Package 'martini'

July 16, 2025

Type Package

Title GWAS Incorporating Networks

Version 1.29.0

Description martini deals with the low power inherent to GWAS studies by using prior knowledge represented as a network. SNPs are the vertices of the network, and the edges represent biological relationships between them (genomic adjacency, belonging to the same gene, physical interaction between protein products). The network is scanned using SConES, which looks for groups of SNPs maximally associated with the phenotype, that form a close subnetwork.

License GPL-3

LazyData TRUE

- **Imports** igraph (>= 1.0.1), Matrix, memoise (>= 2.0.0), methods (>= 3.3.2), Rcpp (>= 0.12.8), snpStats (>= 1.20.0), stats, utils,
- **Suggests** biomaRt (>= 2.34.1), circlize (>= 0.4.11), STRINGdb (>= 2.2.0), httr (>= 1.2.1), IRanges (>= 2.8.2), S4Vectors (>= 0.12.2), knitr, testthat, readr, rmarkdown

Depends R (>= 4.0)

LinkingTo Rcpp, RcppEigen (>= 0.3.3.5.0)

RoxygenNote 7.2.3

Encoding UTF-8

- **biocViews** Software, GenomeWideAssociation, SNP, GeneticVariability, Genetics, FeatureExtraction, GraphAndNetwork, Network
- VignetteBuilder knitr

URL https://github.com/hclimente/martini

BugReports https://github.com/hclimente/martini/issues

git_url https://git.bioconductor.org/packages/martini

git_branch devel

git_last_commit 1253a1e

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-16

```
Author Hector Climente-Gonzalez [aut, cre] (ORCID:
<https://orcid.org/0000-0002-3030-7471>),
Chloe-Agathe Azencott [aut] (ORCID:
<https://orcid.org/0000-0003-1003-301X>)
```

Maintainer Hector Climente-Gonzalez <hector.climente@a.riken.jp>

Contents

arrange_covars	 3
calculateE	 3
calculateG	 4
check_installed	 4
connect_biomart	 5
get_adjacency	 5
get_GI_network	 6
get_GM_network	 7
get_grid	 8
get_GS_network	 8
get_gxg	 9
get_gxg_biogrid	 9
get_gxg_string	10
get_snp_modules	 10
group_snps	 11
gwas2bed	 11
is_coherent	 12
ldweight_edges	 12
maxflow	
mget_gxg_biogrid	 13
mget_gxg_string	
mincut	
mincut.cv	 15
mincut_c	
minigwas	16
minippi	
minisnpMapping	
organism_id2name	
permute_snpMatrix	
plot_ideogram	
sanitize_map	
sanitize_snpMapping	
scones	
scones.cv	
scones.cv	
scones	
score_fold	
search_cones	
sigmod	
sigmod.cv	
sigmod.cv	
sigmod	
simulate_causal_snps	 28

arrange_covars

simulate_phenotype	. 29
snp2ensembl	. 30
snp_test	. 31
subnet	. 31
subset_snpMatrix	. 32
subvert	. 32
wrap_Xy	. 33
	34
	34

Index

arrange_covars *Prepare covariates for* scones

Description

Prepares de covariates data.frame for the functions used in scones, like single_snp_association or score_folds .

Usage

arrange_covars(gwas, covars)

Arguments

gwas	A SnpMatrix object with the GWAS information.
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.

Value

The covars data.frame, with the rows in the same order as gwas.

cal	cu]	lat	teE
COT			

Calculate the environmental component of the phenotype

Description

Calculates the environmental component of the phenotype using the variance in the genetic component.

Usage

calculateE(G, h2)

Arguments

G	The genetic component of the phenotype.
h2	The heritability.

Value

A vector with the environmental component of each sample.

calculateG

Description

Calculates the genetic component of the phenotype from a genotype.

Usage

```
calculateG(effectSize, X, model)
```

Arguments

effectSize	A vector with the effect size of each SNP.
Х	Genotypes in a numeric matrix, where each row is a sample and each column a SNP.
model	Genetic model to assume.

Value

A vector with the genetic component of each sample.

check_installed Check package is installed

Description

Checks if a package is installed, launches an error if it is not.

Usage

```
check_installed(pkgs, fn = "This function")
```

Arguments

pkgs	Character vector with the names of the packages.
fn	Function calling the check.

Value

The package is loaded into the namespace.

Examples

```
martini:::check_installed(c("martini"))
## Not run: martini:::check_installed("martinid")
```

connect_biomart Open a biomaRt connection

Description

Opens a biomaRt connection for the relevant species.

Usage

```
connect_biomart(organism)
```

Arguments

organism String containing the ensembl species name (e.g. hsapiens for human)

get_adjacency Compute Laplacian matrix

Description

Compute Laplacian matrix

Usage

```
get_adjacency(gwas, net)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
net	An igraph network that connects the SNPs.

Value

A Laplacian matrix.

```
get_GI_network
```

Description

Creates a network of SNPs where each SNP is connected as in the GM network and, in addition, to all the other SNPs pertaining to any interactor of the gene it is mapped to. Corresponds to the gene-interaction (GI) network described by Azencott et al.

Usage

```
get_GI_network(
  gwas,
  organism = 9606,
  snpMapping = snp2ensembl(gwas, organism),
  ppi = get_gxg("biogrid", organism, flush),
  col_ppi = c("gene1", "gene2"),
  col_genes = c("snp", "gene"),
  flush = FALSE
)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
organism	Tax ID of the studied organism. The default is 9606 (human).
snpMapping	A data.frame informing how SNPs map to genes. It contains minimum two columns: SNP id and a gene it maps to. Each row corresponds to one gene-SNP mapping. Unless column names are specified using col_genes, involved columns must be named 'snp' and 'gene'.
ppi	A data.frame describing protein-protein interactions with at least two colums. Gene ids must be the contained in snpMapping. Unless column names are specified using col_ppi, involved columns must be named gene1 and gene2.
col_ppi	Optional, length-2 character vector with the names of the two columns involving the protein-protein interactions.
col_genes	Optional, length-2 character vector with the names of the two columns involving the SNP-gene mapping. The first element is the column of the SNP, and the second is the column of the gene.
flush	Remove cached results? Boolean value.

Value

An igraph network of the GI network of the SNPs.

References

Azencott, C. A., Grimm, D., Sugiyama, M., Kawahara, Y., & Borgwardt, K. M. (2013). Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics, 29(13), 171-179. https://doi.org/10.1093/bioinformatics/btt238

get_GM_network

Examples

```
get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
```

get_GM_network Get gene membership network.

Description

Creates a network of SNPs where each SNP is connected as in the GS network and, in addition, to all the other SNPs pertaining to the same gene. Corresponds to the gene membership (GM) network described by Azencott et al.

Usage

```
get_GM_network(
  gwas,
  organism = 9606,
  snpMapping = snp2ensembl(gwas, organism),
  col_genes = c("snp", "gene")
)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
organism	Tax ID of the studied organism. The default is 9606 (human).
snpMapping	A data.frame informing how SNPs map to genes. It contains minimum two columns: SNP id and a gene it maps to. Each row corresponds to one gene-SNP mapping. Unless column names are specified using col_genes, involved columns must be named 'snp' and 'gene'.
col_genes	Optional, length-2 character vector with the names of the two columns involving the SNP-gene mapping. The first element is the column of the SNP, and the second is the column of the gene.

Value

An igraph network of the GM network of the SNPs.

References

Azencott, C. A., Grimm, D., Sugiyama, M., Kawahara, Y., & Borgwardt, K. M. (2013). Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics, 29(13), 171-179. https://doi.org/10.1093/bioinformatics/btt238

Examples

```
get_GM_network(minigwas, snpMapping = minisnpMapping)
```

get_grid

Description

Creates a list composed by all scones.cv settings, with the values provided by the user, or the default ones if none is provided.

Usage

get_grid(c = numeric(), etas = numeric(), lambdas = numeric())

Arguments

с	Numeric vector with the association scores of the SNPs. Specify it to automati- cally an appropriate range of etas and lambas.
etas	Numeric vector with the etas to explore in the grid search. If ommited, it's automatically created based on the association scores.
lambdas	Numeric vector with the lambdas to explore in the grid search. If ommited, it's automatically created based on the association scores.

Value

A list of scones.cv settings.

Examples

martini:::get_grid(etas = c(1,2,3), lambdas = c(4,5,6))
martini:::get_grid(c = c(1,10,100))

get_GS_network Get genomic sequence network

Description

Creates a network of SNPs where each SNP is connected to its adjacent SNPs in the genome sequence. Corresponds to the genomic sequence (GS) network described by Azencott et al.

Usage

get_GS_network(gwas)

Arguments

gwas

A SnpMatrix object with the GWAS information.

Value

An igraph network of the GS network of the SNPs.

get_gxg

References

Azencott, C. A., Grimm, D., Sugiyama, M., Kawahara, Y., & Borgwardt, K. M. (2013). Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics, 29(13), 171-179. https://doi.org/10.1093/bioinformatics/btt238

Examples

get_GS_network(minigwas)

get_gxg

Get gene interactions

Description

Wrapper for the different functions to get gene-gene interactions. Supports cached results.

Usage

get_gxg(db, organism, flush)

Arguments

db	String containing the database to obtain the gene-gene interactions from. Possi-
	ble values: 'biogrid', 'string'.
organism	Tax ID of the studied organism. The default is 9606 (human).
flush	Remove cached results? Boolean value.

Value

A data frame with two columns with pairs of interacting proteins.

get_gxg_biogrid Get BioGRID protein-protein interactions.

Description

Get all protein-protein interactions for an organism from BioGRID.

Usage

get_gxg_biogrid(organism = 9606)

Arguments

organism Tax ID of the studied organism. The default is 9606 (human).

Value

A data frame with two columns with pairs of interacting proteins.

Examples

```
# download dog interactions
## Not run: martini:::get_gxg_biogrid(9615)
```

get_gxg_string Get STRING protein-protein interactions.

Description

Get all protein-protein interactions for an organism from STRING. It uses a score cut-off of 400.

Usage

get_gxg_string(organism = 9606)

Arguments

organism Tax ID of the studied organism. The default is 9606 (human).

Value

A data.frame with two columns with pairs of interacting proteins.

Examples

```
# download frog interactions
## Not run: martini:::get_gxg_string(8364)
```

get_snp_modules Return groups of interconnected SNPs.

Description

Find modules composed by interconnected SNPs.

Usage

```
get_snp_modules(gwas, net)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
net	An igraph network that connects the SNPs.

Value

A list with the modules of selected SNPs.

10

group_snps

Examples

```
## Not run:
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
cones <- search_cones(minigwas, gi)
martini:::get_snp_modules(cones, gi)
```

End(Not run)

```
group_snps
```

Groups nearby SNPs

Description

Groups SNPs closer than a specifiec threshold of distance.

Usage

```
group_snps(bed, chr_col, pos_col, threshold)
```

Arguments

bed	data.frame containing at least two properties (chromosome and position) of a set of SNPs.
chr_col	Name of the column containing the SNP chromosome.
pos_col	Name of the column containing the SNP position.
threshold	Maximum distance to group two SNPs group.

Value

A data.frame in bed format, with the same dimensions as the original, but with the groups.

```
gwas2bed
```

Converts a MAP data.frame to a BED data.frame

Description

Takes a map file and:

- column 1: Used as the chromosome column in the BED file.
- column 4: Used as start and end in the BED data.frame (as we work with SNPs).

Usage

gwas2bed(gwas)

Arguments

gwas

A SnpMatrix object with the GWAS information.

Value

A BED data.frame.

is_coherent

Description

Checks that the different data structures have the SNPs in the same order.

Usage

is_coherent(gwas)

Arguments

gwas

A SnpMatrix object with the GWAS information.

Value

TRUE if the GWAS dataset is coherent. Else, raises an error.

Examples

martini:::is_coherent(minigwas)

ldweight_edges Include linkage disequilibrium information in the network.

Description

Include linkage disequilibrium information in the SNP network. The weight of the edges will be lower the higher the linkage is.

Usage

```
ldweight_edges(net, ld, method = "inverse")
```

Arguments

net	A SNP network.
ld	A dsCMatrix or dgCMatrix containing linkage disequilibrium measures, like the output of ld.
method	How to incorporate linkage-disequilibrium values into the network.

Value

An copy of net where the edges weighted according to linkage disequilibrium.

maxflow

Examples

```
ld <- snpStats::ld(minigwas[['genotypes']], depth = 2, stats = "R.squared")
# don't weight edges for which LD cannot be calculated
ld[is.na(ld)] <- 0
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
ldGi <- ldweight_edges(gi, ld)</pre>
```

maxflow

Maxflow algorithm

Description

Run the maxflow algorithm.

Usage

maxflow(A, As, At)

Arguments

А	A sparse matrix with the connectivity.
As	A vector containing the edges to the source.
At	A vector containing the edges to the sink.

Value

A list with vector indicating if the feature was selected and the objective score.

mget_gxg_biogrid	Memoised version of get_gxg_biogrid	
------------------	-------------------------------------	--

Description

Get all protein-protein interactions for an organism from BioGRID.

Usage

mget_gxg_biogrid(organism = 9606)

Arguments

organism Tax ID of the studied organism. The default is 9606 (human).

Value

A data.frame with two columns with pairs of interacting proteins.

Examples

```
# download dog interactions
## Not run: martini:::get_gxg_biogrid(9615)
```

mget_gxg_string

Description

Get all protein-protein interactions for an organism from STRING. It uses a score cut-off of 400.

Usage

```
mget_gxg_string(organism = 9606)
```

Arguments

organism Tax ID of the studied organism. The default is 9606 (human).

Value

A data frame with two columns with pairs of interacting proteins.

Examples

```
# download frog interactions
## Not run: martini:::get_gxg_string(8364)
```

mincut

Run min-cut algorithm

Description

Run min-cut algorithm

Usage

```
mincut(gwas, net, covars, eta, lambda, score, sigmod, family, link)
```

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

mincut.cv

Description

Run the cross-validated min-cut algorithm

Usage

```
mincut.cv(
  gwas,
  net,
  covars,
  etas,
  lambdas,
  criterion,
  score,
  sigmod,
  family,
  link,
  max_prop_snp
)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
net	An igraph network that connects the SNPs.
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
family	A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs.tests for details.
link	A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See snp.rhs.tests for details.

mincut_c

Min-cut algorithm

Description

Run the mincut algorithm.

Usage

mincut_c(c, eta, lambda, W)

minippi

Arguments

С	A vector with the association of each SNP with the phenotype.
eta	A numeric with the value of the eta parameter.
lambda	A numeric with the value of the eta parameter.
W	A sparse matrix with the connectivity.

Value

A list with vector indicating if the feature was selected and the objective score.

minigwas	Description of the minigwas dataset.	
----------	--------------------------------------	--

Description

Small GWAS example.

Format

A list with 3 items:

genotypes Genotype and phenotype information.

fam Simulated network.

map Result of runing find_cones with gwas and net.

Examples

```
data(minigwas)
```

```
# access different elements
minigwas[["genotypes"]]
minigwas[["map"]]
minigwas[["fam"]]
```

minippi

PPIs for the minigwas dataset.

Description

data.frame describing pairs of proteins that interact for minigwas.

Examples

data(minippi)

head(minippi)

minisnpMapping Genes for the minigwas dataset.

Description

data.frame that maps SNPs from minigwas to their gene.

Examples

data(minisnpMapping)

head(minisnpMapping)

organism_id2name Tax id to ensembl species name

Description

Converts taxid to ensembl species name e.g. human databases are hsapiens_*

Usage

```
organism_id2name(id)
```

Arguments

organism Tax ID of the studied organism. The default is 9606 (human).

permute_snpMatrix Permute samples

Description

Compute a permutation of the samples of a snpMatrix object. Useful to make sure that the folds are not stratified by phenotype.

Usage

```
permute_snpMatrix(gwas)
```

Arguments

gwas

A SnpMatrix object with the GWAS information.

plot_ideogram

Description

Create a circular ideogram of the a network results using the circlize package (Gu et al., 2014).

Usage

plot_ideogram(gwas, net, covars = data.frame(), genome = "hg19")

Arguments

gwas	A SnpMatrix object with the GWAS information.
net	An igraph network that connects the SNPs.
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
genome	Abbreviations of the genome to use: hg19 for human (default), mm10 for mouse, etc.

Value

A circular ideogram, including the manhattan plot, and the interactions between the selected SNPs.

References

Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). circlize Implements and enhances circular visualization in R. Bioinformatics (Oxford, England), 30(19), 2811-2. https://doi.org/ 10.1093/bioinformatics/btu393

sanitize_map Check map

Description

Check that map is a proper data.frame.

Usage

```
sanitize_map(gwas)
```

Arguments

gwas

A SnpMatrix object with the GWAS information.

sanitize_snpMapping Check snpMapping

Description

Check that snpMapping is a proper data.frame.

Usage

```
sanitize_snpMapping(snpMapping, col_genes)
```

Arguments

snpMapping	data.frame containing the correspondence between SNPs and genes.
col_genes	Length 2 character vector containing the colnames containing the SNP and the gene ids, respectively.

```
scones
```

Find connected explanatory SNPs

Description

Finds the SNPs maximally associated with a phenotype while being connected in an underlying network.

Usage

```
scones(
  gwas,
  net,
  eta,
  lambda,
  covars = data.frame(),
  score = c("chi2", "glm", "r2"),
  family = c("binomial", "poisson", "gaussian", "gamma"),
  link = c("logit", "log", "identity", "inverse")
)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
net	An igraph network that connects the SNPs.
eta	Value of the eta parameter.
lambda	Value of the lambda parameter.
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
score	Association score to measure association between genotype and phenotype. Possible values: chi2 (default), glm.

scones.cv

family	A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs.tests for details.
link	A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See snp.rhs.tests for details.

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- · selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

References

Azencott, C. A., Grimm, D., Sugiyama, M., Kawahara, Y., & Borgwardt, K. M. (2013). Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics, 29(13), 171-179. https://doi.org/10.1093/bioinformatics/btt238

Examples

```
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
scones(minigwas, gi, 10, 1)</pre>
```

scones.cv

Find connected explanatory SNPs.

Description

Finds the SNPs maximally associated with a phenotype while being connected in an underlying network. Select the hyperparameters by cross-validation.

Usage

```
scones.cv(
  gwas,
  net,
  covars = data.frame(),
  score = c("chi2", "glm", "r2"),
  criterion = c("stability", "bic", "aic", "aicc", "global_clustering",
      "local_clustering"),
  etas = numeric(),
  lambdas = numeric(),
  family = c("binomial", "poisson", "gaussian", "gamma"),
  link = c("logit", "log", "identity", "inverse"),
  max_prop_snp = 0.5
)
```

scones.cv_

Arguments

gwas	A SnpMatrix object with the GWAS information.
net	An igraph network that connects the SNPs.
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
score	Association score to measure association between genotype and phenotype. Possible values: chi2 (default), glm.
criterion	String with the function to measure the quality of a split.
etas	Numeric vector with the etas to explore in the grid search. If ommited, it's automatically created based on the association scores.
lambdas	Numeric vector with the lambdas to explore in the grid search. If ommited, it's automatically created based on the association scores.
family	A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs.tests for details.
link	A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See snp.rhs.tests for details.
<pre>max_prop_snp</pre>	Maximum proportion of SNPs accepted in the model (between 0 and 1). Larger solutions will be discarded.

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

References

Azencott, C. A., Grimm, D., Sugiyama, M., Kawahara, Y., & Borgwardt, K. M. (2013). Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics, 29(13), 171-179. https://doi.org/10.1093/bioinformatics/btt238

Examples

```
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
scones.cv(minigwas, gi)
scones.cv(minigwas, gi, score = "glm")</pre>
```

```
scones.cv_
```

Find connected explanatory features

Description

Finds the features maximally associated with a phenotype while being connected in an underlying network. Select the hyperparameters by cross-validation.

scones_

Usage

scones.cv_(X, y, featnames, net)

Arguments

Х	n x d design matrix
У	Vector of length n with the outcomes
featnames	Vector of length d with the feature names
net	An igraph network that connects the SNPs.

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

Examples

```
X <- as(minigwas[['genotypes']], 'numeric')
X <- X + matrix(rnorm(2500, sd = 0.1), nrow(X), ncol(X))
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
scones.cv_(X, minigwas[['fam']]$affected, minigwas[['map']]$snp, gi)
```

scones_

```
Find connected explanatory features
```

Description

Finds the features maximally associated with a phenotype while being connected in an underlying network.

Usage

```
scones_(X, y, featnames, net, eta, lambda)
```

Arguments

Х	n x d design matrix
У	Vector of length n with the outcomes
featnames	Vector of length d with the feature names
net	An igraph network that connects the SNPs.
eta	Value of the eta parameter.
lambda	Value of the lambda parameter.

22

score_fold

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

Examples

```
X <- as(minigwas[['genotypes']], 'numeric')
X <- X + matrix(rnorm(2500, sd = 0.1), nrow(X), ncol(X))
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
scones_(X, minigwas[['fam']]$affected, minigwas[['map']]$snp, gi, 10, 1)
```

score_fold Score the solutions of a k-fold

Description

Take the k-solutions for a combination of hyperparameters, and assign a score to it (the larger, the better).

Usage

```
score_fold(gwas, covars, net, selected, criterion, max_prop_snp)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
net	An igraph network that connects the SNPs.
criterion	String with the function to measure the quality of a split.
<pre>max_prop_snp</pre>	Maximum proportion of SNPs accepted in the model (between 0 and 1). Larger solutions will be discarded.

search_cones

Find connected explanatory SNPs.

Description

Finds the SNPs maximally associated with a phenotype while being connected in an underlying network (Azencott et al., 2013).

Usage

```
search_cones(
  gwas,
  net,
  encoding = "additive",
  sigmod = FALSE,
  covars = data.frame(),
  associationScore = c("chi2", "glm"),
  modelScore = c("stability", "bic", "aic", "aicc", "global_clustering",
      "local_clustering"),
  etas = numeric(),
  lambdas = numeric()
)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.	
net	An igraph network that connects the SNPs.	
encoding	SNP encoding (unused argument).	
sigmod	Boolean. If TRUE, use the Sigmod variant of SConES, meant to prioritize tightly connected clusters of SNPs.	
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.	
associationScore		
	Association score to measure association between genotype and phenotype.	
modelScore	String with the function to measure the quality of a split.	
etas	Numeric vector with the etas to explore in the grid search. If ommited, it's automatically created based on the association scores.	
lambdas	Numeric vector with the lambdas to explore in the grid search. If ommited, it's automatically created based on the association scores.	

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

References

Azencott, C. A., Grimm, D., Sugiyama, M., Kawahara, Y., & Borgwardt, K. M. (2013). Efficient network-guided multi-locus association mapping with graph cuts. Bioinformatics, 29(13), 171-179. https://doi.org/10.1093/bioinformatics/btt238

Examples

```
## Not run: gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
search_cones(minigwas, gi)
search_cones(minigwas, gi, encoding = "recessive")
search_cones(minigwas, gi, associationScore = "skat")
## End(Not run)</pre>
```

24

sigmod

Description

Finds the SNPs maximally associated with a phenotype while being connected in an underlying network.

Usage

```
sigmod(
  gwas,
  net,
  eta,
  lambda,
  covars = data.frame(),
  score = c("chi2", "glm", "r2"),
  family = c("binomial", "poisson", "gaussian", "gamma"),
  link = c("logit", "log", "identity", "inverse")
)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
net	An igraph network that connects the SNPs.
eta	Value of the eta parameter.
lambda	Value of the lambda parameter.
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
score	Association score to measure association between genotype and phenotype. Possible values: chi2 (default), glm.
family	A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs.tests for details.
link	A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See snp.rhs.tests for details.

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

References

Liu, Y., Brossard, M., Roqueiro, D., Margaritte-Jeannin, P., Sarnowski, C., Bouzigon, E., Demenais, F. (2017). SigMod: an exact and efficient method to identify a strongly interconnected diseaseassociated module in a gene network. Bioinformatics, 33(10), 1536–1544. https://doi.org/10. 1093/bioinformatics/btx004

Examples

```
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
sigmod(minigwas, gi, 10, 1)</pre>
```

sigmod.cv

Find connected explanatory SNPs.

Description

Finds the SNPs maximally associated with a phenotype while being connected in an underlying network. Select the hyperparameters by cross-validation.

Usage

```
sigmod.cv(
gwas,
net,
covars = data.frame(),
score = c("chi2", "glm", "r2"),
criterion = c("stability", "bic", "aic", "aicc", "global_clustering",
    "local_clustering"),
etas = numeric(),
lambdas = numeric(),
family = c("binomial", "poisson", "gaussian", "gamma"),
link = c("logit", "log", "identity", "inverse"),
max_prop_snp = 0.5
)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
net	An igraph network that connects the SNPs.
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
score	Association score to measure association between genotype and phenotype. Possible values: chi2 (default), glm.
criterion	String with the function to measure the quality of a split.
etas	Numeric vector with the etas to explore in the grid search. If ommited, it's automatically created based on the association scores.
lambdas	Numeric vector with the lambdas to explore in the grid search. If ommited, it's automatically created based on the association scores.
family	A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs.tests for details.
link	A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See snp.rhs.tests for details.
<pre>max_prop_snp</pre>	Maximum proportion of SNPs accepted in the model (between 0 and 1). Larger solutions will be discarded.

26

sigmod.cv_

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

References

Liu, Y., Brossard, M., Roqueiro, D., Margaritte-Jeannin, P., Sarnowski, C., Bouzigon, E., Demenais, F. (2017). SigMod: an exact and efficient method to identify a strongly interconnected diseaseassociated module in a gene network. Bioinformatics, 33(10), 1536–1544. https://doi.org/10. 1093/bioinformatics/btx004

Examples

```
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
sigmod.cv(minigwas, gi)
sigmod.cv(minigwas, gi, score = "glm")</pre>
```

```
sigmod.cv_
```

Find connected explanatory features

Description

Finds the features maximally associated with a phenotype while being connected in an underlying network. Select the hyperparameters by cross-validation.

Usage

sigmod.cv_(X, y, featnames, net)

Arguments

Х	n x d design matrix
У	Vector of length n with the outcomes
featnames	Vector of length d with the feature names
net	An igraph network that connects the SNPs.

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

Examples

```
X <- as(minigwas[['genotypes']], 'numeric')
X <- X + matrix(rnorm(2500, sd = 0.1), nrow(X), ncol(X))
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
sigmod.cv_(X, minigwas[['fam']]$affected, minigwas[['map']]$snp, gi)
```

sigmod_

Description

Finds the features maximally associated with a phenotype while being connected in an underlying network.

Usage

sigmod_(X, y, featnames, net, eta, lambda)

Arguments

Х	n x d design matrix
У	Vector of length n with the outcomes
featnames	Vector of length d with the feature names
net	An igraph network that connects the SNPs.
eta	Value of the eta parameter.
lambda	Value of the lambda parameter.

Value

A copy of the SnpMatrix\$map data.frame, with the following additions:

- c: contains the univariate association score for every single SNP.
- selected: logical vector indicating if the SNP was selected by SConES or not.
- module: integer with the number of the module the SNP belongs to.

Examples

```
X <- as(minigwas[['genotypes']], 'numeric')
X <- X + matrix(rnorm(2500, sd = 0.1), nrow(X), ncol(X))
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
sigmod_(X, minigwas[['fam']]$affected, minigwas[['map']]$snp, gi, 10, 1)
```

simulate_causal_snps Simulate causal SNPs

Description

Selects randomly interconnected genes as causal, then selects a proportion of them as causal.

Usage

```
simulate_causal_snps(net, ngenes = 20, pcausal = 1)
```

Arguments

net	An igraph gene-interaction (GI) network that connects the SNPs.
ngenes	Number of causal genes.
pcausal	Number between 0 and 1, proportion of the SNPs in causal genes that are causal themselves.

Value

A vector with the ids of the simulated causal SNPs.

Examples

```
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
simulate_causal_snps(gi, ngenes=2)</pre>
```

simulate_phenotype Simulate phenotype

Description

Simulates a phenotype from a GWAS experiment and a specified set of causal SNPs. If the data is qualitative, only controls are used.

Usage

```
simulate_phenotype(
  gwas,
  snps,
  h2,
  model = "additive",
  effectSize = rnorm(length(snps)),
  qualitative = FALSE,
  ncases,
  ncontrols,
  prevalence
)
```

Arguments

gwas	A SnpMatrix object with the GWAS information.
snps	Character vector with the SNP ids of the causal SNPs. Must match SNPs in gwas[["map"]][["snp.name"]].
h2	Heritability of the phenotype (between 0 and 1).
model	String specifying the genetic model under the phenotype. Accepted values: "ad- ditive".
effectSize	Numeric vector with the same lenght as the number of causal SNPs. It indicates the effect size of each of the SNPs; if absent, they are sampled from a normal distribution.
qualitative	Bool indicating if the phenotype is qualitative or not (quantitative).

ncases	Integer specifying the number of cases to simulate in a qualitative phenotype. Required if qualitative = TRUE.
ncontrols	Integer specifying the number of controls to simulate in a qualitative phenotype. Required if qualitative = TRUE.
prevalence	Value between 0 and 1 specifying the population prevalence of the disease. Note that neases cannot be greater than prevalence * number of samples. Required if qualitative = TRUE.

Value

A copy of the GWAS experiment with the new phenotypes in gwas[["fam"]][["affected"]].

References

Inspired from GCTA simulation tool: http://cnsgenomics.com/software/gcta/Simu.html.

Examples

```
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
causal <- simulate_causal_snps(gi, ngenes = 2)
simulate_phenotype(minigwas, causal, h2 = 1)</pre>
```

snp2ensembl Map SNPs to Ensembl genes.

Description

Maps SNPs from a GWAS experiment to genes.

Usage

snp2ensembl(gwas, organism = 9606, flank = 0)

Arguments

gwas	A SnpMatrix object with the GWAS information.
organism	Tax ID of the studied organism. The default is 9606 (human).
flank	A number with the flanking regions around genes to be considered part of the gene i.e. SNPs mapped to them will be considered mapped to the gene.

Value

A data.frame with two columns: one for the SNP and another for the gene it has been mapped to.

snp_test

Description

Calculate the association between genotypes and a phenotype, adjusting by covariates.

Usage

snp_test(gwas, covars, score, family, link)

Arguments

gwas	A SnpMatrix object with the GWAS information.
covars	A data frame with the covariates. It must contain a column 'sample' containing the sample IDs, and an additional columns for each covariate.
score	Association score to measure association between genotype and phenotype. Possible values: chi2 (default), glm.
family	A string defining the generalized linear model family. This should match one of "binomial", "poisson", "gaussian" or "gamma". See snp.rhs.tests for details.
link	A string defining the link function for the GLM. This should match one of "logit", "log", "identity" or "inverse". See snp.rhs.tests for details.

Value

A named vector with the association scores.

```
subnet
```

Subgraph of vertices with an attribute

Description

Returns a subgraph matching some condition.

Usage

```
subnet(net, attr, values, affirmative = TRUE)
```

Arguments

net	An igraph network.
attr	An attribute of the vertices.
values	Possible values of attr.
affirmative	Logical. States if a condition must be its affirmation (e.g. all nodes with gene name "X"), or its negation (all nodes not with gene name "X").

Value

A subgraph containing only the vertices with attribute equal to any of the values in values.

Examples

```
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
martini:::subnet(gi, "gene", "A")
martini:::subnet(gi, "name", c("1A1", "1A3"))</pre>
```

subset_snpMatrix Subsample snpMatrix

Description

Compute a permutation of the samples of a snpMatrix object. Useful to make sure that the folds are not stratified by phenotype.

Usage

subset_snpMatrix(gwas, samples)

Arguments

gwas	A SnpMatrix object with the GWAS information.
samples	Vector (logical or numeric) containing the samples to select.

subvert

Vertices with an attribute

Description

Returns the nodes matching some condition.

Usage

```
subvert(net, attr, values, affirmative = TRUE)
```

Arguments

net	An igraph network.	
attr	An attribute of the vertices.	
values	Possible values of attr	
affirmative	Logical. States if a condition must be its affirmation (e.g. all nodes with gene name "X"), or its negation (all nodes not with gene name "X").	

Value

The vertices with attribute equal to any of the values in values.

32

wrap_Xy

Examples

```
gi <- get_GI_network(minigwas, snpMapping = minisnpMapping, ppi = minippi)
martini:::subvert(gi, "gene", "A")
martini:::subvert(gi, "name", c("1A1", "1A3"))</pre>
```

wrap_Xy

Make pseudo SnpMatrix object

Description

Wrap design matrix and outcome vector into a pseudo SnpMatrix object.

Usage

wrap_Xy(X, y, featnames, net)

Arguments

Х	n x d design matrix
У	Vector of length n with the outcomes
featnames	Vector of length d with the feature names
net	An igraph network that connects the SNPs.

Index

* internal arrange_covars, 3 calculateE, 3 calculateG, 4 check_installed, 4 connect_biomart, 5 get_adjacency, 5 get_grid, 8 get_gxg, 9 get_gxg_biogrid, 9 get_gxg_string, 10 get_snp_modules, 10 group_snps, 11 is_coherent, 12 mget_gxg_biogrid, 13 mget_gxg_string, 14 mincut, 14 mincut.cv, 15 organism_id2name, 17 permute_snpMatrix, 17 sanitize_map, 18 sanitize_snpMapping, 19 score_fold, 23 snp2ensembl, 30 snp_test, 31 subnet, 31subset_snpMatrix, 32 arrange_covars, 3 calculateE, 3 calculateG, 4 check_installed, 4 connect_biomart, 5

get_adjacency, 5
get_GI_network, 6
get_GM_network, 7
get_grid, 8
get_GS_network, 8
get_gxg, 9
get_gxg_biogrid, 9
get_gxg_string, 10
get_snp_modules, 10

GM, 6 group_snps, 11 GS, 7 gwas2bed, 11 is_coherent, 12 1d. 12 ldweight_edges, 12 maxflow. 13 mget_gxg_biogrid, 13 mget_gxg_string, 14 mincut, 14 mincut.cv, 15 mincut_c, 15 minigwas, 16 minippi, 16 minisnpMapping, 17 organism_id2name, 17 permute_snpMatrix, 17 plot_ideogram, 18 sanitize_map, 18 sanitize_snpMapping, 19 scones, 19 scones.cv, 20scones.cv_, 21 scones_, 22 score_fold, 23 search_cones, 23 sigmod, 25 sigmod.cv, 26sigmod.cv_, 27 sigmod_, 28 simulate_causal_snps, 28 simulate_phenotype, 29 snp.rhs.tests, 15, 20, 21, 25, 26, 31 snp2ensembl, 30 snp_test, 31 subnet, 31subset_snpMatrix, 32 subvert, 32

INDEX

wrap_Xy,33