updates the output(align) to the right location in the subfolders
#  output(align)

## ----WF_track, eval=FALSE---------------------------------
#  WF_track <- run_track(WF_ls = c(align))
#  names(WF_track)
#  WF_steps(WF_track)
#  track(WF_track)
#  summaryWF(WF_track)

## ----clusterRun, eval=FALSE-------------------------------
#  library(batchtools)
#  resources <- list(walltime=120, ntasks=1, ncpus=4, memory=1024)
#  reg <- clusterRun(align, FUN = runCommandline, more.args = list(dir=TRUE),
#                    conffile = ".batchtools.conf.R", template = "batchtools.slurm.tmpl",
#                    Njobs=18, runid="01", resourceList=resources)
#  getStatus(reg=reg)
#  
#  align <- output_update(align, dir=TRUE, replace = ".bam") ## Updates the output(align) to the right location in the subfolders
#  output(align)

## ----align_stats1, eval=FALSE-----------------------------
#  read_statsDF <- alignStats(args)
#  write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t")

## ----align_stats2, eval=TRUE------------------------------
read.table(system.file("extdata", "alignStats.xls", package="systemPipeR"), header=TRUE)[1:4,]

## ----align_stats_parallel, eval=FALSE---------------------
#  f <- function(x) alignStats(args[x])
#  read_statsList <- bplapply(seq(along=args), f,
#                             BPPARAM = MulticoreParam(workers=8))
#  read_statsDF <- do.call("rbind", read_statsList)

## ----align_stats_parallel_cluster, eval=FALSE-------------
#  library(BiocParallel); library(batchtools)
#  f <- function(x) {
#      library(systemPipeR)
#      args <- systemArgs(sysma="param/tophat.param", mytargets="targets.txt")
#      alignStats(args[x])
#  }
#  resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
#  param <- BatchtoolsParam(workers = 4, cluster = "slurm", template = "batchtools.slurm.tmpl", resources = resources)
#  read_statsList <- bplapply(seq(along=args), f, BPPARAM = param)
#  read_statsDF <- do.call("rbind", read_statsList)

## ----writeTargetsout, eval=FALSE--------------------------
#  names(clt(align))
#  writeTargetsout(x=align, file="default", step=1)

## ----igv, eval=FALSE--------------------------------------
#  symLink2bam(sysargs=args, htmldir=c("~/.html/", "somedir/"),
#              urlbase="http://myserver.edu/~username/",
#          urlfile="IGVurl.txt")

## ----bowtie2, eval=FALSE----------------------------------
#  args <- systemArgs(sysma="param/bowtieSE.param", mytargets="targets.txt")
#  moduleload(modules(args)) # Skip if module system is not available
#  bampaths <- runCommandline(args=args)

## ----bowtie2_cluster, eval=FALSE--------------------------
#  resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
#  reg <- clusterRun(args, conffile = ".batchtools.conf.R", Njobs=18, template = "batchtools.slurm.tmpl", runid="01", resourceList=resources)
#  waitForJobs(reg=reg)

## ----bwamem_cluster, eval=FALSE---------------------------
#  args <- systemArgs(sysma="param/bwa.param", mytargets="targets.txt")
#  moduleload(modules(args)) # Skip if module system is not available
#  system("bwa index -a bwtsw ./data/tair10.fasta") # Indexes reference genome
#  bampaths <- runCommandline(args=args[1:2])

## ----rsubread, eval=FALSE---------------------------------
#  library(Rsubread)
#  args <- systemArgs(sysma="param/rsubread.param", mytargets="targets.txt")
#  # Build indexed reference genome
#  buildindex(basename=reference(args), reference=reference(args))
#  align(index=reference(args), readfile1=infile1(args), input_format="FASTQ",
#        output_file=outfile1(args), output_format="SAM", nthreads=8, indels=1, TH1=2)
#  for(i in seq(along=outfile1(args))) asBam(file=outfile1(args)[i], destination=gsub(".sam", "", outfile1(args)[i]), overwrite=TRUE, indexDestination=TRUE)

## ----gsnap, eval=FALSE------------------------------------
#  library(gmapR); library(BiocParallel); library(batchtools)
#  args <- systemArgs(sysma="param/gsnap.param", mytargets="targetsPE.txt")
#  gmapGenome <- GmapGenome(reference(args), directory="data", name="gmap_tair10chr/", create=TRUE)
#  f <- function(x) {
#      library(gmapR); library(systemPipeR)
#      args <- systemArgs(sysma="param/gsnap.param", mytargets="targetsPE.txt")
#      gmapGenome <- GmapGenome(reference(args), directory="data", name="gmap_tair10chr/", create=FALSE)
#      p <- GsnapParam(genome=gmapGenome, unique_only=TRUE, molecule="DNA", max_mismatches=3)
#      o <- gsnap(input_a=infile1(args)[x], input_b=infile2(args)[x], params=p, output=outfile1(args)[x])
#  }
#  resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
#  param <- BatchtoolsParam(workers = 4, cluster = "slurm", template = "batchtools.slurm.tmpl", resources = resources)
#  d <- bplapply(seq(along=args), f, BPPARAM = param)

## ----create_txdb, eval=FALSE------------------------------
#  library(GenomicFeatures)
#  txdb <- makeTxDbFromGFF(file="data/tair10.gff", format="gff", dataSource="TAIR", organism="Arabidopsis thaliana")
#  saveDb(txdb, file="./data/tair10.sqlite")

## ----read_counting_multicore, eval=FALSE------------------
#  library(BiocParallel)
#  txdb <- loadDb("./data/tair10.sqlite")
#  eByg <- exonsBy(txdb, by="gene")
#  bfl <- BamFileList(outpaths(args), yieldSize=50000, index=character())
#  multicoreParam <- MulticoreParam(workers=4); register(multicoreParam); registered()
#  counteByg <- bplapply(bfl, function(x) summarizeOverlaps(eByg, x, mode="Union", ignore.strand=TRUE, inter.feature=TRUE, singleEnd=TRUE))
#  
#  # Note: for strand-specific RNA-Seq set 'ignore.strand=FALSE' and for PE data set 'singleEnd=FALSE'
#  countDFeByg <- sapply(seq(along=counteByg),
#                        function(x) assays(counteByg[[x]])$counts)
#  rownames(countDFeByg) <- names(rowRanges(counteByg[[1]])); colnames(countDFeByg) <- names(bfl)
#  rpkmDFeByg <- apply(countDFeByg, 2, function(x) returnRPKM(counts=x, ranges=eByg))
#  write.table(countDFeByg, "results/countDFeByg.xls", col.names=NA, quote=FALSE, sep="\t")
#  write.table(rpkmDFeByg, "results/rpkmDFeByg.xls", col.names=NA, quote=FALSE, sep="\t")

## ----read_counting_multinode, eval=FALSE------------------
#  library(BiocParallel)
#  f <- function(x) {
#      library(systemPipeR); library(BiocParallel); library(GenomicFeatures)
#      txdb <- loadDb("./data/tair10.sqlite")
#      eByg <- exonsBy(txdb, by="gene")
#      args <- systemArgs(sysma="param/tophat.param", mytargets="targets.txt")
#      bfl <- BamFileList(outpaths(args), yieldSize=50000, index=character())
#      summarizeOverlaps(eByg, bfl[x], mode="Union", ignore.strand=TRUE, inter.feature=TRUE, singleEnd=TRUE)
#  }
#  resources <- list(walltime=120, ntasks=1, ncpus=cores(args), memory=1024)
#  param <- BatchtoolsParam(workers = 4, cluster = "slurm", template = "batchtools.slurm.tmpl", resources = resources)
#  counteByg <- bplapply(seq(along=args), f, BPPARAM = param)
#  countDFeByg <- sapply(seq(along=counteByg),
#                        function(x) assays(counteByg[[x]])$counts)
#  rownames(countDFeByg) <- names(rowRanges(counteByg[[1]])); colnames(countDFeByg) <- names(outpaths(args))

## ----read_counting_mirna, eval=FALSE----------------------
#  system("wget ftp://mirbase.org/pub/mirbase/19/genomes/My_species.gff3 -P ./data/")
#  gff <- import.gff("./data/My_species.gff3")
#  gff <- split(gff, elementMetadata(gff)$ID)
#  bams <- names(bampaths); names(bams) <- targets$SampleName
#  bfl <- BamFileList(bams, yieldSize=50000, index=character())
#  countDFmiR <- summarizeOverlaps(gff, bfl, mode="Union", ignore.strand=FALSE, inter.feature=FALSE) # Note: inter.feature=FALSE important since pre and mature miRNA ranges overlap
#  rpkmDFmiR <- apply(countDFmiR, 2,
#                     function(x) returnRPKM(counts=x, gffsub=gff))
#  write.table(assays(countDFmiR)$counts, "results/countDFmiR.xls", col.names=NA, quote=FALSE, sep="\t")
#  write.table(rpkmDFmiR, "results/rpkmDFmiR.xls", col.names=NA, quote=FALSE, sep="\t")

## ----sample_tree_rlog, eval=TRUE--------------------------
library(DESeq2, warn.conflicts=FALSE, quietly=TRUE); library(ape, warn.conflicts=FALSE)
countDFpath <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countDF <- as.matrix(read.table(countDFpath))
colData <- data.frame(row.names=targetsin(args)$SampleName, condition=targetsin(args)$Factor)
dds <- DESeqDataSetFromMatrix(countData = countDF, colData = colData, design = ~ condition)
d <- cor(assay(rlog(dds)), method="spearman")
hc <- hclust(dist(1-d))
plot.phylo(as.phylo(hc), type="p", edge.col=4, edge.width=3, show.node.label=TRUE, no.margin=TRUE)

## ----sample_tree_rpkm, eval=FALSE-------------------------
#  rpkmDFeBygpath <- system.file("extdata", "rpkmDFeByg.xls", package="systemPipeR")
#  rpkmDFeByg <- read.table(rpkmDFeBygpath, check.names=FALSE)
#  rpkmDFeByg <- rpkmDFeByg[rowMeans(rpkmDFeByg) > 50,]
#  d <- cor(rpkmDFeByg, method="spearman")
#  hc <- hclust(as.dist(1-d))
#  plot.phylo(as.phylo(hc), type="p", edge.col="blue", edge.width=2, show.node.label=TRUE, no.margin=TRUE)

## ----edger_wrapper, eval=TRUE-----------------------------
targets <- read.delim(targetspath, comment="#")
cmp <- readComp(file=targetspath, format="matrix", delim="-")
cmp[[1]]
countDFeBygpath <- system.file("extdata", "countDFeByg.xls", package="systemPipeR")
countDFeByg <- read.delim(countDFeBygpath, row.names=1)
edgeDF <- run_edgeR(countDF=countDFeByg, targets=targets, cmp=cmp[[1]], independent=FALSE, mdsplot="")

## ----edger_deg_counts, eval=TRUE--------------------------
DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=10))

## ----edger_deg_stats, eval=TRUE---------------------------
names(DEG_list)
DEG_list$Summary[1:4,]

## ----deseq2_wrapper, eval=TRUE----------------------------
degseqDF <- run_DESeq2(countDF=countDFeByg, targets=targets, cmp=cmp[[1]], independent=FALSE)

## ----deseq2_deg_counts, eval=TRUE-------------------------
DEG_list2 <- filterDEGs(degDF=degseqDF, filter=c(Fold=2, FDR=10))

## ----vennplot, eval=TRUE----------------------------------
vennsetup <- overLapper(DEG_list$Up[6:9], type="vennsets")
vennsetdown <- overLapper(DEG_list$Down[6:9], type="vennsets")
vennPlot(list(vennsetup, vennsetdown), mymain="", mysub="", colmode=2, ccol=c("blue", "red"))

## ----get_go_biomart, eval=FALSE---------------------------
#  library("biomaRt")
#  listMarts() # To choose BioMart database
#  listMarts(host="plants.ensembl.org")
#  m <- useMart("plants_mart", host="plants.ensembl.org")
#  listDatasets(m)
#  m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="plants.ensembl.org")
#  listAttributes(m) # Choose data types you want to download
#  go <- getBM(attributes=c("go_id", "tair_locus", "namespace_1003"), mart=m)
#  go <- go[go[,3]!="",]; go[,3] <- as.character(go[,3])
#  go[go[,3]=="molecular_function", 3] <- "F"; go[go[,3]=="biological_process", 3] <- "P"; go[go[,3]=="cellular_component", 3] <- "C"
#  go[1:4,]
#  dir.create("./data/GO")
#  write.table(go, "data/GO/GOannotationsBiomart_mod.txt", quote=FALSE, row.names=FALSE, col.names=FALSE, sep="\t")
#  catdb <- makeCATdb(myfile="data/GO/GOannotationsBiomart_mod.txt", lib=NULL, org="", colno=c(1,2,3), idconv=NULL)
#  save(catdb, file="data/GO/catdb.RData")

## ----go_enrichment, eval=FALSE----------------------------
#  load("data/GO/catdb.RData")
#  DEG_list <- filterDEGs(degDF=edgeDF, filter=c(Fold=2, FDR=50), plot=FALSE)
#  up_down <- DEG_list$UporDown; names(up_down) <- paste(names(up_down), "_up_down", sep="")
#  up <- DEG_list$Up; names(up) <- paste(names(up), "_up", sep="")
#  down <- DEG_list$Down; names(down) <- paste(names(down), "_down", sep="")
#  DEGlist <- c(up_down, up, down)
#  DEGlist <- DEGlist[sapply(DEGlist, length) > 0]
#  BatchResult <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="all", id_type="gene", CLSZ=2, cutoff=0.9, gocats=c("MF", "BP", "CC"), recordSpecGO=NULL)
#  library("biomaRt")
#  m <- useMart("plants_mart", dataset="athaliana_eg_gene", host="plants.ensembl.org")
#  goslimvec <- as.character(getBM(attributes=c("goslim_goa_accession"), mart=m)[,1])
#  BatchResultslim <- GOCluster_Report(catdb=catdb, setlist=DEGlist, method="slim", id_type="gene", myslimv=goslimvec, CLSZ=10, cutoff=0.01, gocats=c("MF", "BP", "CC"), recordSpecGO=NULL)

## ----plot_go_enrichment, eval=FALSE-----------------------
#  gos <- BatchResultslim[grep("M6-V6_up_down", BatchResultslim$CLID), ]
#  gos <- BatchResultslim
#  pdf("GOslimbarplotMF.pdf", height=8, width=10); goBarplot(gos, gocat="MF"); dev.off()
#  goBarplot(gos, gocat="BP")
#  goBarplot(gos, gocat="CC")

## ----hierarchical_clustering, eval=FALSE------------------
#  library(pheatmap)
#  geneids <- unique(as.character(unlist(DEG_list[[1]])))
#  y <- assay(rlog(dds))[geneids, ]
#  pdf("heatmap1.pdf")
#  pheatmap(y, scale="row", clustering_distance_rows="correlation", clustering_distance_cols="correlation")
#  dev.off()

## ----genRna_workflow_single, eval=FALSE-------------------
#  library(systemPipeRdata)
#  genWorkenvir(workflow="rnaseq")
#  setwd("rnaseq")

## ----genChip_workflow_single, eval=FALSE------------------
#  library(systemPipeRdata)
#  genWorkenvir(workflow="chipseq")
#  setwd("chipseq")

## ----genVar_workflow_single, eval=FALSE-------------------
#  library(systemPipeRdata)
#  genWorkenvir(workflow="varseq")
#  setwd("varseq")

## ----genRibo_workflow_single, eval=FALSE------------------
#  library(systemPipeRdata)
#  genWorkenvir(workflow="riboseq")
#  setwd("riboseq")

## ----sessionInfo------------------------------------------
sessionInfo()