Package 'POMA'

July 17, 2025

Title Tools for Omics Data Analysis

Version 1.19.0

Description The POMA package offers a comprehensive toolkit designed for omics data analysis, streamlining the process from initial visualization to final statistical analysis. Its primary goal is to simplify and unify the various steps involved in omics data processing, making it more accessible and manageable within a single, intuitive R package. Emphasizing on reproducibility and user-friendliness, POMA leverages the standardized SummarizedExperiment class from Bioconductor, ensuring seamless integration and compatibility

with a wide array of Bioconductor tools. This approach guarantees maximum flexibility and replicability, making POMA an essential asset for researchers handling omics datasets. See https://github.com/pcastellanoescuder/POMAShiny. Paper: Castellano-Escuder et al. (2021) <doi:10.1371/journal.pcbi.1009148> for more details.

License GPL-3

Encoding UTF-8

LazyData true

- **biocViews** BatchEffect, Classification, Clustering, DecisionTree, DimensionReduction, MultidimensionalScaling, Normalization, Preprocessing, PrincipalComponent, Regression, RNASeq, Software, StatisticalMethod, Visualization
- Imports broom, caret, ComplexHeatmap, dbscan, dplyr, DESeq2, fgsea, FSA, ggcorrplot, ggplot2, ggrepel, glmnet, grid, impute, janitor, limma, lme4, magrittr, MASS, mixOmics, multcomp, msigdbr, purrr, randomForest, RankProd (>= 3.14), rlang, SummarizedExperiment, sva, tibble, tidyr, utils, uwot, vegan
- **Suggests** BiocStyle, covr, ggraph, ggtext, knitr, patchwork, plotly, tidyverse, testthat (>= 2.3.2)

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Depends R (>= 4.0)

VignetteBuilder knitr

URL https://github.com/pcastellanoescuder/POMA

BugReports https://github.com/pcastellanoescuder/POMA/issues

git_url https://git.bioconductor.org/packages/POMA

Contents

git_branch devel git_last_commit 2581764 git_last_commit_date 2025-04-15 Repository Bioconductor 3.22

Date/Publication 2025-07-16

Author Pol Castellano-Escuder [aut, cre] (ORCID: <https://orcid.org/0000-0001-6466-877X>)

Maintainer Pol Castellano-Escuder <polcaes@gmail.com>

Contents

box_cox_transformation	3
cor_pmat	3
detect_decimals	3
flattenCorrMatrix	4
PomaBatch	4
PomaBoxplots	5
PomaClust	6
PomaCorr	7
PomaCreateObject	8
PomaDensity	9
PomaDESeq	10
PomaEnrichment	13
PomaHeatmap	15
PomaImpute	16
PomaLasso	17
PomaLimma	18
PomaLM	21
PomaLMM	22
PomaNorm	24
PomaOddsRatio	25
PomaOutliers	26
PomaPCA	27
PomaPCR	28
PomaPLS	29
PomaRandForest	
PomaRankProd	33
PomaUMAP	34
PomaUnivariate	36
PomaVolcano	39
poma_pal_c	40
poma_pal_d	41
quantile_norm	41
scale_color_poma_c	41
scale_color_poma_d	42
scale_fill_poma_c	42
scale_fill_poma_d	
st000284	
st000336	
sum norm	44

theme_poma	 	5
%>%	 	6

Index

box_cox_transformation

Box-Cox Transformation

Description

Compute Box-Cox normalization.

Usage

box_cox_transformation(data)

Arguments

data A single variable.

cor_pmat

Correlation P-Values

Description

Compute correlation p-values.

Usage

cor_pmat(x, method)

Arguments

Х	A data matrix.
method	Character indicating which correlation coefficient has to be computed. Options are "pearson" (default), "kendall" and "spearman".

detect_decimals Detect decimals

Description

Detect decimal variables.

Usage

```
detect_decimals(data)
```

Arguments

data A data matrix (samples in rows).

flattenCorrMatrix Flatten Correlation Matrix

Description

Flatten Correlation Matrix

Usage

```
flattenCorrMatrix(cormat, pmat = NULL)
```

Arguments

cormat	Output from cor.
pmat	Output from cor_pmat.

```
PomaBatch
```

Batch Correction

Description

PomaBatch performs batch correction on a SummarizedExperiment object given a batch factor variable.

Usage

```
PomaBatch(data, batch, mod = NULL)
```

Arguments

data	A SummarizedExperiment object.
batch	Character. The name of the column in colData that contains the batch information.
mod	Character vector. Indicates the names of colData columns to be included as covariates. Default is NULL (no covariates).

Value

A SummarizedExperiment object with batch-corrected data.

Author(s)

Pol Castellano-Escuder

References

```
Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD, Torres LC (2023). sva:
Surrogate Variable Analysis. doi:10.18129/B9.bioc.sva https://doi.org/10.18129/B9.bioc.
sva
```

PomaBoxplots

Examples

```
# Output is a batch corrected SummarizedExperiment object
data <- POMA::st000284 # Example SummarizedExperiment object included in POMA
data %>%
   PomaBatch(batch = "gender")
```

PomaBoxplots

Boxplots and Violin Plots

Description

PomaBoxplots generates boxplots and violin plots for samples and features. This function can be used for data exploration (e.g., comparison between pre and post normalized datasets).

Usage

```
PomaBoxplots(
    data,
    x = "samples",
    violin = FALSE,
    outcome = NULL,
    feature_name = NULL,
    theme_params = list(legend_title = FALSE, axis_x_rotate = TRUE)
)
```

Arguments

data	A SummarizedExperiment object.
x	Character. Options are "samples" (to visualize sample boxplots) and "features" (to visualize feature boxplots). Default is "samples".
violin	Logical. Indicates if violin plots should be displayed instead of boxplots. Default is FALSE.
outcome	Character. Indicates the name of the colData column to be used as the outcome factor. Default is NULL (first factor variable in colData).
feature_name	Character vector. Indicates the feature/s to display. Default is NULL (all features will be displayed).
theme_params	List. Indicates theme_poma parameters.

Value

A ggplot object.

Author(s)

Pol Castellano-Escuder

Examples

```
data <- POMA::st000284 %>% # Example SummarizedExperiment object included in POMA
  PomaNorm()
# Sample boxplots
data %>%
 PomaBoxplots(x = "samples",
               violin = FALSE,
               outcome = NULL,
               feature_name = NULL,
               theme_params = list(axistext = "y")) # If too many samples
# Sample boxplots with covariate as outcome
data %>%
  PomaBoxplots(x = "samples";
               violin = FALSE,
               outcome = "gender", # change outcome
               feature_name = NULL,
               theme_params = list(axistext = "y")) # If too many samples
# Sample violin plots
data %>%
  PomaBoxplots(x = "samples",
               violin = TRUE,
               outcome = NULL,
               feature_name = NULL,
               theme_params = list(axistext = "y")) # If too many samples
# All feature boxplots
data %>%
  PomaBoxplots(x = "features",
               theme_params = list(axis_x_rotate = TRUE))
# Specific feature boxplots
data %>%
  PomaBoxplots(x = "features",
               feature_name = c("ornithine", "orotate"))
# Specific feature violin plots
data %>%
  PomaBoxplots(x = "features",
               violin = TRUE,
               feature_name = c("ornithine", "orotate"))
```

PomaClust

Cluster Analysis

Description

PomaClust performs a k-means clustering and plots the results in a classical multidimensional scaling (MDS) plot.

PomaCorr

Usage

```
PomaClust(
    data,
    method = "euclidean",
    k = NA,
    k_max = floor(min(dim(data))/2),
    show_clusters = TRUE,
    labels = FALSE
)
```

Arguments

data	A SummarizedExperiment object.
method	Character. Indicates the distance method to perform MDS. Options are "euclidean", "maximum", "manhattan", "canberra" and "minkowski". See ?dist().
k	Numeric. Indicates the number of clusters (default is NA). The optimal number of clusters will be used by default.
k_max	Numeric. Indicates the number of clusters among which the optimal k will be selected.
show_clusters	Logical. Indicates if clusters should be plotted or not.
labels	Logical. Indicates if sample names should be plotted or not.

Value

A list with results including plots and tables.

Author(s)

Pol Castellano-Escuder

Examples

```
## Output is a list with objects `mds_coordinates` (tibble), `mds_plot` (ggplot2 object), `optimal_clusters_nu
data <- POMA::st000284 # Example SummarizedExperiment object included in POMA</pre>
```

PomaCorr

Correlation Analysis

Description

PomaCorr computes all pairwise correlations in the data and generates a correlation plot.

Usage

```
PomaCorr(
   data,
   method = "pearson",
   cluster = TRUE,
   corrplot_shape = "square",
   sig_level = 1
)
```

Arguments

data	A SummarizedExperiment object.
method	Character. Indicates which correlation coefficient has to be computed. Options are "pearson" (default), "kendall", and "spearman".
cluster	Logical. Indicates whether the correlation plot will be ordered using the hclust function. Default is TRUE.
corrplot_shape	Character. Indicates the visualization method of the correlation plot to be used. Allowed values are "square" (default) and "circle".
sig_level	Numeric. Indicates the significance level. If the correlation p-value exceeds this threshold, the corresponding correlation coefficient is considered insignificant, and that pair will be hidden in the correlation plot. The default is 1, meaning all correlations are included in the plot. For datasets with more than 500 features, this threshold is ignored, and all pairwise correlations are displayed in the plot.

Value

A list with the results.

Author(s)

Pol Castellano-Escuder

Examples

```
## Output is a list with objects `correlations` (tibble) and `corrplot` (ggplot2 object)
data <- POMA::st000284 # Example SummarizedExperiment object included in POMA</pre>
```

data %>%

PomaCorr(method = "pearson")

PomaCreateObject Create a SummarizedExperiment Object

Description

PomaCreateObject creates a SummarizedExperiment object from data frames.

Usage

```
PomaCreateObject(metadata = NULL, features = NULL, factor_levels = 10)
```

```
8
```

PomaDensity

Arguments

metadata	Data frame. Metadata variables structured in columns. Sample ID must be the first column.
features	Matrix of features. Each feature is a column.
factor_levels	Numeric. Integer variables with less levels than indicated by this parameter will be treated as factors.

Value

A SummarizedExperiment object.

Author(s)

Pol Castellano-Escuder

References

Morgan M, Obenchain V, Hester J, Pagès H (2021). SummarizedExperiment: SummarizedExperiment container. R package version 1.24.0, https://bioconductor.org/packages/SummarizedExperiment.

Examples

PomaDensity Density Plots

Description

PomaDensity generates a density plot for samples and features. This function can be used for data exploration (e.g., comparison between pre and post normalized datasets).

Usage

```
PomaDensity(
    data,
    x = "samples",
    outcome = NULL,
    feature_name = NULL,
    theme_params = list(legend_title = FALSE)
)
```

Arguments

data	A SummarizedExperiment object.
x	Character. Options are "samples" (to visualize sample density plots) and "fea- tures" (to visualize feature density plots). Default is "samples".
outcome	Character. Indicates the name of the colData column to be used as the outcome factor. Default is NULL (first factor variable in colData).
feature_name	Character vector. Indicates the feature/s to display. Default is NULL (all features will be displayed).
theme_params	List. Indicates theme_poma parameters.

Value

A ggplot object.

Author(s)

Pol Castellano-Escuder

Examples

```
data <- POMA::st000284 %>% # Example SummarizedExperiment object included in POMA
  PomaNorm()
# Sample density plots
data %>%
  PomaDensity(x = "samples",
              outcome = NULL)
# Sample density plots with covariate as outcome
data %>%
 PomaDensity(x = "samples",
              outcome = "gender") # change outcome
# All feature density plots
data %>%
  PomaDensity(x = "features",
              theme_params = list(legend_position = "none"))
# Specific feature density plots
data %>%
  PomaDensity(x = "features",
              feature_name = c("ornithine", "orotate"))
```

PomaDESeq

Differential Expression Analysis Based on the Negative Binomial Distribution

Description

PomaDESeq estimates variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution.

PomaDESeq

Usage

PomaDESeq(data, contrast = NULL, outcome = NULL, covs = NULL, adjust = "fdr")

Arguments

data	A SummarizedExperiment object.
contrast	Character. Indicates the comparison. For example, "Group1-Group2" or "control-intervention".
outcome	Character. Indicates the name of the colData column to be used as the outcome factor. Default is NULL (first factor variable in colData).
covs	Character vector. Indicates the names of colData columns to be included as co- variates. Default is NULL (no covariates). If not NULL, a limma model will be fitted using the specified covariates. Note: The order of the covariates is impor- tant and should be listed in increasing order of importance in the experimental design.
adjust	Character. Indicates the multiple comparisons correction method. Options are: "fdr", "holm", "hochberg", "hommel", "bonferroni", "BH" and "BY".

Value

A tibble with the results.

Author(s)

Pol Castellano-Escuder

References

Love, M.I., Huber, W., Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biology 15(12):550 (2014)

```
#library("airway")
#data("airway")
#se <- airway</pre>
#
## Classic DESeq2
#DESeq_results <- se %>%
# PomaDESeq(contrast = NULL,
#
            outcome = "dex",
#
            covs = NULL,
#
            adjust = "fdr")
#
#DESeq_results %>%
# dplyr::slice(1:10)
#
### Volcano plot
#DESeq_results %>%
# dplyr::select(feature, log2FC, pvalue) %>%
# PomaVolcano(labels = TRUE)
#
### Boxplot of top features
#se %>%
```

```
PomaBoxplots(x = "features",
#
#
            outcome = "cell", # factorial variable to group by (e.g., treatment, sex, etc)
#
                feature_name = DESeq_results$feature[1:10])
#
### Heatmap of top features
#se[rownames(se) %in% DESeq_results$feature[1:10]] %>%
# PomaHeatmap(covs = c("cell", "dex"), # covariates to plot (e.g., treatment, sex, etc)
#
               feature_names = TRUE)
#
## DESeq2 with covariates
#DESeq_results <- se %>%
# PomaDESeq(contrast = NULL,
             outcome = "dex",
#
             covs = "cell",
#
#
             adjust = "fdr")
#
#DESeq_results %>%
# dplyr::slice(1:10)
#
### Volcano plot
#DESeq_results %>%
# dplyr::select(feature, log2FC, adj_pvalue) %>%
# PomaVolcano(labels = TRUE, y_label = "-log10 (Adjusted P-value)")
#
### Boxplot of top features
#se %>%
# PomaBoxplots(x = "features",
             outcome = "dex", # factorial variable to group by (e.g., treatment, sex, etc)
#
#
                feature_name = DESeq_results$feature[1:10])
#
### Heatmap of top features
#se[rownames(se) %in% DESeq_results$feature[1:10]] %>%
# PomaHeatmap(covs = c("cell", "dex"), # covariates to plot (e.g., treatment, sex, etc)
#
               feature_names = TRUE)
#
## DESeq2 with covariates and batch
#DESeq_results <- se %>%
# PomaDESeq(contrast = NULL,
            outcome = "dex",
#
             covs = c("batch", "cell"),
#
#
             adjust = "fdr")
#
#DESeq_results %>%
# dplyr::slice(1:10)
#
### Volcano plot
#DESeq_results %>%
# dplyr::select(feature, log2FC, adj_pvalue) %>%
# PomaVolcano(labels = TRUE, y_label = "-log10 (Adjusted P-value)")
#
### Boxplot of top features
#se %>%
# PomaBoxplots(x = "features",
            outcome = "cell", # factorial variable to group by (e.g., treatment, sex, etc)
#
#
                feature_name = DESeq_results$feature[1:10])
#
### Heatmap of top features
```

```
#se[rownames(se) %in% DESeq_results$feature[1:10]] %>%
# PomaHeatmap(covs = c("cell", "dex"), # covariates to plot (e.g., treatment, sex, etc)
# feature_names = TRUE)
```

PomaEnrichment Enrichment Analysis

Description

PomaEnrichment performs enrichment analysis on a set of query gene symbols using specified methods and gene set collections. It allows for the analysis of over-representation (ORA) or gene set enrichment (GSEA) in various model organisms.

Usage

```
PomaEnrichment(
  genes,
  method = "ora",
  organism = "Homo sapiens",
  collection = "C5",
  universe = NULL,
  rank = NULL,
  pval_cutoff = 0.05,
  fdr_cutoff = 0.1,
  min_size = 2,
  max_size = if (method == "gsea") {
     length(genes) - 1
 } else {
    NULL
 },
  max_genes = 10
)
```

Arguments

genes	Character vector. Set of query gene symbols.
method	Character. Enrichment method. Options are: 'ora' (simple over-representation analysis based on hypergeometric test) and 'gsea' (gene set enrichment analysis on a ranked list of genes).
organism	Character. Indicates the model organism name. Default is 'Homo sapiens'. Other options are: 'Anolis carolinensis', 'Bos taurus', 'Caenorhabditis elegans', 'Canis lupus familiaris', 'Danio rerio', 'Drosophila melanogaster', 'Equus ca- ballus', 'Felis catus', 'Gallus gallus', 'Macaca mulatta', 'Monodelphis domes- tica', 'Mus musculus', 'Ornithorhynchus anatinus', 'Pan troglodytes', 'Rattus norvegicus', 'Saccharomyces cerevisiae', 'Schizosaccharomyces pombe 972h-', 'Sus scrofa', 'Xenopus tropicalis'. See msigdbr::msigdbr_show_species().
collection	Character. Indicates the gene set collection. Default is 'C5' (Gene Ontology gene sets). Other options are: 'C1' (positional gene sets), 'C2' (curated gene sets), 'C3' (regulatory target gene sets), 'C4' (computational gene sets), 'C6' (oncogenic signature gene sets), 'C7' (immunologic signature gene sets), 'C8' (cell type signature gene sets), 'H' (Hallmark gene sets). See msigdbr_collections().

universe	Character vector. A universe from which 'genes' were selected.
rank	Numeric vector. Ranking factor to sort genes for GSEA (e.g., logFC, -log10(p-value), etc).
<pre>pval_cutoff</pre>	Numeric. Raw p-value cutoff on enrichment tests to report.
fdr_cutoff	Numeric. Adjusted p-value cutoff on enrichment tests to report.
min_size	Numeric. Minimal size of a gene set to test. All pathways below the threshold are excluded.
max_size	Numeric. Maximal size of a gene set to test. All pathways above the threshold are excluded.
<pre>max_genes</pre>	Numeric. The number of genes to retain from the overlap_genes or leading_edge columns. If max_genes is greater than the number of genes available, all genes are retained.

Value

A tibble with the enriched gene sets.

Author(s)

Pol Castellano-Escuder

```
# Example genes
genes <- c("BRCA1", "TP53", "EGFR", "MYC", "PTEN")</pre>
# Perform ORA on Gene Ontology (C5) gene sets for Homo sapiens
PomaEnrichment(
  genes = genes,
  method = "ora",
  organism = "Homo sapiens",
  collection = "C5",
  pval_cutoff = 0.05,
  fdr_cutoff = 0.1,
  min_size = 10,
  max_size = 500)
# Example genes with ranking factors (e.g., logFC values)
genes <- c("Actb", "Gapdh", "Cdkn1a", "Cd44", "Pten")</pre>
rank <- c(2.5, -1.8, 3.1, -2.2, 1.7)
# Perform GSEA on Hallmark (H) gene sets for Mus musculus
PomaEnrichment(
  genes = genes,
  method = "gsea",
  organism = "Mus musculus",
  collection = "H",
  rank = rank,
  pval_cutoff = 0.05,
  fdr_cutoff = 0.25,
  min_size = 15,
  max_size = 500)
```

PomaHeatmap

Heatmap Plot

Description

PomaHeatmap generates a heatmap.

Usage

```
PomaHeatmap(
   data,
   covs = NULL,
   sample_names = TRUE,
   feature_names = FALSE,
   show_legend = TRUE
)
```

Arguments

data	A SummarizedExperiment object.
COVS	Character vector. Indicates the names of colData columns to be included as covariates. Default is NULL (no covariates).
sample_names	Logical. Indicates if sample names should be displayed or not. Default is TRUE.
feature_names	Logical. Indicates if feature names should be displayed or not. Default is FALSE.
show_legend	Logical. Indicates if legend should be displayed or not. Default is TRUE.

Value

A ggplot object.

Author(s)

Pol Castellano-Escuder

```
data <- POMA::st000284 %>% # Example SummarizedExperiment object included in POMA
  PomaNorm()
# Basic heatmap
```

```
data %>%
  PomaHeatmap()
# Heatmap with one covariate
data %>%
  PomaHeatmap(covs = "factors")
# Heatmap with two covariates
data %>%
  PomaHeatmap(covs = c("factors", "smoking_condition"))
```

PomaImpute

Description

PomaImpute performs missing value imputation on a dataset using various imputation methods.

Usage

```
PomaImpute(
    data,
    zeros_as_na = FALSE,
    remove_na = TRUE,
    cutoff = 20,
    group_by = NULL,
    method = "knn"
)
```

Arguments

data	A SummarizedExperiment object.
zeros_as_na	Logical. Indicates if the zeros in the data are missing values. Default is FALSE.
remove_na	Logical. Indicates if features with a percentage of missing values over the cutoff parameter should be removed. Default is TRUE.
cutoff	Numeric. Percentage of missing values allowed in each feature.
group_by	Character. Indicates the name of the colData column to be used as the grouping factor. Default is NULL (no grouping). This variable specifies the grouping criteria for evaluating missing values. Missing values will be assessed within each group defined by this variable, and features will be removed only if all groups exceed the allowed threshold of missing values.
method	Character. The imputation method to use. Options include "none" (no imputa- tion, replace missing values by zeros), "half_min" (replace missing values with half of the minimum value), "median" (replace missing values with the median), "mean" (replace missing values with the mean), "min" (replace missing values with the minimum value), "knn" (replace missing values using k-nearest neigh- bors imputation), and "random_forest" (replace missing values using random forest imputation).

Value

A SummarizedExperiment object without missing values.

Author(s)

Pol Castellano-Escuder

References

Armitage, E. G., Godzien, J., Alonso-Herranz, V., López-Gonzálvez, Á., & Barbas, C. (2015). Missing value imputation strategies for metabolomics data. Electrophoresis, 36(24), 3050-3060.

PomaLasso

Examples

PomaLasso

```
Lasso, Ridge, and Elasticnet Regularized Generalized Linear Models for Binary Outcomes
```

Description

PomaLasso performs LASSO, Ridge, and Elasticnet regression for feature selection and prediction purposes for binary outcomes.

Usage

```
PomaLasso(
    data,
    alpha = 1,
    ntest = NULL,
    nfolds = 10,
    lambda = NULL,
    labels = FALSE
)
```

Arguments

data	A SummarizedExperiment object.
alpha	Numeric. Indicates the elastic et mixing parameter. $alpha = 1$ is the LASSO penalty and $alpha = 0$ is the Ridge penalty.
ntest	Numeric. Indicates the percentage of observations that will be used as test set. Default is NULL (no test set).
nfolds	Numeric. Indicates number of folds for cross-validation (default is 10). Al- though nfolds can be as large as the sample size (leave-one-out CV), it is not recommended for large datasets. Smallest value allowable is nfolds = 3.
lambda	Numeric. Indicates the user supplied lambda sequence. Typical usage is to have the program compute its own lambda sequence based on nlambda and lambda.min.ratio. See ?glmnet::glmnet().
labels	Logical. Indicates if feature names should be plotted in coefficient plot or not. Default is FALSE.

Value

A list with results.

Author(s)

Pol Castellano-Escuder

References

Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL http://www.jstatsoft.org/v33/i01/.

Examples

```
data <- POMA::st000336 %>% # Example SummarizedExperiment object included in POMA
          PomaImpute() %>%
           PomaNorm()
## Output is a list with objects `coefficients` (tibble), `coefficients_plot` (ggplot2 object), `cv_plot` (ggplot2 object), `cv_plot (ggplot2 object), `cv_plot2 object), `cv_plot2 object), `cv_plot2 object), `cv_plot2 obj
# LASSO
data %>%
         PomaLasso(alpha = 1,
                                                              ntest = NULL,
                                                              nfolds = 10,
                                                              lambda = NULL,
                                                              labels = TRUE)
# Elasticnet
data %>%
          PomaLasso(alpha = 0.5,
                                                               ntest = NULL,
                                                              nfolds = 10,
                                                               lambda = NULL,
                                                              labels = TRUE)
# Ridge Regression
data %>%
           PomaLasso(alpha = 0,
```

ntest = NULL, nfolds = 10, lambda = NULL, labels = FALSE)

PomaLimma

Differential Expression Analysis Using limma

Description

PomaLimma uses the classical limma package to compute differential expression analysis.

Usage

```
PomaLimma(
    data,
    contrast = NULL,
    outcome = NULL,
```

PomaLimma

```
covs = NULL,
adjust = "fdr",
block = NULL,
weights = FALSE
)
```

Arguments

data	A SummarizedExperiment object.
contrast	Character. Indicates the comparison. For example, "Group1-Group2" or "control-intervention".
outcome	Character. Indicates the name of the colData column to be used as the outcome factor. Default is NULL (first factor variable in colData).
covs	Character vector. Indicates the names of colData columns to be included as co- variates. Default is NULL (no covariates). If not NULL, a limma model will be fitted using the specified covariates. Note: The order of the covariates is impor- tant and should be listed in increasing order of importance in the experimental design.
adjust	Character. Indicates the multiple comparisons correction method. Options are: "fdr", "holm", "hochberg", "hommel", "bonferroni", "BH" and "BY".
block	Character. Specifies the name of the colData factor column that includes the random effect variable to be considered (e.g., replicate). The default is NULL, indicating no random effect.
weights	Logical. Indicates whether the limma model should estimate the relative quality weights for each group. See ?limma::arrayWeights().

Value

A tibble with the results.

Author(s)

Pol Castellano-Escuder

References

Matthew E. Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, Gordon K. Smyth, limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, Volume 43, Issue 7, 20 April 2015, Page e47, https://doi.org/10.1093/nar/gkv007

Examples

```
data <- POMA::st000284 %>% # Example SummarizedExperiment object included in POMA
   PomaNorm()
```

limma_results %>%

```
dplyr::slice(1:10)
## Volcano plot
limma_results %>%
  dplyr::select(feature, log2FC, pvalue) %>%
  PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
  PomaBoxplots(x = "features",
           outcome = "gender", # factorial variable to group by (e.g., treatment, sex, etc)
               feature_name = limma_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% limma_results$feature[1:10]] %>%
 PomaHeatmap(covs = c("gender", "smoking_condition", "alcohol_consumption"), # covariates to plot (e.g., trea
              feature_names = TRUE)
# Basic limma on alternative outcome
SummarizedExperiment::colData(data)$gender <- factor(ifelse(SummarizedExperiment::colData(data)$gender == 0,</pre>
data %>%
  PomaLimma(contrast = "male-female",
            outcome = "gender",
            covs = NULL,
            adjust = "fdr",
            block = NULL)
limma_results %>%
  dplyr::slice(1:10)
## Volcano plot
limma_results %>%
  dplyr::select(feature, log2FC, pvalue) %>%
  PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
  PomaBoxplots(x = "features",
           outcome = "gender", # factorial variable to group by (e.g., treatment, sex, etc)
               feature_name = limma_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% limma_results$feature[1:10]] %>%
 PomaHeatmap(covs = c("gender", "smoking_condition", "alcohol_consumption"), # covariates to plot (e.g., trea
              feature_names = TRUE)
# limma with one covariate
data %>%
  PomaLimma(contrast = "Healthy-CRC",
            covs = "gender",
            adjust = "fdr",
            block = NULL)
limma_results %>%
  dplyr::slice(1:10)
## Volcano plot
```

PomaLM

```
limma_results %>%
  dplyr::select(feature, log2FC, pvalue) %>%
  PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
  PomaBoxplots(x = "features",
           outcome = "gender", # factorial variable to group by (e.g., treatment, sex, etc)
               feature_name = limma_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% limma_results$feature[1:10]] %>%
 PomaHeatmap(covs = c("gender", "smoking_condition", "alcohol_consumption"), # covariates to plot (e.g., trea
              feature_names = TRUE)
# limma with two covariates
data %>%
  PomaLimma(contrast = "Healthy-CRC",
            covs = c("gender", "age_at_consent"),
            adjust = "fdr",
            block = NULL)
limma_results %>%
  dplyr::slice(1:10)
## Volcano plot
limma_results %>%
  dplyr::select(feature, log2FC, pvalue) %>%
  PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
  PomaBoxplots(x = "features",
           outcome = "gender", # factorial variable to group by (e.g., treatment, sex, etc)
               feature_name = limma_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% limma_results$feature[1:10]] %>%
 PomaHeatmap(covs = c("gender", "smoking_condition", "alcohol_consumption"), # covariates to plot (e.g., trea
              feature_names = TRUE)
# limma with replicates
# data %>%
#
   PomaLimma(contrast = "Healthy-CRC",
#
              covs = NULL,
              adjust = "fdr",
#
              block = "replicate")
#
```

```
PomaLM
```

Linear Models

Description

PomaLM performs a linear model on a SummarizedExperiment object.

Usage

PomaLM(data, x = NULL, y = NULL, adjust = "fdr")

Arguments

data	A SummarizedExperiment object.
x	Character vector. Indicates the names of independent variables. If it's NULL (default), all features will be used.
У	Character. Indicates the name of colData numeric columns to be used as de- pendent variable. If it's set to NULL, the first numeric variable in colData will be used as the dependent variable.
adjust	Character. Multiple comparisons correction method to adjust p-values. Avail- able options are: "fdr" (false discovery rate), "holm", "hochberg", "hommel", "bonferroni", "BH" (Benjamini-Hochberg), and "BY" (Benjamini-Yekutieli).

Value

A list with results including plots and tables.

Author(s)

Pol Castellano-Escuder

Examples

```
data <- POMA::st000284 %>% # Example SummarizedExperiment object included in POMA
PomaImpute() %>%
PomaNorm()
## Output is a list with objects `lm_table` (tibble) and `regression_plot` (ggplot2 object)
# Perform linear model with all features
data %>%
PomaLM()
# Perform linear model with two features
data %>%
PomaLM(x = c("x1_methyladenosine", "x2_deoxyuridine"))
```

PomaLMM

Linear Mixed Models

Description

PomaLMM performs linear mixed models on a SummarizedExperiment object.

Usage

```
PomaLMM(data, x = NULL, y = NULL, adjust = "fdr", clean_plot = FALSE)
```

PomaLMM

Arguments

data	A SummarizedExperiment object.
х	Character vector. Indicates the names of colData columns to be used as ran- dom and fixed effects (independent variables). If it's set to NULL (default), all variables in colData will be used.
У	Character vector. Indicates the names of dependent variables. If it's NULL (default), all features will be used.
adjust	Character. Multiple comparisons correction method to adjust p-values. Avail- able options are: "fdr" (false discovery rate), "holm", "hochberg", "hommel", "bonferroni", "BH" (Benjamini-Hochberg), and "BY" (Benjamini-Yekutieli).
clean_plot	Logical. Indicates if remove intercept and linear mixed model residues boxplots from the plot. Defasult is FALSE.

Value

A list with results including plots and tables. Table values indicate the percentage variance explained per variable.

Author(s)

Pol Castellano-Escuder

```
data <- POMA::st000284 %>% # Example SummarizedExperiment object included in POMA
  PomaImpute() %>%
  PomaNorm()
## Output is a list with objects `lm_table` (tibble) and `regression_plot` (ggplot2 object)
## Perform linear mixed model with all features
#data %>%
# PomaLMM()
#
## Perform linear mixed model with two features
#data %>%
# PomaLMM(y = c("x1_methyladenosine", "x1_methylhistamine"))
#
## Perform linear mixed model with one random effect
#data %>%
# PomaLMM(x = "smoking_condition")
#
## Perform linear mixed model with two random effects and two features
#data %>%
# PomaLMM(x = c("smoking_condition", "gender"),
           y = c("x1_methyladenosine", "x1_methylhistamine"))
#
#
## Perform linear mixed model with no random effects and two features, therefore, a linear model will be fitted
#data %>%
# PomaLMM(x = "age_at_consent", # Numerical, i.e., fixed effect
           y = c("x1_methyladenosine", "x1_methylhistamine"))
#
#
## Perform linear mixed model with no random effects and all features, therefore, a linear model will be fitted
#data %>%
```

```
# PomaLMM(x = "age_at_consent") # Numerical i.e., fixed effect
```

PomaNorm

Description

PomaNorm performs data normalization using various normalization methods.

Usage

```
PomaNorm(data, sample_norm = "none", method = "log_pareto")
```

Arguments

data	A SummarizedExperiment object.
<pre>sample_norm</pre>	Character. Sample normalization method. Options include "none" (default), "sum", or "quantile". Quantile is often used when >100 samples.
method	Character. The normalization method to use. Options include "none" (no nor- malization), "auto_scaling" (autoscaling, i.e., Z-score normalization), "level_scaling" (level scaling), "log_scaling" (log scaling), "log" (log transformation), "vast_scaling" (vast scaling), "log_pareto" (log Pareto scaling), "min_max" (min-max), and "box_cox" (Box-Cox transformation).

Value

A SummarizedExperiment object with normalized data.

Author(s)

Pol Castellano-Escuder

References

Van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC genomics, 7(1), 142.

```
# Output is a normalized SummarizedExperiment object
data <- POMA::st000284 # Example SummarizedExperiment object included in POMA
# No sample normalization
data %>%
  PomaNorm(sample_norm = "none",
        method = "log_pareto")
# Sum sample normalization
data %>%
  PomaNorm(sample_norm = "sum",
        method = "log_pareto")
```

PomaOddsRatio

Description

PomaOddsRatio calculates the Odds Ratios for each feature from a logistic regression model using the binary outcome (group/type must be a binary factor) as a dependent variable.

Usage

PomaOddsRatio(data, feature_name = NULL, covs = NULL, show_ci = TRUE)

Arguments

data	A SummarizedExperiment object.
feature_name	Character vector. Indicates the name/s of feature/s that will be used to fit the model. If it's NULL (default), all variables will be included in the model.
COVS	Character vector. Indicates the names of colData columns to be included as covariates. Default is NULL (no covariates).
show_ci	Logical. Indicates if the 95% confidence intervals will be plotted. Default is TRUE.

Value

A list with results including plots and tables.

Author(s)

Pol Castellano-Escuder

PomaOutliers

Description

PomaOutliers analyses and removes statistical outliers from the data.

Usage

```
PomaOutliers(
   data,
   method = "euclidean",
   type = "median",
   outcome = NULL,
   coef = 2,
   labels = FALSE
)
```

Arguments

data	A SummarizedExperiment object.
method	Character. Indicates the distance measure method to perform MDS.
type	Character. Indicates the type of outlier analysis to perform. Options are "median" (default) and "centroid". See vegan::betadisper.
outcome	Character. Indicates the name of the colData column to be used as the outcome factor. Default is NULL (first factor variable in colData).
coef	Numeric. Indicates the outlier coefficient. Lower values are more sensitive to outliers while higher values are less restrictive about outliers.
labels	Logical. Indicates if sample names should to be plotted.

Value

A list with the results.

Author(s)

Pol Castellano-Escuder

```
data <- POMA::st000336 %>% # Example SummarizedExperiment object included in POMA
PomaImpute() %>%
PomaNorm()
```

```
## Output is a list with objects `polygon_plot` (ggplot2 object), `distance_boxplot` (ggplot2 object), `outlier
outlier_results <- data %>%
PomaOutliers(method = "euclidean",
        type = "median",
        outcome = NULL,
        coef = 2,
        labels = FALSE)
```

PomaPCA

```
outlier_results$data # cleaned SummarizedExperiment object
## Change oulier group factor
outlier_results2 <- data %>%
PomaOutliers(method = "euclidean",
        type = "median",
        outcome = "steroids",
        coef = 2,
        labels = FALSE)
```

outlier_results2\$data # cleaned SummarizedExperiment object

PomaPCA

Principal Components Analysis

Description

PomaPCA performs a principal components analysis on the given SummarizedExperiment object.

Usage

```
PomaPCA(
    data,
    outcome = NULL,
    center = TRUE,
    scale = TRUE,
    ncomp = 4,
    labels = FALSE,
    ellipse = FALSE,
    load_length = 1
)
```

Arguments

data	A SummarizedExperiment object.
outcome	Character. Indicates the name of the colData column to be used as the outcome factor. Default is NULL (first factor variable in colData).
center	Logical. Indicates whether the variables should be shifted to be zero centered. Default is TRUE.
scale	Logical. Indicates whether the variables should be scaled to have unit variance before the analysis takes place. Default is TRUE.
ncomp	Numeric. Number of components to be included in the results. Default is 4.
labels	Logical. Indicates if sample names should be displayed.
ellipse	Logical. Indicates whether a 95 percent confidence interval ellipse should be displayed in score plot and biplot. Default is FALSE.
load_length	Numeric. Indicates the length of biplot loading arrows. Value between 1 and 2. Default is 1.

PomaPCR

Value

A list with results including plots and tables.

Author(s)

Pol Castellano-Escuder

Examples

```
data <- POMA::st000336 %>% # Example SummarizedExperiment object included in POMA
PomaImpute() %>%
PomaNorm()
```

Output is a list with objects `factors` (tibble wth principal components), `eigenvalues` (tibble), `loadings
Default outcome (first factor variable in `colData`)
data %>%

```
PomaPCA(outcome = NULL,
    center = TRUE,
    scale = TRUE,
    labels = FALSE,
    ellipse = FALSE)
```

PomaPCR

Principal Components Regression

Description

PomaPCR performs Principal Components Regression.

Usage

```
PomaPCR(data, center = TRUE, scale = TRUE, ncomp = 2, y = NULL, adjust = "fdr")
```

Arguments

data	A SummarizedExperiment object.
center	Logical. Indicates whether the variables should be shifted to be zero centered. Default is TRUE.
scale	Logical. Indicates whether the variables should be scaled to have unit variance before the analysis takes place. Default is TRUE.
ncomp	Numeric. Indicates the number of principal components used as predictors in the model. Default is 2.

PomaPLS

у	Character. Indicates the name of colData columns to be used as dependent variable. If it's set to NULL, the first numeric variable in colData will be used as the dependent variable.
adjust	Character. Multiple comparisons correction method to adjust p-values. Avail- able options are: "fdr" (false discovery rate), "holm", "hochberg", "hommel", "bonferroni", "BH" (Benjamini-Hochberg), and "BY" (Benjamini-Yekutieli).

Value

A tibble with the results.

Author(s)

Pol Castellano-Escuder

Examples

```
data <- POMA::st000284 %>% # Example SummarizedExperiment object included in POMA
  PomaNorm()
# PCR with 2 components and the default outcome (1st column of `colData`)
data %>%
  PomaPCR(center = TRUE,
          scale = TRUE,
          ncomp = 2,
          y = NULL,
          adjust = "fdr")
# PCR with 2 components and alternative outcome
data %>%
  PomaPCR(center = TRUE,
          scale = TRUE,
          ncomp = 2,
          y = "age_at_consent",
          adjust = "fdr")
# PCR with 20 components and alternative outcome
data %>%
  PomaPCR(center = TRUE,
          scale = TRUE,
          ncomp = 20,
          y = "age_at_consent",
          adjust = "fdr")
```

PomaPLS

Partial Least Squares Methods

Description

PomaPLS performs Partial Least Squares (PLS) regression, Partial Least Squares Discriminant Analysis (PLS-DA) to classify samples, and Sparse Partial Least Squares Discriminant Analysis (sPLS-DA) to classify samples (supervised analysis) and select variables.

Usage

```
PomaPLS(
    data,
    method = "pls",
    y = NULL,
    ncomp = 5,
    labels = FALSE,
    ellipse = TRUE,
    cross_validation = FALSE,
    validation = "Mfold",
    folds = 5,
    nrepeat = 10,
    vip = 1,
    num_features = 10,
    theme_params = list()
)
```

Arguments

data	A SummarizedExperiment object.
method	Character. PLS method. Options include "pls", "plsda", and "splsda".
У	Character. Indicates the name of colData columns to be used as dependent variable. If it's set to NULL, the first variable in colData will be used as the dependent variable.
ncomp	Numeric. Number of components in the model. Default is 5.
labels	Logical. Indicates if sample names should be displayed.
ellipse	Logical. Indicates whether a 95 percent confidence interval ellipse should be displayed. Default is TRUE.
cross_validatio	
	Logical. Indicates if cross-validation should be performed for PLS-DA ("plsda") and sPLS-DA ("splsda") methods. Default is FALSE.
validation	Character. (Only for "plsda" and "splsda" methods). Indicates the cross-validation method. Options are "Mfold" and "loo" (Leave-One-Out).
folds	Numeric. (Only for "plsda" and "splsda" methods). Number of folds for "Mfold" cross-validation method (default is 5). If the validation method is "loo", this value is set to 1.
nrepeat	Numeric. (Only for "plsda" and "splsda" methods). Number of times the cross-validation process is repeated.
vip	Numeric. (Only for "plsda" method). Indicates the variable importance in the projection (VIP) cutoff.
num_features	Numeric. (Only for "splsda" method). Number of features to discriminate groups.
theme_params	List. Indicates theme_poma parameters.

Value

A list with results including plots and tables.

PomaPLS

Author(s)

Pol Castellano-Escuder

```
data <- POMA::st000284 %>% # Example SummarizedExperiment object included in POMA
  PomaImpute() %>%
  PomaNorm()
## Output is a list with objects `factors` (tibble), `factors_plot` (ggplot2 object), `loadings` (tibble), and
# PLS
data %>%
  PomaPLS(method = "pls",
          y = NULL,
          ncomp = 5,
          labels = FALSE,
          ellipse = FALSE)
## Output is a list with objects `factors` (tibble), `factors_plot` (ggplot2 object), `vip_values` (tibble), ar
# PLS-DA
data %>%
  PomaPLS(method = "plsda",
          y = NULL,
          ncomp = 5,
          labels = FALSE,
          ellipse = TRUE,
          cross_validation = FALSE,
          vip = 1)
# Alternative outcome (dependent variable)
data %>%
  PomaPLS(method = "plsda",
          y = "gender",
          ncomp = 5,
          labels = FALSE,
          ellipse = TRUE,
          cross_validation = FALSE,
          vip = 1)
## Output is a list with objects `factors` (tibble), `factors_plot` (ggplot2 object), `vip_values` (tibble), `v
# PLS-DA with Cross-Validation
data %>%
 PomaPLS(method = "plsda",
          y = NULL,
          ncomp = 5,
          labels = FALSE,
          ellipse = TRUE,
          cross_validation = TRUE,
          validation = "Mfold",
          folds = 5,
          nrepeat = 10,
          vip = 1)
## Output is a list with objects `factors` (tibble), `factors_plot` (ggplot2 object), `selected_features` (tibble)
# sPLS-DA
data %>%
```

```
PomaPLS(method = "splsda",
          y = NULL,
          ncomp = 5,
          labels = FALSE,
          ellipse = TRUE,
          cross_validation = FALSE,
          num_features = 10)
## Output is a list with objects `factors` (tibble), `factors_plot` (ggplot2 object), `selected_features` (tibble)
# sPLS-DA with Cross-Validation
data %>%
  PomaPLS(method = "splsda",
          y = NULL,
          ncomp = 3,
          labels = FALSE,
          ellipse = TRUE,
          cross_validation = TRUE,
          validation = "Mfold",
          folds = 5,
          nrepeat = 10,
          num_features = 10)
```

```
PomaRandForest C
```

Classification Random Forest

Description

PomaRandForest performs classification random forest. This method can be used both for prediction and variable selection.

Usage

```
PomaRandForest(
    data,
    ntest = NULL,
    ntree = 500,
    mtry = floor(sqrt(ncol(t(SummarizedExperiment::assay(data))))),
    nodesize = 1,
    nvar = 20
)
```

Arguments

data	A SummarizedExperiment object.
ntest	Numeric. Indicates the percentage of observations that will be used as test set. Default is NULL (no test set).
ntree	Numeric. Indicates the number of trees to grow.
mtry	Numeric. Indicates the number of variables randomly sampled as candidates at each split. This value is set sqrt(p) (where p is number of variables in data) by default.
nodesize	Numeric. Indicates the minimum size of terminal nodes. Default is 1.
nvar	Numeric. Indicates the number of variables to show in the Gini Index plot.

PomaRankProd

Value

A list with results including plots and tables.

Author(s)

Pol Castellano-Escuder

References

A. Liaw and M. Wiener (2002). Classification and Regression by randomForest. R News 2(3), 18–22.

Examples

PomaRankProd Rank Product/Rank Sum Analysis

Description

PomaRankProd performs the Rank Product (or Rank Sum) method to identify differentially expressed genes.

Usage

PomaRankProd(data, logged = TRUE, paired = NA, cutoff = 1, method = "pfp")

Arguments

data	A SummarizedExperiment object.
logged	Logical. Indicates if data should be log transformed first.
paired	Numeric. Indicates the number of random pairs generated in the function, if set to NA (default), the odd integer closer to the square of the number of replicates is used.
cutoff	Numeric. Indicates the pfp/pvalue threshold value used to select features. Default is 1 to include all features.
method	Character. Indicates the method to identify features. "pfp" uses percentage of false prediction, which is a default setting. "pval" uses p-values which is less stringent than pfp.

Value

A list with the results. Objects in the list are up_regulated (tibble) and down_regulated (tibble).

Author(s)

Pol Castellano-Escuder

References

Breitling, R., Armengaud, P., Amtmann, A., and Herzyk, P.(2004) Rank Products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments, FEBS Letter, 57383-92

Hong, F., Breitling, R., McEntee, W.C., Wittner, B.S., Nemhauser, J.L., Chory, J. (2006). RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis Bioinformatics. 22(22):2825-2827

Del Carratore, F., Jankevics, A., Eisinga, R., Heskes, T., Hong, F. & Breitling, R. (2017). RankProd 2.0: a refactored Bioconductor package for detecting differentially expressed features in molecular profiling datasets. Bioinformatics. 33(17):2774-2775

Examples

```
data <- POMA::st000336 %>% # Example SummarizedExperiment object included in POMA
  PomaImpute()
```

```
## Output is a list with objects `up_regulated` (tibble with up regulated features) and `down_regulated` (tibbl
## Perform on no-scaled object to avoid negative values
data %>%
```

PomaRankProd(method = "pfp")

PomaUMAP

Dimensionality Reduction with UMAP

Description

PomaUMAP performs a dimension reduction of the data using the Uniform Manifold Approximation and Projection (UMAP) method. See ?uwot::umap() for more.

Usage

```
PomaUMAP(
    data,
    n_neighbors = floor(sqrt(nrow(data))),
    n_components = 2,
    metric = "euclidean",
    pca = NULL,
    min_dist = 0.01,
    spread = 1,
    hdbscan_minpts = floor(nrow(data) * 0.05),
    show_clusters = TRUE,
    hide_noise = TRUE,
    labels = FALSE,
```

PomaUMAP

```
outcome = NULL,
theme_params = list(legend_title = TRUE, legend_position = "bottom")
)
```

Arguments

data	A SummarizedExperiment object.
n_neighbors	Numeric. Indicates the size of local neighborhood (sample points) used for man- ifold approximation.
n_components	Numeric. Indicates the dimension of the space to embed into.
metric	Character. Indicates the distance measure method to find nearest neighbors. Options are "euclidean", "cosine", "manhattan", "hamming" and "correlation". See ?uwot::umap().
рса	If not NULL (default), reduce data to this number of columns using PCA before UMAP.
min_dist	Numeric. Indicates the effective minimum distance between embedded points.
spread	Numeric. Indicates the effective scale of embedded points.
hdbscan_minpts	Numeric. Indicates the minimum size of clusters. See ?dbscan::hdbscan().
show_clusters	Logical. Indicates if clusters computed with HDBSCAN method should be plotted or not.
hide_noise	Logical. Specifies whether to hide Cluster 0 in the plot. In HDBSCAN, Cluster 0 is typically regarded as "noise."
labels	Logical. Indicates if sample names should be plotted or not.
outcome	Character. Has no effect on the analysis. Indicates the name of the colData column to be added to the output table. Default is NULL (no extra column added).
theme_params	List. Indicates theme_poma parameters.

Value

A list with results including plots and tables.

Author(s)

Pol Castellano-Escuder

References

McInnes, L., Healy, J., & Melville, J. (2018). Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426.

Campello, R. J., Moulavi, D., & Sander, J. (2013, April). Density-based clustering based on hierarchical density estimates. In Pacific-Asia conference on knowledge discovery and data mining (pp. 160-172). Springer, Berlin, Heidelberg.

Examples

```
data <- POMA::st000284 # Example SummarizedExperiment object included in POMA</pre>
```

```
## Output is a list with objects `umap_embeddings` (tibble) and `umap_plot` (ggplot2 object)
data %>%
PomaNorm() %>%
PomaUMAP(metric = "euclidean",
    pca = NULL,
    min_dist = 0.01,
    spread = 1,
    hdbscan_minpts = floor(nrow(data) * 0.05),
    show_clusters = TRUE,
    hide_noise = TRUE,
    labels = FALSE,
    outcome = NULL)
```

PomaUnivariate Univariate Statistical Test

Description

PomaUnivariate performs parametric and non-parametric univariate statistical tests on a SummarizedExperiment object to compare groups or conditions. Available methods include T-test, ANOVA, ANCOVA, Mann Whitney U Test (Wilcoxon Rank Sum Test), and Kruskal-Wallis.

Usage

```
PomaUnivariate(
   data,
   method = "ttest",
   covs = NULL,
   error = NULL,
   paired = FALSE,
   var_equal = FALSE,
   adjust = "fdr",
   run_post_hoc = TRUE
)
```

Arguments

data	A SummarizedExperiment object.
method	Character. The univariate statistical test to be performed. Available options include "ttest" (T-test), "anova" (analysis of variance), "mann" (Wilcoxon rank-sum test), and "kruskal" (Kruskal-Wallis test).
covs	Character vector. Indicates the names of colData columns to be included as covariates. Default is NULL (no covariates). If not NULL, an ANCOVA model will be fitted using the specified covariates. Note: The order of the covariates is important and should be listed in increasing order of importance in the experimental design.
error	Character vector. Indicates the name of a colData column to be included as an error term (e.g., replicates). Default is NULL (no error term).

PomaUnivariate

paired	Logical. Indicates if the data is paired or not. Default is FALSE.
var_equal	Logical. Indicates if the data variances are assumed to be equal or not. Default is FALSE.
adjust	Character. Multiple comparisons correction method to adjust p-values. Avail- able options are: "fdr" (false discovery rate), "holm", "hochberg", "hommel", "bonferroni", "BH" (Benjamini-Hochberg), and "BY" (Benjamini-Yekutieli).
<pre>run_post_hoc</pre>	Logical. Indicates if computing post-hoc tests or not. Setting this parameter to FALSE can save time for large datasets.

Value

A tibble for "ttest" and "mann". A list for "anova" and "kruskal".

Author(s)

Pol Castellano-Escuder

```
# Two groups
## Output columns: feature, fold_change, diff_means, pvalue, adj_pvalue, mean_xxx (group 1) mean_yyy (group 2),
data <- POMA::st000336 # Example SummarizedExperiment object included in POMA</pre>
```

```
## Perform T-test
ttest_results <- st000336 %>%
  PomaImpute() %>%
  PomaUnivariate(method = "ttest",
                paired = FALSE,
                 var_equal = FALSE,
                 adjust = "fdr")
ttest_results %>%
  dplyr::slice(1:10)
## Volcano plot
ttest_results %>%
  dplyr::select(feature, fold_change, pvalue) %>%
  PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
  PomaBoxplots(x = "features",
           outcome = "group", # factorial variable to group by (e.g., treatment, sex, etc)
               feature_name = ttest_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% ttest_results$feature[1:10]] %>%
  PomaHeatmap(covs = c("group"), # covariates to plot (e.g., treatment, sex, etc)
              feature_names = TRUE)
## Perform Mann-Whitney U test
mann_whitney_results <- st000336 %>%
  PomaImpute() %>%
  PomaUnivariate(method = "mann",
                paired = FALSE,
```

```
var_equal = FALSE,
                 adjust = "fdr")
mann_whitney_results %>%
  dplyr::slice(1:10)
## Volcano plot
mann_whitney_results %>%
  dplyr::select(feature, fold_change, pvalue) %>%
  PomaVolcano(labels = TRUE)
## Boxplot of top features
data %>%
  PomaBoxplots(x = "features",
           outcome = "group", # factorial variable to group by (e.g., treatment, sex, etc)
               feature_name = mann_whitney_results$feature[1:10])
## Heatmap of top features
data[rownames(data) %in% mann_whitney_results$feature[1:10]] %>%
  PomaHeatmap(covs = c("group"), # covariates to plot (e.g., treatment, sex, etc)
              feature_names = TRUE)
# More than 2 groups
## Output is a list with objects `result` and `post_hoc_tests`
data <- POMA::st000284 # Example SummarizedExperiment object included in POMA
## Perform Two-Way ANOVA
anova_results <- data %>%
  PomaUnivariate(method = "anova".
                 covs = c("gender"),
                 error = NULL,
                 adjust = "fdr",
                 run_post_hoc = TRUE)
anova_results$result %>%
  dplyr::slice(1:10)
anova_results$post_hoc_tests %>%
  dplyr::slice(1:10)
## Boxplot of top features
data %>%
  PomaBoxplots(x = "features",
          outcome = "factors", # factorial variable to group by (e.g., treatment, sex, etc)
               feature_name = anova_results$result$feature[1:10])
## Boxplot of top significant pairwise features (after posthoc test)
data %>%
  PomaBoxplots(x = "features",
          outcome = "factors", # factorial variable to group by (e.g., treatment, sex, etc)
               feature_name = unique(anova_results$post_hoc_tests$feature)[1:10])
## Heatmap of top features
data[rownames(data) %in% anova_results$result$feature[1:10]] %>%
  PomaHeatmap(covs = c("factors"), # covariates to plot (e.g., treatment, sex, etc)
              feature_names = TRUE)
```

PomaVolcano

PomaVolcano Volcano Plot

Description

PomaVolcano creates a volcano plot from a given dataset. This function is designed to visualize the statistical significance (p-value) against the magnitude of change (log2 fold change) for features.

Usage

```
PomaVolcano(
   data,
   pval_cutoff = 0.05,
   log2fc_cutoff = NULL,
   labels = FALSE,
   x_label = "log2 (Fold Change)",
   y_label = "-log10 (P-value)"
)
```

Arguments

data	A data frame with at least three columns: feature names, effect size (e.g., logFC), and statistical significance values. These should be the first three columns of the data, in this order.
pval_cutoff	Numeric. Specifies the p-value threshold for significance in the volcano plot. The default is set to 0.05. This parameter determines the horizontal line in the plot indicating the threshold for statistical significance.
log2fc_cutoff	Numeric. Specifies the log2 fold change cutoff for the volcano plot. If not provided, the cutoff is set to the 75th percentile of the absolute log2 fold changes in the data. This parameter determines the vertical lines in the plot indicating the magnitude of change threshold.
labels	Logical. Indicates whether to plot labels for significant features.
x_label	Character. Custom label for the x-axis.
y_label	Character. Custom label for the y-axis.

Value

A ggplot object representing the volcano plot.

Author(s)

Pol Castellano-Escuder

Examples

```
data <- POMA::st000336 # Example SummarizedExperiment object included in POMA</pre>
# T-test
results <- data %>%
 PomaImpute() %>%
  PomaUnivariate() %>%
  dplyr::select(feature, fold_change, pvalue)
results %>%
 PomaVolcano(pval_cutoff = 0.05,
              log2fc_cutoff = NULL,
              labels = FALSE,
              x_label = "log2 (Fold Change)",
              y_label = "-log10 (P-value)")
# Limma
results <- data %>%
  PomaImpute() %>%
  PomaNorm() %>%
 PomaLimma(contrast = "DMD-Controls") %>%
  dplyr::select(feature, log2FC, pvalue)
results %>%
  PomaVolcano(pval_cutoff = 0.05,
              log2fc_cutoff = NULL,
              labels = FALSE,
              x_label = "log2 (Fold Change)",
              y_label = "-log10 (P-value)")
```

poma_pal_c

Return function to interpolate a continuous POMA color palette

Description

Return function to interpolate a continuous POMA color palette

Usage

```
poma_pal_c(palette = "nature")
```

Arguments

palette Character name of palette in poma_palettes

poma_pal_d

Description

Return function to interpolate a discrete POMA color palette

Usage

```
poma_pal_d(palette = "nature")
```

Arguments

palette Character name of palette in poma_palettes

quantile_norm Sample Quantile Normalization

Description

Compute quantile normalization.

Usage

quantile_norm(data)

Arguments

data A data matrix (samples in rows).

scale_color_poma_c Color scale constructor for continuous viridis "plasma" palette

Description

Color scale constructor for continuous viridis "plasma" palette

Usage

scale_color_poma_c()

scale_color_poma_d Color scale constructor for discrete viridis "plasma" palette

Description

Color scale constructor for discrete viridis "plasma" palette

Usage

scale_color_poma_d()

scale_fill_poma_c Fill scale constructor for continuous viridis "plasma" palette

Description

Fill scale constructor for continuous viridis "plasma" palette

Usage

scale_fill_poma_c()

scale_fill_poma_d Fill scale constructor for discrete viridis "plasma" palette

Description

Fill scale constructor for discrete viridis "plasma" palette

Usage

scale_fill_poma_d()

st000284

Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling

Description

Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography-tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least squares-discriminant analysis (PLS-DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS-DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients); good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95) were also obtained. Monte Carlo cross validation (MCCV) was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.

Usage

st000284

Format

A SummarizedExperiment object: 224 samples, 113 metabolites, 4 covariables and 3 groups (CRC, Healthy and Polyp).

metabolites 113 serum metabolites.

covariables Age at consent, Gender, Smoking Condition and Alcohol Consumption.

Source

https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&StudyID=ST000284& StudyType=MS&ResultType=1%20target=_blank

References

Colorectal Cancer Detection Using Targeted Serum Metabolic Profiling, J. Proteome. Res., 2014, 13, 4120-4130.

st000336

Description

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive form of muscular dystrophy that affects males via a mutation in the gene for the muscle protein, dystrophin. Progression of the disease results in severe muscle loss, ultimately leading to paralysis and death. Steroid therapy has been a commonly employed method for reducing the severity of symptoms. This study aims to quantify the urine levels of amino acids and organic acids in patients with DMD both with and without steroid treatment. Track the progression of DMD in patients who have provided multiple urine samples.

Usage

st000336

Format

A SummarizedExperiment object: 57 samples, 31 metabolites, 1 covariable and 2 groups (Controls and DMD).

metabolites 31 urine metabolites.

covariables Steroid status.

Source

https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&DataMode= AllData&StudyID=ST000336&StudyType=MS&ResultType=1#DataTabs

sum_norm

Sample Sum Normalization

Description

Compute sum normalization. Final unit is a percentage.

Usage

```
sum_norm(data)
```

Arguments

data

A data matrix (samples in rows).

theme_poma

A ggplot theme which allow custom yet consistent styling of plots in the POMA package and web app.

Description

A ggplot theme which allow custom yet consistent styling of plots in the POMA package and web app.

Usage

```
theme_poma(
  base_size = 15,
  axistitle = "xy",
  axistext = "xy",
  legend_position = "bottom",
  legend_title = TRUE,
  axis_x_rotate = FALSE,
  margin = 2
)
```

Arguments

base_size	(integer) Base point size
axistitle	(string) Axis titles. Options include "none" or any combination of "X", "Y", "x" and "y".
axistext	(string) Axis text labels for values or groups. Options include "none" or any combination of "X", "Y", "x" and "y".
legend_position	1
	Character. Legend position. See ggplot2 documentation.
legend_title	Logical. Include legend title.
axis_x_rotate	Logical. Rotate x-axis 45 degrees.
margin	(numeric) Should a margin of x be added to the plot? Defaults to 0 (no margin by default).

```
## Not run:
library(ggplot2)
ggplot(diamonds, aes(cut)) + geom_bar() + theme_poma()
```

%>%

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

Value

Nothing. Just allow the use of magrittr pipe "%>%"

Index

* datasets st000284,43 st000336,44 * internal %>%. 46 %>%, 46, 46 box_cox_transformation, 3 cor_pmat, 3 detect_decimals, 3 flattenCorrMatrix,4 poma_pal_c, 40 poma_pal_d, 41 PomaBatch, 4PomaBoxplots, 5 PomaClust, 6 PomaCorr, 7 PomaCreateObject, 8 PomaDensity, 9 PomaDESeq, 10 PomaEnrichment, 13 PomaHeatmap, 15 PomaImpute, 16 PomaLasso, 17 PomaLimma, 18 PomaLM, 21 PomaLMM, 22 PomaNorm, 24 PomaOddsRatio, 25 PomaOutliers, 26 PomaPCA, 27 PomaPCR, 28 PomaPLS, 29 PomaRandForest, 32PomaRankProd, 33 PomaUMAP, 34 PomaUnivariate, 36 PomaVolcano, 39

scale_color_poma_c, 41 scale_color_poma_d, 42 scale_fill_poma_c, 42 scale_fill_poma_d, 42 st000284, 43 st000336, 44 sum_norm, 44

theme_poma, 45

quantile_norm, 41