Package ‘poem’

July 18, 2025

Title POpulation-based Evaluation Metrics
Version 1.1.2

Description
This package provides a comprehensive set of external and internal evaluation metrics. It includes
metrics for assessing partitions or fuzzy partitions derived from clustering re-
sults, as well as for evaluating
subpopulation identification results within embeddings or graph representations. Addition-
ally, it provides metrics for
comparing spatial domain detection results against ground truth labels, and tools for visualiz-
ing spatial errors.
BugReports https://github.com/RoseYuan/poem/issues

License GPL (>= 3)

URL https://roseyuan.github.io/poem/
Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.3.2

Depends R (>=4.0)

Imports aricode, BiocNeighbors, BiocParallel, bluster, clevr, clue,
cluster, elsa, fclust, igraph, Matrix, matrixStats, mclustcomp,
methods, pdist, sp, spdep, stats, utils, SpatialExperiment,
SummarizedExperiment

Suggests testthat (>= 3.0.0), BiocStyle, knitr, DT, dplyr, kableExtra,
scico, cowplot, ggnetwork, ggplot2, tidyr, STexampleData

VignetteBuilder knitr

biocViews DimensionReduction, Clustering, GraphAndNetwork, Spatial,
ATACSeq, SingleCell, RNASeq, Software, Visualization

Config/testthat/edition 3

git_url https://git.bioconductor.org/packages/poem
git_branch devel

git_last_commit 7367e0d

git_last_commit_date 2025-06-04

Repository Bioconductor 3.22

Date/Publication 2025-07-17

https://github.com/RoseYuan/poem/issues
https://roseyuan.github.io/poem/

Author Siyuan Luo [cre, aut] (ORCID: <https://orcid.org/0009-0007-6404-3244>),
Pierre-Luc Germain [aut, ctb] (ORCID:
<https://orcid.org/0000-0003-3418-4218>)

Maintainer Siyuan Luo <roseluosy@gmail.com>

Contents

.check_duplicated_samples
.compute_cluster_core_distance
ccompute_cross_dists L e
.compute_mutual_reach_dists L
.compute_pair_to_pair_dists L.
.convert_singleton_clusters_to_noiseol
An_density_separation L.
fn_density_sparseness e e e
.get_internal_objects
get_submatrix ... L.
CDbw e e e e e

findSpatialKNN
FMeasure e
fuzzyHardMetrics L e e
fuzzyHardMetrics2 L.
fuzzyHardSpotConcordance
fuzzyPartiionMetricso e e
getEmbeddingClassMetrics
getEmbeddingElementMetrics Lo
getEmbeddingGlobalMetrics L
getEmbeddingMetrics L.
getFuzzyLabel
getFuzzyPartitionElementMetrics L Lo
getFuzzyPartitionMetrics o
getGraphClassMetrics e
getGraphElementMetrics o L
getGraphMetrics
getNeighboringPairConcordance
getPairConcordance
getPartitionClassMetrics e
getPartitionElementMetrics o Lo
getPartitionGlobalMetrics
getPartitionMetrics e e
getSpatialClassExternalMetrics oL oo
getSpatialClassInternalMetrics Lo
getSpatialElementExternalMetrics Lo
getSpatialElementInternalMetrics
getSpatialExternalMetrics oL
getSpatialGlobalExternalMetrics

Contents

https://orcid.org/0009-0007-6404-3244
https://orcid.org/0000-0003-3418-4218

.check_duplicated_samples 3

Index

getSpatialGloballnternalMetrics oL 44
getSpatiallnternalMetrics Lo 45
knnComposition e 47
matchSets 47
metric_info s 48
mockData 48
nnWeightedAccuracy Lo 49
NOISY_IMOON « « . o v v v e ettt e e e e e e e e e e e e e 50
PAS 50
setMatchin@ACCUracy v it i e e 51
silhouetteWidths 51
spatial ARL L 52
SP_tOYS o v e e e e e e e e e 53
toyExamples 54

55

.check_duplicated_samples

Check Duplicated Samples

Description

Checks for duplicated samples in matrix X.

Usage

.check_duplicated_samples(X, threshold = 1e-09)

Arguments

X Numeric matrix of samples.

threshold Numeric, the distance threshold to consider samples as duplicates.
Value

None

.compute_cluster_core_distance

Compute Cluster Core Distance

Description

Computes the core distance for each point in a cluster.

Usage

.compute_cluster_core_distance(dists, d)

Arguments
dists Numeric matrix of distances.
d Integer, the dimensionality.
Value

Numeric vector of core distances for each point.

.compute_mutual_reach_dists

.compute_cross_dists Compute Cross Distances

Description

Computes the cross distances between two sets of indices in matrix X.

Usage

.compute_cross_dists(X, inds_a, inds_b, distance)

Arguments
X Numeric matrix of samples.
inds_a Integer vector of indices for the first set.
inds_b Integer vector of indices for the second set.
distance String specifying the distance metric.
Value

Numeric matrix of cross distances.

.compute_mutual_reach_dists
Compute Mutual Reachability Distances

Description

Computes the mutual reachability distances between points.

Usage

.compute_mutual_reach_dists(dists, d)

Arguments
dists Numeric matrix of distances.
d Float, the dimensionality.
Value

A list containing core distances and mutual reachability distances.

.compute_pair_to_pair_dists

.compute_pair_to_pair_dists
Compute Pair to Pair Distances

Description

Compute the pairwise distances between points in matrix X.

Usage

.compute_pair_to_pair_dists(X, distance = "euclidean")
Arguments

X Numeric matrix.

distance String specifying the metric to compute the distances.
Value

Numeric matrix of pairwise distances with self-distances set to Inf.

.convert_singleton_clusters_to_noise
Convert Singleton Clusters to Noise

Description

Converts clusters containing a single instance to noise.

Usage

.convert_singleton_clusters_to_noise(labels, noise_id)

Arguments
labels Integer vector of cluster IDs.
noise_id Integer, the ID for noise.
Value

Integer vector with singleton clusters converted to noise.

.fn_density_sparseness

.fn_density_separation
Density Separation of a Pair of Clusters

Description

Computes the density separation between two clusters.

Usage

.fn_density_separation(
cls_i,
cls_j,
dists,
internal_core_dists_i,
internal_core_dists_j

)

Arguments
cls_i Integer, first cluster index.
cls_j Integer, second cluster index.
dists Numeric matrix of distances.

internal_core_dists_i

Numeric vector of core distances for cluster i.
internal_core_dists_j

Numeric vector of core distances for cluster j.

Value

A list containing the cluster indices and their density separation.

.fn_density_sparseness

Density Sparseness of a Cluster

Description

Computes the density sparseness for a given cluster.

Usage

.fn_density_sparseness(cls_inds, dists, d, use_igraph_mst)

Arguments
cls_inds Integer vector of cluster indices.
dists Numeric matrix of distances.
d Integer, the dimensionality.

use_igraph_mst Logical flag to use MST implementation in igraph. Currently only mst from

igraph is implemented.

.get_internal_objects 7

Value

A list containing the density sparseness, internal core distances, and internal node indices.

.get_internal_objects Get Internal Objects

Description

Computes the internal nodes and edges using Minimum Spanning Tree.

Usage

.get_internal_objects(mutual_reach_dists, use_igraph_mst = TRUE)

Arguments

mutual_reach_dists
Numeric matrix representing mutual reachability distances.

use_igraph_mst Logical flag to use MST implementation in igraph. Currently only mst from
igraph is implemented.

Value

A list containing the indices of internal nodes and their edge weights.

.get_submatrix Get Sub matrix

Description

Extract a sub matrix from a matrix based on optional row and column indices.

Usage

.get_submatrix(arr, inds_a = NULL, inds_b = NULL)

Arguments
arr Numeric matrix.
inds_a Optional integer vector for row indices.
inds_b Optional integer vector for column indices.
Value

Numeric matrix representing the sub matrix.

8 CDbw

CDbw Calculate CDbw index

Description

Computes the CDbw-index (Halkidi and Vazirgiannis 2008; Halkidi, Vazirgiannis and Hennig,
2015). This function is directly copied from the fpc CRAN package and was written by Christian
Hennig. It is included here to reduce the package dependencies (since fpc has a few not-so-light
dependencies that aren’t required here).

Usage

CDbw(
X,
labels,
r =10,
s = seq(0.1, 0.8, by = 0.1),
clusterstdev = TRUE,
trace = FALSE

)
Arguments
X Something that can be coerced into a numerical matrix, with elements as rows.
labels A vector of integers with length =nrow(x) indicating the cluster for each obser-
vation.
r Number of cluster border representatives.
s Vector of shrinking factors.

clusterstdev Logical. If TRUE, the neighborhood radius for intra-cluster density is the within-
cluster estimated squared distance from the mean of the cluster; otherwise it is
the average of these over all clusters.

trace Logical; whether to print processing info.

Value

A vector with the following values (see refs for details):

cdbw value of CDbw index (the higher the better).
cohesion cohesion.
compactness compactness.
sep separation.
Author(s)

Christian Hennig

CHAOS 9

References

Halkidi, M. and Vazirgiannis, M. (2008) A density-based cluster validity approach using multi-
representatives. Pattern Recognition Letters 29, 773-786.

Halkidi, M., Vazirgiannis, M. and Hennig, C. (2015) Method-independent indices for cluster vali-
dation. In C. Hennig, M. Meila, F. Murtagh, R. Rocci (eds.) Handbook of Cluster Analysis, CRC
Press/Taylor & Francis, Boca Raton.

Examples

d1 <- mockData()
CDbw(d1[,seq_len(2)]1, d1[,3]1)

CHAQS Calculate CHAOS score

Description

CHAOS score measures the clustering performance by calculating the mean length of the graph
edges in the 1-nearest neighbor (INN) graph for each cluster, averaged across clusters. Lower
CHAOS score indicates better spatial domain clustering performance.

Usage

CHAOS(labels, location, BNPARAM = NULL)

Arguments
labels Cluster labels.
location A numeric data matrix containing location information, where rows are points
and columns are location dimensions.
BNPARAM BNPARAM object passed to findKNN specifying the KNN approximation method
to use. Defaults to exact for small datasets, and Annoy for larger ones.
Value

A numeric value for CHAOS score.

Examples

data(sp_toys)

data <- sp_toys

CHAOS(data$label, datal,c("x", "y")1)
CHAOS(data$p1, datal,c("x", "y")1)
CHAOS (data$p2, datal,c("x", "y")1)

10 dbcv

dbcv Calculate DBCV Metric

Description

Compute the DBCV (Density-Based Clustering Validation) metric.

Usage
dbcv(
X,
labels,
distance = "euclidean”,
noise_id = -1,

check_duplicates = FALSE,
use_igraph_mst = TRUE,
BPPARAM = BiocParallel::SerialParam(),

Arguments
X Numeric matrix of samples.
labels Integer vector of cluster IDs.
distance String specifying the distance metric. "sqgeuclidean”, or possible method in
stats::dist(). By default "euclidean”.
noise_id Integer, the cluster ID in y for noise (default -1).

check_duplicates
Logical flag to check for duplicate samples.

use_igraph_mst Logical flag to use igraph’s MST implementation. Currently only mst from
igraph is implemented.

BPPARAM BiocParallel params for multithreading (default none)
Ignored

Details

This implementation will not fully reproduce the results of other existing implementations (e.g.
https://github.com/FelSiq/DBCV) due to the different algorithms used for computing the Min-
imum Spanning Tree.

Value
A list:
vcs Numeric vector of validity index for each cluster.
dbcv Numeric value representing the overall DBCV metric.
References

Davoud Moulavi, et al. 2014; 10.1137/1.9781611973440.96.

https://github.com/FelSiq/DBCV

ELSA 11

Examples

data(noisy_moon)

data <- noisy_moon

dbecv(datal, c("x", "y")], data$kmeans_label)
dbcv(datal, c("x", "y")J, data$hdbscan_label)

ELSA Calculate ELSA scores

Description

Calculating the Entropy-based Local indicator of Spatial Association (ELSA) scores, which consist
of Ea, Ec and the overall ELSA.

Usage

ELSA(labels, location, k = 10)

Arguments
labels Cluster labels.
location A numerical matrix containing the location information, with rows as samples
and columns as location dimensions.
k Number of nearest neighbors.
Value

A dataframe containing the Ea, Ec and ELSA for all samples in the dataset.

References

Naimi, Babak, et al., 2019; 10.1016/j.spasta.2018.10.001

Examples

data(sp_toys)

data <- sp_toys

ELSA(data$label, datal,c("x", "y")1, k=6)
ELSA(datas$pl, datal,c("x”, "y")]1, k=6)
ELSA(data$p2, datal,c("x", "y")1, k=6)

12

emb2snn

emb2knn

Computes k nearest neighbors from embedding

Description

Computes k nearest neighbors from embedding.

Usage

emb2knn(x, k, BNPARAM = NULL)

Arguments

X

k
BNPARAM

Value

A knn list.

Examples

d1 <- mockData()

A numeric matrix (with features as columns and items as rows) from which
nearest neighbors will be computed.

The number of nearest neighbors.

A BiocNeighbors parameter object to compute kNNs. Ignored unless the input
is a matrix or data.frame. If omitted, the Annoy approximation will be used if
there are more than 500 elements.

emb2knn(as.matrix(d1[,seq_len(2)]),k=5)

emb2snn

Computes shared nearest neighbors from embedding

Description

computes shared nearest neighbors from embedding.

Usage

emb2snn(x, k, type = "rank"”, BNPARAM = NULL)

Arguments

X

type

BNPARAM

A numeric matrix (with features as columns and items as rows) from which

nearest neighbors will be computed.

The number of nearest neighbors.

A string specifying the type of weighting scheme to use for shared neighbors.

Possible choices include "rank", "number", and "jaccard". See type in bluster: :neighborsToSNNGr
for details.

A BiocNeighbors parameter object to compute kNNs. Ignored unless the input

is a matrix or data.frame. If omitted, the Annoy approximation will be used if

there are more than 500 elements.

findSpatialKNN 13

Value

An igraph object.

Examples

d1 <- mockData()
emb2snn(as.matrix(d1[,seq_len(2)1),k=5)

findSpatialKNN Find the k nearest spatial neighbors

Description

For a given dataset, find the k nearest neighbors for each object based on their spatial locations,
with the option of handling ties.

Usage

findSpatialkKNN(
location,
K,
keep_ties = TRUE,
useMedianDist = FALSE,
BNPARAM = NULL

)
Arguments

location A numeric data matrix containing location information, where rows are points
and columns are location dimensions.

k The number of nearest neighbors to look at.

keep_ties A Boolean indicating if ties are counted once or not. If TRUE, neighbors of the
same distances will be included even if it means returning more than k neigh-
bors.

useMedianDist Use the median distance of the k nearest neighbor as maximum distance to be
included. Ignored if keep_ties=FALSE.

BNPARAM BNPARAM object passed to findKNN specifying the kNN approximation method
to use. Defaults to exact for small datasets, and Annoy for larger ones.

Value

A list of indices.

Examples

data(sp_toys)
data <- sp_toys
findSpatialkKNN(datal,c("x", "y")], k=6)

14 fuzzyHardMetrics

FMeasure Calculate F measure

Description
Compute the F measure between two clustering results. This is directly copied from the package
FlowSOM.

Usage

FMeasure(true, pred, silent = TRUE)

Arguments

true Array containing real cluster labels for each sample

pred Array containing predicted cluster labels for each sample

silent Logical, if FALSE, print some information about precision and recall
Value

F measure score

fuzzyHardMetrics Compute fuzzy-hard versions of pair-sorting partition metrics

Description

Computes fuzzy-hard versions of pair-sorting partition metrics to compare a hard clustering with
both a fuzzy and hard truth. This was especially designed for cases where the fuzzy truth represents
an uncertainty of a hard truth. Briefly put, the maximum of the pair concordance between the
clustering and either the hard or the fuzzy truth is used, and the hard truth is used to compute
completeness. See fuzzyPartitionMetrics for the more standard implementation of the metrics.

Usage

fuzzyHardMetrics(
hardTrue,
fuzzyTrue,
hardPred,
nperms = NULL,
returnElementPairAccuracy = FALSE,
lowMemory = NULL,
verbose = TRUE,
BPPARAM = BiocParallel::SerialParam()

fuzzyHardMetrics

Arguments

hardTrue

fuzzyTrue

hardPred

nperms

15

An atomic vector coercible to a factor or integer vector containing the true hard
labels. Must have the same length as hardPred.

A object coercible to a numeric matrix with membership probability of elements
(rows) in clusters (columns). Must have the same number of rows as the length
of hardTrue. Also note that the columns of fuzzyTrue should be in the order
of the levels (or integer values) of hardTrue.

An atomic vector coercible to a factor or integer vector containing the predicted
hard labels.

The number of permutations (for correction for chance). If NULL (default), a
first set of 10 permutations will be run to estimate whether the variation across
permutations is above 0.0025, in which case more (max 1000) permutations will
be run.

returnElementPairAccuracy

lowMemory

verbose

BPPARAM

Value

A list of metrics:

NDC
ACI

fuzzyWH
fuzzyWC
fuzzyAWH
fuzzyAWC

Author(s)

Logical. If TRUE, returns the per-element pair accuracy instead of the various
parition-level and dataset-level metrics. Default FALSE.

Logical; whether to use the slower, low-memory algorithm. By default this is
enabled if the projected memory usage is higher than ~2GB.

Logical; whether to print info and warnings, including the standard error of
the mean across permutations (giving an idea of the precision of the adjusted
metrics).

BiocParallel params for multithreading (default none)

Hullermeier’s NDC (fuzzy rand index)

Ambrosio’s Adjusted Concordance Index (ACI), i.e. a permutation-based fuzzy
version of the adjusted Rand index.

Fuzzy Wallace Homogeneity index
Fuzzy Wallace Completeness index
Adjusted fuzzy Wallace Homogeneity index
Adjusted fuzzy Wallace Completeness index

Pierre-Luc Germain

References

Hullermeier et al. 2012; 10.1109/TFUZZ.2011.2179303;
D’ Ambrosio et al. 2021; 10.1007/s00357-020-09367-0

See Also

fuzzyPartitionMetrics().

16 fuzzyHardMetrics2
Examples
generate a fuzzy truth:
fuzzyTrue <- matrix(c(
0.95, 0.025, 0.025,
0.98, 0.01, 0.01,
0.96, 0.02, 0.02,
0.95, 0.04, 0.01,
0.95, 0.01, 0.04,
0.99, 0.005, 0.005,
0.025, 0.95, 0.025,
0.97, 0.02, 0.01,
0.025, 0.025, ©.95),
ncol = 3, byrow=TRUE)
a hard truth:
hardTrue <- apply(fuzzyTrue,1,FUN=which.max)
some predicted labels:
hardPred <- ¢(1,1,1,1,1,1,2,2,2)
fuzzyHardMetrics(hardTrue, fuzzyTrue, hardPred, nperms=3)
fuzzyHardMetrics2 Compute fuzzy-hard metrics with lower memory requirement

Description

This is a slightly slower, but low-memory version of fuzzyHardMetrics.

Usage

fuzzyHard
hardTru
fuzzyTr
hardPre
nperms
returnt
verbose
BPPARAM

Arguments

hardTrue

fuzzyTrue

hardPred

nperms

Metrics2(

€,

ue,

d,

= 10,

lementPairAccuracy = FALSE,

= TRUE,

= BiocParallel::SerialParam()

An atomic vector coercible to a factor or integer vector containing the true hard
labels. Must have the same length as hardPred

A object coercible to a numeric matrix with membership probability of elements
(rows) in clusters (columns). Must have the same number of rows as the length
of hardTrue. Also note that the columns of fuzzyTrue should be in the order
of the levels (or integer values) of hardTrue.

An atomic vector coercible to a factor or integer vector containing the predicted
hard labels.

The number of permutations (for correction for chance). If NULL (default), a
first set of 10 permutations will be run to estimate whether the variation across
permutations is above 0.0025, in which case more (max 1000) permutations will
be run.

fuzzyHardMetrics2 17

returnElementPairAccuracy

verbose

BPPARAM

Value

Logical. If TRUE, returns the per-element pair accuracy instead of the various
parition-level and dataset-level metrics. Default FALSE.

Logical; whether to print info and warnings, including the standard error of
the mean across permutations (giving an idea of the precision of the adjusted
metrics).

BiocParallel params for multithreading (default none)

A list of metrics:

NDC Hullermeier’s NDC (fuzzy rand index)

ACI Ambrosio’s Adjusted Concordance Index (ACI), i.e. a permutation-based fuzzy
version of the adjusted Rand index.

fuzzyWH Fuzzy Wallace Homogeneity index

fuzzyWC Fuzzy Wallace Completeness index

fuzzyAWH Adjusted fuzzy Wallace Homogeneity index

fuzzyAWC Adjusted fuzzy Wallace Completeness index

Author(s)

Pierre-Luc Germain

References

Hullermeier et al. 2012; 10.1109/TFUZZ.2011.2179303;
D’ Ambrosio et al. 2021; 10.1007/s00357-020-09367-0

See Also

fuzzyHardMetrics()

Examples

generate a fuzzy truth:
fuzzyTrue <- matrix(c(

0.95, 0.025, 0.025,
0.98, 0.01, 0.01,
0.96, 0.02, 0.02,
0.95, 0.04, 0.01,
0.95, 0.01, 0.04,
0.99, 0.005, 0.005,
0.025, 0.95, 0.025,
0.97, 0.02, 0.01,
0.025, 0.025, ©.95),

ncol = 3, byrow=TRUE)

a hard truth:

hardTrue <- apply(fuzzyTrue,1,FUN=which.max)

some predicted labels:

hardPred <- c¢(1,1,1,1,1,1,2,2,2)

poem: : : fuzzyHardMetrics2(hardTrue, fuzzyTrue, hardPred, nperms=3)

18 fuzzyHardSpotConcordance

fuzzyHardSpotConcordance
Per-element maximal concordance between a hard and a fuzzy parti-
tion

Description

Per-element maximal concordance between a hard clustering and hard and fuzzy ground truth la-
bels.

Usage

fuzzyHardSpotConcordance(
hardTrue,
fuzzyTrue,
hardPred,
useNegatives = TRUE,
verbose = TRUE

)
Arguments
hardTrue A vector of true cluster labels
fuzzyTrue A object coercible to a numeric matrix with membership probability of elements
(rows) in clusters (columns). Must have the same number of rows as the length
of hardTrue.
hardPred A vector of predicted cluster labels

useNegatives Logical; whether to include negative pairs in the concordance score (tends to
result in a larger overall concordance and lower dynamic range of the score).
Default TRUE.

verbose Logical; whether to print expected memory usage for large datasets.

Value

A numeric vector of concordance scores for each element of hardPred

Examples

generate a fuzzy truth:
fuzzyTrue <- matrix(c(

0.95, 0.025, 0.025,
0.98, 0.01, 0.01,
0.96, 0.02, 0.02,
0.95, 0.04, 0.01,
0.95, 0.01, 0.04,
0.99, 0.005, 0.005,
0.025, 0.95, 0.025,
0.97, 0.02, 0.01,
0.025, 0.025, 0.95),

ncol = 3, byrow=TRUE)
a hard truth:

fuzzyPartitionMetrics

19

hardTrue <- apply(fuzzyTrue,1,FUN=which.max)

some predicted labels:

hardPred <- c¢(1,1,1,1,1,1,2,2,2)
fuzzyHardSpotConcordance(hardTrue, fuzzyTrue, hardPred)

fuzzyPartitionMetrics Compute fuzzy-fuzzy versions of pair-sorting partition metrics

Description

Computes fuzzy versions of pair-sorting partition metrics. This is largely based on the permutation-
based implementation by Antonio D’ Ambrosio from the ConsRankClass package, modified to also
compute the fuzzy versions of the adjusted Wallace indices, implement multithreading, and adjust
the number of permutations according to their variability.

Usage

fuzzyPartitionMetrics(

P,
Q,

computeWallace = TRUE,

nperms = NULL,

verbose = TRUE,
returnElementPairAccuracy = FALSE,
BPPARAM = BiocParallel::SerialParam(),

tnorm = c("product”, "min", "lukasiewicz")
)
Arguments

P A object coercible to a numeric matrix with membership probability of elements
(rows) in ground-truth classes (columns).

Q A object coercible to a numeric matrix with membership probability of elements
(rows) in predicted clusters (columns). Must have the same number of rows as
P.

computeWallace Logical; whether to compute the individual fuzzy versions of the Wallace indices
(increases running time).

nperms The number of permutations (for correction for chance). If NULL (default), a
first set of 10 permutations will be run to estimate whether the variation across
permutations is above 0.0025, in which case more (max 1000) permutations will
be run.

verbose Logical; whether to print info and warnings, including the standard error of

the mean across permutations (giving an idea of the precision of the adjusted
metrics).

returnElementPairAccuracy

BPPARAM
tnorm

Logical. If TRUE, returns the per-element pair accuracy instead of the various
parition-level and dataset-level metrics. Default FALSE.

BiocParallel params for multithreading (default none)

Which type of t-norm operation to use for class membership of pairs (either
product, min, or lukasiewicz) when calculating the Wallace indices. Does not
influence the NDC/ACI metrics.

20 getEmbeddingClassMetrics

Value

When returnElementPairAccuracy is FALSE, return a list of metrics:

NDC Hullermeier’s NDC (fuzzy rand index)

ACI Ambrosio’s Adjusted Concordance Index (ACI), i.e. a permutation-based fuzzy
version of the adjusted Rand index.

fuzzyWH Fuzzy Wallace Homogeneity index

fuzzyWC Fuzzy Wallace Completeness index

fuzzyAWH Adjusted fuzzy Wallace Homogeneity index

fuzzyAWC Adjusted fuzzy Wallace Completeness index

Author(s)

Pierre-Luc Germain

References

Hullermeier et al. 2012; 10.1109/TFUZZ.2011.2179303;
D’ Ambrosio et al. 2021; 10.1007/s00357-020-09367-0

Examples

generate fuzzy partitions:

getEmbeddingClassMetrics
getEmbeddingClassMetrics

Description

Computes class-level, embedding-based metrics.

Usage
getEmbeddingClassMetrics(
X,
labels,
metrics = c("meanSW", "minSW", "pnSW", "dbcv"),
distance = "euclidean”,
)
Arguments
X A data.frame or matrix (with features as columns and items as rows) from which
the metrics will be computed.
labels A vector containing the labels of the predicted clusters. Must be a vector of
characters, integers, numerics, or a factor, but not a list.
metrics The metrics to compute.
distance The distance metric to use (default euclidean).

Optional arguments. See details.

getEmbeddingElementMetrics

Value

A data.frame of metrics for each node/element of x.

21

getEmbeddingElementMetrics
getEmbeddingElementMetrics

Description

Computes element-level, embedding-based metrics.

Usage
getEmbeddingElementMetrics(
X ’
labels,
metrics = c("SW"),
distance = "euclidean”,
)
Arguments
X A data.frame or matrix (with features as columns and items as rows) from which
the metrics will be computed.
labels A vector containing the labels of the predicted clusters. Must be a vector of
characters, integers, numerics, or a factor, but not a list.
metrics The metrics to compute. Currently, only the silhouette width is supported at the
node-level.
distance The distance metric to use (default euclidean).
Optional arguments. See details.
Value

A data.frame of metrics for each node/element of x.

getEmbeddingGlobalMetrics
getEmbeddingGlobalMetrics

Description

Computes dataset-level, embedding-based metrics.

22 getEmbeddingMetrics

Usage
getEmbeddingGlobalMetrics(
X ’
labels,
metrics = c("meanSW", "meanClassSW"”, "pnSW", "minClassSW", "cdbw”, "cohesion",
"compactness”, "sep”, "dbcv"),
distance = "euclidean”,
)
Arguments
X A data.frame or matrix (with features as columns and items as rows) from which
the metrics will be computed.
labels A vector containing the labels of the predicted clusters. Must be a vector of
characters, integers, numerics, or a factor, but not a list.
metrics The metrics to compute.
distance The distance metric to use (default euclidean).
Optional arguments. See details.
Value

A data.frame (with 1 row) of metrics.

getEmbeddingMetrics Compute embedding-based metrics

Description

Computes embedding-based metrics for the specified level.

Usage
getEmbeddingMetrics(
X ’
labels,
metrics = NULL,
distance = "euclidean”,
level = "class”,
)
Arguments
X A data.frame or matrix (with features as columns and items as rows) from which
the metrics will be computed.
labels A vector containing the labels of the predicted clusters. Must be a vector of

characters, integers, numerics, or a factor, but not a list.

metrics The metrics to compute. See details.

getFuzzyLabel 23

distance The distance metric to use (default euclidean).
level The level to calculate the metrics. Options include "element”, "class” and
"dataset"”.

Optional arguments. See details.

Details
The allowed values for metrics depend on the value of level:

e If level = "element”, the allowed metrics are: "SW".
e If level = "class”, the allowed metrics are: "meanSW”, "minSW"”, "pnSW", "dbcv".

e If level = "dataset”, the allowed metrics are: "meanSW", "meanClassSW"”, "pnSW"”, "minClassSW",

"cdbw”, "cohesion”, "compactness”, "sep”, "dbcv".
The function(s) that the optional arguments . . . passed to depend on the value of level:

e If level = "element”, optional arguments are passed to stats: :dist().
e If level = "class”, optional arguments are passed to dbcv ().

* If level = "dataset”, optional arguments are passed to dbcv () or CDbw().

Value

A data.frame of metrics.

Examples

d1 <- mockData()
getEmbeddingMetrics(di1[,seq_len(2)], labels=d1$class,

metrics=c("meanSW", "minSW"”, "pnSW”, "dbcv"), level="class")
getFuzzylLabel Get fuzzy representation of labels
Description

Get fuzzy representation of labels according to the spatial neighborhood label composition.

Usage
getFuzzylabel (labels, location, k = 6, alpha = 0.5, ...)
Arguments
labels An anomic vector of cluster labels
location A matrix or data.frame of coordinates
k The wished number of nearest neighbors
alpha The parameter to control to what extend the spot itself contribute to the class

composition calculation. "equal” means it is weighted the same as other neigh-
bors. A numeric value between @ and 1 means the weight of the frequency
contribution for the spot itself, and the frequency contribution for its knn is then
1-alpha. By default @.5.

Passed to findSpatialKNN().

24

Value

getFuzzyPartitionElementMetrics

A matrix of fuzzy memberships.

Examples

data(sp_toys)
data <- sp_toys

getFuzzylLabel (data$label, datal,c("x", "y")1, k=6)

getFuzzyPartitionElementMetrics

getFuzzyPartitionElementMetrics

Description

Computes a selection of external fuzzy clustering evaluation metrics at the element level.

Usage

getFuzzyPartitionElementMetrics(
hardTrue = NULL,

fuzzyTrue =

NULL,

hardPred = NULL,
fuzzyPred = NULL,

fuzzy_true =
fuzzy_pred =

TRUE,
FALSE,

metrics = c("fuzzySPC"),

useNegatives

= TRUE,

verbose = TRUE,
usePairs = TRUE

Arguments

hardTrue
fuzzyTrue

hardPred
fuzzyPred

fuzzy_true
fuzzy_pred
metrics

useNegatives

verbose
usePairs

A vector of true cluster labels

A object coercible to a numeric matrix with membership probability of elements
(rows) in clusters (columns). Must have the same number of rows as the length
of hardTrue.

A vector of predicted cluster labels

A object coercible to a numeric matrix with membership probability of elements
(rows) in clusters (columns).

Logical; whether the truth is fuzzy.

Logical; whether the prediction is fuzzy.

The metrics to compute. Currently only "fuzzySPC" is included at the element
level.

Logical; whether to include negative pairs in the concordance score (tends to
result in a larger overall concordance and lower dynamic range of the score).
Default TRUE.

Logical; whether to print expected memory usage for large datasets.

Logical; whether to compute over pairs instead of elements. Only useful when
fuzzy_true=TRUE and fuzzy_pred=FALSE.

getFuzzyPartitionMetrics 25

Value

A dataframe of metric values.

getFuzzyPartitionMetrics
Compute external metrics for fuzzy clusterings

Description

Computes a selection of external fuzzy clustering evaluation metrics.

Usage

getFuzzyPartitionMetrics(
hardTrue = NULL,
fuzzyTrue = NULL,
hardPred = NULL,
fuzzyPred = NULL,
metrics = c("fuzzyWH", "fuzzyAWH", "fuzzyWC", "fuzzyAWC"),
level = "class”,
nperms = NULL,
verbose = TRUE,
BPPARAM = BiocParallel::SerialParam(),
useNegatives = TRUE,
usePairs = NULL,
lowMemory = NULL,

)
Arguments

hardTrue An atomic vector coercible to a factor or integer vector containing the true hard
labels.

fuzzyTrue A object coercible to a numeric matrix with membership probability of elements
(rows) in clusters (columns).

hardPred An atomic vector coercible to a factor or integer vector containing the predicted
hard labels.

fuzzyPred A object coercible to a numeric matrix with membership probability of elements
(rows) in clusters (columns).

metrics The metrics to compute. See details.

level The level to calculate the metrics. Options include "element”, "class” and
"dataset”.

nperms The number of permutations (for correction for chance). If NULL (default), a
first set of 10 permutations will be run to estimate whether the variation across
permutations is above 0.0025, in which case more (max 1000) permutations will
be run.

verbose Logical; whether to print info and warnings, including the standard error of

the mean across permutations (giving an idea of the precision of the adjusted
metrics).

26 getFuzzyPartitionMetrics

BPPARAM BiocParallel params for multithreading (default none)

useNegatives Logical; whether to include negative pairs in the concordance score (tends to
result in a larger overall concordance and lower dynamic range of the score).

Default TRUE.

usePairs Logical; whether to compute over pairs instead of elements Recommended and
TRUE by default.

lowMemory Logical, whether to use a low memory mode. This is only useful whenhardTrue

and fuzzyPred is used. If TRUE, the function will compute the metrics in a low
memory mode, which is slower but uses less memory. If FALSE, the function
will compute the metrics in a high memory mode, which is faster but uses more
memory. By default it is set automatically based on the size of the input data.
See fuzzyHardMetrics.

Optional arguments for fuzzyPartitionMetrics: tnorm. Only useful when
fuzzyTrue and fuzzyPred is used.

Details
The allowed values for metrics depend on the value of level:

e If level = "element”, the allowed metrics are: "fuzzySPC".
e Iflevel = "class”, the allowed metrics are: "fuzzyWH", "fuzzyAWH", "fuzzyWC", "fuzzyAWC".

e If level = "dataset”, the allowed metricsare: "fuzzyRI", "fuzzyARI", "fuzzyWH", "fuzzyAWH",
"fuzzyWC", "fuzzyAWC".

Value

A dataframe of metric results.

Examples

generate fuzzy partitions:
ml <- matrix(c(0.95, 0.025, 0.025,
0.98, 0.01, @.01,
.96, 0.02, 0.02,
.95, 0.04, 0.01,
.95, 0.01, 0.04,
.99, 0.005, 0.005,
.025, 0.95, 0.025,
.97, 0.02, 0.01,
.025, 0.025, 0.95),
ncol = 3, byrow=TRUE)
m2 <- matrix(c(@.95, 0.025, 0.025,
.98, 0.01, 0.01,
.96, 0.02, 0.02,
.025, 0.95, 0.025,
.02, 0.96, 0.02,
.01, 0.98, 0.01,
.05, 0.05, 0.95,
.02, 0.02, 0.96,
.01, 0.01, 0.98),
ncol = 3, byrow=TRUE)
colnames(m1) <- colnames(m2) <- LETTERS[seq_len(3)]
getFuzzyPartitionMetrics(fuzzyTrue=m1, fuzzyPred=m2, level="class")

[SENSEECSEEC IR I IS

[SENSENSENSENS B SEIS

getGraphClassMetrics

generate a fuzzy truth:
fuzzyTrue

0.
.98,
.96,
.95,
.95,
.99,

[SEESENSENSENS BN IS IS

95,

0
0
0
0
0
0

<- matrix(c(

.025, 0.025,
.01, 0.01,
.02, 0.02,
.04, 0.01,
.01, 0.04,
.005, 0.005,
.025, 0.95, 0.025,
.97, 0.02, 0.01,
.025, 0.025, 0.95),

ncol = 3, byrow=TRUE)
a hard truth:
hardTrue <- apply(fuzzyTrue,1,FUN=which.max)
some predicted labels:
hardPred <- c¢(1,1,1,1,1,1,2,2,2)

getFuzzyPartitionMetrics(hardPred=hardPred, hardTrue=hardTrue,
fuzzyTrue=fuzzyTrue, nperms=3, level="class")
getFuzzyPartitionMetrics(hardTrue=hardPred, hardPred=hardTrue,
fuzzyPred=fuzzyTrue, nperms=3, level="class")

27

getGraphClassMetrics getGraphClassMetrics

Description

Computes a selection of supervised graph evaluation metrics using ground truth class labels. The
metrics are reported (as average) per class.

Usage

getGraphClassMetrics(

X7
labels,
metrics = c("SI", "NP", "AMSP" 6 "PWC", "NCE"),

directed = NULL,

S4 method for signature 'list'

getGraphClassMetrics(x, labels, metrics,

S4 method for signature 'data.frame'
getGraphClassMetrics(

X,
labels,

metrics,
directed = NULL,

K,

shared = FALSE,

directed = NULL, k = NULL,

)

28

getGraphClassMetrics

S4 method for signature 'matrix’
getGraphClassMetrics(

X’

labels,
metrics,

directed = NULL,

K,

shared = FALSE,

)

S4 method for signature 'igraph'
getGraphClassMetrics(

X’

labels,

metrics = c("SI", "NP", "AMSP", "PWC", "NCE"),
directed = NULL,

)

S4 method for signature 'dist'
getGraphClassMetrics(

X’

labels,

metrics = c("SI", "NP", "AMSP", "PWC", "NCE"),
directed = NULL,

Arguments

X

labels

metrics

directed

shared

Value

Either an igraph object, a list of nearest neighbors (see details below), or a
data.frame or matrix (with features as columns and items as rows) from which
nearest neighbors will be computed.

Either a factor or a character vector indicating the true class label of each element
(i.e. row or vertex) of x.

The metrics to compute. See details.

Logical; whether to compute the metrics in a directed fashion. If left to NULL,
conventional choices will be made per metric (adhesion, cohesion, PWC AMSP
undirected, others directed).

Optional arguments for emb2knn() or emb2snn().

The number of nearest neighbors to compute and/or use. Can be omitted if x is
a graph or list of nearest neighbors.

Logical; whether to use a shared nearest neighbor network instead of a nearest
neighbor network. Ignored if x is not an embedding or dist object.

A data.frame of metrics for each class.

getGraphElementMetrics 29

getGraphElementMetrics
getGraphElementMetrics

Description

Computes a selection of supervised graph evaluation metrics using ground truth class labels. The
metrics are reported (as average) per node/element.

Usage
getGraphElementMetrics(x, labels, directed = NULL, ...)

S4 method for signature 'list'
getGraphElementMetrics(x, labels, metrics, directed = NULL, k = NULL, ...)

S4 method for signature 'data.frame'
getGraphElementMetrics(

X,

labels,

metrics,

directed = NULL,

kr

shared = FALSE,

)

S4 method for signature 'matrix’
getGraphElementMetrics(

X,

labels,

metrics,

directed = NULL,

K,

shared = FALSE,

)

S4 method for signature 'igraph'

getGraphElementMetrics(x, labels, directed = NULL, ...)

S4 method for signature 'dist'

getGraphElementMetrics(x, labels, directed = NULL, ...)

Arguments

X Either an igraph object, a list of nearest neighbors (see details below), or a
data.frame or matrix (with features as columns and items as rows) from which
nearest neighbors will be computed.

labels Either a factor or a character vector indicating the true class label of each element

(i.e. row or vertex) of x.

30

directed

metrics
k

shared

Value

getGraphMetrics

Logical; whether to compute the metrics in a directed fashion. If left to NULL,
conventional choices will be made per metric (adhesion, cohesion, PWC AMSP
undirected, others directed).

Optional arguments for emb2knn() or emb2snn().
The metrics to compute. See details.

The number of nearest neighbors to compute and/or use. Can be omitted if x is
a graph or list of nearest neighbors.

Logical; whether to use a shared nearest neighbor network instead of a nearest
neighbor network. Ignored if x is not an embedding or dist object.

A data.frame of metrics for each node/element of x.

getGraphMetrics

Compute graph-based metrics

Description

Computes a selection of graph evaluation metrics using class labels.

Usage

getGraphMetrics(

X’
labels,

metrics = NULL,
directed = NULL,

k =10,
shared = FALSE,
level = "class”,
)
Arguments
X Either an igraph object, a list of nearest neighbors (see details below), or a
data.frame or matrix (with features as columns and items as rows) from which
nearest neighbors will be computed.
labels Either a factor or a character vector indicating the true class label of each element
(i.e. row or vertex) of x.
metrics The metrics to compute. See details.
directed Logical; whether to compute the metrics in a directed fashion. If left to NULL,
conventional choices will be made per metric (adhesion, cohesion, PWC AMSP
undirected, others directed).
k The number of nearest neighbors to compute and/or use. Can be omitted if x is
a graph or list of nearest neighbors.
shared Logical; whether to use a shared nearest neighbor network instead of a nearest

neighbor network. Ignored if x is not an embedding or dist object.

getNeighboringPairConcordance 31

level The level to calculate the metrics. Options include "element”, "class” and
"dataset”.

Optional arguments for emb2knn() or emb2snn().

Details
The allowed values for metrics depend on the value of level:

e If level = "element”, the allowed metrics are: "SI","ISI",”NP", "NCE" (see below for
details).
e If level = "class”, the allowed metrics are:
— "SI": Simpson’s Index.
— "ISI": Inverse Simpson’s Index
— "NP": Neighborhood Purity
— "AMSP": Adjusted Mean Shortest Path
— "PWC": Proportion of Weakly Connected
— "NCE": Neighborhood Class Enrichment
— "adhesion": adhesion of a graph, is the minumum number of nodes that must be re-
moved to split a graph.
— "cohesion": cohesion of a graph, is the minumum number of edges that must be removed
to split a graph.
e If level = "dataset”, the allowed metrics are: "SI"”,"ISI", "NP","AMSP","PWC","NCE",

non

"adhesion","cohesion”.

Value

A data.frame of metrics.

Examples

d1 <- mockData()
getGraphMetrics(d1[,seq_len(2)], labels=dl1$class, level="class")

getNeighboringPairConcordance
Per-element local concordance between a clustering and a ground
truth

Description

Per-element local concordance between a clustering and a ground truth

Usage

getNeighboringPairConcordance(
true,
pred,
location,
k = 2oL,
useNegatives = FALSE,
distWeights = TRUE,
BNPARAM = NULL

getPairConcordance

Arguments

true A vector of true class labels

pred A vector of predicted clusters

location A matrix or data.frame with spatial dimensions as columns. Alternatively, a
nearest neighbor object as produced by findKNN.

k Approximate number of nearest neighbors to consider

useNegatives Logical; whether to include the concordance of negative pairs in the score (de-
fault FALSE).

distWeights Logical; whether to weight concordance by distance (default TRUE).

BNPARAM A BiocNeighbors parameter object to compute kNNs. Ignored unless the input
is a matrix or data.frame. If omitted, the Annoy approximation will be used if
there are more than 500 elements.

Value

A vector of concordance scores

Examples

data(sp_toys)
data <- sp_toys

getNeighboringPairConcordance(data$label, data$pl, datal,c("x"”, "y")1, k=6)

getPairConcordance Per-element pair concordance score

Description

Per-element pair concordance between a clustering and a ground truth. Note that by default, nega-
tive pairs (i.e. that are split in both the predicted and true groupings) are not counted. To count it
(as in the standard Rand Index), use useNegatives=TRUE.

Usage

getPairConcordance(
true,
pred,
usePairs = TRUE,
useNegatives = FALSE,
adjust = FALSE

)
Arguments
true A vector of true class labels
pred A vector of predicted clusters
usePairs Logical; whether to compute over pairs instead of elements Recommended and

TRUE by default.

getPartitionClassMetrics 33

useNegatives Logical; whether to include the consistency of negative pairs in the score (default
FALSE).

adjust Logical; whether to adjust for chance. Only implemented for useNegatives=FALSE
(doesn’t make sense on a element-level otherwise).

Value

A vector of concordance scores

getPartitionClassMetrics
getPartitionClassMetrics

Description

Computes a selection of external evaluation metrics for partition. The metrics are reported per class.

Usage
getPartitionClassMetrics(
true,
pred,
metr‘iCS = C(HWCH , MWHH , HAWCH , HAWHH , ”FM”)
)
Arguments
true A vector containing the labels of the true classes. Must be a vector of characters,
integers, numerics, or a factor, but not a list.
pred A vector containing the labels of the predicted clusters. Must be a vector of
characters, integers, numerics, or a factor, but not a list.
metrics The metrics to compute. If omitted, main metrics will be computed.
Value

A dataframe of metrics.

getPartitionElementMetrics
getPartitionElementMetrics

Description

Computes a selection of external evaluation metrics for partition. The metrics are reported per
element.

34 getPartitionGlobalMetrics

Usage

getPartitionElementMetrics(
true,
pred,
metrics = c("SPC"),
usePairs = TRUE,
useNegatives = TRUE

)
Arguments
true A vector of true class labels
pred A vector of predicted clusters
metrics The metrics to compute.
usePairs Logical; whether to compute over pairs instead of elements Recommended and
TRUE by default.
useNegatives Logical; whether to include the consistency of negative pairs in the score (default
FALSE).
Value

A dataframe of metrics.

getPartitionGlobalMetrics
getPartitionGlobalMetrics

Description

Computes a selection of external evaluation metrics for partition. The metrics are reported per
dataset.

Usage

getPartitionGlobalMetrics(
true,
pred,
metrics = c("RI", "WC", "WH", "ARI", "NCR", "AWC", "AWH",6 "MI", "AMI",6 "VI", "EH",
"EC", "VM", "FM"),

)
Arguments
true A vector containing the labels of the true classes. Must be a vector of characters,
integers, numerics, or a factor, but not a list.
pred A vector containing the labels of the predicted clusters. Must be a vector of

characters, integers, numerics, or a factor, but not a list.

getPartitionMetrics 35

metrics The metrics to compute. If omitted, main metrics will be computed. See below
for more details.

Optional arguments for MI, VI, or VM. See clevr: :mutual_info(), clevr::variation_info()
and clevr: :v_measure() for more details.

Value

A dataframe of metric results. Possible metrics are:

RI Rand Index

WC Wallace Completeness

WH Wallace Homogeneity

ARI Adjusted Rand Index

AWC Adjusted Wallace Completeness

AWH Adjusted Wallace Homogeneity

NCR Normalized class size Rand index

MI Mutual Information

AMI Adjusted Mutual Information

VI Variation of Information

EH (Entropy-based) Homogeneity

EC (Entropy-based) Completeness

VM V-measure

FM F-measure/weighted average F1 score

VDM Van Dongen Measure

MHM Meila-Heckerman Measure

MMM Maximum-Match Measure

Mirkin Mirkin Metric

Accuracy Set Matching Accuracy

getPartitionMetrics Compute partition-based metrics

Description

Computes a selection of external evaluation metrics for partition.

Usage

getPartitionMetrics(true, pred, metrics = NULL, level = "class”, ...)

36 getPartitionMetrics

Arguments
true A vector containing the labels of the true classes. Must be a vector of characters,
integers, numerics, or a factor, but not a list.
pred A vector containing the labels of the predicted clusters. Must be a vector of
characters, integers, numerics, or a factor, but not a list.
metrics The metrics to compute. If omitted, main metrics will be computed. See details.
level The level to calculate the metrics. Options include "element", "class"” and
"dataset”.
Optional arguments for MI, VI, or VM. See clevr: :mutual_info(), clevr::variation_info()
and clevr: :v_measure() for more details.
Details

The allowed values for metrics depend on the value of level:

e If level = "element”, the allowed metrics are:
— "SPC": Spot-wise Pair Concordance.
— "ASPC": Adjusted Spot-wise Pair Concordance.

e If level = "class”, the allowed metrics are: "WC","WH",” AWC", "AWH","FM" (see below for
details).

e If level = "dataset”, the allowed metrics are:

— "RI": Rand Index

— "WC": Wallace Completeness

— "WH": Wallace Homogeneity

— "ARI": Adjusted Rand Index

— "AWC": Adjusted Wallace Completeness
— "AWH": Adjusted Wallace Homogeneity
— "NCR": Normalized class size Rand index
— "MI": Mutual Information

— "AMI": Adjusted Mutual Information

— "VI": Variation of Information

— "EH": (Entropy-based) Homogeneity

— "EC": (Entropy-based) Completeness

— "VM": V-measure

— "FM": F-measure/weighted average F1 score
— "VDM": Van Dongen Measure

— "MHM": Meila-Heckerman Measure

- "MMM": Maximum-Match Measure

— "Mirkin": Mirkin Metric

— "Accuracy”: Set Matching Accuracy

Value

A data.frame of metrics.

getSpatialClassExternalMetrics 37

Examples

true <- rep(LETTERS[seq_len(3)], each=10)

pred <- c(rep("A", 8), rep("B", 9), rep("C", 3), rep("D", 10))
getPartitionMetrics(true, pred, level="class")
getPartitionMetrics(true, pred, level="dataset”)

getSpatialClassExternalMetrics

Compute class-level external evaluation metrics for spatially-resolved
data

Description

Computes a selection of external clustering evaluation metrics for spatial data at the class/cluster
level.

Usage

getSpatialClassExternalMetrics(
true,
pred,
location,
k =6,
alpha = 0.5,
metrics = c("nsWH", "nsAWH", "nsWC", "nsAWC"),
fuzzy_true = TRUE,
fuzzy_pred = FALSE,
lowMemory = NULL,

)
Arguments

true A vector containing the labels of the true classes. Must be a vector of characters,
integers, numerics, or a factor, but not a list.

pred A vector containing the labels of the predicted clusters. Must be a vector of
characters, integers, numerics, or a factor, but not a list.

location A matrix or data.frame of coordinates

k The number of neighbors used when calculating the fuzzy class memberships
for fuzzy metrics.

alpha The parameter to control to what extend the spot itself contribute to the class
composition calculation. "equal” means it is weighted the same as other neigh-
bors. A numeric value between @ and 1 means the weight of the frequency
contribution for the spot itself, and the frequency contribution for its knn is then
1-alpha. By default @.5.

metrics a vector of metric names to compute.

fuzzy_true Logical; whether to compute fuzzy class memberships for true.

fuzzy_pred Logical; whether to compute fuzzy class memberships for pred.

38 getSpatialClassInternalMetrics

lowMemory Logical, whether to use a low memory mode. This is only useful whenhardTrue
and fuzzyPred is used. If TRUE, the function will compute the metrics in a low
memory mode, which is slower but uses less memory. If FALSE, the function
will compute the metrics in a high memory mode, which is faster but uses more
memory. By default it is set automatically based on the size of the input data.
See fuzzyHardMetrics.

Optional params for fuzzyPartitionMetrics or findSpatialKkNN.

Value

A data.frame of metrics.

getSpatialClassInternalMetrics

Compute class-level internal evaluation metrics for spatially-resolved
data

Description

Computes a selection of internal clustering evaluation metrics for spatial data for each class.

Usage

getSpatialClassInternalMetrics(
labels,
location,
k =6,
metrics = c("CHAOS", "PAS", "ELSA"),

)
Arguments
labels A vector containing the labels to be evaluated.
location A numerical matrix containing the location information, with rows as samples
and columns as location dimensions.
k The size of the spatial neighborhood to look at for each spot. This is used for
calculating PAS and ELSA scores.
metrics Possible metrics: "CHAOS", "PAS" and "ELSA".
Optional params for PAS().
Value

A dataframe of metric values.

getSpatialElementExternalMetrics 39

getSpatialElementExternalMetrics
getSpatialElementExternalMetrics

Description

Computes a selection of external clustering evaluation metrics for spatial data at the element level.

Usage

getSpatialElementExternalMetrics(
true,
pred,
location,
k =6,
alpha = 0.5,
metrics = c(”"nsSPC", "NPC", "SpatialSPC"),
fuzzy_true = TRUE,
fuzzy_pred = FALSE,

)
Arguments
true A vector containing the labels of the true classes. Must be a vector of characters,
integers, numerics, or a factor, but not a list.
pred A vector containing the labels of the predicted clusters. Must be a vector of
characters, integers, numerics, or a factor, but not a list.
location A matrix or data.frame of coordinates
k The number of neighbors used when calculating the fuzzy class memberships
for fuzzy metrics, or when calculating the weighted accuracy.
alpha The parameter to control to what extend the spot itself contribute to the class
composition calculation. "equal” means it is weighted the same as other neigh-
bors. A numeric value between @ and 1 means the weight of the frequency
contribution for the spot itself, and the frequency contribution for its knn is then
1-alpha. By default @. 5.
metrics a vector of metric names to compute.
fuzzy_true Logical; whether to compute fuzzy class memberships for true.
fuzzy_pred Logical; whether to compute fuzzy class memberships for pred.
Optional params for getFuzzyPartitionElementMetrics() or findSpatialkKNN().
Value

A data.frame of metrics.

40 getSpatialExternalMetrics

getSpatialElementInternalMetrics

Compute spot-level internal evaluation metrics for spatially-resolved
data

Description

Computes a selection of internal clustering evaluation metrics for spatial data at each spot level.

Usage

getSpatialElementInternalMetrics(
labels,
location,
k =6,
metrics = c("PAS", "ELSA"),

)
Arguments
labels A vector containing the labels to be evaluated.
location A numerical matrix containing the location information, with rows as samples
and columns as location dimensions.
k The size of the spatial neighborhood to look at for each spot. This is used for
calculating PAS and ELSA scores.
metrics Possible metrics: "PAS" and "ELSA".
Optional params for PAS().
Value

A dataframe containing the metric values for all samples in the dataset. If PAS is calculated, the
value is a Boolean about the abnormality of a spot. If ELSA is calculated, Ea, Ec and ELSA for all
spots will be returned.

getSpatialExternalMetrics
Calculate Spatial External Metrics

Description

A generic function to calculate spatial external metrics. It can be applied to raw components (true,
pred, location) or directly to a SpatialExperiment object.

getSpatialExternalMetrics

Usage

getSpatialExternalMetrics(

)

object = NULL,
true,

pred,

location = NULL,

k =6,

alpha = 0.5,

level = "class”,
metrics = NULL,
fuzzy_true = TRUE,
fuzzy_pred = FALSE,

S4 method for signature
getSpatialExternalMetrics(

)

object = NULL,
true,

pred,

location = NULL,

k =86,

alpha = 0.5,

level = "class”,
metrics = NULL,
fuzzy_true = TRUE,
fuzzy_pred = FALSE,

S4 method for signature
getSpatialExternalMetrics(

object = NULL,
true,

pred,

location = NULL,

k =86,

alpha = 0.5,

level = "class”,
metrics = NULL,
fuzzy_true = TRUE,
fuzzy_pred = FALSE,

Arguments

object

true

'missing'’

'SpatialExperiment'’

true, pred, and location directly).

41

The main input. Can be a SpatialExperiment object or missing (when using

When object is missing: a vector containing the labels of the true classes. Must

be a vector of characters, integers, numerics, or a factor, but not a list. When
objectisaSpatialExperiment object: the column name in colData(object)

42 getSpatialExternalMetrics

containing the true labels.

pred When object is missing: a vector containing the labels of the predicted clus-
ters. Must be a vector of characters, integers, numerics, or a factor, but not
a list. When object is a SpatialExperiment object: the column name in
colData(object) containing the predicted labels.

location A matrix or data.frame of coordinates

k The number of neighbors used when calculating the fuzzy class memberships
for fuzzy metrics, or when calculating the weighted accuracy.

alpha The parameter to control to what extend the spot itself contribute to the class
composition calculation. "equal” means it is weighted the same as other neigh-
bors. A numeric value between @ and 1 means the weight of the frequency
contribution for the spot itself, and the frequency contribution for its knn is then
1-alpha. By default @. 5.

level The level to calculate the metrics. Options include "element”, "class” and
"dataset”.

metrics The metrics to compute. See details.

fuzzy_true Logical; whether to compute fuzzy class memberships for true.

fuzzy_pred Logical; whether to compute fuzzy class memberships for pred.

Additional arguments passed to specific methods.

Details
The allowed values for metrics depend on the value of level:

e If level = "element”, the allowed metrics are: "nsSPC"”, "NPC","SpatialSPC".
e If level = "class"”, the allowed metrics are: "nsWH"”, "nsAWH", "nsWC","nsAWC".

e Iflevel = "dataset”, the allowed metrics are: "nsRI"”, "nsARI","nsWH","nsAWH", "nsWC","nsAWC",
"nsAccuracy”,”SpatialRI","SpatialARI".

Value

A data.frame of metrics based on the specified input.

Examples

Example with individual components

data(sp_toys)

data <- sp_toys
getSpatialExternalMetrics(true=data$label, pred=data$pi,
location=datal,c("x", "y")], k=6, level="class")

Example with SpatialExperiment object
se_object <- SpatialExperiment::SpatialExperiment(assays=matrix(NA,
ncol = nrow(datal,c("x", "y")1),
nrow = ncol(datal,c("x", "y")1)),
spatialCoords=as.matrix(datal,c("x", "y")1))
SummarizedExperiment::colData(se_object) <-
cbind(SummarizedExperiment: :colData(se_object),
data.frame(true=data$label, pred=data$p1))
getSpatialExternalMetrics(object=se_object, true="true", pred="pred”, k=6,
level="class")

getSpatialGlobalExternalMetrics 43

getSpatialGlobalExternalMetrics

Compute dataset-level external evaluation metrics for spatially-
resolved data

Description

Computes a selection of external clustering evaluation metrics for spatial data at the dataset level.
Options include a series of fuzzy pair-counting metrics and set matching-based accuracy.

Usage

getSpatialGlobalExternalMetrics(
true,
pred,
location,
k =86,
alpha = 0.5,
metrics = c("nsRI"”, "nsARI"”, "nsWH", "nsAWH", "nsWC", "nsAWC"”, "nsAccuracy"”,
"SpatialRI", "SpatialARI"),
fuzzy_true = TRUE,
fuzzy_pred = FALSE,
lowMemory = NULL,

)
Arguments

true A vector containing the labels of the true classes. Must be a vector of characters,
integers, numerics, or a factor, but not a list.

pred A vector containing the labels of the predicted clusters. Must be a vector of
characters, integers, numerics, or a factor, but not a list.

location A matrix or data.frame of coordinates

k The number of neighbors used when calculating the fuzzy class memberships
for fuzzy metrics, or when calculating the weighted accuracy.

alpha The parameter to control to what extend the spot itself contribute to the class
composition calculation. "equal” means it is weighted the same as other neigh-
bors. A numeric value between @ and 1 means the weight of the frequency
contribution for the spot itself, and the frequency contribution for its knn is then
1-alpha. By default 0.5.

metrics a vector of metric names to compute.

fuzzy_true Logical; whether to compute fuzzy class memberships for true.

fuzzy_pred Logical; whether to compute fuzzy class memberships for pred.

lowMemory Logical, whether to use a low memory mode. This is only useful whenhardTrue

and fuzzyPred is used. If TRUE, the function will compute the metrics in a low
memory mode, which is slower but uses less memory. If FALSE, the function
will compute the metrics in a high memory mode, which is faster but uses more
memory. By default it is set automatically based on the size of the input data.
See fuzzyHardMetrics.

Optional params for fuzzyPartitionMetrics or findSpatialKNN.

44 getSpatialGloballnternalMetrics

Value

A data.frame of metrics.

getSpatialGlobalInternalMetrics

Compute dataset-level internal evaluation metrics for spatially-
resolved data

Description

Computes a selection of internal clustering evaluation metrics for spatial data at the dataset level.
MPC, PC and PE are internal metrics for fuzzy clustering, and their implementations in package
fclust are used.

Usage

getSpatialGlobalInternalMetrics(
labels,
location,
k =6,
metrics = c("PAS", "ELSA", "CHA0S"),

Arguments
labels A vector containing the labels to be evaluated.
location A numerical matrix containing the location information, with rows as samples
and columns as location dimensions.
k The size of the spatial neighborhood to look at for each spot. This is used for
calculating PAS and ELSA scores.
metrics The metrics to compute. See below for more details.
Optional arguments for PAS().
Value

A named vector containing metric values. Possible metrics are:

PAS Proportion of abnormal spots (PAS score).
ELSA Entropy-based Local indicator of Spatial Association (ELSA score).
CHAOS Spatial Chaos Score.
MPC Modified partition coefficient
PC Partition coefficient
PE Partition entropy
References

Yuan, Zhiyuan, et al., 2024; 10.1038/s41592-024-02215-8
Naimi, Babak, et al., 2019; 10.1016/j.spasta.2018.10.001
Wang, et al., 2022; 10.1016/j.in5.2022.11.010

getSpatiallnternalMetrics 45

getSpatiallnternalMetrics
Compute internal metrics for spatial data

Description
A generic function to compute a selection of internal clustering evaluation metrics for spatial data. It
can be applied to raw components (labels, location) or directly to a SpatialExperiment object
Usage

getSpatialInternalMetrics(
object = NULL,

labels,

location = NULL,
k =6,

level = "class”,

metrics = c("CHAOS", "PAS", "ELSA"),

)

S4 method for signature 'missing'’
getSpatialInternalMetrics(
object = NULL,

labels,
location = NULL,
k =6,
level = "class”,

metrics = c("CHAOS", "PAS", "ELSA"),

)

S4 method for signature 'SpatialExperiment'’
getSpatialInternalMetrics(
object = NULL,

labels,
location = NULL,
k =6,
level = "class”,

metrics = c("CHAOS", "PAS", "ELSA"),

)
Arguments
object The main input. Can be a SpatialExperiment object or missing (when using
labels, and location directly).
labels When object is missing: a vector containing the labels of the predicted clus-

ters. Must be a vector of characters, integers, numerics, or a factor, but not
a list. When object is a SpatialExperiment object: the column name in
colData(object) containing the labels.

46 getSpatiallnternalMetrics
location A numerical matrix containing the location information, with rows as samples
and columns as location dimensions.
k The size of the spatial neighborhood to look at for each spot. This is used for
calculating PAS and ELSA scores.
level The level to calculate the metrics. Options include "element”, "class” and
"dataset”.
metrics The metrics to compute. See details.
Optional params for PAS().
Details

The allowed values for metrics depend on the value of level:

e If level = "element”, the allowed metrics are: "PAS", "ELSA".
e If level = "class”, the allowed metrics are: "CHAOS", "PAS", "ELSA".
e If level = "dataset”, the allowed metrics are:
— "PAS": Proportion of abnormal spots (PAS score)
— "ELSA": Entropy-based Local indicator of Spatial Association (ELSA score)
— "CHAOS": Spatial Chaos Score.
— "MPC": Modified partition coefficient
— "PC": Partition coefficient

— "PE": Partition entropy

Value

A data.frame of metrics.

Examples

Example with individual components

data(sp_toys)

data <- sp_toys

getSpatiallnternalMetrics(labels=data$label, location=datal,c("x", "y")1,
k=6, level="class")

Example with SpatialExperiment object
se_object <- SpatialExperiment::SpatialExperiment(assays=matrix(NA,
ncol = nrow(datal,c("x", "y")1),
nrow = ncol(datal,c("x", "y")1)),
spatialCoords=as.matrix(datal,c("x", "y")1))
SummarizedExperiment::colData(se_object) <-
cbind(SummarizedExperiment: :colData(se_object),
data.frame(label=data$label))
getSpatiallnternalMetrics(object=se_object, labels="label"”, k=6,
level="class")

knnComposition 47

knnComposition Compute neighborhood composition

Description

For a given dataset with locations and labels, compute the label composition of the neighborhood
for each sample.

Usage
knnComposition(location, k = 6, labels, alpha = 0.5, ...)
Arguments
location A numeric data matrix containing location information, where rows are points
and columns are location dimensions.
k The number of nearest neighbors to look at.
labels A vector containing the label for the dataset.
alpha The parameter to control to what extend the spot itself contribute to the class
composition calculation. "equal” means it is weighted the same as other neigh-
bors. A numeric value between @ and 1 means the weight of the frequency
contribution for the spot itself, and the frequency contribution for its knn is then
1-alpha. By default 0.5.
Optional arguments for findSpatialKNN().
Value

A numerical matrix indicating the composition, where rows correspond to samples and columns
correspond to the classes in label.

Examples

data(sp_toys)
data <- sp_toys
knnComposition(datal,c("x", "y")]1, k=6, data$label)

matchSets Match two partitions using Hungarian algorithm

Description
Match sets from a partitions to a reference partition using the Hungarian algorithm to optimize F1
scores.

Usage

matchSets(pred, true, forceMatch = TRUE, returnIndices = is.integer(true))

48 mockData

Arguments
pred An integer or factor of cluster labels
true An integer or factor of reference labels
forceMatch Logical; whether to enforce a match for every set of pred

returnIndices Logical; whether to return indices rather than levels

Value

A vector of matching sets (i.e. level) from true for every set (i.e. level) of pred.

metric_info Metrics Information

Description
A dataframe storing the information of all metrics. The code to generate the dataset is at sys-
tem.file(’inst/scripts/’, *metric_info.R’, package="poem’).

Usage

metric_info

Format

metric_info:

A data frame.

mockData Generate mock multidimensional data

Description

Generates mock multidimensional data of a given number of classes of points, for testing.

Usage

mockData(
Ns = c(25, 15),
classDiff = 2,
Sds =1,
ndims = 2,
spread = c(1, 2),
rndFn = rnorm

nnWeightedAccuracy 49

Arguments
Ns A vector of more than one positive integers specifying the number of elements
of each class.
classDiff The distances between the classes. If there are more than 2 classes, this can be
a dist object or a symmetric matrix of length(Ns)-1columns/rows where the
lower triangle indicates the desired distances between classes.
Sds The standard deviation. Can either be a fixed value, a value per class, or a matrix
of values for each class (rows) and dimension (column).
ndims The number of dimensions to generate (default 2).
spread The spread of the points. Can either be a fixed value, a value per class, or a
matrix of values for each class (rows) and dimension (col).
rndFn The random function, by default rnorm, but should also work for rlnorm and
similar.
Value

A data.frame with coordinates and a class column.

Examples

d <- mockData()

nnWeightedAccuracy nnWeightedAccuracy

Description

Computes an accuracy score which weighs elements/spots that are misclassified by the proportion
of their (spatial) neighborhood that is not of the element/spot’s predicted class. This reduces the
weight of misclassifications happening at the boundary between domains.

Usage

nnWeightedAccuracy(true, pred, location, k =5, ...)
Arguments

true True class labels (vector coercible to factor)

pred Predicted labels (vector coercible to factor)

location The spatial coordinates to compute the nearest neighbors.

k Number of nearest neighbors

Optional params passed to findSpatialKNN().

Value

A scalar representing the weighted accuracy.

50 PAS

noisy_moon The noisy moon dataset

Description

A simple toy dataset consists of two interleaving half circles. The code to generate the dataset is at
system.file(’inst/scripts/’, *noisy_moon.R’, package="poem’).

Usage

noisy_moon

Format

noisy_moon:

A data frame with 100 rows and 5 columns:

X,y Coordinates of each observations.

label Ground truth labels. Either 1 or 2.

kmeans_label Predicted clustering labels using kmeans with 2 centers.
hdbscan_label Predicted clustering labels using hdbscan with minPts = 5.

PAS Calculate PAS score

Description

PAS score measures the clustering performance by calculating the randomness of the spots that
located outside of the spatial region where it was clustered to. Lower PAS score indicates better
spatial domian clustering performance.

Usage
PAS(labels, location, k = 10, ...)
Arguments
labels Cluster labels.
location A numerical matrix containing the location information, with rows as samples
and columns as location dimensions.
k Number of nearest neighbors.
Optional params for findSpatialkKNN().
Value

A numeric value for PAS score, and a boolean vector about the abnormal spots.

setMatchingAccuracy 51

Examples

data(sp_toys)

data <- sp_toys

PAS(data$label, datal,c("x", "y")1, k=6)
PAS(data$p1, datal,c("x", "y")1, k=6)
PAS(data$p2, datal,c("x", "y")1, k=6)

setMatchingAccuracy The non-spatially-weighted counterpart of nnWeightedAccuracy

Description

The non-spatially-weighted counterpart of nnWeighted Accuracy

Usage

setMatchingAccuracy(true, pred)

Arguments
true True class labels (vector coercible to factor)
pred Predicted labels (vector coercible to factor)
Value

A scalar representing the weighted accuracy.

silhouetteWidths silhouetteWidths

Description
Computes the silhouette widths. If the dataset is sufficiently small for the cluster::silhouette
implementation to work, this will be used. Otherwise a slower chunked implementation is used.
Usage

silhouetteWidths(x, labels)

Arguments
X A numeric matrix or data.frame with observations as rows.
labels An integer/factor vector of clustering labels, or length equal to the number of
rows in x.
Value

A numeric vector of silhouette widths for each element of x.

52 spatial ARI

Examples

generate dummy data

m <- matrix(rnorm(100*3),ncol=3)

labels <- sample.int(3,100,replace=TRUE)
calculate SWs:

sw <- silhouetteWidths(m, labels)

spatialARI Spatially aware ARI from Yan, Yingiao, et al. (2025).

Description

Computes the spatial Rand Index and spatial ARI (Yan, Feng and Luo, 2025). Note that by de-
fault, the decay functions are different from those of the original publication (see details for more
information), but the latter can be replicated with original=TRUE.

Usage

spatialARI(
true,
pred,
location,
normCoords =
lambda = 0.8,
fbeta = 4,
hbeta = 1,
spotWise = FALSE,
nChunks = NULL,
original = FALSE,
f = function(x) {

lambda * exp(-x * fbeta)

TRUE,

3
h = function(x) {
lambda * (1 - exp(-x * hbeta))

}
)
Arguments

true A vector of true class labels

pred A vector of predicted clusters

location A matrix of spatial coordinates, with dimensions as columns

normCoords Logical; whether to normalize the coordinates to 0-1.

lambda The alpha used in the f and h functions (default 0.8) in Yan, Feng and Luo,
2025.

fbeta, hbeta Additional factors used in the exponential decay functions (see details). A
higher value means a faster decay. These are ignored if original=TRUE.

spotWise Logical; whether to return the spot-wise spatial concordance (not adjusted for

chance).

sp_toys 53

nChunks The number of processing chunks. If NULL, this will be determined automati-
cally based on the size of the dataset, so as to remain below 2GB RAM usage.

original Logical; whether to use the original h/f functions from Yan, Feng and Luo (de-
fault FALSE). If set to TRUE, the arguments fbeta, hbeta, f and h are ignored.

f The f function, which determines the positive contribution of pairs that are in

different partitions in the reference, but grouped together in the clustering, based
on the distance between mates.

h The h function, which determines the positive contribution of pairs that are in
the same partition in the reference, but different ones in the clustering, based on
the distance between mates.

Details

This is a reimplementation of the method from the spARI package, made more scalable (i.e. a
bit slower but more memory-efficient) through chunk-based processing, extensible to more than 2
dimensions, and with some additional options. Note that by default, this will not produce the same
results as the original method: to do so, set original=TRUE. In our exploration of the method and
its behavior, we found the decay to be too slow, and we therefore 1) do not square the distances, and
2) introduced a beta parameter in each function which allows to scale it (a higher beta parameter
means a faster decay).

By default, chunking to keep RAM usage roughly below 2GB. Higher speed can be achieved (at
higher memory costs) for larger datasets by limiting the number of chunks. The memory usage
if done in a single chunk should be roughly 4e-5xnrow(location)*2 Mb, and this scales down
linearly with the number of chunks.

Value
A vector containing the spatial Rand Index (spRI) and spatial adjusted Rand Index (spARI). Alter-
natively, if spotWise=TRUE, a vector of spatial pair concordances for each spot.

Author(s)

Pierre-Luc Germain

References

Yan, Feng and Luo, biorxiv 2025, https://doi.org/10.1101/2025.03.25.645156

Examples

data(sp_toys)
spatialARI(true=sp_toys$label, pred=sp_toys$p2, location = sp_toys[,1:2])

sp_toys Toy examples of spatial data

Description

Toy examples of spatial data. The code to generate the dataset is at system.file(’inst/scripts/’,
’sp_toys.R’, package="poem’).

54 toyExamples

Usage

sp_toys

Format

sp_toys:

A data frame with 240 rows and 11 columns, representing a 16 x 15 array of spots:
X, ¥ Coordinates of each spots.

row, col The row and column index of each spots.

label Ground truth labels. Either 1 or 2.

pl-p6 Hypothetical predicted spatial clustering labels.

toyExamples Toy embedding examples

Description

Toy example 2D embeddings of elements of different classes, with varying mixing and spread.
Graphs 1-3 all have 20 elements of each of 4 classes, but that are mixed in different fashion in the
embedding space. Graphs 4-7 all have 100 elements of classl and 60 of class2, and the classl
elements vary in their spread. The code to generate the dataset is at system.file(’inst/scripts/’,

’graph_example.R’, package="poem’).

Usage

toyExamples

Format

toyExamples:

A data frame.

graph The name of the embedding to which the element belongs.
X,y Coordinates in the 2D embedding.

class The class to which the element belongs.

Index

x datasets

metric_info, 48
noisy_moon, 50
sp_toys, 53

toyExamples, 54

* internal

.check_duplicated_samples, 3
.compute_cluster_core_distance, 3
.compute_cross_dists, 4
.compute_mutual_reach_dists, 4
.compute_pair_to_pair_dists, 5
.convert_singleton_clusters_to_noise
5
.fn_density_separation, 6
.fn_density_sparseness, 6
.get_internal_objects, 7
.get_submatrix, 7
FMeasure, 14
fuzzyHardMetrics2, 16
getEmbeddingClassMetrics, 20
getEmbeddingElementMetrics, 21
getEmbeddingGlobalMetrics, 21
getFuzzyPartitionElementMetrics,
24
getGraphClassMetrics, 27
getGraphElementMetrics, 29
getPartitionClassMetrics, 33
getPartitionElementMetrics, 33
getPartitionGlobalMetrics, 34
getSpatialClassExternalMetrics, 37
getSpatialClassInternalMetrics, 38
getSpatialElementExternalMetrics
39
getSpatialElementInternalMetrics
40
getSpatialGlobalExternalMetrics,
43
getSpatialGlobalInternalMetrics,
44
nnWeightedAccuracy, 49
setMatchingAccuracy, 51
silhouetteWidths, 51

.check_duplicated_samples, 3

55

.compute_cluster_core_distance, 3
.compute_cross_dists, 4
.compute_mutual_reach_dists, 4
.compute_pair_to_pair_dists, 5
.convert_singleton_clusters_to_noise,
5
.fn_density_separation, 6
.fn_density_sparseness, 6
.get_internal_objects, 7
.get_submatrix, 7

bluster::neighborsToSNNGraph(), /2

CDbw, 8

CDbw(), 23

CHAOS, 9
clevr::mutual_info(), 35, 36
clevr::v_measure(), 35, 36
clevr::variation_info(), 35, 36

dbcv, 10
dbev(), 23

ELSA, 11

emb2knn, 12
emb2knn(), 28, 30, 31
emb2snn, 12
emb2snn(), 28, 30, 31

findkNN, 9, 13, 32
findSpatialkNN, 13, 38, 43
findSpatialKNNQ), 23, 39, 47, 49, 50
FMeasure, 14
fuzzyHardMetrics, 14, 16, 26, 38, 43
fuzzyHardMetrics(), 17
fuzzyHardMetrics2, 16
fuzzyHardSpotConcordance, 18
fuzzyPartitionMetrics, 14, 19, 26, 38, 43
fuzzyPartitionMetrics(), 15

getEmbeddingClassMetrics, 20
getEmbeddingElementMetrics, 21
getEmbeddingGlobalMetrics, 21
getEmbeddingMetrics, 22
getFuzzylabel, 23

56

getFuzzyPartitionElementMetrics, 24
getFuzzyPartitionElementMetrics(), 39
getFuzzyPartitionMetrics, 25
getGraphClassMetrics, 27
getGraphClassMetrics,data. frame-method
(getGraphClassMetrics), 27
getGraphClassMetrics,dist-method
(getGraphClassMetrics), 27
getGraphClassMetrics, igraph-method
(getGraphClassMetrics), 27
getGraphClassMetrics,list-method
(getGraphClassMetrics), 27
getGraphClassMetrics,matrix-method
(getGraphClassMetrics), 27
getGraphElementMetrics, 29

getGraphElementMetrics,data. frame-method

(getGraphElementMetrics), 29
getGraphElementMetrics,dist-method
(getGraphElementMetrics), 29
getGraphElementMetrics, igraph-method
(getGraphElementMetrics), 29
getGraphElementMetrics,list-method
(getGraphElementMetrics), 29
getGraphElementMetrics,matrix-method
(getGraphElementMetrics), 29
getGraphMetrics, 30
getNeighboringPairConcordance, 31
getPairConcordance, 32
getPartitionClassMetrics, 33
getPartitionElementMetrics, 33
getPartitionGlobalMetrics, 34
getPartitionMetrics, 35
getSpatialClassExternalMetrics, 37
getSpatialClassInternalMetrics, 38
getSpatialElementExternalMetrics, 39
getSpatialElementInternalMetrics, 40
getSpatialExternalMetrics, 40

getSpatialExternalMetrics,missing-method

(getSpatialExternalMetrics), 40

INDEX

mockData, 48

nnWeightedAccuracy, 49
noisy_moon, 50

PAS, 50
PAS(), 38, 40, 44, 46

setMatchingAccuracy, 51
silhouetteWidths, 51
sp_toys, 53
spatialARI, 52
stats::dist(), 23

toyExamples, 54

getSpatialExternalMetrics,SpatialExperiment-method

(getSpatialExternalMetrics), 40
getSpatialGlobalExternalMetrics, 43
getSpatialGlobalInternalMetrics, 44
getSpatiallnternalMetrics, 45

getSpatiallnternalMetrics,missing-method

(getSpatiallnternalMetrics), 45

getSpatialInternalMetrics,SpatialExperiment-method

(getSpatialInternalMetrics), 45
knnComposition, 47

matchSets, 47
metric_info, 48

	.check_duplicated_samples
	.compute_cluster_core_distance
	.compute_cross_dists
	.compute_mutual_reach_dists
	.compute_pair_to_pair_dists
	.convert_singleton_clusters_to_noise
	.fn_density_separation
	.fn_density_sparseness
	.get_internal_objects
	.get_submatrix
	CDbw
	CHAOS
	dbcv
	ELSA
	emb2knn
	emb2snn
	findSpatialKNN
	FMeasure
	fuzzyHardMetrics
	fuzzyHardMetrics2
	fuzzyHardSpotConcordance
	fuzzyPartitionMetrics
	getEmbeddingClassMetrics
	getEmbeddingElementMetrics
	getEmbeddingGlobalMetrics
	getEmbeddingMetrics
	getFuzzyLabel
	getFuzzyPartitionElementMetrics
	getFuzzyPartitionMetrics
	getGraphClassMetrics
	getGraphElementMetrics
	getGraphMetrics
	getNeighboringPairConcordance
	getPairConcordance
	getPartitionClassMetrics
	getPartitionElementMetrics
	getPartitionGlobalMetrics
	getPartitionMetrics
	getSpatialClassExternalMetrics
	getSpatialClassInternalMetrics
	getSpatialElementExternalMetrics
	getSpatialElementInternalMetrics
	getSpatialExternalMetrics
	getSpatialGlobalExternalMetrics
	getSpatialGlobalInternalMetrics
	getSpatialInternalMetrics
	knnComposition
	matchSets
	metric_info
	mockData
	nnWeightedAccuracy
	noisy_moon
	PAS
	setMatchingAccuracy
	silhouetteWidths
	spatialARI
	sp_toys
	toyExamples
	Index

