Package ‘OrganismDbi’

July 17, 2025

Title Software to enable the smooth interfacing of different database
packages

Description The package enables a simple unified interface to several
annotation packages each of which has its own schema by taking
advantage of the fact that each of these packages implements a
select methods.

Version 1.51.4
Encoding UTF-8

Depends R (>=2.14.0), BiocGenerics (>= 0.15.10), AnnotationDbi (>=
1.33.15), Seqinfo, GenomicFeatures (>= 1.61.4)

Imports methods, utils, stats, DBI, BiocManager, Biobase, graph, RBGL,
S4Vectors, [Ranges, GenomicRanges (>=1.61.1)

Suggests txdbmaker, GenomelnfoDbData, Homo.sapiens, Rattus.norvegicus,
BSgenome.Hsapiens.UCSC.hg19, AnnotationHub, FDb.UCSC.tRNAs,
rtracklayer, biomaRt, RUnit, RMariaDB, BiocStyle, knitr

Collate AllGenerics.R AllClasses.R methods-select.R
methods-transcripts.R createOrganismPackage.R seqinfo.R
test_OrganismDbi_package.R

License Artistic-2.0

biocViews Annotation, Infrastructure

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/OrganismDbi
git_branch devel

git_last_commit c99372c

git_last commit_date 2025-06-23

Repository Bioconductor 3.22

Date/Publication 2025-07-16

Author Marc Carlson [aut],
Martin Morgan [aut],
Valerie Obenchain [aut],
Aliyu Atiku Mustapha [ctb] (Converted 'OrganismDbi' vignette from
Sweave to RMarkdown / HTML.),
Bioconductor Package Maintainer [cre]

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

1

2 makeOrganismDbFromBiomart

Contents

makeOrganismDbFromBiomart 0000000
makeOrganismDbFromTxDb Lo
makeOrganismDbFromUCSC
makeOrganismPackage
mapToTranscripts e e
MultiDb-class
rangeBasedAccessorso

Index

makeOrganismDbFromBiomart
Make a OrganismDb object from annotations available on a BioMart
database

Description

The makeOrganismDbFromBiomart function allows the user to make a OrganismDb object from

transcript annotations available on a BioMart database. This object has all the benefits of a TxDb,
plus an associated OrgDb and GODb object.

Usage

makeOrganismDbFromBiomart(biomart="ENSEMBL_MART_ENSEMBL",
dataset="hsapiens_gene_ensembl”,
transcript_ids=NULL,
circ_seqs=NULL,
filter="",
id_prefix="ensembl_",
host="https://www.ensembl.org”,
port,
miRBaseBuild=NA,
keytype = "ENSEMBL",

orgdb = NA)
Arguments
biomart which BioMart database to use. Get the list of all available BioMart databases
with the 1istMarts function from the biomaRt package. See the details section
below for a list of BioMart databases with compatible transcript annotations.
dataset which dataset from BioMart. For example: "hsapiens_gene_ensembl”, "mmusculus_gene_ensemb

"dmelanogaster_gene_ensembl”, "celegans_gene_ensembl”, "scerevisiae_gene_ensembl”,
etc in the ensembl database. See the examples section below for how to discover

which datasets are available in a given BioMart database.

transcript_ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the resulting
TxDb object will say "Full dataset: no’. Otherwise it will say ’Full dataset: yes’.

This TxDb object will be embedded in the resulting OrganismDb object.

makeOrganismDbFromBiomart 3

circ_seqgs

filter

host
port

id_prefix

miRBaseBuild
keytype

orgdb

Details

a character vector to list out which chromosomes should be marked as circular.

Additional filters to use in the BioMart query. Must be a named list. An example
is filter=as.list(c(source="entrez"))

The host URL of the BioMart. Defaults to www.ensembl.org.
Deprecated: The port to use in the HTTP communication with the host.

Specifies the prefix used in BioMart attributes. For example, some BioMarts
may have an attribute specified as "ensembl_transcript_id"” whereas others
have the same attribute specified as "transcript_id". Defaults to "ensembl_".

This argument is defunct.

This indicates the kind of key that this database will use as a foreign key between
it’s TxDDb object and it’s OrgDb object. So basically whatever the column name
is for the foreign key from your OrgDb that your TxDb will need to map it’s
GENEID on to. By default it is "ENSEMBL" since the GENEID’s for most
biomaRt based TxDbs will be ensembl gene ids and therefore they will need to
map to ENSEMBL gene mappings from the associated OrgDb object.

By default, makeOrganismDbFromBiomart will use the taxonomyID from your
txdb to lookup an appropriate matching OrgDb object but using this you can
supply a different OrgDb object.

makeOrganismDbFromBiomart is a convenience function that feeds data from a BioMart database
to the lower level OrganismDb constructor. See ?makeOrganismDbFromUCSC for a similar function
that feeds data from the UCSC source.

The 1istMarts function from the biomaRt package can be used to list all public BioMart databases.
Not all databases returned by this function contain datasets that are compatible with (i.e. understood
by) makeOrganismDbFromBiomart. Here is a list of datasets known to be compatible (updated on

Sep 24, 2014):

¢ All the datasets in the main Ensembl database: use biomart="ensembl”.

* All the datasets in the Ensembl Fungi database: use biomart="fungi_mart_XX" where XX
is the release version of the database e.g. "fungi_mart_22".

¢ All the datasets in the Ensembl Metazoa database: use biomart="metazoa_mart_XX" where
XX is the release version of the database e.g. "metazoa_mart_22".

* All the datasets in the Ensembl Plants database: use biomart="plants_mart_XX" where XX
is the release version of the database e.g. "plants_mart_22".

¢ All the datasets in the Ensembl Protists database: use biomart="protists_mart_XX" where
XX is the release version of the database e.g. "protists_mart_22".

¢ All the datasets in the Gramene Mart: use biomart="ENSEMBL_MART_PLANT".

Not all these datasets have CDS information.

Value

A OrganismDb object.

Author(s)
M. Carlson

4 makeOrganismDbFromTxDb

See Also

* makeOrganismDbFromUCSC for convenient ways to make a OrganismDb object from UCSC
online resources.

* The listMarts, useMart, and listDatasets functions in the biomaRt package.

* The OrganismDb class.

Examples

Discover which datasets are available in the "ensembl” BioMart
database:

library(biomaRt)

mart <- useEnsembl("”ensembl”)

datasets <- listDatasets(mart)

head(datasets)

Retrieving an incomplete transcript dataset for Human from the
"ensembl” BioMart database:
transcript_ids <- c¢(

"ENST00000013894",

"ENST00000268655" ,

"ENSTQ0000313243",

"ENSTQ0000435657",

"ENST00000384428" ,

"ENST00000478783"
)
odb <- makeOrganismDbFromBiomart(transcript_ids=transcript_ids)
odb # note that these annotations match the GRCh38 genome assembly

if (interactive()) {
Now what if we want to use another mirror? We might make use of the
new host argument. But wait! If we use biomaRt, we can see that
this host has named the mart differently!
listMarts(host="https://useast.ensembl.org")

Therefore we must also change the name passed into the "mart”

argument thusly:

makeOrganismDbFromBiomart (
biomart="ENSEMBL_MART_ENSEMBL",
transcript_ids=transcript_ids,
host="https://useast.ensembl.org"

makeOrganismDbFromTxDb
Make an OrganismDb object from an existing TxDb object.

Description

The makeOrganismDbFromTxDb function allows the user to make a OrganismDb object from an
existing TxDb object.

makeOrganismDbFromTxDb 5

Usage

makeOrganismDbFromTxDb(txdb, keytype=NA, orgdb=NA)

Arguments

txdb a TxDb object

keytype By default, makeOrganismDbFromTxDb will try to guess this information based
on the OrgDb object that is inferred to go with your TxDb object... But in some
instances, you may need to supply an over-ride and that is what this argument is
for. It is the column name of the ID type that your OrgDb will use as a foreign
key when connecting to the data from the associated TxDb. So for example, if
you looked at the Homo.sapiens package the keytype for org.Hs.eg.db, would
be ’TENTREZID’ because that is the kind of ID that matches up with it’s TxDb
GENEID. (Because the GENEID for that specific TxDb is from UCSC and uses
entrez gene IDs)

orgdb By default, makeOrganismDbFromTxDb will use the taxonomyID from your txdb
to lookup an appropriate matching OrgDb object but using this you can supply a
different OrgDb object.

Details

makeOrganismDbFromTxDb is a convenience function that processes a TxDb object and pairs it up

with GO.db and an appropriate OrgDb object to make a OrganismDb object. See ?makeOrganismDbFromBiomart
and ?makeOrganismDbFromUCSC for a similar function that feeds data from either a BioMart or

UCSC.

Value

A OrganismDb object.

Author(s)
M. Carlson

See Also

* makeOrganismDbFromBiomart for convenient ways to make a OrganismDb object from BioMart
online resources.

* The OrganismDDb class.

Examples

Not run:
library(txdbmaker) # for makeTxDbFromUCSC()
lets start with a txdb object
transcript_ids <- c(

"ucoQ9uzf.1",

"ucoQ9uzg.1",

"uc@@9uzh.1",

"uc@Q9uzi.1",
"uc@@9uzj.1"

)

makeOrganismDbFromUCSC

txdbMouse <- makeTxDbFromUCSC(genome="mm9", tablename="knownGene",

transcript_ids=transcript_ids)

Using that, we can call our function to promote it to an OrgDb object:
odb <- makeOrganismDbFromTxDb (txdb=txdbMouse)

columns(odb)

End(Not run)

makeOrganismDbFromUCSC

Make a OrganismDb object from annotations available at the UCSC
Genome Browser

Description

The makeOrganismDbFromUCSC function allows the user to make a OrganismDb object from tran-
script annotations available at the UCSC Genome Browser.

Usage

makeOrganismDbFromUCSC(
genome="hg19",
tablename="knownGene",
transcript_ids=NULL,
circ_seqs=NULL,
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath.url=getOption("UCSC.goldenPath.url"),
miRBaseBuild=NA)

Arguments

genome

tablename

transcript_ids

circ_seqs

url
goldenPath.url
miRBaseBuild

genome abbreviation used by UCSC and obtained by ucscGenomes()[, "db"].
For example: "hg19".

name of the UCSC table containing the transcript annotations to retrieve. Use
the supportedUCSCtables utility function to get the list of supported tables.
Note that not all tables are available for all genomes.

optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing OrganismDb object will say Full dataset: no’. Otherwise it will say "Full
dataset: yes’.

a character vector to list out which chromosomes should be marked as circular.
Deprecated (will be ignored).
use to specify the location of an alternate UCSC Genome Browser.

This argument is defunct.

makeOrganismDbFromUCSC 7

Details

makeOrganismDbFromUCSC is a convenience function that feeds data from the UCSC source to the
lower level OrganismDb function. See ?makeOrganismDbFromBiomart for a similar function that
feeds data from a BioMart database.

Value

A OrganismDb object.

Author(s)
M. Carlson

See Also

* makeOrganismDbFromBiomart for convenient ways to make a OrganismDb object from BioMart
online resources.

* ucscGenomes in the rtracklayer package.

* The OrganismDb class.

Examples

Not run:

Display the list of genomes available at UCSC:
library(rtracklayer)

library(RMariaDB)

ucscGenomes()[, "db"]

Display the list of tables supported by makeOrganismDbFromUCSC():
supportedUCSCtables()

\dontrun{
Retrieving a full transcript dataset for Yeast from UCSC:
odb1 <- makeOrganismDbFromUCSC(genome="sacCer2"”, tablename="ensGene")

3

Retrieving an incomplete transcript dataset for Mouse from UCSC
(only transcripts linked to Entrez Gene ID 22290):
transcript_ids <- c¢(

"uceQ9uzf.1",

"uclQ9uzg.1",

"uce9uzh.1",

"uclQ9uzi.1",

"uclQ9uzj.1"

odb2 <- makeOrganismDbFromUCSC(genome="mm9", tablename="knownGene",
transcript_ids=transcript_ids)
odb?2

End(Not run)

8 makeOrganismPackage

makeOrganismPackage Making OrganismDb packages from annotation packages.

Description

makeOrganismPackage is a method that generates a package that will load an appropriate annotationOrganismDb
object that will in turn point to existing annotation packages.

Usage

makeOrganismPackage (pkgname,
graphData,
organism,
version,
maintainer,
author,
destDir,
license="Artistic-2.0")

Arguments
pkgname What is the desired package name. Traditionally, this should be the genus and
species separated by a ".". So as an example, "Homo.sapiens" would be the
package name for human
graphData A list of short character vectors. Each character vector in the list is exactly two
elements long and represents a join relationship between two packages. The
names of these character vectors are the package names and the values are the
foreign keys that should be used to connect each package. All foreign keys
must be values that can be returned by the columns method for each package in
question, and obviously they also must be the same kind of identifier as well.
organism The name of the organism this package represents
version What is the version number for this package?
maintainer Who is the package maintainer? (must include email to be valid)
author Who is the creator of this package?
destDir A path where the package source should be assembled.
license What is the license (and it’s version)
Details

The purpose of this method is to create a special package that will depend on existing annotation
packages and which will load a special annotationOrganismDb object that will allow proper dis-
patch of special select methods. These methods will allow the user to easily query across multiple
annotation resources via information contained by the annotationOrganismDb object. Because the
end result will be a package that treats all the data mapped together as a single source, the user is
encouraged to take extra care to ensure that the different packages used are from the same build etc.

Value

A special package to load an OrganismDb object.

mapToTranscripts 9

Author(s)
M. Carlson

See Also

OrganismDb

Examples

set up the list with the relevant relationships:
gd <- list(joinl = c¢(GO.db="GOID", org.Hs.eg.db="G0"),
join2 = c(org.Hs.eg.db="ENTREZID",
TxDb.Hsapiens.UCSC.hg19.knownGene="GENEID"))

sets up a temporary directory for this example
(users won't need to do this step)

destination <- tempfile()

dir.create(destination)

makes an Organism package for human called Homo.sapiens
if(interactive()){
makeOrganismPackage (pkgname = "Homo.sapiens”,
graphData = gd,
organism = "Homo sapiens”,
version = "1.0.0",
maintainer = "Bioconductor Package Maintainer <maintainer@bioconductor.org>",
author = "Bioconductor Core Team”,
destDir = destination,
license = "Artistic-2.0")

mapToTranscripts Map range coordinates between transcripts and genome space

Description

Map range coordinates between features in the transcriptome and genome (reference) space.

See mapToAlignments in the GenomicAlignments package for mapping coordinates between reads
(local) and genome (reference) space using a CIGAR alignment.

Usage

S4 method for signature 'ANY,MultiDb'
mapToTranscripts(x, transcripts,
ignore.strand = TRUE,
extractor.fun = GenomicFeatures::transcripts, ...)

Arguments

X GRanges-class object of positions to be mapped. x must have names when
mapping to the genome.

transcripts The OrganismDb object that will be used to extract features using the extractor. fun.

10 mapToTranscripts

ignore.strand When TRUE, strand is ignored in overlap operations.

extractor.fun Function to extract genomic features from a TxDb object.
Valid extractor functions:

* transcripts ## default

* exons

* cds

* genes

* promoters

* tRNAs

* transcriptsBy

* exonsBy

* cdsBy

* intronsByTranscript

¢ fiveUTRsByTranscript
¢ threeUTRsByTranscript

Additional arguments passed to extractor. fun functions.

Details

* mapToTranscripts The genomic range in x is mapped to the local position in the transcripts
ranges. A successful mapping occurs when x is completely within the transcripts range,
equivalent to:

findOverlaps(..., type="within")

Transcriptome-based coordinates start counting at 1 at the beginning of the transcripts
range and return positions where x was aligned. The seqlevels of the return object are taken
from the transcripts object and should be transcript names. In this direction, mapping is
attempted between all elements of x and all elements of transcripts.

Value

An object the same class as x.

Parallel methods return an object the same shape as x. Ranges that cannot be mapped (out of
bounds or strand mismatch) are returned as zero-width ranges starting at 0 with a seqname of "UN-
MAPPED".

Non-parallel methods return an object that varies in length similar to a Hits object. The result
only contains mapped records, strand mismatch and out of bound ranges are not returned. xHits
and transcriptsHits metadata columns indicate the elements of x and transcripts used in the
mapping.

When present, names from x are propagated to the output. When mapping to transcript coordinates,
seqlevels of the output are the names on the transcripts object; most often these will be transcript
names. When mapping to the genome, seqlevels of the output are the seqlevels of transcripts
which are usually chromosome names.

Author(s)

V. Obenchain, M. Lawrence and H. Pages; ported to work with OrganismDbi by Marc Carlson

MultiDb-class 11

See Also

* mapToTranscripts.

Examples

B m o
A. Basic Use
B m o

library(Homo. sapiens)
x <- GRanges("chr5",
IRanges(c(173315331,174151575), width=400,
names=LETTERS[1:21]))

Map to transcript coordinates:
mapToTranscripts(x, Homo.sapiens)

MultiDb-class MultiDb and OrganismDb objects

Description

The OrganismDDb class is a container for storing knowledge about existing Annotation packages and
the relationships between these resources. The purpose of this object and it’s associated methods is
to provide a means by which users can conveniently query for data from several different annotation
resources at the same time using a familiar interface.

The supporting methods select, columns and keys are used together to extract data from an
OrganismDb object in a manner that should be consistent with how these are used on the supporting
annotation resources.

The family of seqinfo style getters (seqinfo, seqlevels, seqlengths, isCircular, genome, and
seqnameStyle) is also supported for OrganismDb objects provided that the object in question has
an embedded TxDb object.

Methods

In the code snippets below, x is a OrganismDb object.

keytypes(x): allows the user to discover which keytypes can be passed in to select or keys and
the keytype argument.

keys(x, keytype, pattern, column, fuzzy): Returnkeys for the database contained in the TxDb
object .
The keytype argument specifies the kind of keys that will be returned and is always required.
If keys is used with pattern, it will pattern match on the keytype.

But if the column argument is also provided along with the pattern argument, then pattern
will be matched against the values in column instead.

If keys is called with column and no pattern argument, then it will return all keys that have
corresponding values in the column argument.

Thus, the behavior of keys all depends on how many arguments are specified.

Use of the fuzzy argument will toggle fuzzy matching to TRUE or FALSE. If pattern is not
used, fuzzy is ignored.

MultiDb-class

columns(x): shows which kinds of data can be returned for the OrganismDb object.

select(x, keys, columns, keytype): When all the appropriate arguments are specifiedm select
will retrieve the matching data as a data.frame based on parameters for selected keys and
columns and keytype arguments.

mapIds(x, keys, columns, keytype, ..., multiVals): When all the appropriate arguments are
specifiedm mapIds will retrieve the matching data as a vector or list based on parameters for
selected keys and columns and keytype arguments. The multiVals argument can be used to
choose the format of the values returned. Possible values for multiVals are:

first: This value means that when there are multiple matches only the 1st thing that comes
back will be returned. This is the default behavior

list: This will just returns a list object to the end user

filter: This will remove all elements that contain multiple matches and will therefore return a
shorter vector than what came in whenever some of the keys match more than one value

asNA: This will return an NA value whenever there are multiple matches
CharacterList: This just returns a SimpleCharacterList object

FUN: You can also supply a function to the multiVals argument for custom behaviors. The
function must take a single argument and return a single value. This function will be
applied to all the elements and will serve a ’rule’ that for which thing to keep when there
is more than one element. So for example this example function will always grab the last
element in each result: last <- function(x){x[[length(x)11}

selectByRanges(x, ranges, columns, overlaps, ignore.strand): When all the appropriate
arguments are specified, selectByRanges will return an annotated GRanges object that has
been generated based on what you passed in to the ranges argument and whether that over-
lapped with what you specified in the overlaps argument. Internally this function will get
annotation features and overlaps by calling the appropriate annotation methods indicated by
the overlaps argument. The value for overlaps can be any of: gene, tx, exons, cds, Sutr, introns
or 3utr. The default value is ’tx’ which will return to you, your annotated ranges based on
whether the overlapped with the transcript ranges of any gene in the associated TxDb object
based on the gene models it contains. Also: the number of ranges returned to you will match
the number of genes that your ranges argument overlapped for the type of overlap that you
specified. So if some of your ranges are large and overlap several features then you will get
many duplicated ranges returned with one for each gene that has an overlapping feature. The
columns values that you request will be returned in the mcols for the annotated GRanges ob-
ject that is the return value for this function. Finally, the ignore.strand argument is provided to
indicate whether or not findOverlaps should ignore or respect the strand.

selectRangesById(x, keys, columns, keytype, feature): When all the appropriate arguments
are specified, selectRangesById will return a GRangesList object that correspond to gene
models GRanges for the keys that you specify with the keys and keytype arguments. The an-
notation ranges retrieved for this will be specified by the feature argument and can be: gene,
tx, exon or cds. The default is ’tx’ which will return the transcript ranges for each gene as
a GRanges object in the list. Extra data can also be returned in the mcols values for those
GRanges by using the columns argument.

resources(x): shows where the db files are for resources that are used to store the data for the
OrganismDb object.

TxDb(x): Accessor for the TxDb object of a OrganismDb object.

TxDb(x) <- value: Allows you to swap in an alternative TxDb for a given OrganismDb object.
This is most often useful when combined with saveDb(TxDb, file), which returns the saved
TxDb, so that you can save a TxDb to disc and then assign the saved version right into your
OrganismDb object.

MultiDb-class 13

Author(s)

Marc Carlson

See Also

* AnnotationDb-class for more descriptsion of methods select,keytypes,keys and columns.
* makeOrganismPackage for functions used to generate an OrganismDb based package.

 rangeBasedAccessors for the range based methods used in extracting data from a OrganismDb
object.

* Topics in the Seqinfo package:

seqinfo

seqlevels

seqlengths
isCircular

genome

Examples

load a package that creates an OrganismDb

library(Homo.sapiens)

1s(2)

then the methods can be used on this object.

columns <- columns(Homo.sapiens)[c(7,10,11,12)]

keys <- head(keys(org.Hs.eg.db, "ENTREZID"))

keytype <- "ENTREZID"

res <- select(Homo.sapiens, keys, columns, keytype)

head(res)

res <- maplds(Homo.sapiens, keys=c('1','10'), column="ALIAS',
keytype="ENTREZID', multiVals="CharacterList")

get symbols for ranges in question:
ranges <- GRanges(segnames=Rle(c('chr11'), c(2)),
IRanges(start=c(107899550, 108025550),
end=c(108291889, 108050000)), strand='x",
seginfo=seqginfo(Homo.sapiens))
selectByRanges(Homo.sapiens, ranges, 'SYMBOL')

Or extract the gene model for the 'AIBG' gene:
selectRangesById(Homo.sapiens, 'A1BG', keytype='SYMBOL')

Get the DB connections or DB file paths associated with those for
each.

dbconn(Homo. sapiens)

dbfile(Homo.sapiens)

extract the taxonomyld
taxonomyId(Homo.sapiens)

#i#extract the resources
resources(Homo. sapiens)

14 rangeBasedAccessors

rangeBasedAccessors Extract genomic features from an object

Description

Generic functions to extract genomic features from an object. This page documents the methods for
OrganismDb objects only.

Usage

S4 method for signature 'MultiDb'’
transcripts(x, columns=c("TXID", "TXNAME"), filter=NULL)

S4 method for signature 'MultiDb’
exons(x, columns="EXONID", filter=NULL)

S4 method for signature 'MultiDb'’
cds(x, columns="CDSID"”, filter=NULL)

S4 method for signature 'MultiDb'’
genes(x, columns="GENEID", filter=NULL)

S4 method for signature 'MultiDb'
transcriptsBy(x, by, columns, use.names=FALSE,
outerMcols=FALSE)

S4 method for signature 'MultiDb'’
exonsBy(x, by, columns, use.names=FALSE, outerMcols=FALSE)

S4 method for signature 'MultiDb'
cdsBy(x, by, columns, use.names=FALSE, outerMcols=FALSE)

S4 method for signature 'MultiDb'’
getTxDbIfAvailable(x, ...)

S4 method for signature 'MultiDb'’
asBED(x)
S4 method for signature 'MultiDb'’
asGFF (x)

S4 method for signature 'MultiDb'’

tRNAs (x)
S4 method for signature 'MultiDb'’
promoters(x, upstream=2000, downstream=200, use.names=TRUE, ...)

S4 method for signature 'GenomicRanges,MultiDb'
distance(x, y, ignore.strand=FALSE,
., id, type=c("gene”, "tx", "exon", "cds"))

S4 method for signature 'BSgenome’
extractTranscriptSeqs(x, transcripts, strand = "+")

rangeBasedAccessors

15

S4 method for signature 'MultiDb'
extractUpstreamSeqs(x, genes, width=1000, exclude.seqlevels=NULL)

S4 method for signature 'MultiDb'’
intronsByTranscript(x, use.names=FALSE)
S4 method for signature 'MultiDb'’
fiveUTRsByTranscript(x, use.names=FALSE)
S4 method for signature 'MultiDb’
threeUTRsByTranscript(x, use.names=FALSE)

S4 method for signature 'MultiDb'’

isActiveSeq(x)

Arguments

X

by

columns

filter

use.names

upstream

downstream

A MultiDb object, except in the extractTranscriptSeqs method where it is a
BSgenome object and the second argument is a MultiDb object.

Arguments to be passed to or from methods.

n o n n o n

One of "gene”, "exon"”, "cds” or "tx". Determines the grouping.

The columns or kinds of metadata that can be retrieved from the database. All
possible columns are returned by using the columns method.
Either NULL or a named list of vectors to be used to restrict the output. Valid

n on non

names for this list are: "gene_id", "tx_id", "tx_name”, "tx_chrom", "tx_strand",

non non

"exon_id", "exon_name", "exon_chrom”, "exon_strand”, "cds_id", "cds_name",

n o n

"cds_chrom”, "cds_strand” and "exon_rank".

Controls how to set the names of the returned GRangesList object. These func-
tions return all the features of a given type (e.g. all the exons) grouped by an-
other feature type (e.g. grouped by transcript) in a GRangesList object. By
default (i.e. if use.names is FALSE), the names of this GRangesList object (aka
the group names) are the internal ids of the features used for grouping (aka the
grouping features), which are guaranteed to be unique. If use.names is TRUE,
then the names of the grouping features are used instead of their internal ids.
For example, when grouping by transcript (by="tx"), the default group names
are the transcript internal ids ("tx_id"). But, if use.names=TRUE, the group
names are the transcript names ("tx_name"). Note that, unlike the feature ids,
the feature names are not guaranteed to be unique or even defined (they could
be all NAs). A warning is issued when this happens. See ?id2name for more in-
formation about feature internal ids and feature external names and how to map
the formers to the latters.

Finally, use.names=TRUE cannot be used when grouping by gene by="gene".
This is because, unlike for the other features, the gene ids are external ids (e.g.
Entrez Gene or Ensembl ids) so the db doesn’t have a "gene_name" column for
storing alternate gene names.

For promoters: An integer (1) value indicating the number of bases upstream
from the transcription start site. For additional details see ? "~ promoters, GRanges-method™.

For promoters : An integer (1) value indicating the number of bases down-
stream from the transcription start site. For additional details see ?~ promoters,GRanges-method™.

For distance, a MultiDb instance. The id is used to extract ranges from the
MultiDb which are then used to compute the distance from x.

16

id

type

ignore.strand

outerMcols

transcripts

strand

genes

width

rangeBasedAccessors

A character vector the same length as x. The id must be identifiers in the
MultiDDb object. type indicates what type of identifier id is.

A character(1) describing the id. Must be one of ‘gene’, ‘tx’, ‘exon’ or ‘cds’.

A logical indicating if the strand of the ranges should be ignored. When TRUE,
strand is setto '+'.

A logical indicating if the the ’outer’ mcols (metadata columns) should be
populated for some range based accesors which return a GRangesList object.
By default this is FALSE, but if TRUE then the outer list object will also have
it’s metadata columns (mcols) populated as well as the mcols for the ’inner’
GRanges objects.

An object representing the exon ranges of each transcript to extract. It must be
a GRangesList or MultiDb object while the x is a BSgenome object. Internally,
it’s turned into a GRangesList object with exonsBy(transcripts, by="tx",
use.names=TRUE).

Only supported when x is a DNAString object.

Can be an atomic vector, a factor, or an Rle object, in which case it indicates the
strand of each transcript (i.e. all the exons in a transcript are considered to be
on the same strand). More precisely: it’s turned into a factor (or factor-Rle) that
has the "standard strand levels" (this is done by calling the strand function on
it). Then it’s recycled to the length of IntegerRangesList object transcripts if
needed. In the resulting object, the i-th element is interpreted as the strand of all
the exons in the i-th transcript.

strand can also be a list-like object, in which case it indicates the strand of
each exon, individually. Thus it must have the same shape as IntegerRangesList
object transcripts (i.e. same length plus strand[[i]] must have the same
length as transcripts[[i]] for all i).

strand can only contain "+" and/or "-" values. "*" is not allowed.

An object containing the locations (i.e. chromosome name, start, end, and
strand) of the genes or transcripts with respect to the reference genome. Only
GenomicRanges and MultiDb objects are supported at the moment. If the latter,
the gene locations are obtained by calling the genes function on the MultiDb
object internally.

How many bases to extract upstream of each TSS (transcription start site).

exclude.seqglevels

Details

A character vector containing the chromosome names (a.k.a. sequence levels)
to exclude when the genes are obtained from a MultiDb object.

These are the range based functions for extracting transcript information from a MultiDb object.

Value

a GRanges or GRangesList object

Author(s)

M. Carlson

rangeBasedAccessors 17

See Also

e MultiDb-class for how to use the simple "select" interface to extract information from a
MultiDb object.

* transcripts for the original transcripts method and related methods.

e transcriptsBy for the original transcriptsBy method and related methods.

Examples

extracting all transcripts from Homo.sapiens with some extra metadata
library(Homo. sapiens)

cols = c("TXNAME","SYMBOL")

res <- transcripts(Homo.sapiens, columns=cols)

extracting all transcripts from Homo.sapiens, grouped by gene and
with extra metadata
res <- transcriptsBy(Homo.sapiens, by="gene"”, columns=cols)

list possible values for columns argument:
columns (Homo. sapiens)

Get the TxDb from an MultiDb object (if it's available)
getTxDbIfAvailable(Homo.sapiens)

Other functions listed above should work in way similar to their TxDb
counterparts. So for example:

promoters(Homo.sapiens)

Should give the same value as:
promoters(getTxDbIfAvailable(Homo.sapiens))

Index

+x methods
mapToTranscripts, 9
rangeBasedAccessors, 14

x utilities
mapToTranscripts, 9

AnnotationDb-class, /3

asBED,MultiDb-method
(rangeBasedAccessors), 14

asGFF,MultiDb-method
(rangeBasedAccessors), 14

cds,MultiDb-method
(rangeBasedAccessors), 14

cdsBy,MultiDb-method
(rangeBasedAccessors), 14

class:MultiDb (MultiDb-class), 11

class:OrganismDb (MultiDb-class), 11

columns,MultiDb-method (MultiDb-class),
11

dbconn,MultiDb-method (MultiDb-class),
11

dbfile,MultiDb-method (MultiDb-class),
11

distance, GenomicRanges,MultiDb-method
(rangeBasedAccessors), 14

exons,MultiDb-method
(rangeBasedAccessors), 14

exonsBy, 16

exonsBy,MultiDb-method
(rangeBasedAccessors), 14

extractTranscriptSegs, 15

extractTranscriptSegs,BSgenome-method
(rangeBasedAccessors), 14

extractUpstreamSeqs,MultiDb-method
(rangeBasedAccessors), 14

fiveUTRsByTranscript,MultiDb-method
(rangeBasedAccessors), 14

genes, 16
genes,MultiDb-method
(rangeBasedAccessors), 14

18

GenomicRanges, 16
getTxDbIfAvailable
(rangeBasedAccessors), 14
getTxDbIfAvailable,MultiDb-method
(rangeBasedAccessors), 14
GRangeslList, 15, 16

id2name, 15

IntegerRangeslist, 16

intronsByTranscript,MultiDb-method
(rangeBasedAccessors), 14

isActiveSeq,MultiDb-method
(rangeBasedAccessors), 14

isActiveSeqg<-,MultiDb-method
(rangeBasedAccessors), 14

keys,MultiDb-method (MultiDb-class), 11
keytypes,MultiDb-method
(MultiDb-class), 11

listDatasets, 4
listMarts, 2, 4

makeOrganismDbFromBiomart, 2, 5, 7

makeOrganismDbFromTxDb, 4

makeOrganismDbFromUCSC, 3-5, 6

makeOrganismPackage, 8, 13

mapIds,MultiDb-method (MultiDb-class),
11

mapToTranscripts, 9, 11

mapToTranscripts,ANY,MultiDb-method
(mapToTranscripts), 9

metadata,MultiDb-method
(MultiDb-class), 11

microRNAs (rangeBasedAccessors), 14

MultiDb, 15, 16

MultiDb (MultiDb-class), 11

MultiDb-class, 11, 17

OrganismDb, 2-9, 14
OrganismDb (MultiDb-class), 11
OrganismDb-class (MultiDb-class), 11

promoters,MultiDb-method
(rangeBasedAccessors), 14

INDEX

rangeBasedAccessors, 13, 14
resources (MultiDb-class), 11
resources,MultiDb-method

(MultiDb-class), 11
Rle, 16

select,MultiDb-method (MultiDb-class),
11

selectByRanges (MultiDb-class), 11

selectByRanges,MultiDb-method
(MultiDb-class), 11

selectRangesById (MultiDb-class), 11

selectRangesById,MultiDb-method
(MultiDb-class), 11

seqinfo,MultiDb-method (MultiDb-class),
11

strand, 16

taxonomyId,MultiDb-method
(MultiDb-class), 11
threeUTRsByTranscript,MultiDb-method
(rangeBasedAccessors), 14
transcripts, 17
transcripts,MultiDb-method
(rangeBasedAccessors), 14
transcriptsBy, 17
transcriptsBy,MultiDb-method
(rangeBasedAccessors), 14
tRNAs,MultiDb-method
(rangeBasedAccessors), 14
TxDb, 2, 11
TxDb (MultiDb-class), 11
TxDb,OrganismbDb-method (MultiDb-class),
11
TxDb<- (MultiDb-class), 11
TxDb<-,0rganismDb-method
(MultiDb-class), 11

ucscGenomes, 6, 7
useMart, 4

19

	makeOrganismDbFromBiomart
	makeOrganismDbFromTxDb
	makeOrganismDbFromUCSC
	makeOrganismPackage
	mapToTranscripts
	MultiDb-class
	rangeBasedAccessors
	Index

