Package 'mspms'

July 18, 2025

Type Package

Title Tools for the analysis of MSP-MS data

Version 1.1.0

Description This package provides functions for the analysis of data generated by the multiplex substrate profiling by mass spectrometry for proteases (MSP-MS) method. Data exported from upstream proteomics software is accepted as input and subsequently processed for analysis. Tools for statistical analysis, visualization, and interpretation of the data are provided.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Depends R (>= 4.4.0)

biocViews Proteomics, MassSpectrometry, Preprocessing

LazyData true

Imports QFeatures, limma, SummarizedExperiment, magrittr, rlang, dplyr, purrr, stats, tidyr, stringr, ggplot2, ggseqlogo, heatmaply, readr, rstatix, tibble, ggpubr

Suggests knitr, testthat (>= 3.0.0), downloadthis, DT, rmarkdown, BiocStyle, imputeLCMD

Config/testthat/edition 3

URL https://github.com/baynec2/mspms

BugReports https://github.com/baynec2/mspms/issues

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/mspms

git_branch devel

git_last_commit cbab18f

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

Date/Publication 2025-07-17

Author Charlie Bayne [aut, cre] (ORCID: <https://orcid.org/0000-0003-1870-5298>)

Maintainer Charlie Bayne <baynec2@gmail.com>

Contents

mspms-package	3
add_cleavages	3
add_peptide_data	4
all_possible_8mers_from_228_library	4
calculate_all_cleavages	5
	5
	6
	6
	7
	7
	8
	8
	9
	9
check_file_is_valid_fragpipe	0
check_file_is_valid_pd	0
check_file_is_valid_peaks	
check_peptide_library	
colData	
consolidate_cleavages	
count_cleavages_per_pos	
cterm_cleavage	
generate_report	
icelogo_col_scheme	
limma_stats	
load_colData	
log2fc_t_test	
log2fc_t_test_data	
mspms_log2fc	
1 = 5	
1 = 5 =	
mspms_t_tests	
nterm_cleavage	
peaks_prepared_data	
peptide_library	
plot_all_icelogos	
plot_cleavages_per_pos	_
plot_heatmap	
plot_icelogo	
plot_nd_peptides	
plot_pca	
plot_qc_check	
plot_time_course	
plot_volcano	
prepared_to_qf 2	
prepare_fc	
prepare_for_PCA	9
prepare_fragpipe	0
prepare_icelogo_data	0
prepare_pd	1

mspms-package

prepare_peaks	. 32
prepare_qc_check_data	. 33
prepare_sig_p_dif	. 33
processed_qf	. 34
process_qf	. 34
remaining_cd_names	
rlog2	
%>%	. 36
	37

Index

```
mspms-package
```

mspms: Tools for the analysis of MSP-MS data

Description

This package provides functions for the analysis of data generated by the multiplex substrate profiling by mass spectrometry for proteases (MSP-MS) method. Data exported from upstream proteomics software is accepted as input and subsequently processed for analysis. Tools for statistical analysis, visualization, and interpretation of the data are provided.

Author(s)

Maintainer: Charlie Bayne <baynec2@gmail.com> (ORCID)

See Also

Useful links:

- https://github.com/baynec2/mspms
- Report bugs at https://github.com/baynec2/mspms/issues

add_cleavages add_cleavages

Description

Adds cleavage information to a tibble by wraping the n_term_cleavage and c_term_cleavage functions into a consolidated function.

Usage

```
add_cleavages(joined_with_library, n_residues = 4)
```

Arguments

joined_with_library	
	a tibble containing columns named "peptide", "library_match_sequence", and "library_real_sequence".
n_residues	the number of residues to the left and right of the cleavage site to include in the output.

Value

a tibble with cleavage information added.

add_peptide_data add_peptide_data

Description

adds peptide information for every peptide in the data.

Usage

```
add_peptide_data(tibble, qf)
```

Arguments

tibble	tibble you would like to add peptide info to. Must have column named peptide
qf	a QFeatures object with rowData for peptides. cleavage_seq, cleavage_pos, and
	cleavage_type.

Value

a tibble with column named peptide.

all_possible_8mers_from_228_library
all_possible_8mers_from_228_library All possible 8mers
from the standard (as of 26April2024) 228 MSP-MS
peptide library (This is equivalent to the result of
mspms::calculate_all_cleavages(mspms::peptide_library\$real_cleavage_seq,n=4))
vector of the 14 AA peptides used in the library.
mspms::calculate_all_cleavages(mspms::peptide_library\$real_cleavage_seq,n=4))

Description

all_possible_8mers_from_228_library All possible 8mers from the standard (as of 26April2024) 228 MSP-MS peptide library (This is equivalent to the result of mspms::calculate_all_cleavages(mspms::peptide_library\$ vector of the 14 AA peptides used in the library.

Usage

```
all_possible_8mers_from_228_library
```

Format

'all_possible_8mers_from_228_library' A vector with 2964 entries

Source

<standard peptide library used with MSP-MS method in the O'Donoghue lab as of 26April2024>

calculate_all_cleavages

calculate_all_cleavages calculate all possible cleavages for a defined peptide library containing peptides of the same length.

Description

calculate_all_cleavages calculate all possible cleavages for a defined peptide library containing peptides of the same length.

Usage

```
calculate_all_cleavages(peptide_library_seqs, n_AA_after_cleavage = 4)
```

Arguments

peptide_library_seqs The sequences of each peptide in the peptide library. They should all be the same length.

n_AA_after_cleavage

The number of AA after (and before) the cleavage site to consider.

Value

a vector of all the possible cleavages for the peptide library sequences

Examples

```
calculate_all_cleavages(mspms::peptide_library$library_real_sequence,
    n_AA_after_cleavage = 4
)
```

calc_AA_count_of_motif

calc_AA_count_of_motif

Description

Calculate the counts of amino acids at each position of a motif for all the sequences in a vector.

Usage

```
calc_AA_count_of_motif(cleavage_motif)
```

Arguments

cleavage_motif a vector of cleavage motifs

Value

a matrix of counts

calc_AA_fc

Description

Calculate the fold change of each amino acid by position.

calc_AA_fc

Usage

```
calc_AA_fc(experimental_prop_matrix, background_prop_matrix, sig_zscores)
```

Arguments

experimental_prop_matrix		
	a matrix of the experimental proportions (from your vector of cleavage se-	
	quences) at each position.	
background_prop_matrix		
	a matrix of the background proportions of AAs at each position	
sig_zscores	a tibble of the significant zscores.	

Value

a matrix

calc_AA_motif_zscore calc_AA_motif_zscore

Description

Calculate the Z score for the amino acids at each position

Usage

```
calc_AA_motif_zscore(
   background_count_matrix,
   background_prop_matrix,
   experimental_count_matrix,
   experimental_prop_matrix
)
```

Arguments

Value

a data frame of Zscores for each amino acid at each position.

calc_AA_percent_difference

calc_AA_percent_difference

Description

Calculate the percent difference between a matrix of background proportions and a matrix of experimentally observed proportions.

Usage

calc_AA_percent_difference(background_prop_matrix, experimental_prop_matrix)

Arguments

background_prop_matrix a proportion matrix of amino acids per position from background cleavage sequences

experimental_prop_matrix

a proportion matrix of amino acids per position from experimental cleavage sequences

Value

a data frame of percent differences

calc_AA_prop_of_motif calc_AA_prop_of_motif

Description

Calculate the proportion of amino acids at each position in a vector of motifs.

Usage

```
calc_AA_prop_of_motif(count_matrix)
```

Arguments

count_matrix this is a matrix of the counts of cleavage motifs

Value

a matrix with proportions of counts.

calc_limma_contrasts calc_limma_contrasts

Description

Calculates limma contrasts given colData. The contrasts returned are pairwise relative to T0 for each timepoint assayed.

Usage

calc_limma_contrasts(colData, design_mat)

Arguments

colData	colData from mspms experiment
design_mat	design_mat as returned by calc_limma_design_matrix

Value

a contrast matrix

```
calc_limma_design_matrix
```

calc_limma_design_matrix

Description

Calculates a limma compatible design matrix for mspms data.

Usage

```
calc_limma_design_matrix(colData, norm_data)
```

Arguments

colData	colData with condition and time variables as factors
norm_data	normalized data from QFeatures object to use

Value

a model matrix

calc_per_samples_library_nd

calc_per_samples_library_nd Calculate the percentage of samples each library_id peptide was not detected in.

Description

calc_per_samples_library_nd Calculate the percentage of samples each library_id peptide was not detected in.

Usage

```
calc_per_samples_library_nd(
    processed_qf,
    peptide_library_ids = mspms::peptide_library$library_id
)
```

Arguments

processed_qf	a QFeatures object with a SummarizedExperiment named "peptides". Intended	
	to be prepared by one of the pre-processing prepare_x_data functions of the	
	mspms R package.	
peptide_library_ids		
	a character vector containing the names of the library_ids	

Value

a tibble containing percentage of samples each library id was detected in, both as full length, and as cleavage products.

calc_sig_zscores	calc_sig_zscores Determine which Zscores are significant at the given
	alpha for a matrix of scores

Description

calc_sig_zscores Determine which Zscores are significant at the given alpha for a matrix of scores

Usage

```
calc_sig_zscores(zscores, pval = 0.05)
```

Arguments

zscores	= a data frame of zscores
pval	= p value threshold for significance. Default is 0.05

Value

a tibble of significant zscores

check_file_is_valid_fragpipe

check_file_is_valid_fragpipe Check to make sure the input data looks like the expected FragPipe file.

Description

check_file_is_valid_fragpipe Check to make sure the input data looks like the expected FragPipe file.

Usage

check_file_is_valid_fragpipe(fragpipe_data)

Arguments

fragpipe_data combined_peptide.tsv file generated by FragPipe read into R.

Value

a stop command with a informative message if file looks unexpected. otherwise, nothing.

```
check_file_is_valid_pd
```

check_file_is_valid_pd Check to make sure the input data looks like the expected ProteomeDiscoverer file.

Description

check_file_is_valid_pd Check to make sure the input data looks like the expected ProteomeDiscoverer file.

Usage

```
check_file_is_valid_pd(pd_data)
```

Arguments

pd_data PeptideGroups.txt file generated by ProteomeDiscover and read into R.

Value

a stop command with a informative message if file looks unexpected. otherwise, nothing.

check_file_is_valid_peaks

check_file_is_valid_peaks Check to make sure the input data looks like the expected PEAKS file.

Description

check_file_is_valid_peaks Check to make sure the input data looks like the expected PEAKS file.

Usage

check_file_is_valid_peaks(peaks_data)

Arguments

peaks_data protein-peptides-lfq.csv file generated by PEAKS read into R.

Value

a stop command with a informative message if file looks unexpected. otherwise, nothing.

check_peptide_library check_peptide_library

Description

check_peptide_library

Usage

check_peptide_library(peptide_library)

Arguments

peptide_library

Value

an informative error if the column names of the peptide library are unexpected. Otherwise nothing.

colData

Description

colData A tibble containing the colData associated with an experiment to proc

Usage

colData

Format

'colData' A tibble: 42×4

Source

colData corresponding to cathepsin A-D MSP-MS experiment

consolidate_cleavages consolidate_cleavages

Description

Consolidate the n term and c term cleavage data. The nterm and cterm cleavage information are consolidated into a single column and rows

Usage

consolidate_cleavages(cleavage_added_data)

Arguments

cleavage_added_data

a tibble where cleavage information has been added by add_cleavages()

Value

a tibble with the cleavage information combined into a single column and rows with no cleavage information or double information removed.

count_cleavages_per_pos

count_cleavages_per_pos

Description

Count the number of cleavages per position

Usage

```
count_cleavages_per_pos(data, peptide_library = mspms::peptide_library)
```

Arguments

data

a tibble containing columns named peptide, cleavage_pos, condition, and time. Other column names can be included.

Value

a ggplot2 object

cterm_cleavage cterm_cleavage

Description

Finding the cleavage sequences on the C terminus of a given peptide in reference to the peptide library it was derived from

Usage

```
cterm_cleavage(
   peptide_sequence,
   library_match_sequence,
   library_real_sequence,
   n_residues = 4
)
```

Arguments

peptide_sequence

the peptide sequence represented in single letter code. "_" denotes cleavage site. library_match_sequence

the sequence the peptide matches to with the proteomics search software used. Note, this may not be the true sequence of the peptide depending on how the library was constructed. For example, in the standard MSP-MS 228 member library, methionine has been replaced with norleucine (n). This was done because norleucine looks like methionine to a protease, but it cannot be oxidized. Norleucine's (n) mass is the same as leucine (L), so it is recognized by the proteomics software as L.

library_real_sequence		
	the sequence the peptide truly is. In the standard MSP_MS 228 member library, some of the amino acids recognize as leucine (L) are truly Norleucine (n).	
n_residues	the number of residues to the left and right of the cleavage event to return	

Value

a tibble with the peptide sequence, cleavage sequences (converted from the matching to real sequence), with n number of amino acids to the left and right of the c term cleavage, and the position of the c-term cleavage in the library sequence

generate_report generate_report

Description

wrapper function to generate an automatic .html report of a basic mspms analysis.

Usage

```
generate_report(
   prepared_data,
   peptide_library = mspms::peptide_library,
   n_residues = 4,
   outdir = getwd(),
   output_file = paste0(Sys.Date(), "_mspms_report.html")
)
```

Arguments

prepared_data	a QFeatures object containing a SummarizedExperiment named "peptides".
<pre>peptide_library</pre>	
	peptide library used with experiment. Contains columns "library_id", "library_match_sequence" and "library_real_sequence".
n_residues	the number of amino acid residues before and after the cleavage site to generate a cleavage seq for.
outdir	the output directory you would like to render the report to.
output_file	the file name to export.

Value

a knited .html report of the mspms analysis.

Examples

generate_report(mspms::peaks_prepared_data)

icelogo_col_scheme icelogo_col_scheme Defining a color scheme for our iceLogos

Description

icelogo_col_scheme Defining a color scheme for our iceLogos

limma_stats

Usage

```
icelogo_col_scheme()
```

Value

a ggseqlogo color scheme function

limma_stats

Description

Calculates statistics for each condition relative to time 0 using limma for differential analysis. Results are then formatted to be consistent with results produced by other statistic approaches used in the mspms package ($log2fc_t_test$).

Usage

```
limma_stats(processed_qf)
```

Arguments

processed_qf mspms data in a QFeatures object.

Value

a tibble containing statistics

Examples

mspms_limma_results <- limma_stats(mspms::processed_qf)</pre>

load_colData

Description

load a .csv file containing sample colData. Check for errors

Usage

load_colData(colData_filepath)

Arguments

colData_filepath

filepath to .csv file containing colData.

Value

a tibble

log2fc_t_test log2fc_t_test

Description

Calculates the log2 fold change and t-test statistics given a user specified reference variable and value.

Usage

```
log2fc_t_test(processed_qf, reference_variable = "time", reference_value = 0)
```

Arguments

processed_qf mspms data in a QFeatures object. reference_variable the colData variable to use as reference reference_value the value of the colData variable to use as reference

Value

a tibble containing log2fc and t test statistics

Examples

log2fc_and_t_test <- log2fc_t_test(mspms::processed_qf)</pre>

 $log2fc_t_test_data$ $log2fc_t_test_data$ A tibble containing the results of t-tests and log2fc compared to time 0 14,497 × 19

Description

 $\log_{14,497} \times 19$

Usage

log2fc_t_test_data

Format

'peaks_prepared_data' A tibble: 14,497 × 19

Source

<mspms processed data originally from PEAKS files found in "tests/testdata/protein-peptides-id.csv" and "tests/testdata/protein-peptides-lfq.csv">

```
mspms_log2fc mspms_log2fc
```

Description

calculates the log2fc for each time point within each condition relative to a specified value for a specified reference variable.

Usage

```
mspms_log2fc(processed_qf, reference_variable = "time", reference_value = 0)
```

Arguments

```
processed_qf a QFeatures object with a SummarizedExperiment named "peptides_norm".
reference_variable
the variable to used as a reference (denominator of log2 fold change).
```

reference_value

the value of the reference variable to use as the reference

Value

a tibble with the t test statistics for each peptide within each group with the supplied value at the supplied variable as reference.

mspms_tidy

Description

mspms_tidy Convert a SummarizedExperiment object within a QFeatures object into a tidy tibble.

Usage

mspms_tidy(processed_qf, se_name = "peptides_norm")

Arguments

processed_qf	a QFeature object containing rowData and colData.
se_name	the name of the SummarizedExperiment you would like to extract

Value

a tibble containing all the rowData, colData, and assay data for the specified SummarizedExperiment.

Examples

mspms_data <- mspms_tidy(mspms::processed_qf)</pre>

<pre>mspms_tidy_data</pre>	mspms_tidy_data A tibble containing tidy data derived from QFea-
	tures object

Description

mspms_tidy_data A tibble containing tidy data derived from QFeatures object

Usage

mspms_tidy_data

Format

'mspms_tidy_data' A tibble:

Source

processed_qf

mspms_t_tests mspms_t_tests

Description

performs t-tests for each peptide within each group for the user specified. FDR adjustment is performed.

Usage

```
mspms_t_tests(processed_qf, reference_variable = "time", reference_value = "0")
```

Arguments

processed_qf a QFeatures object with a SummarizedExperiment named "peptides_norm".

reference_variable

the variable to used as a reference.

reference_value

the value of the reference variable to use as the reference

Value

a tibble with the t test statistics for each peptide within each group with the supplied value at the supplied variable as reference.

nterm_cleavage nterm_cleavage

Description

Finding the cleavage sequences on the N terminus of a given peptide in reference to the peptide library it was derived from.

Usage

```
nterm_cleavage(
   peptide_sequence,
   library_match_sequence,
   library_real_sequence,
   n_residues = 4
)
```

Arguments

peptide_sequence		
	the peptide sequence represented in single letter code. "_" denotes cleavage site.	
library_match_	library_match_sequence	
	the sequence the peptide matches to with the proteomics search software used. Note, this may not be the true sequence of the peptide depending on how the library was constructed. For example, in the standard MSP-MS 228 member library, methionine has been replaced with norleucine (n). This was done be- cause norleucine looks like methionine to a protease, but it cannot be oxidized. Norleucine's (n) mass is the same as leucine (L), so it is recognized by the pro-	
	teomics software as L.	
library_real_sequence		
	the sequence the peptide truly is. In the standard MSP_MS 228 member library, some of the amino acids recognize as leucine (L) are truly Norleucine (n).	
n_residues	the number of residues to the left and right of the cleavage event to return.	

Value

a tibble with the peptide sequence, cleavage sequences n specified number of AA on the left and right of the n term cleavage, and the position of the n term cleavage in the library sequence.

peaks_prepared_data	peaks_prepared_data A QFeatures object prepared from PEAKS data
	of cathepsin data/.

Description

peaks_prepared_data A QFeatures object prepared from PEAKS data of cathepsin data/.

Usage

peaks_prepared_data

Format

'peaks_prepared_data' An instance of class QFeatures containing 1 assays: [1] peptides: SummarizedExperiment with 2071 rows and 42 columns

peptides Peptide Sequence Detected ...

Source

<mspms processed data originally from PEAKS files found in "tests/testdata/protein-peptides-id.csv" and "tests/testdata/protein-peptides-lfq.csv">

20

peptide_library peptide_library

Description

This is the 228 peptide library used by the O'Donoghue lab as of 26April2024.

Usage

peptide_library

Format

'peptide_library' A data frame with 228 rows and 3 columns:

library_reference_id reference id of the detected peptide as put in upstream software

- **library_match_sequence** the sequence match to the peptide library, methionine is replaced with norleucine, which should function the same as methionine for proteases but has the same mass as L
- **library_real_sequence** Ls corresponding to norleucine are replaced back with n (for norleucine) ...

Source

<O'Donoghue lab as of 26April2024 >

plot_all_icelogos plot_all_icelogos

Description

Easily plot a iceLogo corresponding to peptides of interest across each condition of an experiment.

Usage

```
plot_all_icelogos(
  sig_cleavage_data,
  type = "percent_difference",
  pval = 0.05,
  background_universe = mspms::all_possible_8mers_from_228_library
)
```

Arguments

sig_cleavage_data		
	a tibble of data of interest containing a column labeled peptide, cleavage_seq, and condition	
type	this is the type of iceLogo you would like to generate, can be either "per- cent_difference" or "fold_change".	
pval	this is the pvalue threshold (<=) to consider significant when determining the significance of the sig_cleavages relative to the background at each position of the iceLogo.	
background_universe		
	this is a list cleavages you would like to compare to as background of the iceL- ogo	

Value

a ggplot object that shows the motif of the cleavage sequences

Examples

```
# Determining cleavages of interest
sig_cleavage_data <- mspms::log2fc_t_test_data %>%
dplyr::filter(p.adj <= 0.05, log2fc > 3)
# Plotting a iceLogo for each condition.
plot_all_icelogos(sig_cleavage_data)
```

plot_cleavages_per_pos

plot_cleavages_per_pos

Description

plot the number of cleavages at each

Usage

```
plot_cleavages_per_pos(sig_cleavage_data, ncol = NULL)
```

Arguments

sig_cleavag	e_data
	a tibble of data of interest containing a column labeled peptide, cleavage_seq,
	condition, and cleavage_pos.
ncol	the number of columns to plot.

Value

a ggplot2 object

plot_heatmap

Examples

```
# Defining the significant peptides
sig_cleavage_data <- log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3)
# Plotting
p1 <- mspms::plot_cleavages_per_pos(sig_cleavage_data)
p1
```

plot_heatmap plot_heatmap

Description

This produces a heatmaply interactive heatmap of the QFeatures object with color bars representing the condition and time for each sample in each row.

Usage

```
plot_heatmap(
   mspms_tidy_data,
   value_colname = "peptides_norm",
   scale = "column",
   plot_method = "plotly",
   show_dendrogram = c(TRUE, TRUE)
)
```

Arguments

mspms_tidy_data

	tidy mspms data (prepared from QFeatures object by mspms_tidy())	
value_colname	the name of the column containing values.	
scale	how would you like the data scaled? default is none, but can also be "row", "column", or "none"	
plot_method	what plot method would you like to use, can use plotly or ggplot2.	
show_dendrogram		
	Logical vector of length two, controlling whether the row and/or column den-	
	drograms are displayed. If a logical scalar is provided, it is repeated to become	
	a logical vector of length two.	

Details

Each column has a colored bar representing whether the peptide is a cleavage product or a full length member of the peptide library.

Value

a heatmaply interactive heatmap

Examples

plot_heatmap(mspms::mspms_tidy_data)

plot_icelogo

Description

This function plots the cleavage motifs that were enriched relative to background as implemented in the iceLogo method. https://iomics.ugent.be/icelogoserver/resources/manual.pdf

Usage

```
plot_icelogo(
    cleavage_seqs,
    background_universe = mspms::all_possible_8mers_from_228_library,
    pval = 0.05,
    type = "percent_difference"
)
```

Arguments

cleavage_seqs	these are the cleavage sequences of interest	
background_universe		
	this is a list of cleavage sequences to use as the background in building the iceLogo.	
pval	this is the pvalue threshold (<=) to consider significant when determining the significance of the sig_cleavages relative to the background at each position of the iceLogo.	
type	this is the type of visualization you would like to perform, accepted values are either "percent_difference" or "fold_change".	

Value

a ggplot2 object

Examples

```
# Determining significant cleavages for catA
catA_sig_cleavages <- mspms::log2fc_t_test_data %>%
  dplyr::filter(p.adj <= 0.05, log2fc > 3) %>%
  dplyr::filter(condition == "CatA") %>%
  dplyr::pull(cleavage_seq) %>%
  unique()
# Plotting icelogo
plot_icelogo(catA_sig_cleavages,
  background_universe = all_possible_8mers_from_228_library
)
```

plot_nd_peptides plot_nd_peptides

Description

plot the percentage of samples each peptide from library was undetected in (if the percentage is > 0).

Usage

```
plot_nd_peptides(
    processed_qf,
    peptide_library_ids = mspms::peptide_library$library_id
)
```

Arguments

processed_qf a QFeatures object containing a SummarizedExperiment named "peptides"
peptide_library_ids

a vector of all peptide library ids in the experiment.

Value

a ggplot2 object

Examples

plot_nd_peptides(mspms::processed_qf)

plot_pca

plot_pca

Description

Easily create a PCA plot from a QFeatures object containing mspms data. Ellipses are drawn around the points at a 95 Shape and colors are user specified.

Usage

```
plot_pca(
    mspms_tidy_data,
    value_colname = "peptides_norm",
    color = "time",
    shape = "condition"
)
```

Arguments

mspms_tidy_data		
	tidy mspms data (prepared from QFeatures object by mspms_tidy)	
value_colname	the name of the column containing values.	
color	the name of the variable you would like to color by.	
shape	the name of the variable that you would like to determine shape by.	

Value

a ggplot2 object

Examples

plot_pca(mspms::mspms_tidy_data)

plot_qc_check	plot_qc_check plot the the percentage of the peptide library undetected
	in each sample per each sample group.

Description

plot_qc_check plot the the percentage of the peptide library undetected in each sample per each sample group.

Usage

```
plot_qc_check(
    processed_qf,
    peptide_library = mspms::peptide_library$library_id,
    full_length_threshold = NULL,
    cleavage_product_threshold = NULL,
    ncol = 2
)
```

Arguments

<pre>processed_qf peptide_library</pre>	QFeatures object containing a SummarizedExperiment named "peptides"	
	a vector of all peptide library ids in the experiment.	
full_length_threshold		
	percent to use as threshold visualized as a vertical blue dashed line	
<pre>cleavage_product_threshold</pre>		
	percent to use as a threshold visualized as a red dashed line	
ncol	n columns.	

Value

a ggplot2 object.

Examples

plot_qc_check(mspms::processed_qf)

26

plot_time_course plot_time_course

Description

Easily plot a time course of all peptides in a QFeatures object by peptide.

Usage

```
plot_time_course(
    mspms_tidy_data,
    value_colname = "peptides_norm",
    summarize_by_mean = FALSE
)
```

Arguments

mspms_tidy_data
 tidy mspms data (prepared from QFeatures object by mspms_tidy())
value_colname
 the name of the column containing values.
summarize_by_mean
 whether to summarise by mean (TRUE- show error bars +- 1 standard deviation)
 or not (FALSE)

Value

a ggplot2 object

Examples

```
# Determining peptide of interest
max_log2fc_pep <- mspms::log2fc_t_test_data %>%
    dplyr::filter(p.adj <= 0.05, log2fc > 3) %>%
    dplyr::filter(log2fc == max(log2fc)) %>%
    dplyr::pull(peptide)
# Defining QFeatures filter
filtered <- mspms::mspms_tidy_data %>%
```

```
dttered <- mspms::mspms_tidy_data %>%
    dplyr::filter(peptide == max_log2fc_pep) %>%
    plot_time_course()
```

plot_volcano plot_volcano

Description

create a volcano plot to generate log2fc and adjusted p values for experimental conditions

Usage

```
plot_volcano(
  log2fc_t_test_data,
  log2fc_threshold = 3,
  padj_threshold = 0.05,
  facets = "grid",
  ncol = 1
)
```

Arguments

log2fc_t_test_data		
	a tibble containing the log2fc and adjusted p values	
log2fc_threshold		
	the log2fc threshold that you want displayed on plot	
padj_threshold	the padj threshold that you want displayed on plot	
facets	how facets should be displayed. Accepted values are grid and wrap	
ncol	ncol to include if facets = "wrap"	

Value

a ggplot2 object

Examples

```
p1 <- mspms::plot_volcano(mspms::log2fc_t_test_data, log2fc_threshold = 3)
p1</pre>
```

prepared_to_qf convert prepared data to a QFeatures object

Description

convert prepared data to a QFeatures object

Usage

```
prepared_to_qf(
    prepared_data,
    colData,
    peptide_library = mspms::peptide_library,
    n_residues = 4
)
```

Arguments

prepared_data	data prepared within one of the prepare functions	
colData	sample metadata	
peptide_library		
	the peptide library used.	
n_residues	the number of residues reported in the cleavage site	

28

prepare_fc

Value

a QFeatures object

prepare_fc prepare_fc

Description

Prepare fold changes of amino acids by position for Icelogo visualization.

Usage

prepare_fc(fold_change, sig_zscores)

Arguments

fold_change	a matrix of the fold changes of the AA by position.
sig_zscores	a tibble of the significant zscores.

Value

a matrix of the fold changes of the significant AAs at each position.

prepare_for_PCA prepare_for_PCA()

Description

prepare QFeatures object for PCA analysis

Usage

```
prepare_for_PCA(mspms_tidy_data, value_colname = "peptides_norm")
```

Arguments

mspms_tidy_data

tidy mspms data (prepared from QFeatures object by mspms_tidy()) value_colname the name of the column containing values.

Value

a tibble

prepare_fragpipe prepare_fragpipe

Description

Prepare a label free quantification file exported from Fragpipe for subsequent mspms analysis.

Usage

```
prepare_fragpipe(
   combined_peptide_filepath,
   colData_filepath,
   peptide_library = mspms::peptide_library,
   n_residues = 4
)
```

Arguments

combined_peptide_filepath		
		file path the combined_peptide.tsv file generated by FragPipe.
colData_filepath		
		file path to .csv file containing colData. Must have columns named "quant-Cols","group","condition",and "time".
peptide_library		
		peptide library used with experiment. Contains columns "library_id", "library_match_sequence", and "library_real_sequence".
	n_residues	the number of amino acid residues before and after the cleavage site to generate a cleavage seq for.

Value

a QFeatures object containing a summarizedExperiment named "peptides"

Examples

```
fragpipe_combined_peptide <- system.file("extdata/fragpipe_combined_peptide.tsv", package = "mspms")
colData_filepath <- system.file("extdata/colData.csv", package = "mspms")
# Prepare the data
fragpipe_prepared_data <- mspms::prepare_fragpipe(fragpipe_combined_peptide, colData_filepath)</pre>
```

prepare_icelogo_data prepare_icelogo_data

Description

Prepare the final matrix containing iceLogo data for plotting.

prepare_pd

Usage

```
prepare_icelogo_data(
    cleavage_seqs,
    background_universe = mspms::all_possible_8mers_from_228_library,
    pval = 0.05,
    type = "percent_difference"
)
```

Arguments

<pre>cleavage_seqs</pre>	the cleavage sequences that are observed in the experiment	
background_universe		
	a vector of the cleavage sequences to use as the background.	
pval	the p-value threshold to consdier	
type	the type of iceLogo calculation to perform. Accepted values are "percent_difference" or "fold_change".	

Value

a matrix of enriched amino acids per position

prepare_pd	prepare_pd Prepare a label free quantification file exported from Pro-
	teome Discoverer for subsequent mspms analysis.

Description

prepare_pd Prepare a label free quantification file exported from Proteome Discoverer for subsequent mspms analysis.

Usage

```
prepare_pd(
    peptide_groups_filepath,
    colData_filepath,
    peptide_library = mspms::peptide_library,
    n_residues = 4
)
```

Arguments

filepath
filepath to PeptideGroups.txt file exported from proteome discoverer.
h
file path to .csv file containing colData. Must have columns named "quant-
Cols", "group", "condition", and "time".
1
peptide library used with experiment. Contains columns "library_id", "library_match_sequence", and "library_real_sequence".
the number of amino acid residues before and after the cleavage site to generate a cleavage seq for.

Value

a QFeatures object containing a summarizedExperiment named "peptides"

Examples

```
peptide_groups_filepath <- system.file(
    "extdata/proteome_discoverer_PeptideGroups.txt",
    package = "mspms"
)
colData_filepath <- system.file("extdata/colData.csv", package = "mspms")</pre>
```

prepare_peaks

prepare_peaks Prepare a label free quantification file exported from PEAKS for subsequent mspms analysis.

Description

prepare_peaks Prepare a label free quantification file exported from PEAKS for subsequent mspms analysis.

Usage

```
prepare_peaks(
    lfq_filepath,
    colData_filepath,
    quality_threshold = 0.3,
    peptide_library = mspms::peptide_library,
    n_residues = 4
)
```

Arguments

Value

a QFeatures object containing a summarizedExperiment named "peptides"

Examples

```
lfq_filepath <- system.file("extdata/peaks_protein-peptides-lfq.csv", package = "mspms")
colData_filepath <- system.file("extdata/colData.csv", package = "mspms")
# Prepare the data
peaks_prepared_data <- mspms::prepare_peaks(lfq_filepath, colData_filepath)</pre>
```

32

prepare_qc_check_data prepare_qc_check Run simple quality control checks on the data. This checks to see how many peptides belonging to the library were identified in the data in each sample. Computes full length, and cleavage products independently.

Description

prepare_qc_check Run simple quality control checks on the data. This checks to see how many peptides belonging to the library were identified in the data in each sample. Computes full length, and cleavage products independently.

Usage

```
prepare_qc_check_data(
    processed_qf,
    peptide_library_ids = mspms::peptide_library$library_id
)
```

Arguments

processed_qf	a QFeatures object with a SummarizedExperiment named "peptides". Intended
	to be prepared by one of the pre-processing prepare_x_data functions of the
	mspms R package.
peptide_library_ids	

a character vector containing the names of the library_ids

Value

a tibble containing percentage of library_ids detected per sample, both as full length, and as cleavage products.

prepare_sig_p_dif prepare_sig_p_dif

Description

Prepare significant percent difference data frame for iceLogo

Usage

```
prepare_sig_p_dif(percent_difference, sig_zscores)
```

Arguments

percent_difference		
	a data frame containing the percent differences	
sig_zscores	a matrix of significant amino acids at each position based on z-scores	

Value

a tibble

processed_qf

Description

processed_qf A QFeatures object prepared from PEAKS data of Cathepsin data that has been processed (imputation/normalization)

Usage

processed_qf

Format

'peaks_prepared_data' An instance of class QFeatures containing 5 assays: [1] peptides: SummarizedExperiment with 2071 rows and 42 columns [2] peptides_log: SummarizedExperiment with 2071 rows and 42 columns [3] peptides_log_norm: SummarizedExperiment with 2071 rows and 42 columns [4] peptides_log_impute_norm: SummarizedExperiment with 2071 rows and 42 columns [5] peptides_norm: SummarizedExperiment with 2071 rows and 42 columns

peptides Peptide Sequence Detected ...

Source

<mspms processed data originally from PEAKS files found in "tests/testdata/protein-peptides-id.csv" and "tests/testdata/protein-peptides-lfq.csv">

process_qf	process_qf	
Description process_qf		

Usage

```
process_qf(prepared_qf)
```

Arguments

prepared_qf this is a QFeatures object containing a SummarizedExperiment named "peptides"

Value

a QFeatures object containing a SummarizedExperiments named "peptides", "peptides_log", "peptides_log_norm", "peptides_log_impute_norm", and "peptides_norm"

Examples

processed_qf <- process_qf(mspms::peaks_prepared_data)</pre>

remaining_cd_names remaining_cd_names

Description

determine what the remaining colData names are when removing the reference variable.

Usage

```
remaining_cd_names(processed_qf, reference_variable)
```

Arguments

processed_qf a QFeatures object reference_variable name of reference variable

Value

a vector of the remaining names in the colData

rlog2

rlog2 Reverse log2 transformation

Description

rlog2 Reverse log2 transformation

Usage

rlog2(x)

Arguments

x a numeric value

Value

a reverse log2 transformed value

%>%

Description

See magrittr::%>% for details.

Usage

lhs %>% rhs

Arguments

lhs	A value or the magrittr placeholder.
rhs	A function call using the magrittr semantics.

Value

The result of calling 'rhs(lhs)'.

Index

* datasets 4 colData, 12 processed_qf, 34 * internal %>%, 36 add_cleavages, 3 calc_AA_fc, 6

all_possible_8mers_from_228_library, log2fc_t_test_data, 17 mspms_tidy_data, 18 peaks_prepared_data, 20 peptide_library, 21 add_peptide_data, 4 calc_AA_count_of_motif, 5 calc_AA_motif_zscore, 6 calc_AA_percent_difference, 7 calc_AA_prop_of_motif, 7 calc_limma_contrasts, 8 calc_limma_design_matrix, 8 calc_per_samples_library_nd, 9 calc_sig_zscores, 9 check_file_is_valid_peaks, 11 check_peptide_library, 11 consolidate_cleavages, 12 count_cleavages_per_pos, 13 cterm_cleavage, 13 icelogo_col_scheme, 15 load_colData, 16 mspms-package, 3 mspms_log2fc, 17 mspms_t_tests, 19 nterm_cleavage, 19 prepare_fc, 29 prepare_for_PCA, 29 $prepare_icelogo_data, 30$ prepare_qc_check_data, 33 prepare_sig_p_dif, 33 prepared_to_qf, 28 $\texttt{remaining_cd_names, 35}$ rlog2, 35 %>%, *36*, 36

add_cleavages, 3

add_peptide_data, 4 all_possible_8mers_from_228_library, 4 calc_AA_count_of_motif, 5 calc_AA_fc, 6 calc_AA_motif_zscore, 6 calc_AA_percent_difference, 7 calc_AA_prop_of_motif, 7 calc_limma_contrasts, 8 calc_limma_design_matrix, 8 calc_per_samples_library_nd, 9 calc_sig_zscores,9 calculate_all_cleavages, 5 check_file_is_valid_fragpipe, 10 check_file_is_valid_pd, 10 check_file_is_valid_peaks, 11 check_peptide_library, 11 colData, 12 consolidate_cleavages, 12 count_cleavages_per_pos, 13 cterm_cleavage, 13 generate_report, 14 icelogo_col_scheme, 15 limma_stats, 15 load_colData, 16 log2fc_t_test, 16 log2fc_t_test_data, 17 mspms (mspms-package), 3 mspms-package, 3 mspms_log2fc, 17 mspms_t_tests, 19 mspms_tidy, 18 mspms_tidy_data, 18 nterm_cleavage, 19 peaks_prepared_data, 20 peptide_library, 21 plot_all_icelogos, 21 plot_cleavages_per_pos, 22 plot_heatmap, 23

INDEX

plot_icelogo, 24 plot_nd_peptides, 25 plot_pca, 25 plot_qc_check, 26 plot_time_course, 27 plot_volcano, 27 $prepare_fc, 29$ prepare_for_PCA, 29 prepare_fragpipe, 30 $\texttt{prepare_icelogo_data, 30}$ prepare_pd, 31 prepare_peaks, 32 prepare_qc_check_data, 33 prepare_sig_p_dif, 33 prepared_to_qf, 28 process_qf, 34 ${\tt processed_qf, 34}$ remaining_cd_names, 35

38

rlog2, 35