Package 'proteinProfiles' July 17, 2025 Type Package Title Protein Profiling | Version 1.49.0 | |--| | Author Julian Gehring | | Maintainer Julian Gehring <jg-bioc@gmx.com></jg-bioc@gmx.com> | | Imports graphics, stats | | Depends R (>= $2.15.2$) | | Suggests testthat | | Description Significance assessment for distance measures of time-course protein profiles | | License GPL-3 | | LazyLoad yes | | BiocViews Annotation, Proteomics, TimeCourse, Clustering | | git_url https://git.bioconductor.org/packages/proteinProfiles | | git_branch devel | | git_last_commit c54ddcb | | git_last_commit_date 2025-04-15 | | Repository Bioconductor 3.22 | | Date/Publication 2025-07-16 | | | | Contents | | proteinProfiles-package | | annotation | | filterFeatures | | ips_sample-data | | promobilisme | | Index | 2 annotation proteinProfiles-package proteinProfiles package #### **Description** Significance assessment for distance measures of time-course protein profiles #### **Details** The package is published under the GPL-3 license. #### Author(s) Julian Gehring Maintainer: Julian Gehring <julian.gehring@embl.de> #### See Also $filter Features, \ grep Annotation, \ profile Distance, \ plot Profile Distance$ annotation grepAnnotation #### **Description** Find protein group of interest based on pattern matching against the annotation data. ### Usage ``` grepAnnotation(anno, pattern, column, ...) ``` #### **Arguments** | anno | Data frame with annotation to analyze. The row names have to match rownames in the matrix containing the protein abundance data. Different columns correspond to different annotation columns, e.g. from different sources. | |---------|---| | pattern | Character string representing a (sub)string or regular expression matched against the annotation. For details, see 'grep'. | | column | Column of the annotation data 'pattern' is matched against. | | | Optional arguments, passed to the 'grep' function. | #### Value Protein identifiers (rownames of 'anno') specifying the protein group of interest in the data set. #### See Also grep, filterRatios, proteinProfiles filterFeatures 3 #### **Examples** ``` data(ips_sample) index_28S <- grepAnnotation(annotation, pattern="^28S", column="Protein.Name") index_ribosome <- grepAnnotation(annotation, "Ribosome", "KEGG")</pre> ``` filterFeatures filterFeatures #### Description Filter out proteins exceeding a certain fraction of missing data points. # Usage ``` filterFeatures(values, maxNAfraction, verbose=FALSE, plot=FALSE, ...) ``` # Arguments | values | Numeric matrix containing the data to analyze. | |---------------|--| | maxNAfraction | Numeric threshold specifying the maximum fraction of data points that can be missing ('NA') to still keep the protein. | | verbose | Logical indicating whether to print the number of proteins before and after filtering (default: FALSE). | | plot | Logical indicationg whether to plot a diagnostic plot showing the distribution of the fraction of missing data points associated with the proteins (default: FALSE). | | | Arguments passed to the ''plot' method. | #### Value Numeric matrix with the same structure as 'values', with elements not matching the filter criteria removed. # Examples ``` data(ips_sample) ratios_filtered <- filterFeatures(ratios, 0.2, verbose=TRUE)</pre> ``` 4 profileDistance #### Description IPS sample data, separated in protein ratios and annotation. #### Usage ``` data(ips_sample) ``` #### **Format** ratios Matrix with protein profiles. Rows correspond to proteins, columns to samples. annotation Data frame with annotation columns, with row names matching those of 'ratios.' #### **Examples** ``` data(ips_sample) str(ratios) str(annotation) ``` profileDistance profileDistance #### Description Compute distance between a protein group of interest and assess its significance by comparing it to the distances of randomly selected groups of proteins. #### Usage ``` profileDistance(values, index, nSample=1000, seed) plotProfileDistance(z, ...) ``` # Arguments | values | Numeric matrix containing the protein data to analyze. | |---------|---| | index | Protein identifiers for the protein group of interest in the data set 'values', as returned from 'grepAnnotation' or an equivalent function. | | nSample | Integer specifying the number of randomly selected groups of proteins with the same number of elements as specified by 'index', serving as a reference for the significance assessment (default: 1000). | | seed | Random seed, relevant for the permutation step. For details, see the 'seed' function. | | z | Return object from 'profileDistance.' | | | Optional arguments passed to the 'plot' function. | profileDistance 5 #### Value List with elements: d0 Numeric with mean distance d_0 of profiles for the proteins of interest. d1 Vector of numerics with mean distances d_1 of randomly selected groups of proteins. **p** Numeric with p-value p . ## **Examples** ``` data(ips_sample) index_28S <- grepAnnotation(annotation, pattern="^28S", column="Protein.Name") z <- profileDistance(ratios, index_28S) z$p.value plotProfileDistance(z)</pre> ``` # **Index** ``` * datasets ips_sample-data, 4 * distribution proteinProfiles-package, 2 * htest \verb|proteinProfiles-package|, 2| * package proteinProfiles-package, 2 annotation, 2 annotation (ips_sample-data), 4 filterFeatures, 3 grepAnnotation (annotation), 2 ips_sample (ips_sample-data), 4 ips_sample-data, 4 \verb|plotProfileDistance| (\verb|profileDistance|), 4 profileDistance, 4 proteinProfiles (proteinProfiles-package), 2 proteinProfiles-package, 2 ratios(ips_sample-data), 4 ```