Package 'RITAN'

July 17, 2025

Type Package

Title Rapid Integration of Term Annotation and Network resources

Version 1.33.0

Description Tools for comprehensive gene set enrichment and extraction of multi-resource high confidence subnetworks. RITAN facilitates bioinformatic tasks for enabling network biology research.

LazyData TRUE

Depends R (>= 4.0),

Imports graphics, methods, stats, utils, grid, gridExtra, reshape2, gplots, ggplot2, plotrix, RColorBrewer, STRINGdb, MCL, dynamicTreeCut, gsubfn, hash, png, sqldf, igraph, BgeeDB, knitr, RITANdata, GenomicFeatures, ensembldb, AnnotationFilter, EnsDb.Hsapiens.v86

VignetteBuilder knitr

Collate 'lib_enrichment.R' 'lib_network.R' 'interconnectivity_functions.R'

RoxygenNote 7.3.2

Suggests rmarkdown, BgeeDB

License file LICENSE

biocViews QualityControl, Network, NetworkEnrichment, NetworkInference, GeneSetEnrichment, FunctionalGenomics, GraphAndNetwork

NeedsCompilation no

git_url https://git.bioconductor.org/packages/RITAN

git_branch devel

git_last_commit 0affcc6

git_last_commit_date 2025-07-15

Repository Bioconductor 3.22

Date/Publication 2025-07-16

Author Michael Zimmermann [aut, cre]

Maintainer Michael Zimmermann <mtzimmermann@mcw.edu>

2 as.graph

Contents

	as.graph	- 2
	check_any_net_input	
	check_net_input	4
	cov_undirected	
	enrichment_symbols	:
	geneset_overlap	(
	icon_single_within	•
	icon_test	•
	load_all_protein_coding_symbols	
	load_geneset_symbols	9
	network_overlap	10
	plot.term_enrichment	1
	plot.term_enrichment_by_subset	12
	readGMT	14
	readSIF	14
	resource_reduce	10
	show_active_genesets_hist	10
	summary.term_enrichment	1′
	summary.term_enrichment_by_subset	13
	term_enrichment	13
	term_enrichment_by_subset	19
	vac1.day0vs31.de.genes	2
	vac1.day0vs56.de.genes	2
	vac2.day0vs31.de.genes	2
	vac2.day0vs56.de.genes	2
	writeGMT	23
	write_simple_table	2
Index		2
as.gr	raph as.graph	
40.6	~P. and States	

Description

wrapper to convert a data.frame from RITAN an igraph graph object

Usage

```
as.graph(mat, p1 = 1, p2 = 3, ...)
```

Arguments

mat	matrix or data frame describing a network
p1	[1] column of first interactor
p2	[3] column of second interactor
	further options passed on to igraph::graph()

check_any_net_input 3

Value

igraph object

Examples

```
## Not run:
G <- as.graph(network_list$PID)
## End(Not run)</pre>
```

```
check_any_net_input check_any_net_input
```

Description

A Quality Control function. This function applies check_net_input() to all available resources (default).

Usage

```
check_any_net_input(set, resources = names(network_list))
```

Arguments

set An input list of genes to check against references.

resources The collection of network resources to check within.

Value

Logical vector indicating if the genes in "set" are within ANY of the resources.

```
#' ## Check if genes in myGeneSet are annotated by any resource in "network_list" (default).
library(RITANdata)
myGeneSet <- c('BRCA1','RAD51C','VAV1','HRAS','ABCC1','CYP1B1','CYP3A5')
yorn <- check_any_net_input( myGeneSet )
print(yorn)</pre>
```

4 check_net_input

Description

A Quality Control function. This function will compare an input list of genes to a network reference and report if each member of the input is present in the resource.

Usage

```
check_net_input(
   set,
   ref,
   check4similar = FALSE,
   entity1name = "p1",
   entity2name = "p1"
)
```

Arguments

set An input list of genes to check against a reference.

ref A reference of network data. See readSIF().

check4similar Logical flag. If TRUE, a case-insensitive grep will be used for name matching.

For genes in families with many related members (e.g. ABC*, FAM*, etc.), this will not be ideal. We intend this option as a QC screening method to identify if

case, punctuaiton, etc is causing fewer than expected matches.

entity1name The column name in "ref" of the first entity. Default = "p1."

entity2name The column name in "ref" of the second entity. Default = "p2."

Value

Character vector of "yes/no" indicating "within-ref/not"

```
## Return a "yes/no" vector indicating if each gene in myGeneSet is annotated with any term in GO
## If no match, this function can attempt to suggest closest matches (check4similar = TRUE)
library(RITANdata)
myGeneSet <- c('BRCA1','RAD51C','VAV1','HRAS','ABCC1','CYP1B1','CYP3A5')
yorn <- check_net_input( myGeneSet, network_list[["CCSB"]] )
print(yorn)

yorn <- check_net_input( myGeneSet, network_list[["PID"]] )
print(yorn)

## See check_any_net_input() for efficiently checking across all resources.</pre>
```

cov_undirected 5

cov_undirected	cov_undirected function to show the un-directed coverabe between two nodes lists from two networks

Description

cov_undirected function to show the un-directed coverabe between two nodes lists from two networks

Usage

```
cov_undirected(this_nodes1, this_nodes2, this_net1, this_net2)
```

Arguments

list of nodes for first network this_nodes1 this_nodes2 list of nodes for second network

this_net1 the first network this_net2 the second network

enrichment_symbols enrichment_symbols

Description

This function is called by term_enrichment() and term_enrichment_by_subset(). The user may call it directly, but we suggest using term_enrichment(). The function uses the resources currently loaded into the active_genesets vector. See load_geneset_symbols().

Usage

```
enrichment_symbols(geneset, term = NULL, all_symbols = NA, ...)
```

Arguments

geneset	vector of gene symbols to be evaluated
term	a list containing specific gene set term(s) and their corresponding gene symbols contained in one of the annotation resources, default is all gene set terms in the GO, ReactomePathways, KEGG_filtered_canonical_pathways, and MSigDB_Hallmarks libraries
all_symbols	gene symbols to be evaluated, identified by gene symbol name. Default is all protein coding genes. This parameter should be manipulated to include only the gene symbols that pertain to the user's analysis.
	additional arguments are not used

6 geneset_overlap

Details

Outputs a data frame containing the gene set name, a hypergeometric-test p value, the number of genes from the input gene list that occur in the gene set, the number of genes in the gene set, the gene symbols for the genes in the input gene list, and the q value.

Value

results matrix of input gene list compared to active gene sets. Q value is calculated using entire group of active gene sets.

Examples

```
require(RITANdata)
myGeneSet <- c('BRCA1', 'RAD51C', 'VAV1', 'HRAS', 'ABCC1', 'CYP1B1', 'CYP3A5')</pre>
## Not run:
## We suggest using term_enrichment() instead. E.g.:
e <- term_enrichment(myGeneSet, 'GO')</pre>
## End(Not run)
## But, you may use enrichment_symbols() directly for an individual term:
load_geneset_symbols('GO')
e <- enrichment_symbols(myGeneSet, 'DNA_repair', all_symbols = cached_coding_genes)</pre>
print(e)
## Not run:
## Gene set enrichment using intersection of gene symbols
    provided in geneset parameter and all protein coding genes.
enrichment_symbols(geneset = vac1.day@vs31.de.genes)
## choose which terms to evaluate
t <- active_genesets[1:5]
## Test enrichment of that set of terms
enrichment_symbols(geneset = vac1.day@vs31.de.genes, term = t)
## End(Not run)
```

geneset_overlap

geneset_overlap

Description

Return assymetric matrix of the fraction of genes shared between sets. E.G. The fraction of the first set that is "covered" by or "overlaps" the second set.

Usage

```
geneset_overlap(s1, s2 = s1, s.size = unlist(lapply(s1, length)))
```

icon_single_within 7

Arguments

s1	The first geneset
s2	the second geneset
s.size	Denominator used in each comparison. The default is to determint the lengths
	of elements in "s1"

Value

results matrix of input gene list compared to active gene sets. Q value is calculated using entire group of active gene sets.

Examples

```
 require(RITANdata) \\ r <- geneset\_overlap(geneset\_list$MSigDB\_Hallmarks, geneset\_list$NetPath\_Gene\_regulation) \\ heatmap(r, col = rev(gray(seq(0,1,length.out = 15))))) \\ summary(c(r))
```

icon_single_within

icon_single_within interconnectivity score within a network

Description

icon_single_within interconnectivity score within a network

Usage

```
icon_single_within(nodes = NULL, net = NULL, s = 10, verbose = TRUE)
```

Arguments

nodes	the node labels to use
net	the network to use

s [10] the number of repeated random draws to make verbose [TRUE] if more verbose output should be shown

 $icon_test$

icon_test

Description

"icon" is an abbreviation for the "interconnectivity" of a network or graph.

Usage

```
icon_test(nodes1 = NULL, nodes2 = NULL, s = 100, verbose = TRUE, ...)
```

Arguments

nodes1	[NULL] the first network. See network_overlap().
nodes2	$[NULL] \ the \ second \ network. \ See \ network_overlap().$
S	[100] the number of random permutations to make.
verbose	[TRUE] Extent of text shown in the console.

... Additional argumeths are passed on to the specific test performed

Details

This function handles different inputs and directs them to the appropriate "icon" testing method. Depending on the values given to "nodes1" and "nodes2," a different specific test is performed.

Note that the specific functions called make use of the "param" attribute of each input. These parameters are populated by network_overlap() so that the permutation reflects the exact procedure that was done to generate "nodes1" and/or "nodes2."

Value

metrics and significance of the network overlap

Examples

```
## Not run:
icon_test( nodes1=n, s=10)
## End(Not run)
```

```
load\_all\_protein\_coding\_symbols \\ load\_all\_protein\_coding\_symbols
```

Description

The character array returned is, by default, all human protein coding gene symbols. This variable defines the "universe of possible genes" for use in enrichment. Users should load a different "universe" or filter this one down to the most appropriate setting for their current study. For example, if running RNA-Seq, genes are in the universie if they are detected in any sample.

Usage

```
load_all_protein_coding_symbols()
```

Value

A unique list of gene symbols for protein coding genes according to EnsDb.Hsapiens.v86

load_geneset_symbols 9

```
load_geneset_symbols load_geneset_symbols
```

Description

For most applications, this function is used internally by term_enrichment(). Users may call this function directly in some cases to force FDR adjustment to be across multiple resources. See Vignette for more details.

Usage

```
load_geneset_symbols(gmt = NA, gmt_dir = "", verbose = TRUE)
```

Arguments

gmt Either 1) name of pre-loaded resource (i.e. names(geneset_list)) or 2) gmt file

containing annotation resources for enrichment annotation

gmt_dir location of gmt file named in gmt parameter

verbose print results to screen

Details

load_geneset_symbols allows the user to specify an annotation resource (e.g. Gene Ontology terms) to use in enrichment analysis. The expectation is that the annotation resource contains of at least one set of genes in the form of a list. The RITAN package comes with 15 pre-loaded annotation resources. The default active annotation resources are GO, ReactomePathways, KEGG_filtered_canonical_pathways, and MSigDB_Hallmarks.

The result of calling this function is to set the variable "active_genesets" which will be used by further functions.

Value

R list object named active_genesets

```
## Load generic GO-slim terms
require(RITANdata)
load_geneset_symbols("GO_slim_generic")
print(length(active_genesets))
print(head(active_genesets[[1]]))

## Not run:
## load the default set of resources into "active_genesets"
load_geneset_symbols()

## Use only the Reactome Pathways annotation resource.
load_geneset_symbols(gmt="ReactomePathways")

## Suppresses output message describing the annotation resource and size.
load_geneset_symbols(gmt="ReactomePathways", verbose=FALSE)
```

10 network_overlap

```
## To list the available resources within RITAN:
print(names(geneset_list))

## You can also load your own data
load_geneset_symbols(gmt="myFile.gmt")

## End(Not run)
```

network_overlap

network_overlap

Description

network_overlap

Usage

```
network_overlap(
  gene_list = NA,
  resources = c("PID", "TFe", "dPPI", "CCSB", "STRING"),
  minStringScore = 700,
  minHumanNetScore = 0.4,
  minScore = 0,
  verbose = TRUE,
  dedup = TRUE,
  directed_net = FALSE,
  include_neighbors = FALSE,
  STRING_cache_directory = NA,
  STRING_species = 9606,
  STRING_version = "10"
)
```

Arguments

gene_list A list of genes to use. The function will identify edges across resources for or

among these genes; identify the induced subnetwork around the gene_list.

resources Name of network resource(s) to use.

minStringScore If STRING is among the resources, only edges of at least the indicated score

will be included.

minHumanNetScore

If HumanNet is among the resources, only edges of at least the indicated score

will be included.

minScore Same as above, but used for any other networks where "score" is provided

verbose If TRUE (default), the function will update the user on what it is doing and how

many edges are identified for each resource.

dedup If TRUE (Default = TRUE), remove edges reported by multiple resources. The

edge type will be a semi-colon delimited list of the resources that had reported

the interaction.

directed_net Logical indicating if the network resources should be interpreted as directed.

plot.term_enrichment 11

```
include_neighbors
```

Logical to include 1st neighbors of "gene_list" (genes not in gene_list, but directly connected to them) in the induced subnetwork.

STRING_cache_directory

A directory where STRING data files are cached to speed up subsequent queries; no need to re-download. If NA (the default), caches STRING data in your Rpackages directory. If "", uses a temporary directory that is cleared when the R-session closes.

STRING_species Species taxon ID (number) to use in searching STRING data. (Default = 9606) STRING_version Version of the STRING database (Default = "10")

Value

Data table describing the induced subnetwork for "gene_list" across the requested resources.

Examples

```
## Get interactions among a list of genes from the PID: Pathway Interaction Database
require(RITANdata)
myGeneSet <- c('BRCA1','RAD51C','VAV1','HRAS','ABCC1','CYP1B1','CYP3A5')
sif <- network_overlap( myGeneSet, resources = 'PID')
print(sif)

## Not run:
## Get the PPI network induced by genes within myGeneSet
## Use 4 separate resources, but trim STRING to only include more confident interactions
sif <- network_overlap( myGeneSet, c('dPPI','PID','CCSB','STRING'), minStringScore = 500 )
## End(Not run)</pre>
```

```
plot.term_enrichment plot.term_enrichment
```

Description

plot.term_enrichment

Usage

```
## S3 method for class 'term_enrichment' plot(x = NA, min_q = 0.05, max_terms = 25, extend_mar = c(0, 10, 0, 0), ...)
```

Arguments

X	data frame returned by term_enrichment
min_q	Only q-values more significant than this threshold will be plotted. Default $= 0.05$.
max_terms	Up to max_terms will be plotted. Default = 25.
extend_mar	Term names can be long. We attempt to keep them readable by extending the left-hand-side margins automatically. Default = $c(0,10,0,0)$ added to par()\$mar.
	Additional arguments are passed on to plot()

Value

silent return from plot

Examples

```
require(RITANdata)
e <- term_enrichment(vac1.day@vs31.de.genes, resources = 'GO_slim_generic')
plot(e, min_q = .1)</pre>
```

Description

```
plot.term_enrichment_by_subset
```

Usage

```
## S3 method for class 'term_enrichment_by_subset'
plot(
  х,
  show_values = TRUE,
  annotation_matrix = NA,
  low = "white",
  high = "#2166AC",
  return_ggplot_object = FALSE,
  label_size_x = 16,
  label_angle_x = -30,
  label_size_y = 9,
  wrap_y_labels = 20,
  grid_line_color = "white",
  mid = 0,
  cap = NA,
 annotation_palates = c("Reds", "Greens", "Purples", "Greys", "BuPu", "RdPu", "BrBG",
    "PiYG", "Spectral"),
  annotation_legend_x = -0.3,
  trim_resource_names = TRUE,
)
```

Arguments

```
x data frame returned by term_enrichment_by_subset
show_values True or False, plot values on the heatmap
annotation_matrix
a matrix() of group-levle characteristics - same number of columns as "m"
low color for low end of range
high color for high end of range
```

```
return_ggplot_object
                  logical flag (default FALSE) that if TRUE, the ggplot object for the plot is re-
                  turned
label_size_x
                  size of text for x label. Default lable_size_x=16
                  angle for text for x label. Default is -30 degrees
label_angle_x
label_size_y
                  size of text for y label. Default label_size_y=9
wrap_y_labels
                  Number of characters to wrap row labels
grid_line_color
                  color o grid lines between cells. Default is white.
mid
                  sets lower threshold for color scale
                  Clip numeric values to this maximum threshold
cap
annotation_palates
                  Color palates (RColorBrewer) used for each row of the annotation matrix
annotation_legend_x
                  offset for placing the legend
trim_resource_names
                  [TRUE] remove any text in rownames preceeding a period characte. This con-
                  vension is usually used in RITAN to prepend the resource name to the term
                  name, which may not be needed in plotting.
                  further areguments are not used at this time. If the user wants to modify the plot,
                  use return_ggplot_object = TRUE.
```

Value

silent return, unless return_ggplot_object==TRUE. Then, the ggplot object for the plot is returned.

```
## Create list of gene sets to evaluate.
## This example is from a vaccine study where we pre-generated differentially expressed genes.
## This object will be passed to the groups parameter.
require(RITANdata)
vac1.de.genes <- list(vac1.day0vs31.de.genes, vac1.day0vs56.de.genes)
names(vac1.de.genes) <- c("Day0vs31", "Day0vs56")
print(str(vac1.de.genes))

## Not run:
## Run term_enrichment_by_subset on the two results.
## This function usually takes a few seconds to a minute to run.
m <- term_enrichment_by_subset(groups = vac1.de.genes, q_value_threshold = .9)
summary(m)
plot( m, label_size_y = 4, show_values = FALSE )

## End(Not run)</pre>
```

14 readSIF

readGMT

readGMT

Description

Created for simplification of reading .gmt files into RITAN.

Usage

```
readGMT(f = NA)
```

Arguments

f

GMT file name. Please provide a full path if the file is not in the current working directory.

Value

A list() where the name of each entry is the term (first column of GMT file) and the value is a chr array of genes associated with the term.

Examples

readSIF

readSIF

Description

This function reads a data table into R; the data table describes network interactions. It is named for the Simple Interaction Format (SIF), but can read any data table if the users identifies which columns contain the pertinent data (see below).

readSIF 15

Usage

```
readSIF(
    file = NA,
    header = FALSE,
    sep = "\t",
    as.is = TRUE,
    p1 = 1,
    p2 = 2,
    et = 3,
    score = NA,
    ...
)
```

Arguments

file	location of file
header	indicator of presense of header on file
sep	file delimiter - used by read.table()
as.is	logical (default TRUE)
p1	Column number for the 1st entity. Default = 1 .
p2	Column number for the 2nd entity. Default = 2.
et	Column number for the edge type. Default = 3. Optionally, it may be a string label to be used as the edge type for all interactions from the input file.
score	Column number for edge scores or weights. Default = NA (no score read).
	Other options to read.table().

Details

The SIF file format is a 3-column format, with an optional 4th column: <entity-1><tab><edge-type><tab><entity-2><tab><score>

Entities may be genes, proteins, metabolites, etc. The edge type typically conveys the type of relationship that exists between the two entities, such as physical interaciton, phosphorylation, or activation.

Value

Returns a data.frame with 3 (or 4) columns of data.

resource_reduce

resource_reduce Merge terms across resources to reduce the number of redundant and semi-redundant terms

Description

resource_reduce Merge terms across resources to reduce the number of redundant and semi-redundant terms

Usage

```
resource_reduce(genesets = NULL, min_overlap = 0.8, verbose = TRUE)
```

Arguments

genesets the input genesets to consider. May be from one or multiple resources.

min_overlap terms that share at least this fraction of genes will be merged

verbose if TRUE, print status and summary output

Value

the list of terms, after merging to reduce redundant and semi-redundant terms

Examples

```
require(RITANdata)
r <- resource_reduce( geneset_list$DisGeNet )</pre>
```

Description

function to plot distribution of size of active_genesets object

Usage

```
show_active_genesets_hist(nbins = 50, ...)
```

Arguments

nbins Number of bins to include in histogram
... further argumants are passed on to plot()

Value

NULL. The plot is shown.

Examples

```
require(RITANdata)
load_geneset_symbols('GO_slim_generic')
show_active_genesets_hist()

## Not run:
## Show the distribution of geneset sizes for the default set of geneset resources
load_geneset_symbols()
show_active_genesets_hist()

## Show the distribution of geneset sizes for a specific resource
load_geneset_symbols(gmt="ReactomePathways")
show_active_genesets_hist()

## End(Not run)
```

summary.term_enrichment

summary.term_enrichment

Description

summary.term_enrichment

Usage

```
## S3 method for class 'term_enrichment'
summary(object, ...)
```

Arguments

object data frame returned by term_enrichment()
... Further arguments are passed on to head()

Value

the data.frame of top enrichment results

```
require(RITANdata)
e <- term_enrichment( vac1.day0vs31.de.genes, "MSigDB_Hallmarks" )
summary(e, n=3)</pre>
```

18 term_enrichment

```
summary.term_enrichment_by_subset
summary.term_enrichment_by_subset
```

Description

```
summary.term_enrichment_by_subset
```

Usage

```
## S3 method for class 'term_enrichment_by_subset'
summary(object, verbose = TRUE, ...)
```

Arguments

```
object data frame returned by term_enrichment_by_subset()
verbose if TRUE (default), print a header describing the data type
... Further arguments are passed on to head()
```

Value

the data.frame of top enrichment results

Examples

```
require(RITANdata)
vac1.de.genes <- list(vac1.day0vs31.de.genes, vac1.day0vs56.de.genes)
names(vac1.de.genes) <- c("Day0vs31", "Day0vs56")
e <- term_enrichment_by_subset(vac1.de.genes, "MSigDB_Hallmarks", q_value_threshold = 0.1 )
summary(e)</pre>
```

term_enrichment

term_enrichment

Description

term_enrichment evaluates the input gene list for enrichment within each of the annotation resources. This differs from the enrichment_symbols function which evaluates the gene list for enrichment against all of the annotation resources grouped together.

Usage

```
term_enrichment(
  geneset,
  resources = resources.default,
  report_resources_separately = FALSE,
  verbose = TRUE,
  all_symbols = NA,
  filter_to_intersection = FALSE,
  ...
)
```

Arguments

geneset vector of gene symbols to be evaluated

resources list containing the reference gene sets to test for enrichment

report_resources_separately

logical (default FALSE) flag to report enrichments seperately for each requested resource, or to combine them and produce FDR adjustment across the combined

set

verbose print the top results for each annotation resource

all_symbols the background/global set of gene symbols (study dependent; we provide all

protien coding genes as a default)

filter_to_intersection

[FALSE] should the background and foreground genesets be subsetted to one

another?

... further arguments are passed on to enrichment_symbols()

Value

results matrix of input gene list compared to active gene sets. Q value is calculated within each of the active gene sets.

Examples

```
## Check if there is enrichment for any "Hallmark" functions within a input set of genes
require(RITANdata)
myGeneSet <- c('BRCA1','RAD51C','VAV1','HRAS','ABCC1','CYP1B1','CYP3A5')
e <- term_enrichment(myGeneSet, "MSigDB_Hallmarks")
print( e[1:2, -6] )

## Not run:
term_enrichment(geneset = vac1.day0vs31.de.genes)
term_enrichment(geneset = vac1.day0vs31.de.genes, resources = "MSigDB_Hallmarks")
vac1.day0v31.enrichment <- term_enrichment(geneset = vac1.day0vs31.de.genes, verbose = FALSE)

## End(Not run)</pre>
```

```
term_enrichment_by_subset
```

term_enrichment_by_subset

Description

Run enrichment simultaneously across a group of prioritized gene lists. For example, in a time course dataset, one may have a different list of genes that are differentially expressed at each time point. This function facilitates rapid evaluation of term enrichment across time point comparisons. Alternatively, one may have a different list of differentially expressed genes by drug treatment, environmental condition, ect.

Usage

```
term_enrichment_by_subset(
  groups = NA,
  resources = resources.default,
  q_value_threshold = 0.01,
  verbose = TRUE,
  display_type = "q",
  phred = TRUE,
  ...
)
```

Arguments

groups A list() of genes for enrichment. Each entry in the list() is an input set of genes.

Enrichment is performed for each of these entries.

resources character vector for which resources to use in enrichment

q_value_threshold

minimum q-value (FDR adjusted p-value) in any group for the term to be in-

cluded in results

verbose print additional status updates on what the function is doing

display_type Flag for which data type will be returned. One of "q" (default) for q-values, "p"

for unadjusted p-values, or "n" for the number of genes overlapping the term.

phred Logical flag (default TRUE) to return the -log10 of p/q values

... Further arguments are passed on to enrichment_symbols()

Value

Returns a term-by-study matrix of enrichment values (value determined by "display_type")

```
## Create list of gene sets to evaluate.
## This example is from a vaccine study where we pre-generated differentially expressed genes.
## This object will be passed to the groups parameter.
require(RITANdata)
vac1.de.genes <- list(vac1.day0vs31.de.genes, vac1.day0vs56.de.genes)
names(vac1.de.genes) <- c("Day0vs31", "Day0vs56")
print(str(vac1.de.genes))

## Not run:
## Run term_enrichment_by_subset on the two results.
## This function usually takes a few seconds to a minute to run.
m <- term_enrichment_by_subset(groups = vac1.de.genes, q_value_threshold = .9)
summary(m)
plot( m, label_size_y = 4, show_values = FALSE )

## End(Not run)</pre>
```

vac1.day0vs31.de.genes 21

```
vac1.day0vs31.de.genes
```

This dataset is included as an example in the package:

Description

This dataset is included as an example in the package:

Usage

```
vac1.day0vs31.de.genes
```

Format

An object of class character of length 669.

Value

differentially expressed genes at 31 days post-vaccination with vaccine1

References

```
https://www.ncbi.nlm.nih.gov/pubmed/26755593
```

Examples

```
## Not run:
  #data("vac1.day0vs31.de.genes")
  te <- term_enrichment(geneset = vac1.day0vs31.de.genes)
## End(Not run)</pre>
```

```
vac1.day0vs56.de.genes
```

This dataset is included as an example in the package:

Description

This dataset is included as an example in the package:

Usage

```
vac1.day0vs56.de.genes
```

Format

An object of class character of length 471.

Value

differentially expressed genes at 56 days post-vaccination with vaccine1

References

```
https://www.ncbi.nlm.nih.gov/pubmed/26755593
```

Examples

```
## Not run:
  #data("vac1.day0vs56.de.genes")
  te <- term_enrichment(geneset = vac1.day0vs56.de.genes)
## End(Not run)</pre>
```

```
vac2.day0vs31.de.genes
```

This dataset is included as an example in the package:

Description

This dataset is included as an example in the package:

Usage

```
vac2.day0vs31.de.genes
```

Format

An object of class character of length 522.

Value

differentially expressed genes at 31 days post-vaccination with vaccine2

References

```
https://www.ncbi.nlm.nih.gov/pubmed/26755593
```

```
## Not run:
  #data("vac2.day0vs31.de.genes")
  te <- term_enrichment(geneset = vac2.day0vs31.de.genes)
## End(Not run)</pre>
```

```
vac2.day0vs56.de.genes
```

This dataset is included as an example in the package:

Description

This dataset is included as an example in the package:

Usage

```
vac2.day0vs56.de.genes
```

Format

An object of class character of length 660.

Value

differentially expressed genes at 56 days post-vaccination with vaccine2

References

```
https://www.ncbi.nlm.nih.gov/pubmed/26755593
```

Examples

```
## Not run:
  #data("vac2.day0vs56.de.genes")
  te <- term_enrichment(geneset = vac2.day0vs56.de.genes)
## End(Not run)</pre>
```

writeGMT

writeGMT

Description

Created for future use and simplification of writing .gmt files from the package.

Usage

```
writeGMT(s, file = NA, link = rep("", length(s)))
```

Arguments

S	list of gene sets in current R session. Each entry will become a row in the GMT file.
file	file name to write to
link	default is "". This is the second column of a GMT file and is usually a hyperlink

or note about the origin of the term

24 write_simple_table

Value

Nothing is returned. A file is written.

Examples

write_simple_table write_simple_table

Description

This is a simple wrapper around "write.table" that writes a tab-delimited table with column names, no quoting, and no row names.

Usage

```
write_simple_table(d = NULL, f = NULL, ...)
```

Arguments

d R data objectf file path... further options passed on to write.table

Value

invisible (nothing is returned)

```
## Not run:
simple wrapper around write.table for writing a tab-delimieted, no row names, tab-seperated file
## End(Not run)
```

Index

```
* datasets
    vac1.day0vs31.de.genes, 21
    \texttt{vac1.day0vs56.de.genes}, \textcolor{red}{\textbf{21}}
    vac2.day0vs31.de.genes, 22
    vac2.day0vs56.de.genes, 23
as.graph, 2
check_any_net_input, 3
check_net_input, 4
cov\_undirected, 5
enrichment_symbols, 5
geneset_overlap, 6
icon_single_within, 7
icon_test, 7
load_all_protein_coding_symbols, 8
load_geneset_symbols, 9
network_overlap, 10
plot.term_enrichment, 11
\verb|plot.term_enrichment_by_subset|, 12|
readGMT, 14
readSIF, 14
resource_reduce, 16
show_active_genesets_hist, 16
summary.term_enrichment, 17
summary.term_enrichment_by_subset, 18
term_enrichment, 18
term_enrichment_by_subset, 19
vac1.day0vs31.de.genes, 21
vac1.day0vs56.de.genes, 21
vac2.day0vs31.de.genes, 22
vac2.day0vs56.de.genes, 23
write_simple_table, 24
writeGMT, 23
```