Package 'cageminer'

July 16, 2025

Title Candidate Gene Miner

Version 1.15.0

Description This package aims to integrate GWAS-derived SNPs and coexpression networks to mine candidate genes associated with a particular phenotype. For that, users must define a set of guide genes, which are known genes involved in the studied phenotype. Additionally, the mined candidates can be given a score that favor candidates that are hubs and/or transcription factors. The scores can then be used to rank and select the top n most promising genes for downstream experiments.

License GPL-3

URL https://github.com/almeidasilvaf/cageminer

BugReports https://support.bioconductor.org/t/cageminer

biocViews Software, SNP, FunctionalPrediction, GenomeWideAssociation, GeneExpression, NetworkEnrichment, VariantAnnotation, FunctionalGenomics, Network

Encoding UTF-8

LazyData false

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Imports ggplot2, rlang, ggbio, ggtext, GenomeInfoDb, GenomicRanges, IRanges, reshape2, methods, BioNERO

Depends R (>= 4.1)

Suggests testthat (>= 3.0.0), SummarizedExperiment, knitr, BiocStyle, rmarkdown, covr, sessioninfo

Config/testthat/edition 3

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/cageminer

git_branch devel

git_last_commit 8c85060

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-16

```
Author Fabrício Almeida-Silva [aut, cre] (ORCID:
```

<https://orcid.org/0000-0002-5314-2964>), Thiago Venancio [aut] (ORCID: <https://orcid.org/0000-0002-2215-8082>)

Maintainer Fabrício Almeida-Silva <fabricio_almeidasilva@hotmail.com>

Contents

chr_length	2
gcn	3
gene_ranges	3
guides	4
hubs	4
mine2	5
mined_candidates	5
mine_candidates	6
mine_step1	7
mine_step2	8
mine_step3	9
pepper_se	10
plot_snp_circos	10
plot_snp_distribution	11
score_genes	11
simulate_windows	12
snp_pos	13
tfs	14
	15

Index

chr_length

Pepper chromosome lengths

Description

Lengths of pepper chromosomes 1-12 in a GRanges object. The genome for which lengths were calculated (v1.55) was downloaded from http://peppergenome.snu.ac.kr/download.php

Usage

```
data(chr_length)
```

Format

A GRanges object

Examples

data(chr_length)

gcn

Description

This object is a list as returned by BioNERO::exp2gcn(), but only the element genes_and_modules is included. For running time issues, only genes in the cyan module were kept in the element genes_and_modules. All other list elements have been assigned NULL. The network was inferred using the code from the vignette.

Usage

data(gcn)

Format

A list with the elements returned by BioNERO::exp2gcn().

Examples

data(gcn)

gene_ranges

Genomic coordinates of pepper genes

Description

GRanges object with genomic coordinates of pepper genes downloaded from http://peppergenome.snu.ac.kr/download.ph

Usage

data(gene_ranges)

Format

A GRanges object

Examples

data(gene_ranges)

guides

Description

The GO annotation was retrieved from PLAZA 4.0 Dicots.

Usage

data(guides)

Format

A data frame with genes in the first column and GO description in the second column.

References

Van Bel, M., Diels, T., Vancaester, E., Kreft, L., Botzki, A., Van de Peer, Y., ... & Vandepoele, K. (2018). PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucleic acids research, 46(D1), D1190-D1196.

Examples

data(guides)

hubs

Example hub genes for the network stored in the gcn object

Description

The data frame was created using the code from the vignette.

Usage

data(hubs)

Format

Data frame with gene IDs, module and intramodular degree.

Examples

data(hubs)

mine2

Description

The list was created using the example code from mine_step().

Usage

data(mine2)

Format

List with elements 'candidates' (character vector) and 'enrichment' (data frame).

Examples

data(mine2)

mined_candidates Example output from mined_candidates()

Description

The data frame was created using the code from the vignette.

Usage

```
data(mined_candidates)
```

Format

Data frame with an example of the output from mined_candidates

Examples

data(mined_candidates)

```
mine_candidates
```

Description

Mine high-confidence candidate genes in a single step

Usage

```
mine_candidates(
  gene_ranges = NULL,
  marker_ranges = NULL,
  window = 2,
  expand_intervals = TRUE,
  gene_col = "ID",
  exp = NULL,
  gcn = NULL,
  guides = NULL,
  metadata,
  metadata_cols = 1,
  sample_group,
  min_cor = 0.2,
  alpha = 0.05,
  . . .
)
```

Arguments

gene_ranges	A GRanges object with genomic coordinates of all genes in the genome.
marker_ranges	Genomic positions of SNPs. For a single trait, a GRanges object. For multiple traits, a GRangesList or CompressedGRangesList object, with each element of the list representing SNP positions for a particular trait.
window	Sliding window (in Mb) upstream and downstream relative to each SNP. Default: 2.
expand_interval	S
	Logical indicating whether or not to expand markers that are represented by intervals. This is particularly useful if users want to use a custom interval defined by linkage disequilibrium, for example. Default: TRUE.
gene_col	Column of the GRanges object containing gene ID. Default: "ID", the default for gff/gff3 files imported with rtracklayer::import.
exp	Expression data frame with genes in row names and samples in column names or a SummarizedExperiment object.
gcn	Gene coexpression network returned by BioNERO::exp2gcn().
guides	Guide genes as a character vector or as a data frame with genes in the first column and gene annotation class in the second column.
metadata	Sample metadata with samples in row names and sample information in the first column. Ignored if exp is a SummarizedExperiment object, as the colData will be extracted from the object.

mine_step1

metadata_cols	A vector (either numeric or character) indicating which columns should be ex- tracted from column metadata if exp is a SummarizedExperiment object. The vector can contain column indices (numeric) or column names (character). By default, all columns are used.
sample_group	Level of sample metadata to be used for filtering in gene-trait correlation.
min_cor	$Minimum\ correlation\ value\ for\ {\tt BioNER0::gene_significance()}.\ Default:\ 0.2$
alpha	Numeric indicating significance level. Default: 0.05
	Additional arguments to BioNERO::gene_significance.

Value

A data frame with mined candidate genes and their correlation to the condition of interest.

Examples

mine_step1 Step1	: Get all putative ca	Indidate genes for a giv	en sliding window
------------------	-----------------------	--------------------------	-------------------

Description

For a user-defined sliding window relative to each SNP, this function will subset all genes whose genomic positions overlap with the sliding window.

Usage

```
mine_step1(gene_ranges, marker_ranges, window = 2, expand_intervals = TRUE)
```

Arguments

gene_ranges	A GRanges object with genomic coordinates of all genes in the genome.	
marker_ranges	Genomic positions of SNPs. For a single trait, a GRanges object. For multiple traits, a GRangesList or CompressedGRangesList object, with each element of the list representing SNP positions for a particular trait.	
window	Sliding window (in Mb) upstream and downstream relative to each SNP. Default: 2.	
expand_intervals		
	Logical indicating whether or not to expand markers that are represented by intervals. This is particularly useful if users want to use a custom interval defined by linkage disequilibrium, for example. Default: TRUE.	

Value

A GRanges or GRangesList object with the genomic positions of all putative candidate genes.

See Also

findOverlaps-methods

Examples

```
data(snp_pos)
data(gene_ranges)
genes <- mine_step1(gene_ranges, snp_pos, window = 2)</pre>
```

mine_step2

Step 2: Get candidates in modules enriched in guide genes

Description

Step 2: Get candidates in modules enriched in guide genes

Usage

```
mine_step2(exp, gcn, guides, candidates, ...)
```

Arguments

exp	Expression data frame with genes in row names and samples in column names or a SummarizedExperiment object.
gcn	Gene coexpression network returned by BioNERO::exp2gcn().
guides	Guide genes as a character vector or as a data frame with genes in the first column and gene annotation class in the second column.
candidates	Character vector of all candidates genes to be inspected.
	Additional arguments to BioNERO: :module_enrichment

Value

A list of 2 elements:

candidates Character vector of candidates after step 2 **enrichment** Data frame of results for enrichment analysis

Examples

```
data(pepper_se)
data(guides)
data(gcn)
set.seed(1)
mine2 <- mine_step2(
    exp = pepper_se,
    gcn = gcn,
    guides = guides$Gene,
    candidates = rownames(pepper_se)
)</pre>
```

mine_step3

Description

Step 3: Select candidates based on gene significance

Usage

```
mine_step3(
    exp,
    metadata,
    metadata_cols = 1,
    candidates,
    sample_group,
    min_cor = 0.2,
    alpha = 0.05,
    ...
```

)

Arguments

exp	Expression data frame with genes in row names and samples in column names or a SummarizedExperiment object.
metadata	Sample metadata with samples in row names and sample information in the first column. Ignored if exp is a SummarizedExperiment object, as the colData will be extracted from the object.
metadata_cols	A vector (either numeric or character) indicating which columns should be ex- tracted from column metadata if exp is a SummarizedExperiment object. The vector can contain column indices (numeric) or column names (character). By default, all columns are used.
candidates	Character vector of candidate genes to be inspected.
sample_group	Level of sample metadata to be used for filtering in gene-trait correlation.
min_cor	$Minimum\ correlation\ value\ for\ {\tt BioNER0::gene_significance()}.\ Default:\ 0.2$
alpha	Numeric indicating significance level. Default: 0.05
	Additional arguments to BioNERO::gene_significance.

Value

A data frame with mined candidate genes and their correlation to the condition of interest.

Examples

```
data(pepper_se)
data(snp_pos)
data(gene_ranges)
data(guides)
data(gcn)
data(mine2)
set.seed(1)
```

```
mine3 <- mine_step3(
    exp = pepper_se,
    candidates = mine2$candidates,
    sample_group = "PRR_stress"
)</pre>
```

pepper_se

Gene expression data from Kim et al., 2018.

Description

The data were filtered to keep only the top 4000 genes with highest RPKM values in PRR stressrelated samples.

Usage

```
data(pepper_se)
```

Format

A SummarizedExperiment object.

References

Kim, MS., Kim, S., Jeon, J. et al. Global gene expression profiling for fruit organs and pathogen infections in the pepper, Capsicum annuum L.. Sci Data 5, 180103 (2018). https://doi.org/10.1038/sdata.2018.103

Examples

data(pepper_se)

plot_snp_circos Circos plot of SNP distribution across chromosomes

Description

Circos plot of SNP distribution across chromosomes

Usage

plot_snp_circos(genome_ranges, gene_ranges, marker_ranges)

Arguments

genome_ranges	A GRanges object with chromosome lengths.
gene_ranges	A GRanges object with genomic coordinates of all genes in the genome.
marker_ranges	Genomic positions of SNPs. For a single trait, a GRanges object. For multiple traits, a GRangesList or CompressedGRangesList object, with each element of the list representing SNP positions for a particular trait.

10

plot_snp_distribution

Value

A ggplot object with a circos plot of molecular marker distribution across chromosomes.

Examples

```
data(snp_pos)
data(gene_ranges)
data(chr_length)
p <- plot_snp_circos(chr_length, gene_ranges, snp_pos)</pre>
```

plot_snp_distribution Plot a barplot of SNP distribution across chromosomes

Description

Plot a barplot of SNP distribution across chromosomes

Usage

plot_snp_distribution(marker_ranges)

Arguments

marker_ranges Genomic positions of SNPs. For a single trait, a GRanges object. For multiple traits, a GRangesList or CompressedGRangesList object, with each element of the list representing SNP positions for a particular trait. List elements must have names for proper labelling.

Value

A ggplot object.

Examples

```
data(snp_pos)
p <- plot_snp_distribution(snp_pos)</pre>
```

```
score_genes
```

Score candidate genes and select the top n genes

Description

Score candidate genes and select the top n genes

Usage

```
score_genes(
  mined_candidates,
  hubs = NULL,
  tfs = NULL,
  pick_top = 10,
  weight_tf = 2,
  weight_hub = 2,
  weight_both = 3
)
```

Arguments

mined_candidates

	Data frame resulting from mine_candidates() or mine_step().
hubs	Character vector of hub genes.
tfs	Character vector of transcription factors.
pick_top	Number of top genes to select. Default: 10.
weight_tf	Numeric scalar with the weight to which correlation coefficients will be multiplied if the gene is a TF. Default: 2.
weight_hub	Numeric scalar with the weight to which correlation coefficients will be multiplied if the gene is a hub. Default: 2.
weight_both	Numeric scalar with the weight to which correlation coefficients will be multiplied if the gene is both a TF and a hub. Default: 3.

Value

Data frame with top n candidates and their scores.

Examples

```
data(tfs)
data(hubs)
data(mined_candidates)
set.seed(1)
scored <- score_genes(mined_candidates, hubs$Gene, tfs$Gene_ID)</pre>
```

simulate_windows Simulate number of genes for each sliding window

Description

This function counts genes that are contained in sliding windows related to each SNP.

Usage

```
simulate_windows(
  gene_ranges,
  marker_ranges,
  windows = seq(0.1, 2, by = 0.1),
  expand_intervals = TRUE
)
```

12

snp_pos

Arguments

gene_ranges	A GRanges object with genomic coordinates of all genes in the genome.	
marker_ranges	Genomic positions of SNPs. For a single trait, a GRanges object. For multiple traits, a GRangesList or CompressedGRangesList object, with each element of the list representing SNP positions for a particular trait.	
windows	Sliding windows (in Mb) upstream and downstream relative to each SNP. Default: $seq(0.1, 2, by = 0.1)$.	
expand_intervals		
	Logical indicating whether or not to expand markers that are represented by intervals. This is particularly useful if users want to use a custom interval defined by linkage disequilibrium, for example. Default: TRUE.	

Details

By default, the function creates 20 sliding windows by expanding upstream and downstream boundaries for each SNP from 0.1 Mb (100 kb) to 2 Mb.

Value

A ggplot object summarizing the results of the simulations.

See Also

findOverlaps-methods

Examples

data(snp_pos)
data(gene_ranges)
simulate_windows(gene_ranges, snp_pos)

snp_pos

Capsicum annuum SNPs associated with resistance to Phytophthora root rot.

Description

The SNPs in this data set were retrieved from Siddique et al., 2019, and they are associated to resistance to Phytophthora root rot.

Usage

data(snp_pos)

Format

A GRanges object.

References

Siddique, M.I., Lee, HY., Ro, NY. et al. Identifying candidate genes for Phytophthora capsici resistance in pepper (Capsicum annuum) via genotyping-by-sequencing-based QTL mapping and genome-wide association study. Sci Rep 9, 9962 (2019). https://doi.org/10.1038/s41598-019-46342-1

Examples

data(snp_pos)

tfs

Pepper transcription factors

Description

Pepper transcription factors and their families retrieved from PlantTFDB 4.0.

Usage

data(tfs)

Format

A data frame with gene IDs in the first column and TF families in the second column.

References

Jin, J., Tian, F., Yang, D. C., Meng, Y. Q., Kong, L., Luo, J., & Gao, G. (2016). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic acids research, gkw982.

Examples

data(tfs)

Index

* datasets $chr_length, 2$ gcn, 3 gene_ranges, 3 guides, 4 hubs, <mark>4</mark> mine2,5 mined_candidates, 5 pepper_se, 10 $snp_pos, 13$ tfs, <mark>14</mark> $chr_length, 2$ gcn, 3 gene_ranges, 3 guides, 4 hubs, 4 mine2,5 mine_candidates, 6 mine_step1, 7 mine_step2, 8 mine_step3,9 mined_candidates, 5 pepper_se, 10 $\texttt{plot_snp_circos}, 10$ plot_snp_distribution, 11 score_genes, 11 simulate_windows, 12 snp_pos, 13

tfs, <mark>14</mark>