Package 'hdxmsqc'

July 17, 2025

Type Package

Title An R package for quality Control for hydrogen deuterium exchange mass spectrometry experiments

Version 1.5.0

Description The hdxmsqc package enables us to analyse and visualise the quality of HDX-MS experiments. Either as a final quality check before downstream analysis and publication or as part of a interative procedure to determine the quality of the data. The package builds on the QFeatures and Spectra packages to integrate with other mass-spectrometry data.

License file LICENSE

Encoding UTF-8

LazyData false

Depends R(>= 4.3), QFeatures, S4Vectors, Spectra

Imports dplyr, tidyr, ggplot2, BiocStyle, knitr, methods, grDevices, stats, MsCoreUtils

Suggests RColorBrewer, pheatmap, MASS, patchwork, testthat

VignetteBuilder knitr

Roxygen list(markdown=TRUE)

RoxygenNote 7.2.3

biocViews QualityControl,DataImport, Proteomics, MassSpectrometry, Metabolomics

BugReports https://github.com/ococrook/hdxmsqc/issues

URL http://github.com/ococrook/hdxmsqc

Language en-US

git_url https://git.bioconductor.org/packages/hdxmsqc

git_branch devel

git_last_commit dc90710

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-17

Author Oliver M. Crook [aut, cre] (ORCID:

<https://orcid.org/0000-0001-5669-8506>)

Maintainer Oliver M. Crook <oliver.crook@stats.ox.ac.uk>

Contents

BRD4df	2
BRD4df_full	2
chargeCorrelationHdx	3
compatibleUptake	3
computeMassError	4
computeMonotoneStats	5
exchangeableAmides	5
fourierIsotope	6
generateSpectra	7
hdxmsqc	7
imTimeOutlier	8
intensityOutliers	8
isMissingAtRandom	9
isotopicDistributionHDXfourier	10
plotImTimeOutlier	10
plotIntensityOutliers	11
plotMassError	12
plotMissing	12
plotMonotoneStat	13
plotrTimeOutliers	14
processHDE	15
qualityControl	15
replicateCorrelation	
replicateOutlier	
rTimeOutliers	18
spectraSimilarity	19
	21

Index

BRD4df

This is data to be included in my package

Description

A small HDX-MS dataset for BRD4 in apo state and in complex with IBET151

Author(s)

My Name <ococrook@gmail.com>

BRD4df_full	This is data to be included in my package
-------------	---

Description

A complete HDX-MS dataset for BRD4 in apo state and in complex with IBET151

Author(s)

My Name <ococrook@gmail.com>

chargeCorrelationHdx Charge states should have correlated incorperation but they need not be exactly the same

Description

Charge states should have correlated incorperation but they need not be exactly the same

Usage

```
chargeCorrelationHdx(object, experiment = NULL, timepoints = NULL)
```

Arguments

object	An object of class QFeatures
experiment	A character vector indicating the experimental conditions
timepoints	A numeric vector indicating the experimental timepoints

Author(s)

Oliver Crook

Examples

```
data("BRD4df_full")
BRD4df_filtered <- isMissingAtRandom(object = BRD4df_full)
BRD4df_full_imputed <- impute(BRD4df_filtered, method = "zero", i = 1)
experiment <- c("wt", "iBET")
timepoints <- rep(c(0, 15, 60, 600, 3600, 14000), each = 3)
monoStat <- chargeCorrelationHdx(object = BRD4df_full_imputed,
experiment = experiment,
timepoints = timepoints)</pre>
```

compatibleUptake	Check whether deuterium uptakes are compatible with difference over-
	lapping sequences.

Description

Check whether deuterium uptakes are compatible with difference overlapping sequences.

Usage

```
compatibleUptake(object, overlap = 5, experiment = NULL, timepoints = NULL)
```

Arguments

object	An object of class QFeatures
overlap	How much overlap is required to check consistentcy. Default is sequences within 5 residues
experiment	A character vector indicating the experimental conditions
timepoints	A numeric vector indicating the experimental timepoints

Author(s)

Oliver Crook

Examples

```
data("BRD4df")
result <- compatibleUptake(BRD4df, experiment = 1, timepoints = 1)</pre>
```

computeMassError Empirical versus theoretical mass errors

Description

Empirical versus theoretical mass errors

Usage

computeMassError(object, eCentroid = "Exp.Cent", tCentroid = "Theor.Cent")

Arguments

object	An object of class QFeatures
eCentroid	character string indicating column identifier for experimental centroid
tCentroid	character string indicating column identifier for theoretical centroid

Value

The error difference between the empirical and theoretical centroid

Author(s)

Oliver Crook

Examples

```
data("BRD4df")
result <- computeMassError(BRD4df, "Exp.Cent", "Theor.Cent")
head(result)</pre>
```

4

computeMonotoneStats Monotonicity based outlier detection.

Description

Monotonicity based outlier detection.

Usage

```
computeMonotoneStats(object, experiment = NULL, timepoints = NULL)
```

Arguments

object	An object of class QFeatures
experiment	A character vector indicating the experimental conditions
timepoints	A numeric vector indicating the experimental timepoints

Author(s)

Oliver Crook

Examples

```
data("BRD4df")
result <- computeMonotoneStats(BRD4df, experiment = 1, timepoint = 1)</pre>
```

exchangeableAmides Compute exchangeable amides.

Description

Computes the number of exchangeable amides based on the sequnece

Usage

```
exchangeableAmides(sequence)
```

Arguments

sequence The sequence of the peptide

Value

Returns a numeric indicating the number of exchangeable amides

Examples

exchangeableAmides(sequence = "HDAEHAHEAPRKL")

fourierIsotope

Description

fourier transform approach to computing isotopic distribution

Usage

```
fourierIsotope(
  elements,
  incorp = 0,
  num_exch_sites = 0,
  charge = 1,
  isotopes = NULL
)
```

Arguments

elements	A list of elements
incorp	The deuterium incoperation
num_exch_sites	The number of exchangable amides. Default is 0.
charge	The charge state of the peptide
isotopes	The number of isotopes to compute. The default is NULL, in which a default heuristic is used to make a good guess that covers the expected peaks.

Value

A list of mass and intensity value corresponding to the isotope distribution

Author(s)

Oliver Crook

Examples

fourierIsotope(c(C = 0, H = 2, N = 0, O = 1, S = 0, P = 0))

generateSpectra generate Spectra using a fourier transform

Description

generate Spectra using a fourier transform

Usage

```
generateSpectra(
   sequences,
   incorps,
   charges,
   customs = list(code = NULL, elements = NULL)
)
```

Arguments

sequences	A vector of peptide sequences
incorps	A vector of deuterium incoperation
charges	A vector of charge states of the peptide
customs	Custom elements supplied as a list

Value

A Spectra object corresponding to the isotope distributions

Author(s)

Oliver Crook

Examples

```
generateSpectra(sequence = "HDAEHAHEAPRKL", incorps = c(0.5), charges = 2)
```

hdxmsqc

A package to perfrom quality control for mass-spectrometry based hydrogen deuterium exchange experiment.

Description

'hdxmsqc' provides the functionality to assess the quality and perform quality control of HDX-MS experiments. Raw and processed data can be visualized and analyzed to identify potential issues with the data. The package is designed to work with data from any HDX-MS platform. Typically, users will have exported results from either HDExaminer or DynamX software. There is not need to filter the data in either of those software systems.

Author(s)

Oliver Crook

imTimeOutlier

Description

Ion Mobility time based outlier analysis

Usage

```
imTimeOutlier(
   object,
   rightIMS = "rightIMS",
   leftIMS = "leftIMS",
   searchIMS = "Search.IMS"
)
```

Arguments

object	An object of class QFeatures
rightIMS	A string indicating the right boundary of the ion mobility separation time. Defaults is "rightIMS".
leftIMS	A string indicating the left boundary of the ion mobility separation time. Default is "leftIMS".
searchIMS	A string indicating the actual ion mobility search time. The default is "Search.IMS"

Author(s)

Oliver Crook

Examples

```
data("BRD4df_full")
BRD4df_filtered <- isMissingAtRandom(object = BRD4df_full)
BRD4df_full_imputed <- impute(BRD4df_filtered, method = "zero", i = 1)
imTimeOutlier(object = BRD4df_full_imputed)</pre>
```

intensityOutliers Intensity based deviations

Description

Intensity based deviations

Usage

```
intensityOutliers(object, fcolIntensity = "Max.Inty")
```

isMissingAtRandom

Arguments

object	An object of class QFeatures
fcolIntensity	character to intensity intensity columns. Default is "Max.Inty" and uses regular expressions to find relevant columns

Value

The Cook's distance to characterise outleirs

Author(s)

Oliver Crook

Examples

```
data("BRD4df_full")
```

intensityOutliers(BRD4df_full)

isMissingAtRandom Missing at random versus missing not at random

Description

Missing at random versus missing not at random

Usage

```
isMissingAtRandom(object, threshold = NULL, filter = TRUE)
```

Arguments

object	An object of class QFeatures
threshold	A threshold indicated how many missing values indicate whether missingness is not at random. Default is NULL, which means leads to a threshold which is half the number of columns.
filter	A logial indicating whether to filter out data that is deemed missing not at ran- dom data("BRD4df_full") isMissingAtRandom(BRD4df_full)

Value

Adds a missing not at random indicator column

Author(s)

Oliver Crook

```
isotopicDistributionHDXfourier
```

fourier transform approach to computing isotopic distribution

Description

fourier transform approach to computing isotopic distribution

Usage

```
isotopicDistributionHDXfourier(
  sequence,
  incorp = 0,
  charge = 1,
  custom = list(code = NULL, elements = NULL)
)
```

Arguments

sequence	A peptide
incorp	The deuterium incoperation
charge	The charge state of the peptide
custom	custom amino acids can be provided here provide a list of the elements.

Value

A list of mass and intensity value corresponding to the isotope distribution

Author(s)

Oliver Crook

Examples

isotopicDistributionHDXfourier(sequence = "HDAEHAHEAPRKL")

plotImTimeOutlier Ion Mobility time based outlier analysis

Description

Ion Mobility time based outlier analysis

Usage

```
plotImTimeOutlier(
   object,
   rightIMS = "rightIMS",
   leftIMS = "leftIMS",
   searchIMS = "Search.IMS"
)
```

Arguments

object	An object of class QFeatures
rightIMS	A string indicating the right boundary of the ion mobility separation time. Defaults is "rightIMS".
leftIMS	A string indicating the left boundary of the ion mobility separation time. Default is "leftIMS".
searchIMS	A string indicating the actual ion mobility search time. The default is "Search.IMS"

Author(s)

Oliver Crook

Examples

```
library(RColorBrewer)
data("BRD4df_full")
BRD4df_filtered <- isMissingAtRandom(object = BRD4df_full)
BRD4df_full_imputed <- impute(BRD4df_filtered, method = "zero", i = 1)
plotImTimeOutlier(object = BRD4df_full_imputed)</pre>
```

plotIntensityOutliers Intensity based deviation plot

Description

Intensity based deviation plot

Usage

```
plotIntensityOutliers(object, fcolIntensity = "Max.Inty")
```

Arguments

object	An object of class QFeatures
fcolIntensity	character to intensity intensity columns. Default is "Max.Inty" and uses regular expressions to find relevant columns

Value

A ggplot2 object showing intensity based outliers

Author(s)

Oliver Crook

Examples

```
data("BRD4df_full")
library(RColorBrewer)
```

plotIntensityOutliers(BRD4df_full)

plotMassError

Description

Mass error plot

Usage

```
plotMassError(object, eCentroid = "Exp.Cent", tCentroid = "Theor.Cent")
```

Arguments

object	An object of class QFeatures
eCentroid	character string indicating column identifier for experimental centroid
tCentroid	character string indicating column identifier for theoretical centroid

Value

a ggplot2 object which can be used to visualise the

Author(s)

Oliver Crook

Examples

library(RColorBrewer)
data("BRD4df")
result <- plotMassError(BRD4df, "Exp.Cent", "Theor.Cent")</pre>

plotMissing missing value plot

Description

missing value plot

Usage

```
plotMissing(object, ...)
```

Arguments

object	An object of class QFeatures
	Additional arguemnts to pheatmap

Value

a pheatmap showing missing values

plotMonotoneStat

Author(s)

Oliver Crook

Examples

```
data("BRD4df_full")
library(pheatmap)
library(RColorBrewer)
```

plotMissing(BRD4df_full)

plotMonotoneStat Monotonicity based outlier detection, plot.

Description

Monotonicity based outlier detection, plot.

Usage

```
plotMonotoneStat(object, experiment = NULL, timepoints = NULL)
```

Arguments

object	An object of class QFeatures
experiment	A character vector indicating the experimental conditions
timepoints	A numeric vector indicating the experimental timepoints

Author(s)

Oliver Crook

Examples

```
library("RColorBrewer")
data("BRD4df_full")
experiment <- c("wt", "iBET")
timepoints <- rep(c(0, 15, 60, 600, 3600, 14000), each = 3)
monoStat <- computeMonotoneStats(object = BRD4df_full,
experiment = experiment,
timepoints = timepoints)</pre>
```

plotrTimeOutliers Retention time based analysis

Description

Retention time based analysis

Usage

```
plotrTimeOutliers(
  object,
  leftRT = "leftRT",
  rightRT = "rightRT",
  searchRT = "Search.RT"
)
```

Arguments

object	An object of class QFeatures
leftRT	A character indicated pattern associated with left boundary of retention time search. Default is "leftRT".
rightRT	A character indicated pattern associated with right boundary of retneton time search. Default is "rightRT".
searchRT	The actual search retention time pattern. Default is "Search.RT"

Value

a ggplot2 object showing distribution of retention time windows.

Author(s)

Oliver Crook

Examples

```
data("BRD4df_full")
library(RColorBrewer)
```

plotrTimeOutliers(BRD4df_full)

processHDE Function to curate and HDExaminer file so that in contains all the information in a sensible format. This object can then be straightforwardly passed to a object of class QFeatures

Description

Function to curate and HDExaminer file so that in contains all the information in a sensible format. This object can then be straightforwardly passed to a object of class QFeatures

Usage

```
processHDE(HDExaminerFile, proteinStates = NULL)
```

Arguments

HDExaminerFile an object of class data.frame containing an HDExaminer data

proteinStates a character vector indicating the protein states

Value

A wide format data frame with HDExaminer data

Author(s)

Oliver Crook

Examples

sample_data <- data.frame(read.csv(system.file("extdata", "ELN55049_AllResultsTables_Uncurated.csv", package</pre>

processHDE(sample_data)

qualityControl	Quality Control table function.	Generate a table that collates quality
	control metrics	

Description

Quality Control table function. Generate a table that collates quality control metrics

Usage

```
qualityControl(
  object,
  massError = NULL,
  intensityOutlier = NULL,
  retentionOutlier = NULL,
  monotonicityStat = NULL,
  mobilityOutlier = NULL,
  chargeCorrelation = NULL,
  replicateCorrelation = NULL,
  replicateOutlier = NULL,
  sequenceCheck = NULL,
  spectraCheck = NULL,
  experiment = NULL,
  timepoints = NULL,
  undeuterated = FALSE
)
```

Arguments

object	An object of class Qfeatures, with the data used for the analysis	
massError	The output of the computeMassError function	
intensityOutlie	er	
	The output of the intensityOutliers function	
retentionOutlie	er	
	The output of the rTimeOutliers function	
monotonicitySta	at	
	The output of the computeMonotoneStats function	
mobilityOutlier	-	
	The output of the imTimeOutliers function	
chargeCorrelation		
	The output of the chargeCorrelationsHdx function	
replicateCorrelation		
	The output of the replicateCorrelation function	
replicateOutlier		
	The output of the replicateOutlier function	
sequenceCheck	The output of the compatibleUptake function	
spectraCheck	The output of the spectraSimiarity function	
experiment	The experimental conditions.	
timepoints	The timepoints used in the analysis, must include repeat for replicates	
undeuterated	A logical indicating whether only the undeuterated data should be exported	

Value

An object of class DataFrame containing a summary of the quality control results.

Author(s)

Oliver Crook

16

replicateCorrelation Correlation based checks

Description

Correlation based checks

Usage

replicateCorrelation(object, experiment, timepoints)

Arguments

object	An object of class QFeatures.
experiment	A character vector indicating the experimental conditions
timepoints	A numeric vector indicating the experimental timepoints

Value

Returns A list of the same length as the number of experiments indicating outlier from correlation analysis. Outliers are flagged if their deuterium uptake is highly variable.

Author(s)

Oliver Crook

Examples

```
data("BRD4df_full")
experiment <- c("wt", "iBET")
timepoints <- rep(c(0, 15, 60, 600, 3600, 14000), each = 3)
monoStat <- replicateCorrelation(object = BRD4df_full,
experiment = experiment,
timepoints = timepoints)</pre>
```

replicateOutlier Correlation based checks

Description

Correlation based checks

Usage

```
replicateOutlier(object, experiment, timepoints)
```

Arguments

object	An object of class QFeatures.
experiment	A character vector indicating the experimental conditions
timepoints	A numeric vector indicating the experimental timepoints

Value

Returns A list of the same length as the number of experiments indicating outlier from correlation analysis. Outliers are flagged if their deuterium uptake is highly variable.

Author(s)

Oliver Crook

Examples

```
data("BRD4df_full")
BRD4df_filtered <- isMissingAtRandom(object = BRD4df_full)
BRD4df_full_imputed <- impute(BRD4df_filtered, method = "zero", i = 1)
experiment <- c("wt", "iBET")
timepoints <- rep(c(0, 15, 60, 600, 3600, 14000), each = 3)
monoStat <- replicateOutlier(object = BRD4df_full_imputed,
experiment = experiment,
timepoints = timepoints)</pre>
```

rTimeOutliers Retention time based analysis

Description

Retention time based analysis

Usage

```
rTimeOutliers(
   object,
   leftRT = "leftRT",
   rightRT = "rightRT",
   searchRT = "Search.RT"
)
```

Arguments

object	An object of class QFeatures
leftRT	A character indicated pattern associated with left boundary of retention time search. Default is "leftRT".
rightRT	A character indicated pattern associated with right boundary of retneton time search. Default is "rightRT".
searchRT	The actual search retention time pattern. Default is "Search.RT"

spectraSimilarity

Value

A list indicating the retention time based outliers.

Author(s)

Oliver Crook

Examples

data("BRD4df_full")

rTimeOutliers(BRD4df_full)

spectraSimilarity Spectral checking using data from HDsite

Description

Spectral checking using data from HDsite

Usage

```
spectraSimilarity(
   peaks,
   object,
   experiment = NULL,
   mzCol = 14,
   startRT = "Start.RT",
   endRT = "End.RT",
   charge = "z",
   incorpD = "X.D.left",
   maxD = "maxD",
   numSpectra = NULL,
   ppm = 300,
   BPPARAM = bpparam()
)
```

Arguments

peaks	a data.frame containing data exported from hdsite
object	a data.frame obtained from HDexaminer data
experiment	A character vector indicating the experimental conditions
mzCol	The column in the peak information indicating the base mz value
startRT	The column indicatng the start of the retention time. Default is "Start.RT"
endRT	The column indicating the end of the retention time. Default is "End.RT
charge	The column indicating the charge information. Default is "z".
incorpD	The deuterium uptake value column. Default is "X.D.left".
maxD	The maximum allowed deuterium incorporation column. Default is "maxD".

numSpectra	The number of spectra to analyse. Default is NULL in which all Spectra are
	analysed.
ppm	The ppm error
BPPARAM	Bioconductor parallel options.

Value

Two list of spectra observed and matching theoretical Spectra

Author(s)

Oliver Crook

Index

* data BRD4df, 2 BRD4df_full, 2 BRD4df, 2 BRD4df_full, 2 ${\tt chargeCorrelationHdx, 3}$ compatibleUptake, 3 computeMassError, 4 computeMonotoneStats, 5 exchangeableAmides, 5 fourierIsotope, 6 generateSpectra, 7 hdxmsqc, 7 imTimeOutlier, 8 intensityOutliers, 8isMissingAtRandom, 9 isotopicDistributionHDXfourier, 10 plotImTimeOutlier, 10 plotIntensityOutliers, 11 plotMassError, 12 plotMissing, 12 plotMonotoneStat, 13 plotrTimeOutliers, 14 processHDE, 15 qualityControl, 15 replicateCorrelation, 17 replicateOutlier, 17 rTimeOutliers, 18

spectraSimilarity, 19