Package 'planttfhunter'

July 18, 2025

Title Identification and classification of plant transcription factors

Version 1.9.0

Date 2022-03-10

Description planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in PlantTFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.

License GPL-3

URL https://github.com/almeidasilvaf/planttfhunter

BugReports https://support.bioconductor.org/t/planttfhunter

biocViews Software, Transcription, FunctionalPrediction, GenomeAnnotation, FunctionalGenomics, HiddenMarkovModel, Sequencing, Classification

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.1

SystemRequirements HMMER <http://hmmer.org/>

Imports Biostrings, SummarizedExperiment, utils, methods

Suggests BiocStyle, covr, sessioninfo, knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

Depends R (>= 4.2.0)

LazyData false

git_url https://git.bioconductor.org/packages/planttfhunter

git_branch devel

git_last_commit fe24d82

git_last_commit_date 2025-04-15

Repository Bioconductor 3.22

9

Date/Publication 2025-07-17

Author Fabrício Almeida-Silva [aut, cre] (ORCID: <https://orcid.org/0000-0002-5314-2964>), Yves Van de Peer [aut] (ORCID: <https://orcid.org/0000-0003-4327-3730>)

Maintainer Fabrício Almeida-Silva <fabricio_almeidasilva@hotmail.com>

Contents

planttfhunter-package	•		•	•						•	•											•	•						•							•	2
annotate_pfam			•																				•														3
$classification_scheme$	•		•	•						•	•	•										•	•		•	•	•		•							•	3
classify_tfs																																					
get_tf_counts	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•					•		•	5
gsu																																					
gsu_annotation																																					
gsu_families																																					
hmmer_is_installed .																																					
tf_counts	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	8

Index

planttfhunter-package planttfhunter: Identification and classification of plant transcription factors

Description

planttfhunter is used to identify plant transcription factors (TFs) from protein sequence data and classify them into families and subfamilies using the classification scheme implemented in Plant-TFDB. TFs are identified using pre-built hidden Markov model profiles for DNA-binding domains. Then, auxiliary and forbidden domains are used with DNA-binding domains to classify TFs into families and subfamilies (when applicable). Currently, TFs can be classified in 58 different TF families/subfamilies.

Author(s)

Maintainer: Fabrício Almeida-Silva <fabricio_almeidasilva@hotmail.com> (ORCID)

Authors:

• Yves Van de Peer <yves.vandepeer@psb.vib-ugent.be>(ORCID)

See Also

Useful links:

- https://github.com/almeidasilvaf/planttfhunter
- Report bugs at https://support.bioconductor.org/t/planttfhunter

2

annotate_pfam

Description

PFAM domains are assigned to each sequence using HMMER.

Usage

annotate_pfam(seq = NULL, evalue = 1e-05)

Arguments

seq	An AAStringSet object as returned by Biostrings::readAAStringSet(). The sequences in this object must represent only the translated sequences of primary (or longest) transcripts.
evalue	Numeric indicating the E-value threshold for hmmsearch to be used for domains without pre-defined domain cutoffs. Only valid if parameter mode = 'local'. Default: 1e-05.

Value

A 2-column data frame with the variables **Gene** and **Domain**, which contain gene IDs and domain IDs, respectively.

Examples

```
data(gsu)
seq <- gsu[1:5]
if(hmmer_is_installed()) {
    annotate_pfam(seq)
}</pre>
```

classification_scheme Data frame of TF family classification scheme

Description

The classification scheme is the same as the one used by PlantTFDB.

Usage

data(classification_scheme)

classify_tfs

Format

A data frame with the following variables:

Family TF family name.

Subfamily TF subfamily name.

DBD DNA-binding domain

Auxiliary Auxiliary domain

Forbidden Forbidden domain

References

Jin, J., Tian, F., Yang, D. C., Meng, Y. Q., Kong, L., Luo, J., & Gao, G. (2016). PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic acids research, gkw982.

Examples

data(classification_scheme)

classify_tfs Identify TFs and classify them in families

Description

Identify TFs and classify them in families

Usage

```
classify_tfs(domain_annotation = NULL)
```

Arguments

```
domain_annotation
```

A 2-column data frame with the gene ID in the first column and the domain ID in the second column.

Value

A 2-column data frame with the variables **Gene** and **Family** representing gene ID and TF family, respectively.

Examples

```
data(gsu_annotation)
domain_annotation <- gsu_annotation
families <- classify_tfs(domain_annotation)</pre>
```

4

get_tf_counts Get TF frequencies for each species as a SummarizedExperiment object

Description

This function identifies and classifies TFs, and returns TF counts for each family as a Summarized-Experiment object

Usage

```
get_tf_counts(proteomes, species_metadata = NULL)
```

Arguments

proteomes List of AAStringSet objects

species_metadata

(Optional) A data frame containing species names in row names (names must match element names in the **proteomes** list), and species metadata (e.g., taxo-nomic information, ecological information) in columns. If NULL, the colData of the SummarizedExperiment object will be empty.

Value

A SummarizedExperiment object containing transcription factor frequencies per family in each species, as well as species metadata (if **species_metadata** is not NULL).

Examples

```
data(gsu)
set.seed(123)
# Pick random subsets of 100 genes to simulate other species
proteomes <- list(</pre>
    Gsu1 = gsu[sample(names(gsu), 50, replace = FALSE)],
    Gsu2 = gsu[sample(names(gsu), 50, replace = FALSE)],
    Gsu3 = gsu[sample(names(gsu), 50, replace = FALSE)],
    Gsu4 = gsu[sample(names(gsu), 50, replace = FALSE)]
)
# Create species metadata
species_metadata <- data.frame(</pre>
    row.names = names(proteomes),
    Division = "Rhodophyta",
    Origin = c("US", "Belgium", "China", "Brazil")
)
# Get SummarizedExperiment object
if(hmmer_is_installed()) {
    se <- get_tf_counts(proteomes, species_metadata)</pre>
}
```

gsu

Description

Data obtained from PLAZA Diatoms. Only genes containing domains used for TF family classification were kept for package size issues.

Usage

data(gsu)

Format

An AAStringSet object as returned by Biostrings::readAAStringSet().

References

Osuna-Cruz, C. M., Bilcke, G., Vancaester, E., De Decker, S., Bones, A. M., Winge, P., ... & Vandepoele, K. (2020). The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms. Nature communications, 11(1), 1-13.

Examples

data(gsu)

gsu_annotation	Domain annotation for the algae species Galdieria sulphuraria The
	data set was created using the funcion annotate_pfam() in local
	mode.

Description

Domain annotation for the algae species Galdieria sulphuraria

The data set was created using the function annotate_pfam() in local mode.

Usage

```
data(gsu_annotation)
```

Format

A 2-column data frame with the following variables:

Gene ID

Annotation Domain ID or domain name when ID is not available in PFAM

Examples

data(gsu_annotation)

gsu_families

Description

TFs families of the algae species Galdieria sulphuraria

The data set was created using the funcion classify_tfs().

Usage

data(gsu_families)

Format

A 2-column data frame with the following variables:

Gene Gene ID Family TF family

Examples

data(gsu_families)

hmmer_is_installed Check if HMMER is installed

Description

Check if HMMER is installed

Usage

```
hmmer_is_installed()
```

Value

Logical indicating whether HMMER is installed or not.

Examples

hmmer_is_installed()

tf_counts

Description

Simulated species were created by sampling 100 genes from the example data set gsu with after set.seed(123).

Usage

data(tf_counts)

Format

A SummarizedExperiment with TF frequencies per family in each species in **assay** and species metadata in **colData**.

Examples

data(tf_counts)

Index

* datasets
 classification_scheme, 3
 gsu, 6
 gsu_annotation, 6
 gsu_families, 7
 tf_counts, 8
* internal
 planttfhunter-package, 2

 $\texttt{annotate_pfam, 3}$

classification_scheme, 3
classify_tfs, 4

get_tf_counts, 5
gsu, 6
gsu_annotation, 6
gsu_families, 7

hmmer_is_installed, 7

 $\label{eq:planttfhunter(planttfhunter-package), 2} planttfhunter-package, 2$

 $tf_counts, 8$